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Abstract

Randomized clinical trials typically estimate average treatment e↵ects within se-
lected populations. With modern medical records and quasi-experimental research
designs, it is now possible to estimate heterogeneous treatment e↵ects using vastly
more information. We present evidence that applying such estimates to inform clin-
ical decisions could lead to large health benefits, outperforming both status quo
physician decisions and strict applications of current medical guidelines. We study
blood transfusion decisions for 1.6 million patients with anemia receiving inpatient
care at Veteran Health Administration hospitals from 2000-2015. We first show
that observed treatment decisions are largely invariant to a wide array of observ-
able patient characteristics, with the exception of blood hemoglobin levels. Treat-
ment e↵ects estimated by naively assuming unconfoundedness vary substantially
with patient characteristics. Using instruments based on quasi-random assignment
of patients to physicians, we find that much of the measured heterogeneity in the
naive “observational” treatment e↵ects reflects heterogeneity in underlying causal
e↵ects rather than selection. In counterfactual simulations, we find that better tar-
geting the existing number of transfusions would reduce the total 30-day mortality
rate in the study population by 1.1 percentage points, from a base of 9% .
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1 Introduction

Recent advances in machine learning and genetics, as well as the widespread adoption of

electronic medical records, make possible more personalized assessments of the benefits

of alternative treatments (Collins and Varmus 2015). E↵orts to personalize medicine

face a fundamental challenge: Existing randomized experiments are not powered to

uncover heterogeneity in treatment e↵ects, yet attempts to do so using observational

data are confounded by selection into treatment based on unobservable determinants of

outcomes.

Further, bringing evidence-based clinical guidelines into practice can introduce an

important tradeo↵. Physicians often possess more knowledge of patients’ clinical con-

ditions and potential benefits from treatment along dimensions not fully observable to

analysts who construct guideline recommendations. As a result, strict adherence even

to sophisticated, evidence-based rules may perform badly if physicians would otherwise

use privately observed information to target treatment to patients who will benefit most.

In this paper, we develop and apply methods to estimate heterogeneous treatment

e↵ects in settings where physicians select patients into treatment based on both observ-

able and unobservable patient characteristics. We use the model to evaluate the 433,517

blood transfusions administered to patients admitted to VA hospitals from 2000 to 2015.

We compare mortality under the status quo transfusion decisions and in counterfactual

scenarios where total transfusions are held constant, but transfusions are reallocated to

patients who would benefit most.

While health economics has had a long-standing interest in overuse of care, there has

been a new and growing literature on whether care is being allocated e�ciently (Chandra

and Staiger 2007; Chandra and Staiger 2017; Chandra et al. 2016; Currie et al. 2016).

Recent work by Abaluck et al. (2016) found that, in the case of a common diagnostic

imaging test, the welfare costs of failing to allocate the test to the highest yield patients

is several times larger than the welfare costs of overuse. In this paper, we consider the

more general challenge of optimal treatment.1 We measure the extent of misallocation

and further ask whether this misallocation could be mitigated by stringent application

of current guidelines or by hypothetical guidelines that incorporate more clinical detail.

Additionally, our framework allows us to identify whether physician discretion leads to

better treatment decisions because physicians use private information in deciding who

1
Analytically, the most important di↵erence is that the yield of a diagnostic test–whether it is positive

or negative–is observed for each tested patient. This would be analogous to a case where the e↵ect

of treatment on the treated was known and we wanted to recover the relationship between patient

characteristics and average treatment e↵ects. In our setting here, the ETT must likewise be estimated.
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to treat or worse treatment decisions because physicians fail to optimally weight factors

observable to both physicians and analysts.

Our model builds on several recent innovations in applied econometrics. First, we

apply an important insight from the recent literature on school “value-added’ that re-

searchers may combine observational and quasi-experimental estimates to construct

mean-squared error minimizing value-added estimates (Chetty et al. 2014; Angrist

et al. 2017; Hull 2018). Rather than estimate the benefits of a particular school (as in

the school value-added literature), we seek to estimate the benefits for every possible

combination of observable patient characteristics. To do so, we further draw on the

recent literature on estimating heterogeneous treatment e↵ects using machine learning

techniques (Belloni et al. 2014; Athey and Imbens 2016; Wager and Athey 2017; Asher

et al. 2016). Finally, in the medical context, it is likely that physicians select patients

into treatment based on characteristics that at once are unobservable to the econometri-

cian but also relate to treatment e↵ects, so we distinguish between average and marginal

treatment e↵ects for a given set of observable characteristics explicitly into our model,

following Heckman and Vytlacil (2005).

Our analysis proceeds as follows. We begin by comparing physician treatment de-

cisions with treatment e↵ects measured in OLS or machine learning models that do

not explicitly account for selection on unobservable characteristics. Our first finding is

that physicians consider hemoglobin level in deciding which patients to transfuse, but

their decisions otherwise do not seem to use a large number of other observed patient

attributes. Although these patient attributes are unused in decision-making, comparing

30-day mortality for treated and untreated patients suggests observational treatment

e↵ects that vary substantially depending on these unused characteristics. For exam-

ple, assuming that observational treatment e↵ects are causal, patients with fewer recent

emergency department or hospital admissions derive a larger mortality reduction from

transfusions; nevertheless, patients in the 1st quartile of recent inpatient visits benefit

nearly four times as much as patients in the 4th quartile but the two groups are almost

equally likely to be transfused.

Next, we develop a structural model which permits treatment e↵ects to vary with

observable characteristics as well as unobservable selection into treatment. Our model

relies on quasi-experimental variation in the assignment of patients to physicians, who

may have di↵erent propensities to transfuse blood, within a hospital and service. This

experimental design is similar to a growing “judges-design” literature that exploits ran-

dom assignment to a decision-maker to estimate a treatment e↵ect on a population of

compliers who are induced by the decision-maker into treatment (Aizer and Doyle 2013;
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Kling 2006). Consistent with other papers in this literature, we examine the validity of

our approach with respect to two key assumptions. First, we assess balance in the char-

acteristics of patients assigned to physicians with di↵erent treatment propensities. Our

checks suggest that patients appear to be quasi-experimentally assigned to physicians

with di↵erent treatment propensities. Second, we assess a monotonicity assumption that

requires no defiers when patients are assigned to higher-propensity physicians, by show-

ing that subgroups of patients with di↵erent observable characteristics show the same

first-stage relationship between physician treatment propensity and patient treatment

(Bhuller et al. 2016; Dobbie et al. 2018).

In order to assess the relationship between observational treatment e↵ects and treat-

ment e↵ects implied by our quasi-experimental design, we run regressions interacting

the observational treatment e↵ect with our physician treatment-propensity instrument.

Intuitively, a coe�cient of unity on this interaction suggests that the measured het-

erogeneity reflects heterogeneous causal e↵ects while a coe�cient of 0 suggests that it

has no bearing on actual treatment e↵ects, due to either selection bias or measurement

error in the original observational approach to measuring treatment e↵ects. We find

that roughly half of the heterogeneity in naively estimated observational treatment ef-

fects reflects true di↵erences in quasi-experimental treatment e↵ects. In counterfactual

simulations, we find that better targeting the existing number of transfusions would

reduce total mortality in the study population by 1.1 percentage points, from a base of

9 percentage points.

Our model can also be applied to a wide variety of settings outside of medical care,

in which the goal is to estimate heterogeneous treatment e↵ects using a large number

of case attributes, some quasi-experimental variation, and a larger amount of obser-

vational data. For example, problems of a firm deciding which workers would benefit

the most from further training, or a policymaker trying to determine which community

would benefit most from a new schooling investment share the underlying features that

we model. One would like to estimate heterogeneous treatment e↵ects by comparing

treated and untreated beneficiaries, but to do so one must allow for potential selection.

Selection impacts both the way in which we interpret the observational data as well as

the balance between explicit policies and policies that make use of discretion. The bene-

fit of strict guidelines will depend, in part, on how well current experts are making these

allocation decisions and how important unobservable characteristics are for predicting

heterogeneity in returns.
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2 Data and Observational Evidence

2.1 Data

Blood transfusions are among the most common medical interventions, with approxi-

mately 11 million units transfused annually in the United States (Carson et al. 2017).

The single most important factor determining transfusion decisions is the patient’s blood

hemoglobin level, which reflect his red blood cell count. There are a wide range of under-

lying causes of anemia, defined as low hemoglobin levels, many of which are frequently

seen among hospitalized patients. Some conditions, such as traumatic injury or gastroin-

testinal bleeding, may need prompt transfusion to save a patient’s life. Other conditions,

such as iron deficiency, intravenous fluid administration, or repeated laboratory testing,

are either chronic or do not reflect any urgent need for more blood.

Furthermore, clinicians often recognize that patient characteristics unrelated to the

root cause of anemia should influence the benefit or cost of transfusing blood. For ex-

ample, for patients with coronary artery disease, inadequate blood levels can lead to

myocardial ischemia or infarction, and blood transfusions may improve mortality for

these patients to a greater degree, regardless of the cause of anemia. On the other

hand, patients with congestive heart failure may be sensitive to volume overload from

unnecessary transfusions. Transfusing these patients could actually worsen mortality.

Clinical guidelines incorporate some of this reasoning but usually do not make hard

recommendations for transfusion thresholds. Transfusion thresholds are almost always

stated as hemoglobin levels, and there has been a wide range of conflicting thresholds

recommended by di↵erent recent guidelines. While many randomized trials of transfu-

sion strategies have been performed, even a recent meta-analysis of 31 trials had a large

confidence interval around the potential benefits of more “liberal” transfusion policies,

running from a 20% reduction to a 16% increase in 30-day mortality associated with

more liberal transfusion strategies (Carson et al. 2017). The estimated benefits of the

marginal transfusion are even more uncertain.

This study relies on electronic health records from the Veteran’s Health Administra-

tion (VHA) to construct a detailed database of hospitalized patients who may receive

a blood transfusion. We collected data on each patient’s clinical characteristics rele-

vant for transfusion, whether the patient was transfused during the hospital stay, and

patient outcomes. These data are collected from the VA Corporate Data Warehouse,

which includes inpatient visits, bed locations and ward assignments, physician orders,

laboratory tests, diagnoses, and demographics. The data span the years 2000-2014.

We select patients who are admitted in the hospital in an acute-care bed section
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(e.g., general medicine, surgery, intensive care unit). Out of this cohort of 7.9 million

admissions, we select 2.7 million admissions for patients who had a minimum hemoglobin

level that would have placed them in a range, between 6 mg/dl and 11 mg/dl, with

any reasonable clinical uncertainty about the need for transfusion. We assign each

admission to the first attending physician of record.2 In order to exploit variation

across physicians in transfusion propensities, we restrict attention to physicians who

had at least 100 admissions within this hemoglobin range practicing in bed-sections

that treated at least 3,000 patients. This restriction results in our final analytic sample

of 1.6 million admissions and 4,778 physicians.

To capture whether or not patients are transfused during an admission, we rely

on physician order entry data (available from year 2009 onward) and procedure codes

(from the years 2000 to 2008), similar to those available in billing data. We observe

rich patient characteristics including 31 comorbid conditions. We also construct spline

variables describing past VA health care use over the past year: number of emergency

department, inpatient, and primary care visits. We capture demographic information

(race, ethnicity and spline in age, race). We construct measures of average, maximum,

minimum, and missing indicator for vital signs (pulse rate, temperature, respiration rate,

and blood pressure) over the hospital stay. Further, we consider laboratory tests related

to the patient’s blood level (hemoglobin), the risk of bleeding (platelet count, coagula-

tion studies, liver function tests), and potential myocardial ischemia (troponin, creatine

kinase-muscle/brain). For each laboratory test, we calculating average, maximum, and

minimum values, as well as a missing indicator.

Our primary outcome is 30-day patient mortality, which the VHA tracks using its

own records and data from Medicare and the Social Security Administration. The

baseline mortality rate is 9.4%. Our key laboratory test of interest for blood transfusions

is a patient’s hemoglobin level; we focus primarily on the minimum hemoglobin level

observed during the hospital stay. Our primary treatment variable is an indicator for

whether the patient was transfused during his stay, which we obtain from physician

order entry records. As we will describe below, our quasi-experimental design relies on

the identity of the physician identity who is assigned the patient. We also observe this

identity from internal patient assignment records. Additional summary statistics are

reported in Table 1.

2
In our full sample, 16.7% of patients lack any reported hemoglobin test during their stay; we

exclude these patients from our analysis. We are left with 5.1 million tested patients. While patients

with hemoglobin levels greater than 11 comprise 73% of all tested patients, they represent only 10% of

blood transfusions.
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2.2 Observational Evidence

In this section, we consider how patient characteristics appear correlated with “obser-

vational” estimates of the treatment e↵ect of blood transfusion and the extent to which

physicians tailor transfusion decisions using these observable patient characteristics. The

relationship between treatment e↵ects and the patient selection for transfusion underlies

our central question of the e�ciency of physician treatment decisions relative to those

implied by a statistical algorithm.

DenoteDi 2 {0, 1} as an indicator for whether a patient in admission i was transfused

during the admission. We are interested in counterfactual mortality for this patient with

or without transfusion, which we denote as

Yi (Di) = µiDi + ai. (1)

Yi(1) is the potential mortality that patient i would have under transfusion, while

Yi(0) is the potential mortality that the same patient would have under no transfusion.

ai can be thought of as the patient’s mortality outcome absent transfusion (i.e., Yi(0)),

and µi can be thought of as the patient-specific transfusion e↵ect on mortality (i.e.,

Yi(1) � Yi(1)). We only observe one realized outcome, corresponding to whether the

patient is transfused or not: Yi = (1�Di)Yi (0) +DiYi (1).

To mitigate selection bias, we can write

ai = X0
i� +T0

i⌘ + ⇣`(i) + "i, (2)

as a regression of ai on controls Xi, time dummies Ti, and clinical location dummies ⇣`(i)
for each location `. ForXi, we use a rich vector of patient characteristics, including cubic

splines of minimum hemoglobin level during the admission, patient demographics, prior

medical conditions, and cubic splines of prior visit utilization in outpatient, emergency

department, and inpatient settings. By definition, "i is uncorrelated with Xi, Ti, and `.

We make an unconfoundedness (i.e., “selection-on-observables”) assumption that

potential outcomes are independent with Di, conditional on observed patient character-

istics, time dummies, and the location of treatment:

{Yi (0) , Yi (1)} ?? Di |Xi,Ti, ` (i) , (3)

allows us to estimate the treatment e↵ect µi in the causal model of Equation (1) by

OLS. Finally, in order to measure heterogeneity in observational treatment e↵ects as

a function of patient characteristics, we approximate µi as a linear function of Xi, or
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µi = f (Xi) = �0 +X0
i�1, which yields

Yi = Di
�
�0 +X0

i�1
�
+X0

i� +T0
i⌘ + ⇣`(i) + "i. (4)

Under the assumption in Equation (3), µ̂i = �̂0 +X0
i�̂1 is an unbiased estimate of the

treatment e↵ect conditional on Xi. We label this estimate as the observational treatment

e↵ect, conditional on Xi.

The plausibility of the assumption in Equation (3) depends on the richness of patient

observable characteristics in Xi and the extent to which unobserved characteristics are

captured by time and clinical location. In later sections of this paper, we will devote

substantial attention to the issue of selection on unobservable characteristics.

Here, we simply ask whether physicians respond to observable characteristics that

appear to predict µi. Thus, we examine how the probability of treatment is related to

estimated observational treatment e↵ects µ̂i = �0 +X0
i�1. Because we are interested in

this relationship within time and clinical location, we regress the transfusion indicator

variable, Di, on Ti and dummies for ` (i), and focus on the residuals D̃i. Panel A of

Figure 1 shows this relationship, conditional on time and clinical locations, taking into

account patient characteristics of demographics, comorbidities, and prior utilization that

can be easily observed in claims data. The observational treatment e↵ects of transfusion

on mortality is negative for about 80% of admissions in our sample and ranges from �4.9

percentage points for patients at the 5th percentile to 2.0 percentage points to patients at

the 95th percentile. The di↵erence in mean residualized observational treatment e↵ects

between the highest and lowest ventiles is 8.7 percentage points. The corresponding

di↵erence in mean transfusion probabilities between these groups of patients is �57.1

percentage points, which suggests that physicians are quite responsive to OLS treatment

e↵ects, increasing the probability of treatment as transfusion is more likely to save lives.

However, in Panel B of Figure 1, we investigate the relationship between observa-

tional treatment e↵ects and transfusion that is orthogonal to hemoglobin. Hemoglobin

is particularly salient to physicians, and the vast majority of guideline recommendations

are based on hemoglobin level. Specifically, we residualize transfusion and observational

treatment e↵ects by cubic splines of minimum hemoglobin, in addition to the time and

clinical location dummies we considered for Panel A. We find that once we account

for hemoglobin, physicians are much less responsive to observational treatment e↵ects,

despite the substantial residual variation in treatment e↵ects. The di↵erence in mean

residualized observational treatment e↵ects between the highest and lowest ventiles is

6.9 percentage points, but the corresponding di↵erence in mean residualized transfusion

probabilities is only �10.9 percentage points.
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Table 2 presents results more systematically by type of patient characteristics Xi

that we include in Equation (4). Corresponding to claims-observable characteristics

used in Figure 1, we consider “base” characteristics of demographics, comorbidities, and

prior utilization. We also consider characteristics that are observable in electronic health

records data, such as those in the VHA. These notably include laboratory test values

and vital signs. We consider only five laboratory tests related to cardiac markers and

blood counts (i.e., creatine kinase-muscle/brain or CK-MB, troponin I, troponin T, white

blood count, and platelets). We consider vital signs of heart rate, systolic and diastolic

blood pressure, oxygen saturation, and respiratory rate. For each of these categories

of characteristics, or combinations of them, we estimate observational treatment e↵ects

specified in Equation (4). We also order patients by their treatment e↵ects and calculate

average treatment e↵ects in the first and fifth quintiles, as well as treatment probabilities

corresponding for these patients.

As shown in Table 2, we find that overall average observational treatment e↵ects

become more negative as we include more patient characteristics in Equation (4). This

suggests that physicians select patients with higher baseline mortality for treatment, so

that controlling for patient characteristics reveals a higher mortality benefit from trans-

fusion. Consistent with Figure 1, we find large variation in observational treatment

e↵ects between the first and fifth quintiles, regardless of the patient characteristics that

we use. However, laboratory test values and vital signs are particularly informative, such

that either of these categories allows for similar or more discrimination among treatment

e↵ects than all of the base characteristics observable in claims data. This suggests that

access to real-time electronic health data yields significant gains in identifying hetero-

geneous treatment e↵ects. While there are large di↵erences in treatment probabilities

between patients grouped in the first and last quintile of treatment e↵ects (Panel A),

these di↵erences are mostly eliminated when controlling for hemoglobin (Panel B). When

considering patient characteristics by category, the di↵erences in treatment probabilities

are even smaller when controlling for other patient characteristics, but the heterogeneity

in treatment e↵ects notably remains substantial (Panel C).

3 Selection and Heterogeneous Treatment E↵ects

So far, we have seen that doctors principally consider hemoglobin in their decision of

which patients to transfuse despite the fact that many other variables predict variation

in observational treatment e↵ects. If we interpret the heterogeneity in these treatment

e↵ects as causal, we could substantially lower mortality by reallocating treatments to
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the patients who would benefit most.

But to what extent does variation in observational treatment e↵ects reflect true dif-

ferences in underlying causal e↵ects? Variation in observational treatment e↵ects may

not be useful to policymakers for two reasons: First, even with a rich set of observational

characteristics, the unconfoundedness assumption in Equation (3) may be violated. In

this case, di↵erences in realized outcomes, holding fixed observed patient characteris-

tics, may also reflect selection bias. Second, even with a large number of observations

and unconfoundedness, variation in observational treatment e↵ects will include random

noise. In this section, we develop and estimate a model of selection with heterogeneous

treatment e↵ects to measure the degree to which heterogeneity in observational treat-

ment e↵ects reflects policy-relevant treatment e↵ect heterogeneity. The model shows

how we can distinguish between these hypotheses using quasi-experimental variation in

the assignment of patients to physicians. The model leads to a parsimonious test of the

extent to which observational treatment e↵ects heterogeneity reflects true treatment ef-

fect heterogeneity. The model also characterizes selection on gains: are treated patients

likely to benefit more, holding fixed observable patient characteristics?

Given parametric assumptions, we can recover all of the marginal treatment e↵ects

necessary to simulate the mortality impact of counterfactual treatment rules. We con-

sider both the optimal rule given the information in observational treatment e↵ects as

well as an optimal function of observable characteristics in a “moment forest” model.

3.1 Model of Selection

In the inpatient setting, assignment of patients i to physicians j is plausibly quasi-

random within groups of similar physicians on the same service g(j) and within a period

of time t (e.g., a month or quarter). Our model exploits this quasi-experimental variation

that in part drives selection. Following Vytlacil (2002), we consider a threshold-crossing

representation of selection:

Di = 1 { (Zi, Xi, g(j), t) � Vi} , (5)

where Zi is a patient-specific instrument, Xi are patient observable characteristics, and

Vi is a latent variable distributed i.i.d., conditional on Xi = x, according to some

cumulative distribution function FV |x : R ! [0, 1]. Heckman and Vytlacil (2005) show

that this model can be equivalently stated according to propensity scores:

Di = 1 {P (Xi, Zi, g(j), t) � Ui} , (6)
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where P (Zi, Xi, g(j), t) ⌘ FV |x ( (Xi, Zi, g(j), t)) is the propensity score and Ui ⌘
FV |x(Vi) follows a uniform distribution. Patients with a given set of observable char-

acteristics are ordered by their tendency to be treated and Ui denotes quantiles of this

ordering. For example, if Ui = 0.4, patient i will be treated if 41% of patients with that

set of observable characteristics are treated but not if 39% of such patients are treated.

DenotingDi(z) as treatment status of patient i when Zi = z, we impose the following

two conditions for the validity of our instrument under heterogeneous treatment e↵ects.

First, we assume that, conditional on g(j) and t, the instrument is independent of

potential outcomes and the unobserved latent variable, and that the instrument does

not otherwise a↵ect potential outcomes except through its relationship with treatment

status (independence and exclusion):

(Yi1, Yi0, Ui) ?? Zi | g(j), t , (7)

where Yi1 and Yi0 are potential outcomes under transfusion and no transfusion, respec-

tively. Intuitively, our instrument Zi uses variation in treatment that is driven by the

quasi-random assignment of patients to physicians, which we detail below in 3.4. Sec-

ond, we assume a monotonicity (or uniformity) condition (Imbens and Angrist 1994;

Heckman and Vytlacil 2007):

Di(z) � Di(z
0) for all i, or Di(z)  Di(z

0) for all i, for any z and z
0
. (8)

This condition is embedded in the notation in Equation (6) and states that there can

be no “defiers” when patients are assigned to one instrument over another.

For potential outcomes conditional on Xi, we assume the following semiparametric

form:

E [Yid |Xi, Zi, Ui ] = ↵d (Xi) + �d (Xi) J(Ui) + ⇠g(j),t, (9)

for some strictly increasing continuous function J(·) : [0, 1] ! R, such that E [J(Ui)] = 0,

and where ⇠g(j),t is a fixed e↵ect for physician group g(j) in time period t. Taking

iterated expectations, we can derive the following expectation of outcomes conditional

on treatment status from Equation (9):

E [Yid |Xi, Zi, Di = d ] = ↵d (Xi) + �d (Xi)�d (Pij) + ⇠g(j),t, (10)

where Pij ⌘ P (Xi, Zi, g(j), t), and �d (Pij) ⌘ E [J(Ui) |Pij , Di = d ].

This is the standard model in the marginal treatment e↵ects literature, e.g. Kline
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and Walters (2016), with one importance di↵erence: The functions �d(Xi) are permitted

to vary with patient observable characteristics rather than being constants. This allows

estimated heterogeneity in observational treatment e↵ects to potentially be explained

by heterogeneous selection bias.

3.2 Treatment E↵ects

The marginal treatment e↵ect, or MTE, for patients with Xi = x and Ui = u is then

MTE(x, u) = E [Yi1 � Yi0 |Xi = x, Ui = u ]

= �↵(x) +��(x)J(u). (11)

The term �↵(x) ⌘ ↵1(x) � ↵0(x) represents average treatment e↵ects conditional on

characteristics Xi = x, or ATE(x). The second term, ��(x)J(u) ⌘ (�1(x)��0(x))J(u),
represents treatment e↵ect heterogeneity related to selection. Since J(·) is an increasing

function, ��(x) < 0 would imply decreasing treatment e↵ects with the latent index Ui

(i.e., positive selection on gains), while ��(x) > 0 would imply the opposite. Given

that E [J(Ui)] = 0, ATE(x) = E[MTE(x, Ui)].

The observational treatment e↵ects, or the treatment e↵ect estimated by OLS under

the unconfoundedness assumption in Equation (3), for patients with Xi = x is:

OLS(x) = E [Yi1 |Xi = x,Di = 1]� E [Yi0 |Xi = x,Di = 0]

= �↵(x) + �1(x)EZ|x [�1(Pij)]� �0(x)EZ|x [�1(Pij)]

= �↵(x) +��(x)EZ|x [�1(Pij)] + �0(x)EZ|x [�1(Pij)� �0(Pij)] , (12)

where EZ|x denotes the expectation given variation in Zi, conditional on Xi = x. The

first term in Equation (12) is the average treatment e↵ect, or ATE(x). The second

term represents selection on gains, or the di↵erence between treatment on the treated

and ATE(x). The third term represents selection on levels implied by �0(x)J(Ui). The

OLS assumption in Equation (3) implies that �0(x) = �1(x) = 0 for all x, so that

OLS(x) = ATE(x).

Note that setting �0 and �1 equal to constants as is standard in the literature would

imply that all variation in OLS coe�cients with x conditional on treatment propensi-

ties reflected heterogeneity in ATE(x), which would imply large benefits of reallocating

treatments based on OLS coe�cients. We will allow for the possibility that variation in

OLS(x) reflects di↵erential selection, in which case it would not imply large benefits of
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reallocating treatments.

3.3 Policy-Relevant Estimation

Equation (10) fully specifies potential outcomes conditional on any set of arbitrary

patient characteristics Xi. In principle, with infinite data and su�cient variation in Pij

within each set of observable characteristics Xi, one could directly estimate Equation

(10) separately for Di = 1 and Di = 0 to obtain (↵0(x),↵1(x), �0(x), �1(x)) for any x.

In practice, however, as the set of characteristics becomes increasingly rich, the number

of observations i for which Xi = x becomes increasingly limited. Additionally, feasible

policies based on patient characteristics will generally rely on a simplified space of patient

characteristics. In ongoing work, we are estimating a “moment forest” machine learning

model to determine optimal treatment guidelines using all available variables. For now,

we consider the optimal rule conditioning on a smaller set of variables.

Specifically, we reduce the dimensionality of Xi by focusing on a coarser projected

space, q(Xi). As in the recent value-added literature (e.g., Chetty et al. 2014; Angrist

et al. 2017), a particularly well-motivated and readily available projection of Xi is the

observational treatment e↵ect of Xi, estimated in Section 2.2 by OLS, q(Xi) = OLS(Xi).

We consider a few other simple rules based on existing guidelines as well. As we will

discuss below, the key parameter for policies that recommend either treatment or not—

i.e., D(q(Xi)) 2 {0, 1}—is the average treatment e↵ect conditional on q(Xi), or �↵(q) ⌘
EX [�↵(Xi)|q(Xi) = q], with some abuse of notation.

To ease estimation, we make the additional simplifying assumption that��(x) = ��

for all x, or that selection on gains is constant across patient characteristics. This

assumption implies that the di↵erence in marginal treatment e↵ects between patients last

to be treated and those first to be treated, or MTE(x, 1)�MTE(x, 0) = ��(J(1)�J(0)),

is the same regardless of x.

As discussed in Heckman and Vytlacil (2007), we can estimate relevant structural

parameters using two approaches: a control-function approach, as in Equation (10), or

an equivalent instrumental-variable (IV) approach. We will describe the latter approach

here, as this focuses attention on the relevant parameter of �↵(q), although a version

of the control-function approach would also retrieve the same parameter. We start by

restating Equation (10) as an instrumental-variables reduced form relationship:
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E[Yid|Xi, Zi] = ↵0(Xi) +�↵(Xi)Pij +

�0(Xi)�0(Pij)(1� Pij) + �1(Xi)�1(Pij)Pij + ⇠g(j),t

= ↵0(Xi) +�↵(Xi)Pij +���1(Pij)Pij + ⇠g(j),t, (13)

where the second equality makes use of the fact that �0(Pij)(1�Pij)+�1(Pij)Pij = 0 for

any pair of control functions �0(·) and �1(·), and substitutes �� for ��(Xi). Following

Olsen (1980), we assume a linear function for J(·), or J(Ui) = Ui, which implies that

�1(Pij) = E[J(Ui)|Ui < Pij ] � E[J(Ui)] = (Pij � 1)/2. Identification of the average

treatment e↵ect, �↵(Xi), is that @E[Yid|Xi = x, Zi]/@Pij approaches �↵(x) for any x

as Pij approaches 1, because �1(Pij) approaches 0 as Pij approaches 1, regardless of the

functional form of J(·).
For estimation purposes, we focus on relationships conditional on q(Xi) = q and Pij :

E[Yid|q(Xi) = q, Zi] = ↵0(Xi) +�↵(q)Pij +���1(Pij)Pij + ⇠g(j),t. (14)

If the exclusion restriction in Equation (7) holds, then we could also estimate Equation

(14) with EX [↵0(Xi)|q(Xi) = q] in place of ↵0(Xi), although in our baseline specification,

we use ↵0(Xi) to increase precision. Including the full set of controls in ↵0(Xi) also yields

consistent estimation if Equation (7) only holds conditional on Xi.

3.4 Our Quasi-Experiment

In the ideal experiment, patients with a given set of observable characteristics would

be sorted according to how a representative physician would treat them, and random

fractions of these patients, starting from the patient in first sorted position to the last,

would receive treatment. Since this experiment is not feasible, we employ a quasi-

experimental analogue of this in a judges-design framework, in order to estimate hetero-

geneous marginal treatment e↵ects laid out in Sections 3.1 to 3.3. In our framework, we

consider patients as plausibly quasi-experimentally assigned to physicians with di↵er-

ent transfusion propensities within clinical groups. Physicians with higher propensities

choose a greater fraction of patients for transfusion, and through their transfusion deci-

sions a↵ect mortality.

In the framework in Sections 3.1 to 3.3, identification of average treatment e↵ects and

selection on gains follows familiar arguments laid out in the active marginal treatment

e↵ects literature. We can identify average treatment e↵ects by comparing outcomes
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for patients assigned to doctor A, who treats 0% of the time, to patients assigned

to doctor B, who treats 100% of the time. We can then ask whether outcomes for

doctor C, who treats 40% of the time, are better than we would expect given average

treatment e↵ects. If so, this suggests that doctors are selecting on gains and allocating

the patients who benefit most to treatment. In practice, we do not observe doctors

treating 0% and 100% of the time, but we can semiparametric assumptions of the form

in (9) to extrapolate from mortality relationships we observe when comparing doctors

who transfuse 30% vs. 40% of patients, and doctors who transfuse 60% vs. 70% of

patients. For this strategy, we construct a continuous, single-dimensional instrument to

capture a physician’s empirical propensity to transfuse. Our approach is similar to other

leave-one-out “jackknife” instruments (e.g., Aizer and Doyle 2013; Dobbie, Goldin, and

Yang 2018), except that we increase its power by accounting for the overall number of

patients that we observe with a physician. The instrument propensity for physicians

with fewer patients is shrunken towards a mean, using an empirical Bayes procedure

described in Appendix A (Chetty, Friedman, and Rocko↵ 2014).

The independence and exclusion assumption in Equation (7) corresponds to the

idea that, conditional on time and location cells, physicians are as good as randomly

assigned patients, and that physicians who transfuse more do not do anything else dif-

ferently which impacts outcomes. The institutional setting of the VHA supports this

conditional random assignment assumption: Patients are assigned to physicians accord-

ing to inpatient rotations and it is rare that care is transferred across doctors by patient

request or due to di↵erential expertise within an inpatient service. The assignment of

a given patient to a physician thus depends principally on which doctors have openings

when that patient arrives and this should be unrelated to patient attributes. We also

investigate the conditional random assignment assumption empirically through a series

of balance tests.

For these balance tests, we can exclude a subset of observable characteristics from

our conditioning set, use it to construct predicted mortality, and then ask whether

physicians who are more likely to transfuse also have patients who look systematically

di↵erent based on observable characteristics. To implement this test, we continue to

condition on variables that define relatively uniform sets of patients over which there is

plausible quasi-random assignment of patients to physicians. Specifically, we control for

a patient’s bed section by hemoglobin bin fixed e↵ects, for five categories of hemoglobin

levels capturing di↵erent patient acuity levels. We further control for month-year fixed

e↵ects and day of week fixed e↵ects, and basic patient demographic variables (age,

gender, race).
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These regressions are reported in column 1 of Table 4. In row 1, we regression

predicted mortality given comorbid conditions and lab values on the controls noted

above as well as transfusions instrumented with the empirical Bayes jackknife treatment

propensity (this is the reported coe�cient). We find no evidence that healthier patients

(with low predicted mortality based on their comorbid conditions and lab values) are

assigned to doctors with high transfusion propensities. The point estimate suggests

any selection countervails our estimated treatment e↵ects by assigning sicker patients

to doctors with high transfusion propensities, but it is both small in magnitude and not

statistically significant.

We also find no evidence that there are di↵erences in treatment assignment to pa-

tients with di↵erent observational treatment e↵ects. In Figure 2, we plot the di↵erence

in predicted mortality for high treatment propensity doctors and low treatment propen-

sity doctors across a range of predicted observational treatment e↵ects. We find no

evidence that the di↵erence in predicted mortality risk between high transfusion and

low transfusion doctors varies with the predicted observational treatment e↵ects. This

same finding is corroborated by column 1 of Table 4, in the panel with two endogenous

variables. This specification includes both transfusions and transfusions interacted with

observational treatment e↵ects as regressors, instrumented with both the jackknife treat-

ment propensity and the jackknife treatment propensity interacted with observational

treatment e↵ects (this regression also controls flexibly for splines of the observational

treatment e↵ects). In each case, we find no significant e↵ect on predicted mortality,

consistent with our assumption of conditional random assignment.

The exclusion assumption for our instrumental variable also requires that physicians

who transfuse more do nothing else di↵erently that impacts patient outcomes. While

transfusion decisions are a salient dimension of physician decision-making for patients

with low hemoglobin levels, there are a number of other treatment decisions made during

the same hospital stay that could also a↵ect patient care outcomes. We measure other

dimensions of treatment directly and test whether accounting for them changes our

central findings. These results are reported alongside our main regression results.

Finally, we explore the validity of our monotonicity assumption in Equation (8)

by testing the sign of the “first stage” using the jackknife instrumental variable to

predict transfusion propensity separately within key patient subgroups (Bhuller et al.

2016; Dobbie et al. 2018). These results are reported in Table 3. We find a strong

first stage relationship between our jack-knife instrument of the doctor’s transfusion

propensity and whether or not the index patient was transfused. The finding is of

similarly large magnitude and highly statistically significant (p < .01) in each tested
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subsample, including patients with high predicted mortality, low predicted mortality,

high hemoglobin, and low hemoglobin.

4 Treatment E↵ect Estimates and Simulation Results

4.1 Heterogeneous Treatment E↵ects

We first estimate a simplified version of equation 14, which excludes the nonlinear

�1(Pij)Pij term from the estimation. This equation will identify local average treat-

ment e↵ects and, assuming selection on levels but not gains, it will identify average

treatment e↵ects; in other words, we will recover ATEs in this baseline specification

if treated patients are sicker or healthier than untreated patients but do not have sys-

tematically di↵erent treatment e↵ects from untreated patients. Next, we will enrich the

model by allowing for selection on gains and estimating the complete version of equation

14.

We begin with a basic instrumental variable estimate of local average treatment

e↵ects, using the empirical bayes jackknifed treatment propensity as an instrumental

variable for transfusion. This specification is reported in the first row of Table 4. All

regressions reported in this table controls for hospital section by hemoglobin bin and

timing fixed e↵ects, as well as a basic set patient characteristics that may influence the

sorting of patients to physicians. In Panel A column 2, we find that transfusions reduce

mortality by an estimated 1.6 percentage points (p < 0.05). In column 3, we control for

a richer set of patient covariates beyond those included in the basic balance regression

and find similar results. The estimated benefit of transfusion actually becomes slightly

larger, implying a 2 percentage point mortality reduction, once we account for these

additional control variables.

To operationalize equation 14 (with �� = 0), we assume that �↵(q) = �0 + �1 ·
OLS(Xi). We then estimate �0 and �1 by including terms for Tij and OLS(Xi) · Tij

instrumented respectively by the empircial Bayes jackknife treatment propensity Zij and

OLS(Xi) · Zij . We also flexibly control for the direct e↵ect of OLS(Xi) using 30-knot

splines. These results are shown in Panel B. For this initial table, the observational

treatment e↵ects heterogeneity is estimated using a limited set of patient characteristics

including hemoglobin, vital signs, utilization history and demographics. In later results,

we expand the set of variables used to predict treatment e↵ect heterogeneity.

In column 2 with limited controls for patient characteristics, we estimate a coe�-

cient of 0.972 on the interaction between transfusion and the observational treatment

e↵ects prediction (p < 0.01). In our preferred column 3 specification with additional
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patient controls, this attenuates slightly to 0.901 (p < 0.05). This finding suggests that

a 1 percentage point increase in observational treatment e↵ects correlates with a 0.9

percentage point increase in average treatment e↵ects. The linear transfusion dummy

variable has a coe�cient of -0.005, which is not statistically distinguishable from 0.

Our posterior estimates of average treatment e↵ects are a linear transformation of

the observational treatment e↵ects where 0.9 is the scale parameter and -0.005 provides

a location parameter. For 85% patients in our sample, this posterior estimate suggests

that transfusions reduce mortality, and the average treatment e↵ect across all patients

in our sample would be 1.6 percentage points. In this specific case, the IV posteriors

are very close to the OLS estimates, although that was not ex ante obvious. Below we

discuss alternative specifications that do not share this feature.

To see graphical evidence of this relationship, we consider the reduced form version of

our IV equation. Specifically, we estimate equation 13 but now include only control vari-

ables in the regression model. We exclude the instrument and the interaction between

the instrument and the observational treatment e↵ects prediction from the regression.

We then break the sample into two groups based on whether the doctor’s transfusion

propensity is above or below the mean transfusion propensity. For each decile of the

observational treatment e↵ects distribution, we calculate the average residual mortality

for both the high IV and low IV groups. The graph plots the di↵erence between these

mortality residuals (y-axis) against the observational treatment e↵ects (x-axis).

We expect that patients with large OLS-predicted benefit of transfusion will have

lower mortality when they are assigned to high transfusion propensity doctors compared

to similar patients who are treated by low transfusion propensity doctors. This gap in

mortality rates should close as the OLS-predicted benefit of transfusion approaches 0.

This pattern is apparent in Figure 2, where we find a strong upward sloping relationship

between the OLS predicted treatment e↵ect and the di↵erence in residual mortality for

the high IV and low IV groups.

In the next set of results, reported in Table 4 column 4, we augment our baseline

specification to account for possible correlations between transfusion propensity and

the propensity to provide other types of medical treatments. Specifically, we construct

jackknife counts of the number of physician orders per hospital stay for pharmacy med-

ications, imaging, nursing, and diet, and use them as instrumental variables for the

number of each type of orders that the patient receives.

Accounting for these additional treatments leads to some attenuation of our IV

estimates. In Panel A, the overall e↵ect of transfusion attenuates slightly to a to 1.7

percentage point decline in mortality, from a 2 percentage point decline in the model
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that did not account for these additional treatments. In the Panel B regression that

interacts the OLS predicted treatment e↵ect with transfusion, the coe�cient on that

interaction attenuates from 0.901 to 0.753, but remains statistically significant (p < .05)

and clinically important.

Finally, in Table 4 column 5, we augment our regression specification with �1(Pij)Pij ,

a quadratic term in the predicted treatment propensity (i.e. fitted values from the

first stage regression). This specification allows us to investigate whether doctors use

unobservable patient characteristics to select on gains. Note that when the first stage

estimation of the predicted treatment propensity (as a function of the instrumental

variable and other controls) is estimated with error, this regression will su↵er from

“forbidden regression” bias.

In the Panel A specification with transfusion as the only endogenous variable, the co-

e�cient on transfusions will now estimate the average treatment e↵ect across all patients

(i.e. when the treatment propensity equals 1 so that �1(Pij)Pij = 0). This estimate of

the treatment e↵ect is larger, at 3.6 percentage points. The coe�cient on the quadratic

term implies that there is reverse roy selection–in other words, physicians are prioritizing

transfusions for the patients who benefit least from treatment. The point estimate would

imply that the marginal treatment e↵ect for a doctor who transfuses 25% of her patients

has a marginal treatment e↵ect of 1.9 percentage points while a doctor who treats 75%

of her patients has a marginal treatment e↵ect of 5.3 percentage points. We find similar

results on discretion in Panel B, when including the interaction of transfusion with the

observational treatment e↵ects.

While these results are provocative—suggesting large failures on the part of physi-

cians to select the most appropriate patients for treatment–we should be cautious in

our interpretation. As noted in 3, estimating marginal treatment e↵ects requires strict

monotonicity conditions which may not hold in this setting if doctors disagree about the

ranking of patients’ suitability for transfusion. In addition, the estimates may be biased

due to the “forbidden” regression problem described above. Incorporating these findings

into our simulations will only bolster the case for restricting physician discretion.

We now turn to Table 5. In this table, we replace the OLS predicted treatment

e↵ects used previously in 4 with a set of predicted treatment e↵ects estimated to al-

low heterogeneity along a richer array of patient covariates. In this table, the OLS

treatment e↵ect is predicted using the full set of observed patient covariates, adding

31 comorbidities and results from five lab tests, to the baseline variables included pre-

viously (hemoglobin, demographics, vital signs, and past utilization). Allowing these

additional sources of treatment e↵ect heterogeneity substantially increases the standard
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deviation of predicted observational treatment e↵ects across individuals from 0.017 with

the limited variable set to 0.027 with the full variable set (as reported in Table 1).

In column 1 of Table 5, we estimate that each 1 pp change in this new OLS variable

predicts a 0.475 pp change in treatment e↵ects. A major factor behind the observed

attenuation in the coe�cient relative to the estimates reported in Table 4 may be that

the full observational treatment e↵ects, which is now predicted by over 100 covariates,

is more noisily estimated due to over-fitting.

In Table 5 column 2, we estimate a diminished, but still significant, pattern of the

reverse roy selection documented previously. Now that we have accounted for additional

sources of heterogeneity in average treatment e↵ects, the scope for selection on gains

may be more limited.

4.2 Treatment on the Treated Under Current Guidelines

Next, we investigate how our estimated treatment e↵ects correlate to popular transfusion

guidelines. For this exercise, we use the IV estimated treatment e↵ects from Table 4

column 1; this makes use of the full heterogeneity in predicted treatment e↵ects using

all the possible covariates.

Figure 3 breaks up the patients in our sample into 20 ventiles. The blue triangle series

groups patients according to their hemoglobin levels, with the lowest hemoglobin values

in the lowest numbered ventile. Within each ventile of hemoglobin level, we calculate the

average IV estimated treatment e↵ect, using estimates from Table 5 column 1. The red

dot series groups patients according to their estimated treatment e↵ect, and calculates

the average IV estimate treatment e↵ect in each group.

The comparison of these two series allows us to visualize how a transfusion guide-

line based solely on hemoglobin might perform relative to a transfusion guideline that

incorporated more dimensions of treatment e↵ect heterogeneity. More negative values

along the y-axis correspond to larger benefits of transfusion. The figure illustrates as-

signing transfusions based on Hemoglobin captures only a fraction of possible benefits:

treatment e↵ects range from -1.5 pp to 0 as Hemoglobin varies, but they range from

-4 pp to +2 pp as we vary observational treatment e↵ects estimated using all available

variables. We explicitly simulate the benefits to reassigning transfusions based on the

more complete index in the next section.
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4.3 Counterfactual Transfusion Policies

In this section, we apply our estimates of heterogeneous treatment e↵ects from the

selection model to consider a number of counterfactuals. Specifically, we want to com-

pare mortality rates that would be associated with status quo treatment decisions and

contrast them with outcomes under strict adherence to existing guidelines and with

treatment decisions that strictly follow the optimal guideline based on our estimated

treatment e↵ects.

We apply cross validation techniques to avoid overfitting and thus avoid overstating

the benefits of adherence to the optimal strict guidelines. Specifically we identify the

treatment rule given results estimated on half of our sample, which has been randomly

assigned as the ”training” data set. We then evaluate the benefits of guideline adherence

by predicting stroke and bleed outcomes using treatment e↵ects estimating on the other

”test” half of our sample. We perform 50 bootstrap repetitions of this cross-validation

procedure for the estimates described below.

When considering strict adherence to existing guidelines, we consider the counter-

factual whereby physicians transfuse all patients within a hospital section, starting with

the lowest hemoglobin level and stopping when the expected transfusion rate equals the

current observed transfusion rate. This reflects the fact that while current guidelines

vary in the precise hemoglobin threshold recommended for transfusion, they focus on

hemoglobin as the single key determinant of transfusion recommendations.

To construct the optimal strict guideline, we consider minimizing 30-day mortality

rate subject to a constraint that holds the total number of transfusions constant within

each hospital section at the rate currently observed in our sample. By restricting reallo-

cation to within a hospital section, we illustrate the benefits to transfusion reallocation

that does not require changing the geographic distribution of blood bank supply.

For each of these simulations, we compare actual mortality rates to the mortality

rates predicted from applying our treatment e↵ects estimated in the training data to

predict outcomes in the test data.

Results of these simulations are reported in Table 6. In column 1, we naively use

the observational treatment e↵ects to evaluate the benefits of reassigning transfusions to

patients with the largest predicted benefits, on the basis of their observational treatment

e↵ect ordering. We estimate a 1.9 percentage point reduction in mortality with this rule.

Results in column 2 show that this estimate would overstate the benefit of reallocation

by not adjusting the estimate to account for the fact that only 48% of the variation in

observational treatment e↵ects is predictive of true treatment e↵ect heterogeneity. When

using our IV model to simulate the benefits of reassignment, we find that reassignment
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of transfusions could reduce mortality rates by 1.1 percentage points, from a base of

9.4%.

In Table 6 column 3, we estimate the benefits of reassigning transfusions to patients

with the lowest hemoglobin levels within each hospital section. This assignment rule

would outperform status quo physician decisions, reducing mortality by 0.3 percentage

points. However, the gains are much smaller than the proposed alternative guideline

that incorporates more clinical detail.

These estimates suggest that stricter adherence to existing guidelines could mod-

estly reduce patient mortality. However, there are potentially large gains to guideline

improvements which use information beyond hemoglobin levels to better tailor treatment

decisions.

5 Conclusion

This paper develops a new methodology for estimating heterogeneous returns to treat-

ment within a model that accounts for selection on unobservable characteristics. This

methodology can be applied for development of new guidelines that perform substan-

tially better than current guidelines or current observed treatment decisions in counter-

factual simulations.

Current e↵orts at applying machine learning to medical applications frequently fail

to account for selection into treatment on the basis of unobserved factors, limiting the

plausibility of the resulting estimates. We estimate our instrumental variables model

to understand the tradeo↵s between allowing physician discretion and requiring strict

guideline adherence. We observe that strict adherence to existing guidelines would

lead to modest improvements in mortality, but more nuanced guidelines could reduce

mortality in the targeted population by 1.1 percentage point or approximately 12%.

Our selection model is identified by a jackknife instrumental variable approach which

relies on monotonicity and exclusion assumptions for identification. Our estimation also

makes use of functional form restrictions for tractability of estimation, and these could

also contribute to identification. While in principle, nonparametric identification is

possible, even in our large sample of patients we do not have su�cient power for a

completely nonparametric approach.

Our findings suggest that current approaches to medical decision-making lead to sig-

nificant misallocation of common treatments. Applying quasi-experimental methods to

analyze medical records databases provides new opportunities to estimate heterogeneous

returns to treatment and develop guidelines that e↵ectively tailor treatment plans. We
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demonstrate that physicians’ current discretionary decisions underperform relative to

our proposed assignment rule, as do current medical guidelines.
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Figure 1: Treatment Probability Given Observational Treatment E↵ects
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Note: This figure shows the probability of treatment as a function of observational treatment
e↵ects. OLS treatment e↵ects are estimated as a function of patient characteristics, Xi, given
by �0 + X0

i�1 in Equation (4). Panel A is a binned scatterplot in which each dot represents
5% of the data ordered by observational treatment e↵ects, residualized by time and clinical
location dummies. Each dot shows the average residualized observational treatment e↵ects for
the bin on the x -axis and the average residualized probability of transfusion on the y-axis. For
interpretation, the mean treatment e↵ect for all the data is added back to the residuals on the
x -axis, and the overall probability of transfusion is added back to the residuals on the y-axis.
Panel B is a similar binned scatterplot, in which each dot is residualized not only by time and
clinical location dummies, but also by cubic splines of minimum hemoglobin.
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Figure 2: Balance Test and Reduced-Form E↵ect of Transfusion

Notes: This graph reports non-parametric version of the balance test and main IV results. First,
we calculate residuals of mortality and predicted mortality variables, controlling for patient
characteristics, time, and location controls. Then, in each decile of the observational treatment
e↵ects, we calculate the di↵erence between average residual mortality (or predicted mortality) for
patients with above average values of the treatment propensity instrumental variable compared
to patients with below average values of the treatment propensity instrumental variable.
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Figure 3: Comparison of Transfusion Assignment Policies

Notes: This graph breaks up the patients in our sample into 20 ventiles. The blue triangle series
groups patients according to their hemoglobin levels, with the lowest hemoglobin values in the
lowest numbered ventile. Within each ventile of hemoglobin level, we calculate the average IV
estimated treatment e↵ect, using estimates from Table 5 column 1. The red dot series groups
patients according to their estimated treatment e↵ect, and calculates the average IV estimate
treatment e↵ect in each group.
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Table 1: Summary statistics

Doctor transfusion
propensity is below mean

Doctor transfusion
propensity is above mean

Mean Std. Dev. Mean Std. Dev.
(1) (2) (3) (4)

Doctor transfusion propensity -0.044 0.037 0.052 0.051
Transfusion 0.181 0.385 0.248 0.432
Age 67.861 11.910 67.964 11.838
Minimum hemoglobin value 9.146 1.213 9.166 1.193
Mortality 0.093 0.290 0.097 0.290
Predicted mortality 0.093 0.100 0.097 0.102
Limited variable observational -0.012 0.017 -0.012 0.017
treatment e↵ects
Full variable observational -0.012 0.027 -0.012 0.027
treatment e↵ects
Sample size 841,676 729,623

Note: This table reports mean and standard deviation of key variables used in our analysis. The
sample is split into two groups, one for patients whose physician has below mean transfusion rate,
and the other for patients whose physician has above mean transfusion rate. Note that this does
not correspond to a balance test, because we have not controlled for timing and hospital section.
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Table 3: First Stage and Monotonicity Results

Dependent variable: Transfusion
Pooled
sample

High
mortality

Low
mortality

Low
hemoglobin

High
hemoglobin

Model with two endogenous variables
Doctor transfusion propensity 0.543 0.6817 0.7534 1.0927 0.6048

(0.005) (0.0079) (0.0056) (0.0129) (0.0041)
Doctor transfusion propensity 0.77 0.8783 0.8436 1.0741 0.5924
⇥ Observational treatment e↵ect (0.006) (0.0092) (0.0066) (0.0137) (0.0045)

Model with one endogenous variable
Doctor transfusion propensity 0.615 0.8328 0.8209 1.1256 0.6065

(0.005) (0.0067) (0.0054) (0.0084) (0.0041)

Sample size 1,571,299 785,649 785,650 640,338 930,961

Note: This table reports estimates of the first stage regression associated with our instrumental variable
strategy, and tests for monotonicity of the instrument in various subgroups of the patient population.
Each column reports a single coe�cient from each of three separate regressions. In the bottom panel,
the dependent variable is a dummy variable for whether the patient is transfused and the instrumental
variable of interest is the doctor’s transfusion propensity. In the top panel, the first result reports a
similar regression with the transfusion dependent variable, but the regression also controls for interactions
between the predicted observational treatment e↵ects and the instrumental variable. The second result
reports the coe�cient on the instrumental variable interacted with the patient’s observational treatment
e↵ects prediction, controlling for the main e↵ect of the IV. All regressions control for a rich set of patient
characteristics, a 40-knot spline in the observational treatment e↵ects, timing fixed e↵ects (day of week,
and month-by-year), and a fixed e↵ect for each hospital section and 1 point hemoglobin category. Patient
characteristics include hemoglobin levels, lab values, comorbidities, vital signs, demographic factors and 1-
year utilization history. Standard errors clustered at the hospital section level are reported in parentheses.
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Table 5: IV results using full variable set OLS predictions of
treatment e↵ects

Dependent variable:
30-day mortality
(1) (2)

Transfusion -0.014 -0.022***
(0.009) (0.007)

Transfusion ⇥ Observational TE 0.475** 0.368***
(0.229) (0.179)

Selection on gains -0.033**
(0.015)

Control variables included
Hemoglobin, vital signs,
utilization history, demographics

Yes Yes

Comorbidities, lab values Yes Yes
IV for imaging, pharmacy,
nursing, diet orders

No No

Note: This table reports estimates of additional instrumental
variable regressions, similar to the specifications reported in Panel
B of 4. The di↵erence between these results and the Table 4 comes
from the richer version of the OLS predicted treatment e↵ect. In
this table, the observational treatment e↵ects is predicted using
the full set of observed patient covariates, adding 31 comorbidities,
and results from 5 additional lab tests, in addition to the baseline
covariates included in Table 4 (hemoglobin, demographics, vital
signs, and past utilization). This allows for more predicted het-
erogeneity in observational treatment e↵ects. For more details on
these regressions, including control variables and standard errors,
see notes to Table 4.
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Table 6: Simulated mortality benefits of re-assigning blood transfusions

Reassign to largest OLS
treatment e↵ect first

Reassign to largest OLS
treatment e↵ect first

Reassign to lowest
hemoglobin level first

(1) (2) (3)
Using OLS to
evaluate gains:

-0.0185***

(0.0002)
Using IV to
evaluate gains:

-0.0111*** -0.0029***

(0.0007) (0.0002)

Note: This table reports mortality reductions from simulations that reallocate blood transfusions, rel-
ative to current observed transfusion assignments. These estimates apply cross-validation, so that we
estimate the benefits of treatment using a training sample, and then simulate the benefits to the reallo-
cation in a disjoint testing sample. We repeat 50 bootstraps of the cross validation procedure. Column
1 uses the naive OLS estimates of treatment e↵ects to evaluate the benefits of di↵erent assignment rules.
Columns 2 and 3 use IV estimates of treatment e↵ects to evaluate the benefits of reallocation. Standard
errors from the bootstrapping procedure are reported in parentheses.
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