Unequal Growth

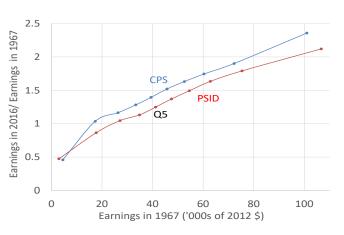
Francesco Lippi and Fabrizio Perri EIEF, Luiss FRB of Minneapolis

June 2019

Introduction

- Over past 50 years U.S. has experienced a large increase in household income inequality
- Many studies on the causes of this, much less work on its growth impact
- Changes that drive increase in income inequality are changes in income dynamics, which naturally can have a growth impact
- Building block: Changes in income dynamics that are unequal across income levels (Unequal growth), affect, at the same time, aggregate growth, income inequality and welfare
- Objective: Use micro data and minimal theory to connect growth and inequality, estimate these changes and assess their impact

Unequal growth 1967-2016: a cross sectional view



- Each point: level & growth of deciles of 1967 income distribution
- Top grew fast, bottom stagnated: not same households across time!

Unequal growth 1967-2016: a panel view (PSID)

- Poor grow faster than rich (mean reversion), early and late in sample
- Same households across time!

Unequal growth 1967-2016: a panel view (PSID)

- Poor grow faster than rich (mean reversion), early and late in sample
- Same households across time!
- How is this fig(β convergence) consistent with previous (σ divergence)?
- How are these changes connected with aggregate growth?

Outline

- A micro decomposition of aggregate growth
- Empirical analysis on decomposition
- Simple model to measure the changes driving the data, and assess impact

Some Related literature

- Empirical: "Earnings, Inequality and Mobility in the United States", Kopczuk, Saez and Song 2010, "The Nature of Countercyclical Income Risk" Guvenen, Ozkan, and Song. 2014
- Models of Income Inequality: "Uninsured Idiosyncratic Risk and Aggregate Saving", Ayiagari 1994, "Dynamics of inequality", Gabaix, Lasry, Lions and Moll 2016, "Top income inequality dynamics", Kim and Jones 2017
- From micro to macro: "Misallocation and growth", Jovanovic 2014, "The Granular Origins of Aggregate Fluctuations", Gabaix 2011

A micro decomposition of aggregate growth

- Let y_{it} real income of household i at time t
- Aggregate growth in period t over horizon T, $\Gamma_{t,T}$ can be written as

$$\Gamma_{t,T} = \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i\left(\frac{y_{i,t+T}}{y_{i,t}}\frac{y_{i,t}}{E(y_{i,t})}\right)$$

 $\bullet \ \ \text{Define} \quad \ \ \mathbf{g_{i,T}} = \tfrac{y_{i,t+T}}{y_{i,t}} \quad \ , \ \ \mathbf{s_{i,t}} = \tfrac{y_{i,t}}{E(y_{i,t})} \quad \text{so that} \ \ \Gamma_{t,T} = E_i(g_{i,T} \cdot s_{i,t})$

A micro decomposition of aggregate growth

- Let y_{it} real income of household i at time t
- Aggregate growth in period t over horizon T, $\Gamma_{t,T}$ can be written as

$$\Gamma_{t,T} = \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i \left(\frac{y_{i,t+T}}{y_{i,t}} \frac{y_{i,t}}{E(y_{i,t})} \right)$$

• Define $g_{i,T} = \frac{y_{i,t+T}}{y_{i,t}}$, $s_{i,t} = \frac{y_{i,t}}{E(y_{i,t})}$ so that $\Gamma_{t,T} = E_i(g_{i,T} \cdot s_{i,t})$

$$\Gamma_T = cov(g_{i,T}, s_i) + E(g_{i,T})$$

= $corr(g_{i,T}, s_i)\sigma(g_{i,T})\sigma(s_i) + E(g_{i,T})$

A micro decomposition of aggregate growth

- Let y_{it} real income of household i at time t
- Aggregate growth in period t over horizon T, $\Gamma_{t,T}$ can be written as

$$\Gamma_{t,T} = \frac{E_i(y_{i,t+T})}{E_i(y_{i,t})} = E_i\left(\frac{y_{i,t+T}}{y_{i,t}}\frac{y_{i,t}}{E(y_{i,t})}\right)$$

 $\bullet \ \ \text{Define} \quad \ \ \mathbf{g_{i,T}} = \tfrac{y_{i,t+T}}{y_{i,t}} \quad \ , \ \ \mathbf{s_{i,t}} = \tfrac{y_{i,t}}{E(y_{i,t})} \quad \text{so that} \ \ \Gamma_{t,T} = E_i(g_{i,T} \cdot s_{i,t})$

$$\Gamma_T = cov(g_{i,T}, s_i) + E(g_{i,T})$$

= $corr(g_{i,T}, s_i)\sigma(g_{i,T})\sigma(s_i) + E(g_{i,T})$

- Who grows matters for aggregate growth, and how growth takes place matter for inequality
- Similar decomposition widely used in IO (Olley and Pakes, 1996)

Insights from decomposition

$$\Gamma_T = cov(g_{i,T}, s_i) + E(g_{i,T})$$

= $corr(g_{i,T}, s_i)\sigma(g_{i,T})\sigma(s_i) + E(g_{i,T})$

- Simple way to sum micro moments to evaluate a given Γ_T:
- Growth can be:
 - Equal $(\sigma(g_i) = 0, E(g_i = \bar{g})$
 - Unequal $(\sigma(g_i) > 0)$. In this case inequality $\sigma(s_i)$ and mobility $cov(g_i, s_i)$) matter for Γ_T
- Whether growth is equal or unequal has welfare consequences

Warning: $Cov(g_i, s_i)$, $E(g_i)$.. not independent primitives: structural changes in income dynamics change (at same time) all terms: need a theory!

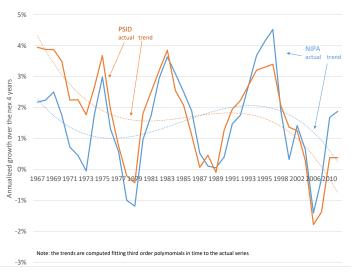
Plan

- (1) measure $corr(g_i, s_i)$, $\sigma(g_{it})$, $\sigma(s_{it})$ and $E(g_i)$ over 1967-2016
- (2) simple mechanism to understand driving force of changes

Panel Study of Income Dynamics (PSID)

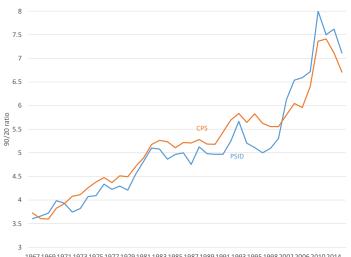
- Long panel of about 5,000 HH, representative of U.S. population
- Panel essential to identify change of individual dynamics (vs composition)
- 1967-2016 (Annual until 1996, bi-annual after)
- Publicly available
- Panel data must aggregate up to macro outcomes

PSID v/s NIPA: 4y growth of real labor income pc



 Aggregate PSID matches well macro NIPA Dynamics (including recent growth slowdown)

PSID v/s CPS: Cross sectional inequality



 PSID matches well cross sectional inequality in labor income from much larger sample (CPS)

Mapping decomposition to panel data

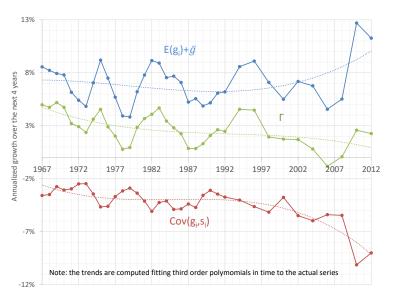
Let T=4 years, $y_{j,i,t}$ be real (PCE deflated) income of HH j, in decile i in year t and P_t total population in sample in year t

$$\text{then} \quad g_{i,t+T} = \frac{\sum_{j} y_{j,i,t+T}}{\sum_{j} y_{j,i,t}} \frac{P_t}{P_{t+T}} \quad \text{and} \quad s_{i,t} = \frac{\sum_{j} y_{j,i,t}}{\sum_{i} \sum_{j} y_{j,i,t}}$$

Aggregating by income deciles (quintiles) useful with measurement error

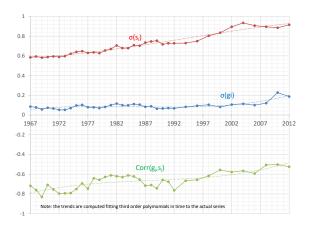
- Income measure: Labor Earnings of all household members
- Sample restrictions: Households with head 25-60, with income above 20% of the pvty line, no imputed labor income, which are in sample in year t and t + 4 (avg. sample per year ≈ 3500)
- Similar patterns for hholds with 25-40 head (age composition)

Aggregate growth decomposition (PSID)



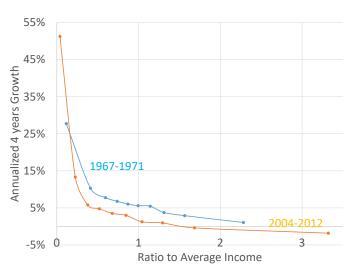
• Γ declines, $E(g_i)$ does not, Implies: $cov_t \downarrow$

Covariance decomposition (PSID)



- Increasing $\sigma(s_i)$ measure of increasing income inequality
- $Corr(g_i, s_i)$ increasing (toward 0) signals less rank mobility

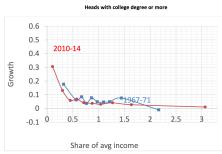
Why is correlation increasing?



Relation between g_i and s_i, becoming less linear (spike for low s, flatter for high s)

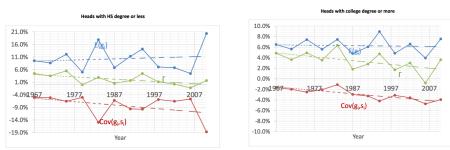
Robustness of growth decomposition

Cut sample by HH head education: at most High-school College or more



Robustness of growth decomposition (1)

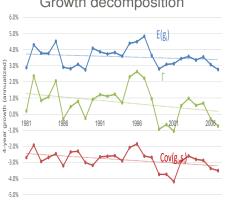
Cut sample by HH head education: at most High-school College or more

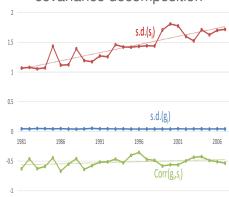


Patterns robust to several more demographics (e.g. age, race)

Robustness of growth decomposition (2)

Administrative data from SIPP users
Larger sample (20x), higher quality data, indiv v/s hholds, 1980-2012
Growth decomposition covariance decomposition

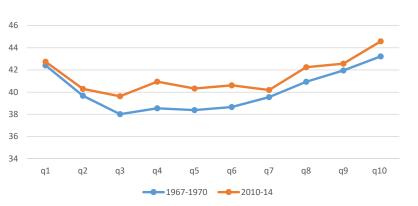




Who is in the different deciles?

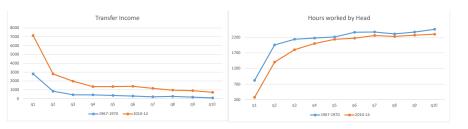
• Before writing a model for (g_i, s_i) , show some characteristics of different deciles of income distribution.

Age of different quantiles



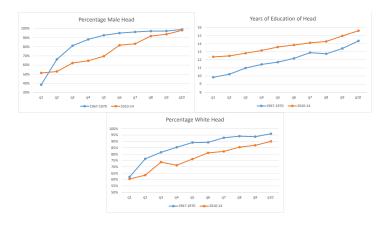
- The poor fast growers are not all young
- Mean reversion not all explained by demographic (Some household become poor-fast growers because of shocks)

Hours and transfers



 Poor fast-growers work much less hours and receive more transfers, suggesting they are experiencing (temporary) shock to their ability/willingness to work (Low hours mostly explained by extensive margin)

White, Male and College Educated



 All lines increasing, suggesting the importance of permanent differences (fixed effects) across deciles.

The theory

- Is there a simple can change in income dynamics that can account for the changes documented in the decomposition?
- And can this change explain changes in aggregate growth?

A Bewley-Ayiagari Model

- Continuum of infinitely lived households
- Log of household i earning potential is

$$y_{it} = e_{it} + \alpha_i + g_{it}$$

$$e_{it} = \rho e_{it-1} + \varepsilon_{it}, \varepsilon_{it} \sim N(\mu(s_{it}), \sigma_{\varepsilon t}^2 g(s_{it}))$$

$$\alpha_i \sim N(0, \sigma_{\alpha})$$

$$g_{it} = h(s_{it}) + g_{it-1} \qquad h(s_{it}) = \gamma + \beta \frac{1 - s_{it}}{1 + s_{it}}$$

- e_{it} standard autoregressive part. Variance of shocks $g(s_{it})$ declining in income s_{it} (Meghir and Pistaferri, 2004)
- α_i is household fixed effect
- g_{it} is growth factor, γ is equal growth, β captures unequal growth

Extensive margin

Household works iff

$$y_{it} > \phi_t$$

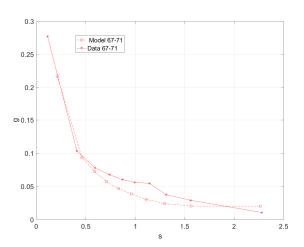
$$\phi_t = \phi_{t-1} + \gamma$$

- When household work: earnings = earning potential
- Earning potential evolves when household does not work
- ϕ_t chosen to match increase of non participant household in data (in our PSID sample from 3% to 6%)

Exercise

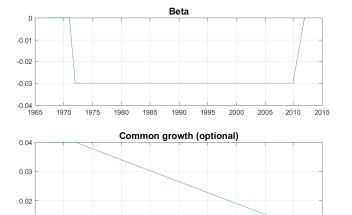
- Set β =0, calibrate all parameters to initial steady state (1967-1972)
- Calibrate a temporary decline in β (rich growing faster than poor), to match increase in income inequality (std s_{it})
- Assess empirical performance, growth and welfare impact of this change.

Initial steady state



- Given $\rho \simeq 0.6$, from many micro studies, fixed effects needed to match flat right part
- Extensive margin plus increasing shock variance for low s_i needed to match spike on left part s_i

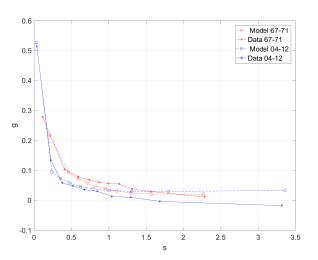
Impulse



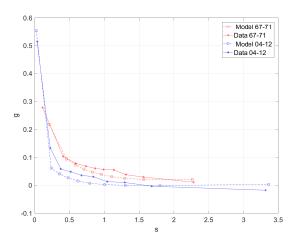
Change in β implies that hhold with $s_i = 2$ grows 1% per year faster than hhold at $s_i = 1$ (mean income)

0.01 -

Growth by decile of the income distribution Model vs Data (no common growth decline)

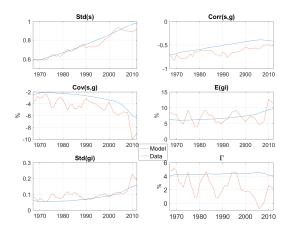


Growth by decile of the income distribution Model vs Data (with common growth decline)



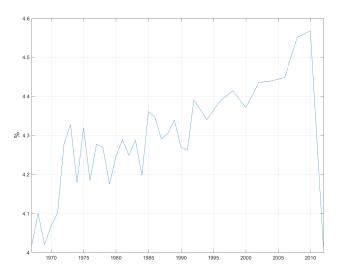
• Common growth decline of 3% needed to account for the full change

Time series patterns: Model v/s data



 Model qualitatively accounts for time series patterns of cov(s_i, g_i) and corr(s_i, g_i)

Aggregate growth impact Growth with $\bar{g} = 0$



Average growth contribution over 40 years is less than 0.5% per year

Welfare impact of the increase in unequal growth (β) (prelim)

	Ex ante welfare	
Complete Mkts (Or strong public redistribution)	+	
Incomplete Mkts + curvature		

Reason for the negative effect in IM

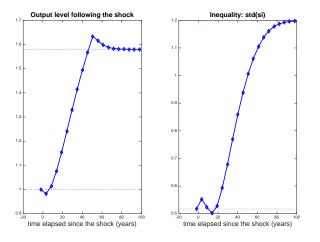
- Unequal growth leads to increase in permanent income inequality (Bowlus Robin, 2004, Abbott and Gallipoli, 2019, Straub, 2019)
- Increase in risk at the bottom of the distribution, where is more costly.

A Pareto model

- Show that unequal growth (i.e. more growth concentrated in the top of the distribution) can account for the facts in a model of the income process where distribution is Pareto (v/s log normal)
- In that model the growth impact of unequal growth is larger (1%)

Implication for Transition

Effects triggered by changes in inequality (shape of distribution)



About a 0.9% output growth per year over the first 40 years

Closing remarks and open issues

- Explore a statistical connection between inequality and growth
- $\Gamma_T = cov(g_{i,T}, s_i) + E(g_{i,T})$ Use it to inform simple income process: Increase in unequal growth can account for patterns of inequality and has a non trivial effect on growth (+) and welfare (-)
- Takeaway: not inequality drives growth; but, micro changes that drive up inequality, also impact aggregate growth

Closing remarks and open issues

- Explore a statistical connection between inequality and growth
- $\Gamma_T = cov(g_{i,T}, s_i) + E(g_{i,T})$ Use it to inform simple income process: Increase in unequal growth can account for patterns of inequality and has a non trivial effect on growth (+) and welfare (-)
- Takeaway: not inequality drives growth; but, micro changes that drive up inequality, also impact aggregate growth

Open issues

- What has driven the increase in unequal growth (SBTC certainly part of it, maybe other factors, like reduced access to opportunities (Fogli and Guerrieri, 2019), playing a role
- What has driven the large (and early) decline in equal growth?

Additional slides

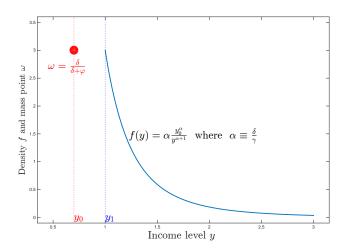
Simple model of "type depend. growth", Gabaix et al.

Minimal assumptions for unequal growth:

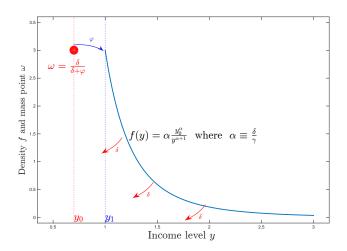
Environment: Income produced by successful projects/jobs

- New projects created at rate φ ; die at rate δ
- Income from first successful project is y_1 grows at rate γ
- Fraction $\omega \equiv \frac{\delta}{\delta + \varphi}$ of agents w/o project w. constant income y_0

Model in a nutshell (steady state)

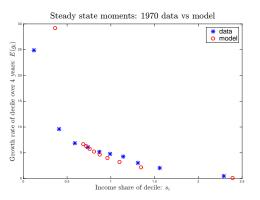


Model in a nutshell (steady state)



Model calibrated to early 1970's

Assumes steady state , so that $\Gamma_t = \bar{g}_t$, hence $E(g_i) = -cov(s_i, g_i)$



- $\{\delta, \varphi, \gamma, y_0\}$ chosen to match $std(s_i), std(g_i), cov(s_i, g_i), mobility$
- Captures tail of rich agents and growth spikes at the bottom

Transition after permanent shock

- Suppose parameters once and for all change at t=0
- Old active projects keep old params (growth γ , die at rate δ)
- Compute *transition* CDF, F(y, t) and implied $\{cov(t), \sigma_{s_i}(t), \sigma_{g_i}(t)\}$
 - observable moments *t* periods after the shock occurred

- Calibration:
 - choose δ , φ , γ to match steady state moments in 1970
 - choose δ , $\tilde{\varphi}$, $\tilde{\gamma}$ to match moments after t=40 years

Tool: characterise dynamics of cross sectional distribution f(y, t)

- $t \in (0, \infty)$ time elapsed since shock
- fraction of agents who **low growth**: $\tilde{\omega}(t)$

$$\tilde{\omega}(t) = \tilde{\omega} + (\omega - \tilde{\omega} + \chi) e^{-(\tilde{\delta} + \tilde{\varphi})t} - \chi e^{-\delta t} \text{ where } \chi \equiv \frac{(\tilde{\delta} - \delta)(1 - \omega)}{\tilde{\varphi} + \tilde{\delta} - \delta}$$

- fraction of agents with high growth:

$$\eta(t) = 1 - \tilde{\omega}(t) - (1 - \omega)e^{-\delta t}$$

– density of agents with **new project**: $\tilde{f}(y,t)$ solves KFE

$$\frac{\partial}{\partial t}\tilde{f}(y,t) = -\frac{\partial}{\partial y}\left(\tilde{f}(y,t)\tilde{\gamma}y\right) - \delta\tilde{f}(y,t) \quad \text{s.t.} \quad \int_{y_1}^{y_1e^{\tilde{\gamma}t}}\tilde{f}(y,t) = \eta(t)$$

Characterising transition (in closed form)

Solving the PDE (using eigenvalue-eigenfunction decomposition) gives

$$\tilde{f}(y,t) = (1-\tilde{\omega})\frac{\tilde{\alpha}y_1^{\tilde{\alpha}}}{y^{1+\tilde{\alpha}}} - e^{-\delta t}(1-\omega-\chi)\frac{\frac{(\tilde{\delta}-\delta)}{\tilde{\gamma}}y_1^{(\tilde{\delta}-\delta)}}{y^{1+\frac{(\tilde{\delta}-\delta)}{\tilde{\gamma}}}} + e^{-(\tilde{\delta}+\tilde{\varphi})t}(\omega-\tilde{\omega}+\chi)\frac{\frac{\tilde{\varphi}}{\tilde{\gamma}}y_1^{-\frac{\tilde{\varphi}}{\tilde{\gamma}}}}{y^{1-\frac{\tilde{\varphi}}{\tilde{\gamma}}}}$$

where exponents are "eigenvalues" (as in Gabaix et al. 2016)

Characterising transition (in closed form)

Solving the PDE (using eigenvalue-eigenfunction decomposition) gives

$$\tilde{f}(y,t) = (1-\tilde{\omega})\frac{\tilde{\alpha}y_1^{\tilde{\alpha}}}{y^{1+\tilde{\alpha}}} - e^{-\delta t}(1-\omega-\chi)\frac{\frac{(\tilde{\delta}-\delta)}{\tilde{\gamma}}y_1^{(\tilde{\delta}-\delta)}}{y^{1+\frac{(\tilde{\delta}-\delta)}{\tilde{\gamma}}}} + e^{-(\tilde{\delta}+\tilde{\varphi})t}(\omega-\tilde{\omega}+\chi)\frac{\frac{\tilde{\varphi}}{\tilde{\gamma}}y_1^{-\frac{\tilde{\varphi}}{\tilde{\gamma}}}}{y^{1-\frac{\tilde{\varphi}}{\tilde{\gamma}}}}$$

where exponents are "eigenvalues" (as in Gabaix et al. 2016)

distribution of incomes y at time t

$$\tilde{f}(y,t) + (1-\omega) h(y)$$
 for $y \in (y_1, \infty)$

use it to compute moments $\{cov(t), \sigma_{s_i}(t), \sigma_{g_i}(t)\}, \forall t$

Model calibration: fit and parameters

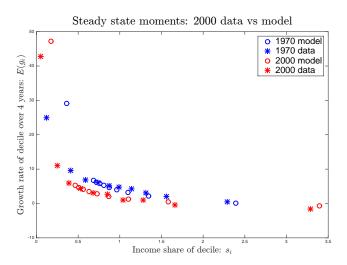
Target moments: data vs model

	$cov\left(g_{i},s_{i}\right)$	$std(s_i)$	$std(g_i)$	Persistence at d10	
1007.71			0.07		
1967-71	-0.033	0.62	0.07	0.60	
model fit	-0.024	0.53	0.08	0.60	
0004 0040		0.04	0.40		
2004-2012	-0.066	0.94	0.13	0.68	
model fit	-0.052	0.88	0.15	0.68	
Calibr. Targets	NO	YES	YES	YES	

Calibration Parameters chosen to match moments (st-st and transition)

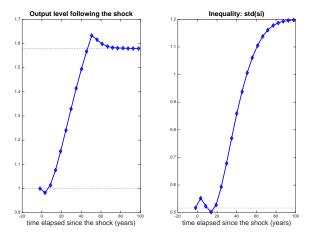
	δ	γ	φ	<i>y</i> 0
pre-shock	0.13	0.049	2.0	0.25
post -shock	0.10	0.068	1.1	0.25

Cross-sectional model fit



Implication for Transition

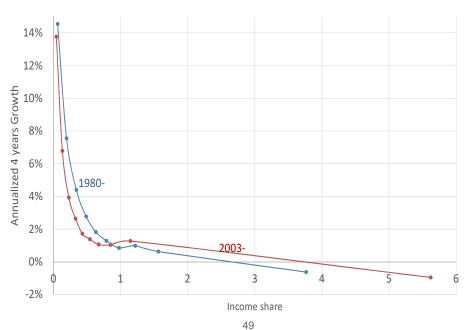
Effects triggered by changes in inequality (shape of distribution)



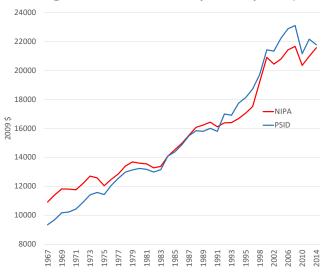
About a 0.9% output growth per year over the first 40 years

48

Income Growth and Income level in SIPP data



PSID v/s NIPA Wages and Salaries per capita (Constant 2009 \$)



For labor income PSID matches NIPA Dynamics and Levels