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Introduction

• Over past 50 years U.S. has experienced a large increase in
household income inequality

• Many studies on the causes of this, much less work on its growth
impact

• Changes that drive increase in income inequality are changes in
income dynamics, which naturally can have a growth impact

• Building block: Changes in income dynamics that are unequal
across income levels (Unequal growth), affect, at the same time,
aggregate growth, income inequality and welfare

• Objective: Use micro data and minimal theory to connect growth and
inequality, estimate these changes and assess their impact



Unequal growth 1967-2016: a cross sectional view
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• Each point: level & growth of deciles of 1967 income distribution
• Top grew fast, bottom stagnated: not same households across time!
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Unequal growth 1967-2016: a panel view (PSID)
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• Poor grow faster than rich (mean reversion), early and late in sample
• Same households across time!

• How is this fig(β convergence) consistent with previous (σ
divergence)?

• How are these changes connected with aggregate growth?
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Outline

• A micro decomposition of aggregate growth

• Empirical analysis on decomposition

• Simple model to measure the changes driving the data, and assess
impact
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Some Related literature

• Empirical: “Earnings, Inequality and Mobility in the United States”, Kopczuk, Saez
and Song 2010, “The Nature of Countercyclical Income Risk” Guvenen, Ozkan, and
Song. 2014

• Models of Income Inequality: “Uninsured Idiosyncratic Risk and Aggregate Saving",
Ayiagari 1994, “Dynamics of inequality”, Gabaix, Lasry, Lions and Moll 2016, “Top
income inequality dynamics”, Kim and Jones 2017

• From micro to macro: “Misallocation and growth”, Jovanovic 2014, “The Granular
Origins of Aggregate Fluctuations”, Gabaix 2011
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A micro decomposition of aggregate growth

• Let yit real income of household i at time t

• Aggregate growth in period t over horizon T, Γt,T can be written as

Γt,T =
Ei(yi,t+T)

Ei(yi,t)
= Ei

(
yi,t+T

yi,t

yi,t

E(yi,t)

)
• Define gi,T =

yi,t+T
yi,t

, si,t =
yi,t

E(yi,t)
so that Γt,T = Ei(gi,T · si,t)

ΓT = cov(gi,T , si) + E(gi,T)

= corr(gi,T , si)σ(gi,T)σ(si) + E(gi,T)

• Who grows matters for aggregate growth, and how growth takes
place matter for inequality

• Similar decomposition widely used in IO (Olley and Pakes, 1996)
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Insights from decomposition

ΓT = cov(gi,T , si) + E(gi,T)

= corr(gi,T , si)σ(gi,T)σ(si) + E(gi,T)

• Simple way to sum micro moments to evaluate a given ΓT :
• Growth can be:

I Equal (σ(gi) = 0 , E(gi = ḡ )
I Unequal (σ(gi) > 0). In this case inequality σ(si) and mobility

cov(gi, si)) matter for ΓT

• Whether growth is equal or unequal has welfare consequences

Warning: Cov(gi, si),E(gi) .. not independent primitives: structural
changes in income dynamics change (at same time) all terms: need a
theory!
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Plan

• (1) measure corr(gi, si), σ(git), σ(sit) and E(gi) over 1967-2016
• (2) simple mechanism to understand driving force of changes
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Panel Study of Income Dynamics (PSID)

• Long panel of about 5,000 HH, representative of U.S. population
• Panel essential to identify change of individual dynamics (vs

composition)

• 1967-2016 (Annual until 1996, bi-annual after)

• Publicly available

• Panel data must aggregate up to macro outcomes
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PSID v/s NIPA: 4y growth of real labor income pc
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Note: the trends are computed fitting third order polymomials in time to the actual series

• Aggregate PSID matches well macro NIPA Dynamics (including
recent growth slowdown)
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PSID v/s CPS: Cross sectional inequality
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• PSID matches well cross sectional inequality in labor income from
much larger sample (CPS)
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Mapping decomposition to panel data

Let T = 4 years, yj,i,t be real (PCE deflated) income of HH j, in decile i in
year t and Pt total population in sample in year t

then gi,t+T =

∑
j yj,i,t+T∑

j yj,i,t

Pt

Pt+T
and si,t =

∑
j yj,i,t∑

i
∑

j yj,i,t

Aggregating by income deciles (quintiles) useful with measurement error

• Income measure: Labor Earnings of all household members
• Sample restrictions: Households with head 25-60, with income

above 20% of the pvty line, no imputed labor income, which are in
sample in year t and t + 4 (avg. sample per year ' 3500)

• Similar patterns for hholds with 25-40 head (age composition)
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Aggregate growth decomposition (PSID)
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• Γ declines, E(gi) does not, Implies: covt ↓
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Covariance decomposition (PSID)
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Note: the trends are computed fitting third order polymomials in time to the actual series

• Increasing σ(si) measure of increasing income inequality
• Corr(gi, si) increasing (toward 0) signals less rank mobility
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Why is correlation increasing?
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• Relation between gi and si, becoming less linear (spike for low s,
flatter for high s)
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Robustness of growth decomposition

Cut sample by HH head education:
at most High-school College or more
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Robustness of growth decomposition (1)

Cut sample by HH head education:
at most High-school College or more

Patterns robust to several more demographics (e.g. age, race)
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Robustness of growth decomposition (2)

Administrative data from SIPP users
Larger sample (20x), higher quality data, indiv v/s hholds, 1980-2012

Growth decomposition covariance decomposition
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Who is in the different deciles?

• Before writing a model for (gi, si), show some characteristics of
different deciles of income distribution.
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Age of different quantiles
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• The poor fast growers are not all young
• Mean reversion not all explained by demographic (Some household

become poor-fast growers because of shocks)
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Hours and transfers

30%

40%

50%

60%

70%

80%

90%

100%

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Percentage Male Head

1967‐1970 2010‐14

8

9

10

11

12

13

14

15

16

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Years of Education of Head

1967‐1970 2010‐14

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Percentage White Head

1967‐1970 2010‐14

200

700

1200

1700

2200

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Hours worked by Head

1967‐1970 2010‐14

0

1000

2000

3000

4000

5000

6000

7000

8000

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

Transfer Income

1967‐1970 2010‐14

• Poor fast-growers work much less hours and receive more transfers,
suggesting they are experiencing (temporary) shock to their
ability/willingness to work (Low hours mostly explained by extensive
margin)
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White, Male and College Educated
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• All lines increasing, suggesting the importance of permanent
differences (fixed effects) across deciles.
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The theory

• Is there a simple can change in income dynamics that can account
for the changes documented in the decomposition?

• And can this change explain changes in aggregate growth?
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A Bewley-Ayiagari Model

• Continuum of infinitely lived households
• Log of household i earning potential is

yit = eit + αi + git

eit = ρeit−1 + εit, εit ∼ N(µ(sit), σ
2
εtg(sit))

αi ∼ N(0, σα)

git = h(sit) + git−1 h(sit) = γ + β
1− sit

1 + sit

• eit standard autoregressive part. Variance of shocks g(sit) declining
in income sit (Meghir and Pistaferri, 2004)

• αi is household fixed effect
• git is growth factor, γ is equal growth, β captures unequal growth

25



Extensive margin

• Household works iff

yit > φt

φt = φt−1 + γ

• When household work: earnings = earning potential
• Earning potential evolves when household does not work
• φt chosen to match increase of non participant household in data (in

our PSID sample from 3% to 6%)
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Exercise

• Set β=0, calibrate all parameters to initial steady state (1967-1972)
• Calibrate a temporary decline in β (rich growing faster than poor), to

match increase in income inequality (std sit)
• Assess empirical performance, growth and welfare impact of this

change.
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Initial steady state

• Given ρ ' 0.6, from many micro studies, fixed effects needed to
match flat right part

• Extensive margin plus increasing shock variance for low si needed to
match spike on left part 28



Impulse

Change in β implies that hhold with si = 2 grows 1% per year faster than
hhold at si = 1 (mean income)
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Growth by decile of the income distribution
Model vs Data (no common growth decline)
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Growth by decile of the income distribution
Model vs Data (with common growth decline)

• Common growth decline of 3% needed to account for the full change
in the curves
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Time series patterns: Model v/s data

• Model qualitatively accounts for time series patterns of cov(si, gi) and
corr(si, gi)
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Aggregate growth impact
Growth with ḡ = 0

Average growth contribution over 40 years is less than 0.5% per year33



Welfare impact of the increase in unequal growth (β)
(prelim)

Ex ante welfare
Complete Mkts (Or strong public redistribution) +

Incomplete Mkts + curvature - -

Reason for the negative effect in IM
• Unequal growth leads to increase in permanent income inequality

(Bowlus Robin, 2004, Abbott and Gallipoli, 2019, Straub, 2019)
• Increase in risk at the bottom of the distribution, where is more costly.
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A Pareto model

• Show that unequal growth (i.e. more growth concentrated in the top
of the distribution) can account for the facts in a model of the income
process where distribution is Pareto (v/s log normal)

• In that model the growth impact of unequal growth is larger (1%)
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Implication for Transition
Effects triggered by changes in inequality (shape of distribution)
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About a 0.9% output growth per year over the first 40 years
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Closing remarks and open issues

• Explore a statistical connection between inequality and growth
• ΓT = cov(gi,T , si) + E(gi,T)

Use it to inform simple income process: Increase in unequal growth
can account for patterns of inequality and has a non trivial effect on
growth (+) and welfare (-)

• Takeaway: not inequality drives growth; but, micro changes that drive
up inequality, also impact aggregate growth

Open issues
• What has driven the increase in unequal growth (SBTC certainly part

of it, maybe other factors, like reduced access to opportunities (Fogli
and Guerrieri, 2019), playing a role

• What has driven the large (and early) decline in equal growth?
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Additional slides
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Simple model of “type depend. growth”, Gabaix et al.

Minimal assumptions for unequal growth:

Environment: Income produced by successful projects/jobs

• New projects created at rate ϕ; die at rate δ

• Income from first successful project is y1 grows at rate γ

• Fraction ω ≡ δ
δ+ϕ of agents w/o project w. constant income y0
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Model in a nutshell (steady state)

Income level y
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Model calibrated to early 1970’s

Assumes steady state , so that Γt = ḡt , hence E(gi) = −cov(si, gi)

Income share of decile: si
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• {δ, ϕ, γ, y0} chosen to match std(si), std(gi), cov(si, gi),mobility

• Captures tail of rich agents and growth spikes at the bottom
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Transition after permanent shock

• Suppose parameters once and for all change at t = 0

• Old active projects keep old params (growth γ, die at rate δ)

• Agents w/o projects immediately face δ̃ , ϕ̃ , γ̃

• Compute transition CDF, F(y, t) and implied {cov(t), σsi(t), σgi(t)}
– observable moments t periods after the shock occurred

• Calibration:
– choose δ , ϕ , γ to match steady state moments in 1970
– choose δ̃ , ϕ̃ , γ̃ to match moments after t = 40 years
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Tool: characterise dynamics of cross sectional
distribution f (y, t)

• t ∈ (0,∞) time elapsed since shock

– fraction of agents who low growth: ω̃(t)

ω̃(t) = ω̃ + (ω − ω̃ + χ) e−(δ̃+ϕ̃)t − χe−δt where χ ≡ (δ̃ − δ)(1− ω)

ϕ̃+ δ̃ − δ

– fraction of agents with high growth:

η(t) = 1− ω̃(t)− (1− ω)e−δt

– density of agents with new project: f̃ (y, t) solves KFE

∂

∂t
f̃ (y, t) = − ∂

∂y

(
f̃ (y, t)γ̃y

)
− δf̃ (y, t) s.t.

∫ y1eγ̃t

y1

f̃ (y, t) = η(t)
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Characterising transition (in closed form)

Solving the PDE (using eigenvalue-eigenfunction decomposition) gives

f̃ (y, t) = (1− ω̃)
α̃yα̃1
y1+α̃ − e−δt(1− ω − χ)

(δ̃−δ)
γ̃ y

(δ̃−δ)
γ̃

1

y1+ (δ̃−δ)
γ̃

+ e−(δ̃+ϕ̃)t(ω − ω̃ + χ)

ϕ̃
γ̃ y

− ϕ̃
γ̃

1

y1− ϕ̃
γ̃

where exponents are “eigenvalues” (as in Gabaix et al. 2016)

– distribution of incomes y at time t

f̃ (y, t) + (1− ω) h(y) for y ∈ (y1,∞)

use it to compute moments {cov(t), σsi(t), σgi(t)}, ∀t
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Model calibration: fit and parameters
Target moments: data vs model

cov (gi, si) std(si) std(gi) Persistence at d10

1967-71 -0.033 0.62 0.07 0.60
model fit -0.024 0.53 0.08 0.60

2004-2012 -0.066 0.94 0.13 0.68
model fit -0.052 0.88 0.15 0.68

Calibr. Targets NO YES YES YES

Calibration Parameters chosen to match moments (st-st and transition)

δ γ ϕ y0

pre-shock 0.13 0.049 2.0 0.25

post -shock 0.10 0.068 1.1 0.25
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Cross-sectional model fit

Income share of decile: si
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Implication for Transition
Effects triggered by changes in inequality (shape of distribution)
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About a 0.9% output growth per year over the first 40 years
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Income Growth and Income level in SIPP data
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PSID v/s NIPA
Wages and Salaries per capita (Constant 2009 $)
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• For labor income PSID matches NIPA Dynamics and Levels
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