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Background



Background

How should we prescribe BP medications to prevent CVD events?

• Intensive: target SBP < 120 mmHg

• Standard: target SBP < 140 mmHg

ACCORD RCT with 4733 participants: HR = 0.88 (95% CI 0.73-1.06) 1.

1[The ACCORD Study Group, 2010]
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Background

How should we prescribe BP medications to prevent CVD events?

• Intensive: target SBP < 120 mmHg

• Standard: target SBP < 140 mmHg

SPRINT RCT with 9361 participants: HR = 0.75 (95% CI 0.64-0.89) 2.

2[The SPRINT Research Group, 2015]
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Background

Who benefits more or less from intensive blood pressure therapy?

We assume the potential outcomes framework.

• feature vector X (i) ∈ Rp

• response Y (i) ∈ {0, 1}
• treatment W (i) ∈ {0, 1}

Traditionally, RCTs measure the average treatment effect (ATE).

τ = E[Y (1)− Y (0)]

We want to estimate conditional average treatment effects (CATE).

τ(x) = E[Y (1)− Y (0)|X = x ]

Epidemiology perspective: −τ(x) is the absolute risk reduction (ARR).
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Background

We want to estimate conditional average treatment effects (CATE).

τ(x) = E[Y (1)− Y (0)|X = x ]

Most causal inference techniques assume unconfoundedness (ignorability).

{Y (0),Y (1)} ⊥⊥W |X

In the RCT setting, we can make an even stronger assumption.

{Y (0),Y (1)} ⊥⊥W

With propensity scores Pr[W = 0] = Pr[W = 1] = 1
2 .
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Background

Traditional approaches to assessing heterogeneity in treatment effects

have been subgroup analyses, partitioned by baseline risk.

It’s typically assumed that effects are proportional to baseline risk 3.

For example, higher benefit from treatment if CVD risk is high.

3[Burke et al., 2014]
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Background

Prior work has used data from SPRINT and ACCORD to develop

Cox/logistic regression models for ARR benefit/harm, showing significant

heterogeneity in predicted effects 4.

But these make strong assumptions around linearity/proportional hazards.
4[Patel et al., 2017]
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Background

Can machine learning methods improve estimates of treatment effects?

Will they reveal effects that are proportional to baseline risk?
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Methods



Data
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Data

RCT data is time-to-event, so we need to account for censoring to

predict treatment effects for binarized outcomes at 3 years.

• feature vector X (i) ∈ Rp

• time to censoring or event T (i) ∈ R+

• censoring indicator C (i) ∈ {0, 1}
• treatment W (i) ∈ {0, 1}

How do we define binarized outcomes in the presence of censoring?

[In our dataset, relatively low censorship rate ∼ 23%.]
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Data

We use inverse probability of censoring weighting; weight data points by 5

ω(T (i),C (i),X (i)) =
1{T (i) ≥ 3}

p̂(C ≥ 3|X = X (i))
[case 1, case 2]

+
1{T (i) ≤ 3,C (i) = 0}
p̂(C ≥ T (i)|X = X (i))

[case 3]

.

We use Cox regression to estimate the censoring distribution p̂(C |X ).
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5[Vock et al., 2016]
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S-Learner and T-Learner

Consider meta-learning methods for predicting treatment effects.

S-Learner (“single”)

Use machine learning to learn p(Y |X ,W ), then predict

τ(x) = p̂(Y |X ,W = 1)− p̂(Y |X ,W = 0)

T-Learner (“two”)

Use machine learning to learn two separate models:

p(Y |X ,W = 0) and p(Y |X ,W = 1), then predict

τ(x) = p̂(Y |X ,W = 1)− p̂(Y |X ,W = 0)
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S-Learner and T-Learner

In the context of random forests, the difference is that the T-learner

forces the first split to be on W , whereas the S-learner treats W like any

other covariate 6.

6[Künzel et al., 2019]
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X-Learner

X-Learner

Three-step process:

1. Estimate response surfaces conditional on treatment.

µ0(x) = E[Y (0)|XW=0] µ1(x) = E[Y (1)|XW=1]

2. Impute treatment effects for each participant, using the model

corresponding to the un-observed outcome.

τ
(i)
1 = Y

(i)
W=1 − µ̂0(X

(i)
W=1) τ

(i)
0 = µ̂1(X

(i)
W=0)− Y

(i)
W=0

3. Fit models for τ̂1(x) and τ̂0(x) using imputed treatment effects, then

τ̂(x) = e(x)τ̂0(x) + (1− e(x))τ̂1(x),

where e(x) is the estimated propensity, in this case e(x) = 1
2 .
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Experiment

Conventional: S-Learner logistic regression that predicts 3-year CVD

event using treatment as an indicator variable, as well as all interaction

terms between treatment and covariates.

1. Regress Y ∼ X + W + WX .

2. Predict τ̂(X ) = p̂(Y |X ,W = 1)− p̂(Y |X ,W = 0).

Machine learning: X-learner with random forest base learners.
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Evaluation



C-statistic for benefit

C-statistic. Proportion of all pairs with discordant outcomes, in which the

Y = 1 event was assigned a higher probability than the Y = 0 event.

C-for-benefit. Proportion of all matched pairs with unequal observed

benefit, in which the patient pair receiving greater treatment benefit was

predicted to do so. Match each pair of patients to have one

(W = 0,W = 1) and identical predicted ARR.

The c-for-benefit thus represents the probability that from two

randomly chosen matched patient pairs with unequal observed

benefit, the pair with greater observed benefit also has a higher

predicted benefit 7.

7[van Klaveren et al., 2018]
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C-statistic for benefit
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Figure 1: Matching of patient pairs across treatment arms. Ideally the pairs lie

exactly along the diagonal, which is observed in this case due to the RCT

nature of the data.
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Decision value of RMST

Restricted mean survival time is defined as,

RMST = E[min(T , 3)] =

∫ 3

0

p(T > t)dt.

We estimate the RMST under the policy implied by the ARR model (i.e.

treat those with ARR > 0, do not treat those with ARR ≤ 0).

This is known as off-policy policy evaluation.

1. Fit p̂(T ≥ 3|τ̂(x) ≤ 0,W = 1), p̂(T ≥ 3|τ̂(x) > 0,W = 0) via KM.

2. Estimate ˆRMSTτ̂(x)≤0 and ˆRMSTτ̂(x)>0 via integration of KM.

3. ˆRMST = E
(

1{τ̂(x) ≤ 0} ˆRMSTτ̂(x)≤0 + 1{τ(x) > 0} ˆRMSTτ̂(x)>0

)
Has been advocated for as a less biased and more interpretable method

for model selection when predicting treatment effects 8.
8[Schuler and Shah, 2018]
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Calibration

Risk estimation: Partition individuals into quantiles of predicted risk, and

compare empirical risk to predicted.

ARR estimation: Partition individuals into quantiles of predicted ARR,

and compare empirical risk reduction to predicted.
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Figure 2: We compare predicted against observed absolute risk reduction at

quintiles of predicted absolute risk reduction. Kaplan-Meier estimates are used

to account for censoring.
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Predicted absolute risk reductions
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Figure 3: Distributions of predicted absolute risk reduction show greater

heterogeneity in machine learning predictions compared to a conventional

method.
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Results

Baseline policy of intensive treatment for SPRINT and standard treatment for

ACCORD yields 3-year decision RMST of 1061.24 days (95% CI: 1057.37 - 1064.10). 21



Clinical relevance
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Figure 4: Bootstrapped observed risk reduction when partitioning individuals

into buckets of treatment (ARR > 0) and control (ARR ≤ 0). ML produces

more a discriminative decision boundary.
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Clinical relevance
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Heterogeneity beyond baseline risk
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Figure 5: Predictions with the ML method exhibit more heterogeneity, not

necessarily proportional to baseline risk. Baseline risk predictions made using

the ACC/AHA ASCVD risk calculator.
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Interpretability

Figure 6: Partial dependence plots show non-linear dependencies between

estimated treatment effect and covariates.
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Sensitivity analysis

We found that the X-learner with RF beat out alternative ML methods,

as well as a Cox regression baseline.
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