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Background



How should we prescribe BP medications to prevent CVD events?

e Intensive: target SBP < 120 mmHg
e Standard: target SBP < 140 mmHg

ACCORD RCT with 4733 participants: HR = 0.88 (95% Cl 0.73-1.06) !.
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How should we prescribe BP medications to prevent CVD events?

e Intensive: target SBP < 120 mmHg
e Standard: target SBP < 140 mmHg

SPRINT RCT with 9361 participants: HR = 0.75 (95% Cl 0.64-0.89) 2.
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2[The SPRINT Research Group, 2015]



Background

Who benefits more or less from intensive blood pressure therapy?

We assume the potential outcomes framework.

e feature vector X() € RP
e response Y() € {0,1}
e treatment W) € {0,1}

Traditionally, RCTs measure the average treatment effect (ATE).
T=E[Y(1) - Y(0)]
We want to estimate conditional average treatment effects (CATE).
7(x) =E[Y(1) = Y(0)|X = x]

Epidemiology perspective: —7(x) is the absolute risk reduction (ARR).



Background

We want to estimate conditional average treatment effects (CATE).
7(x) = E[Y(1) — Y(0)|X = X]
Most causal inference techniques assume unconfoundedness (ignorability).
{¥(0), Y(1)} L WX
In the RCT setting, we can make an even stronger assumption.
Y@, y(m)r L w

With propensity scores Pr[W = 0] = Pr[W = 1] = %



Background

Traditional approaches to assessing heterogeneity in treatment effects
have been subgroup analyses, partitioned by baseline risk.

It's typically assumed that effects are proportional to baseline risk 3.

For example, higher benefit from treatment if CVD risk is high.
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Background

Prior work has used data from SPRINT and ACCORD to develop
Cox/logistic regression models for ARR benefit/harm, showing significant
heterogeneity in predicted effects *.
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But these make strong assumptions around linearity/proportional hazards.
4[Patel et al., 2017]




Can machine learning methods improve estimates of treatment effects?

Will they reveal effects that are proportional to baseline risk?



Methods



Age (years)

Female (%)

Black (%)

Hispanic (%)

Systolic blood pressure (mm Hg)

Diastolic blood pressure (mm Hg)

Number of blood pressure treatment classes
Current Smoker

Former Smoker

Aspirin use

Statin use

Serum creatinine (mg/dL)

Total cholesterol (mg/dL)

High-density lipoprotein cholesterol (mg/dL)
Triglycerides (mg/dL)

Body mass index (kg/m”2)

In SPRINT (N =9,361), Mean (SD)

67.84 (9.40)
0.35(0.48)
0.32 (0.46)
0.11(0.31)
139.65 (15.59)
78.16 (11.92)
1.84(1.04)
0.13(0.34)
0.43 (0.49)
0.51(0.50)
0.44 (0.50)
1.07(0.34)
190.10 (41.22)
52.82 (14.45)
126.13 (90.29)

29.87(5.76)

In ACCORD-BP (N =4,733), Mean (SD)
63.19 (6.68)
0.49 (0.50)
0.24(0.42)
0.07 (0.26)
139.62 (15.75)
75.94 (10.34)
170 (1.08)
0.01(0.10)

0.48 (0.50)
0.52 (0.50)
0.65 (0.48)
0.91(0.25)
192.88 (43.77)
46.74 (13.50)
186.86 (164.58)

32.23 (5.46)



RCT data is time-to-event, so we need to account for censoring to
predict treatment effects for binarized outcomes at 3 years.

e feature vector X() ¢ RP
e time to censoring or event T() ¢ R*
e censoring indicator C() € {0,1}
e treatment W) € {0,1}
How do we define binarized outcomes in the presence of censoring?

[In our dataset, relatively low censorship rate ~ 23%.]
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We use inverse probability of censoring weighting; weight data points by °

T p(C >3[X =X0D) ~ p(C>TW|X=XD)
[case 1, case 2] [case 3]

We use Cox regression to estimate the censoring distribution p(C|X).

Months since baseline

5[Vock et al., 2016]
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S-Learner and T-Learner

Consider meta-learning methods for predicting treatment effects.
S-Learner (“single”)

Use machine learning to learn p(Y|X, W), then predict
7(x) = B(YIX, W = 1) — 5(Y|X, W = 0)

T-Learner (“two”)

Use machine learning to learn two separate models:
p(Y|X, W =0) and p(Y|X, W = 1), then predict

r(x) = B(YIX, W = 1) — B(Y|X, W = 0)
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S-Learner and T-Learner

In the context of random forests, the difference is that the T-learner
forces the first split to be on W, whereas the S-learner treats W like any
other covariate °.

EREE SHAn

T-learner S-learner

6[Kiinzel et al., 2019]
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X-Learner

X-Learner

Three-step process:
1. Estimate response surfaces conditional on treatment.
po(x) = E[Y(0)[Xw=o]  pa(x) = E[Y(1)[Xw=1]

2. Impute treatment effects for each participant, using the model
corresponding to the un-observed outcome.

71(i) = Yl%):l - /A"O(X\(/ti/):l) T(gi) = /A’/l(Xl(/\;):o) - le):o

3. Fit models for 71(x) and 7o(x) using imputed treatment effects, then
7(x) = e(x)7o(x) + (1 — e(x))71 (),

where e(x) is the estimated propensity, in this case e(x) = 1.
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Conventional: S-Learner logistic regression that predicts 3-year CVD
event using treatment as an indicator variable, as well as all interaction
terms between treatment and covariates.

1. Regress Y ~ X + W + WX.
2. Predict 7(X) = p(Y|X, W =1) — p(Y|X, W = 0).

Machine learning: X-learner with random forest base learners.
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Evaluation




C-statistic for benefit

C-statistic. Proportion of all pairs with discordant outcomes, in which the
Y =1 event was assigned a higher probability than the Y = 0 event.

C-for-benefit. Proportion of all matched pairs with unequal observed
benefit, in which the patient pair receiving greater treatment benefit was
predicted to do so. Match each pair of patients to have one

(W =0, W = 1) and identical predicted ARR.

The c-for-benefit thus represents the probability that from two
randomly chosen matched patient pairs with unequal observed
benefit, the pair with greater observed benefit also has a higher

predicted benefit 7.

"[van Klaveren et al., 2018]
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C-statistic for benefit
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Figure 1: Matching of patient pairs across treatment arms. Ideally the pairs lie
exactly along the diagonal, which is observed in this case due to the RCT

nature of the data.
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Decision value of RMST

Restricted mean survival time is defined as,
3

RMST = E[min(T,3)] = / p(T > t)dt.
Jo

We estimate the RMST under the policy implied by the ARR model (i.e.
treat those with ARR > 0, do not treat those with ARR < 0).
This is known as off-policy policy evaluation.
1. Fit p(T > 3|7(x) <0,W =1), (T > 3|7(x) > 0, W = 0) via KM.
2. Estimate RI\/IST x)<o and RI\/IST x)>0 Via integration of KM.
3. RMST =E <1{T(x) < OJRMST 3 (<0 + 1{7(x) > O}RMST;(XDO)

Has been advocated for as a less biased and more interpretable method
for model selection when predicting treatment effects 8.
8[Schuler and Shah, 2018]
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Calibration

Risk estimation: Partition individuals into quantiles of predicted risk, and
compare empirical risk to predicted.

ARR estimation: Partition individuals into quantiles of predicted ARR,
and compare empirical risk reduction to predicted.

Machine Learning Conventional
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Figure 2: We compare predicted against observed absolute risk reduction at
quintiles of predicted absolute risk reduction. Kaplan-Meier estimates are used
to account for censoring.
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Results




Predicted absolute risk reductions
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Figure 3: Distributions of predicted absolute risk reduction show greater
heterogeneity in machine learning predictions compared to a conventional
method.
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Table 2. Discrimination and Calibration Metrics for Risk Reduction
Predictions (95% Cls)

Machine Learning Conventional

Discrimination

Apparent C-for-benefit
(higher is better)

0.60 (0.58 t0 0.63) 0.54 (0.52 to 0.56)

C-for-benefit optimism

0.00 0.03

Corrected C-for-benefit

0.60 (0.58 t0 0.63) 0.51(0.49 t0 0.53)

value RMST, d

Apparent decision 1068.71 1065.47

value RMST, d (higher (1065.42 to 1072.08) | (1061.04 to 1069.35)
is better)

Decision value RMST 0.00 2.61
optimism, d

Corrected decision 1068.71 1062.86

(1065.42 to 1072.08) | (1058.43 to 1066.74)

Calibration

Slope (ideally 1)

1.06 (0.74 to 1.32) 0.73(0.30t0 1.14)

Intercept (ideally 0)

-0.00 (-0.01 t0 0.00) | 0.00(-0.01 to 0.01)

Baseline policy of intensive treatment for SPRINT and standard treatment for
ACCORD vyields 3-year decision RMST of 1061.24 days (95% Cl: 1057.37 - 1064.10).




Clinical relevance

Benefit
Machine Learning ——t 0.0356 [0.0292 0.0420], P < 0.01, N = 7258
Conventional ! ——t 0.0225 [0.0175 0.0269], P < 0.01, N = 8197
i
i
!
No benefit !
Machine Learning et -0.0313 [-0.0474 -0.0161], P < 0.01, N = 3160
Conventional —,———— -0.0107 [-0.0270 0.0083], P = 0.39, N = 2221
1
-0.05 0.00 0.05 0.10 0.15
Average Risk Reduction

Figure 4: Bootstrapped observed risk reduction when partitioning individuals

into buckets of treatment (ARR > 0) and control (ARR < 0). ML produces
more a discriminative decision boundary.
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Clinical relevance

Table 1. Summary Statistics of Participants in the Combined Dataset of the SPRINT and ACCORD BP Trials, Partitioned into Predicted
Subgroups of Benefit or No Benefit as Determined by Machine Learning (Left) and Conventional (Right) Methods

Mean [SD] using Machine Learning Mean [SD] using Conventional
Covariates Benefit (N=9763) | No benefit (N=3841) | Benefit (N=11029) | No benefit (N=2575)
Age,y 66.67 (9.13) 65.34 (8.07) 67.51(8.85) 61.08 (6.79)
Female, fraction 0.39 (0.49) 0.43 (0.50) 0.34(0.47) 0.66 (0.47)
Black, fraction 0.30(0.46) 0.26 (0.44) 0.29 (0.45) 0.28 (0.45)
Hispanic, fraction 0.09 (0.29) 0.10(0.30) 0.06 (0.23) 0.26 (0.44)
Systolic blood pressure, mmHg 141.20 (16.06) 135.67 (13.75) 140.66 (15.61) 135.25(15.01)
Diastolic blood pressure, mmHg 78.93(11.23) 73.58(11.16) 78.15(11.62) 74.30(10.19)
No. of blood pressure treatment classes 1.78 (1.06) 1.81(1.05) 1.80 (1.06) 1.76 (1.02)
Current smoker, fraction 0.10(0.30) 0.07 (0.26) 0.10(0.30) 0.07 (0.26)
Former smoker, fraction 0.44 (0.50) 0.46 (0.50) 0.47 (0.50) 0.35(0.48)
Aspirin, fraction 0.51(0.50) 0.53 (0.50) 0.53 (0.50) 0.47 (0.50)
Statin, fraction 0.45 (0.50) 0.65 (0.48) 0.43 (0.50) 0.82 (0.39)
Serum creatinine, mg/dL 1.01(0.31) 1.04(0.35) 1.03(0.29) 1.00 (0.43)
Total cholesterol, mg/dL 191.70 (41.51) 189.33 (43.54) 192.00 (41.64) 186.86 (43.83)
High-density lipoprotein cholesterol, mg/dL 51.78 (14.29) 48.27 (14.47) 52.39 (14.50) 43.94(11.91)
Triglycerides, mg/dL 133.13(79.20) 180.02 (191.34) 127.95 (73.82) 225.29 (223.00)
Body mass index, kg/m? 30.69 (5.79) 30.58 (5.73) 30.59 (5.88) 30.93 (5.31)
ACCORD BP participants, fraction 0.27 (0.44) 0.50 (0.50) 0.26 (0.44) 0.65 (0.48)

The benefit bucket consists of participants predicted to have ARR >0, and the no-benefit bucket consists of participants predicted to have ARR
<0. ACCORD BP indicates Action to Control Cardiovascular Risk in Diabetes Blood Pressure; ARR, absolute risk reduction; and SPRINT, Systolic Blood
Pressure Intervention Trial.
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Heterogeneity beyond baseline risk
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Figure 5: Predictions with the ML method exhibit more heterogeneity, not

necessarily proportional to baseline risk. Baseline risk predictions made using
the ACC/AHA ASCVD risk calculator.
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We found that the X-learner with RF beat out alternative ML methods,

Sensitivity analysis

as well as a Cox regression baseline.

Method C-for-benefit Decision value RMST Calibration Calibration
(Higher is (Higher is better) Slope (Ideally | Intercept
better) 1) (Ideally 0)
X-learner RF 0.60 [0.58 0.63] | 1068.71 [1065.42 1.06 [0.74, 0.00 [-0.01 0.00]
1072.08] 1.32]
X-learner linear | 0.54[0.52 0.56] | 1065.75 [1061.53 0.70 [0.30 1.12] | 0.00 [-0.01 0.01]
1069.49]
Causal forest 0.55[0.52 0.57] | 1064.46 [1060.67 0.63 [0.26, 1.0] | 0.00 [0.00 0.01]
1068.06]
Survival forest | 0.53 [0.50 0.55] | 1063.59 [1060.51 0.32[0.04 0.57] | 0.01 [0.01 0.02]
1066.71]
Cox regression | 0.52 [0.50 0.55] | 1061.09 [1056.42 1065.42 | 1.18 [0.55 1.81] | 0.00 [-0.01 0.01]
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