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Abstract

GPS systems and Autonomous Vehicles (AVs) will likely open the way
to forms of traffic coordination, or centralization. We analyze the welfare
effects of moving from an environment with atomistic drivers to one in which
few companies will manage the traffic. Differently than what happens with
atomistic drivers, such companies or organizations will have an incentive to
consider the congestion externality imposed by their vehicles on the other
vehicles they dispatch. We analyze both a setting with no road taxes, to
reflect their limited application and the popular opposition to them, as
well as a setting with road taxes. We find that, without road taxes, the
emergence of a small company supplying a small fraction of the travelers
(while the others remain atomistic) increases (decreases) welfare if and only
if the congestion problem was (was not) sufficiently severe in the first place
place. With road taxes, we find that, while congestion charges are optimal
when all travelers are atomistic, the structure of the taxes differs markedly
with a company that supplies a mass of customers. Restoring first best,
in this case, may require subsidizing the company – something likely to be
politically very unappealing.
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1 Introduction

Technological advancement is rapidly changing the mobility industry. One of the
most prominent innovation is the development of Autonomous Vehicles (AVs),
that is, vehicles driven by a software that does not require human intervention.
AVs open a host of relevant technological, legal and moral issues (Awad et al.
2018). But significant, and as of now underappreciated, impacts will come from
the changes in the organization of the mobility market that they will entail, in
particular by fostering a higher level of centralization. Centralization of transport
decisions is crucial in the management of congestion, which has a negative effect of
the mobility industry. The yearly congestion cost has been estimated to amount
to more than one hundred billion dollars in the US, and to be steadily increasing
over time (Schrank, Lomax and Eisele, 2011).

Congestion in the mobility industry not only derives from transport infrastruc-
tures being inadequate relative to demand, but is also the result of a standard
externality. Indeed, in the current decentralized setting, drivers are atomistic, and
they do not factor in their decisions the external effect in terms of congestion they
impose on fellow travelers. Incentives will dramatically change with the diffusion
of AVs. The increased benefits from car sharing will likely reduce consumers’ in-
vestment into private cars (Fagnant and Kockelman, 2015), thus leading to the
emergence of companies that will provide travel services. These companies will
have an incentive to consider, in a fleet logic, the congestion cost imposed by their
AVs on the other AVs they dispatch, thereby internalizing (at least in part) the
externality. At the same, their presence will generate other distortions. This paper
analyzes the welfare effects of such transition from the current travel market struc-
ture based on atomistic decisions to centralized traffic. We address the following
two questions: how will the diffusion of AVs affect social welfare, in the different
stages of the transition process? What are the optimal tax schemes to correct the
distortions in each of them?

We consider a framework with travelers using AVs to travel over a road network,
segmented into two separate parallel lanes. Both lanes are congested. In our
framework, agents are assumed to be heterogenous as to the utility they derive
from the trip and to the disutility they derive from the congestion. In particular,
we assume that the larger is the utility from the trip, the larger is the cost of
congestion. This is consistent with evidence pointing to a positive relation between
wage and value of time (see, for instance, Small, 2012). We first show that, in the
welfare-maximizing first best benchmark, the two lanes have different levels of
congestion, reflecting the heterogeneity in travelers’ value of time. Furthermore, a
commuter in the first best travels as long as her benefit from travelling exceeds the
increase in aggregate congestion costs she imposes on fellow commuters. Finally,
Thus, if the congestion cost is sufficiently large, efficiency requires to prevent some
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low-value commuters from traveling.
We then study how the transition from a fully decentralized economy populated

only by atomistic travelers to a centralized economy with one (or more) companies
managing traffic affects welfare. We analyze the two polar cases of atomistic
travelers only and of an individual company supplying the entire market, and we
also consider the transition period, where some atomistic travelers coexist with
others that are dispatched by a company. We run this analysis in two contexts,
with and without road taxes.

Consider first the case of no road taxes. While economists advocate road pricing
and congestion taxes, they are rarely implemented in practice, likely for political
economy reasons (Oberholzer-Gee and Weck-Hannemannn, 2002). In this case, we
find that, at the beginning of the transition period, the emergence of a supplier
that manages the vehicles with a fleet perspective, by internalizing the congestion
externality, may reduce the aggregate amount of vehicles on the road. Whether
this is desirable or not from the welfare standpoint depends on the severity of the
congestion in the first place. If congestion is sufficiently severe that the social plan-
ner would efficiently exclude some low-value agents from traveling, the quantity
reduction operated by the company may be efficient. If, to the contrary, congestion
is not so severe in the first place, and the planner would dispatch all the travelers,
the monopolist’s screening is welfare-reducing. When the transition is complete,
and all travelers are managed by the a monopolistic supplier, the congestion ex-
ternality is fully internalized. However, two other distortions typical of monopoly
emerge. With respect to the social optimum, there is overdifferentiation in the
congestion levels across the two lanes, as the monopolist uses quality differentia-
tion to extract profit through market segmentation. Also, the amount of vehicles
dispatched differs from social optimum. Interestingly, output distortion can go in
both directions, including an increase in the number of vehicles dispatched. This
finding, at odds with the standard result that a monopolist sets total output below
the socially optimal level, reflects the intuition that a monopolist underprovides
quality relatively to the social optimum (Spence, 1979).

Our results for the monopoly situation bridge two streams of literature. On
the one hand, they parallel those obtained in the analysis of quality levels with
monopolistic carriers (see, for instance, the theory model by Basso, 2008 and
the empirical counterparts estimating the relation between airport concentration
and quality, see Mayer and Sinai, 2003, Rupp, 2009, Daniel and Harback, 2008,
and Molnar, 2013). However, our analysis differs as it includes the dimension of
multiplicity of lanes, crucial for the analysis of the welfare effects of AVs. On the
other hand, Mussa and Rosen (1978) show that a monopolist providing multiple
vertically differentiated goods has an incentive to underprovide quality of the low
quality good with respect to social optimum. Our result that the centralized
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monopolistic company has an incentive to overdifferentiate quality with respect to
the social planner is reminiscent of this.

Second, we analyze the transition when a tax authority can impose taxes
that restore social optimality. In the decentralized situation where all travelers
are atomistic, a traditional congestion charge, i.e., a Pigouvian tax, equal to the
marginal external cost imposed on the other vehicles, restores optimality. This mir-
rors the finding obtained in the bottleneck model (see Vickrey, 1969, and Arnott,
de Palma and Lindsey, 1990)). Conversely, in the centralized situation in which
all travelers are managed by the same company, the tax that restores social op-
timum differs markedly. Indeed, since the company internalizes the externality
already, there is no scope for a congestion charge. This result aligns with those
obtained in the literature on airports when carries have market power (Daniel,
1995, Brueckner, 2002, Pels and Verhoef, 2004, Brueckner 2005, Basso and Zhang,
2007, Silva and Verhoef, 2013). To the contrary, a tax to align the monopolist’s
incentives toward the welfare-maximizing quality choice restores the socially opti-
mal allocation across lanes. In addition, a subsidy on all the cars dispatched by
the monopolist restores the optimal number of vehicles. In particular, when the
congestion problem is particularly severe, we show that the subsidy exceeds the
tax, so that the monopoly receives a net subsidy. This may prove politically chal-
lenging, even more than traditional congestion pricing schemes, and may require
some countermeasures by the tax authority that improve its political feasibility.
An example of them could be the collection of license fees from the company, so
as to balance the tax budget within the AV market. Finally, we show that when,
during the transition, a group of atomistic travelers coexists with a group of travel-
ers managed by a monopolistic supplier, the taxing schemes markedly differ across
the two groups, and the scheme imposed to each of them closely resembles that
charged to that group in isolation.

To the best of our knowledge, there are only two papers that relate market
structure and congestion externality with reference to AVs. Lamotte, De Palma
and Geroliminis (2016) investigate the commuters’ choice between conventional
and autonomous vehicles, while van den Berg and Verhoef (2016) focus on the
impact of AVs on road capacity, studying the deployment of infrastructures re-
sulting from the transition to the AVs framework.1 Finally, our paper is close to
Ostrovsky and Schwarz (2018), who investigate the interplay between autonomous
transportation, carpooling, and road pricing to achieve socially efficient outcomes.
Our analysis is complementary in that we disregard efficient carpooling with AVs,
which is considered to be key to reduce congestion2, but study how congestion

1Two other papers analyze equilibria when drivers are non-atomistic (Silva et al. 2016,
Lindsey, De Palma and Silva, 2019).

2For instance, Jerry Walters, a principal consultant at Fehr & Peers, a US transportation
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can be mitigated under different market structures and different taxation systems
vis-a-vis the socially efficient outcome.

The rest of the paper is organized as follows. Section 2 sketches the model.
Section 3 illustrates the first best. Section 4 characterizes the equilibrium with-
out taxes. Section 5 characterizes the equilibrium with road pricing. Section 6
concludes. The Appendix contains proofs of the results.

2 The model

Travelers’ utility and road network. There is a unit mass of potential trav-
elers (also referred to as agents), each with unit demand for a single trip. Trips
occur along a road network composed of a single road connecting a single origin-
destination pair. The road is divided into two ex-ante identical lanes. The lanes
may, however, differ ex-post because of the possibly different mass of travelers in
each of them. We denote by n the total mass of travelers in one lane and by N the
total mass of travelers in the other lane, with 0 ≤ N ≤ n. We assume that lanes
are always small relative to demand, so that, at any n and N , lanes are congested
and the utility from traveling is negatively affected by the mass of travelers in the
same lane (see below). Given that travelers dislike congestion, we define the lane
with less travelers as the luxury lane, and that with more travelers as the popular
lane.

Travelers are heterogeneous with respect to an individual type θ, which we
assume to be uniformly distributed in the [0, 1] interval. A type-θ agent traveling
in a lane with n ∈ {n,N} travelers derives the following utility from the trip:

B(θ, n) = B (θ)−G (n , θ) . (1)

The first term in (1) is the gross benefit from traveling, B (θ), which depends only
on the individual type θ. We let B (θ) be increasing and weakly concave in θ, so
that B′ (θ) > 0 and B′′ (θ) ≤ 0. The second term in (1) denotes the disutility from
congestion. We assume G(.) to be increasing in the mass of those who travel in

the same lane, so that ∂G(n ,θ)
∂n > 0. We also assume that ∂G(n ,θ)

∂θ
> 0. This implies

that the disutility of congestion is larger the larger the type θ. This is consistent
with evidence that points at the positive relation between wage and value of time
(see, for instance, Small, 2012). We also assume that the marginal disutility of

congestion weakly increases with the type θ, so that ∂2G(n ,θ)
∂n∂θ ≥ 0. Accordingly, θ

consultancy, argues. ”The key distinction is the number of people per vehicle. Without pretty
radically increasing the number of people per vehicle, autonomous systems will increase to-
tal miles traveled.” (source: https://www.nytimes.com/2018/10/27/technology/driverless-cars-
congestion.html).
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represents both a parameter of horizontal differentiation in agents’ value of travel,
and a parameter of disutility from congestion.

We make the following assumption on the travelers utility function:

Assumption 1. i) B(0, n) = B (0) ≥ 0;

ii) for any θ ∈ [0, 1], ∂B(θ,n)
∂θ

> 0 for any n .

Assumption 1.i) states that a type-0 agent’s utility from traveling is non-
negative. Assumption 1.ii) instead makes sure that the net utility from traveling
is increasing in the type θ, which, togheter with Assumption 1.i), implies that
all travelers have a non-negative utility. The gross utility from traveling increases
with θ more rapidly than the increase in the disutility from congestion. This makes
sure that the type θ is sufficient for ordering travellers with respect to their net
utility for any possible allocation of agents across the two lanes.

In the remainder of the analysis, we assume that the disutility of congestion
increases linearly both in n and θ, that is G(n , θ) = θgn , with g > 0. Also, we
sometimes use a linear specification for the gross benefit function B (θ):

Assumption 2. B (θ) = b0 + bθ, with b0 ≥ 0 and b > 0.

In this case, Assumption 1.ii) simply becomes b > g.

Travelers’ choice. A traveler located at θ chooses whether or not to travel, and,
if she travels, in which lane she does it. The decision depends on the net benefit
from traveling B (θ), on the potential fares or taxes she might pay when traveling
in the popular or the luxury lane, denoted as ψ ≥ 0 and Ψ ≥ 0 respectively, and
on the mass of travelers she anticipates to travel in the popular in the luxury lanes,
n and N respectively. For any n and N , a traveler travels in the popular lane if
and only if

B (θ)− θgn− ψ ≥ 0, (2)

B (θ)− θgn− ψ ≥ B (θ)− θgN −Ψ. (3)

Similarly, she travels in the luxury lane if and only if

B (θ)− θgN −Ψ ≥ 0, (4)

B (θ)− θgN −Ψ ≥ B (θ)− θgn− ψ. (5)

3 First best

In this Section, we consider an utilitarian welfare maximizing social planner, who
is perfectly informed and can directly allocate travelers across the two lanes. We
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characterize the first best allocation of travelers. In solving this problem, the
planner chooses who should not travel (if any) and allocate the remaining mass of
travelers to the popular lane (in a mass equal to n) and to the luxury lane (in a
mass equal to N). Formally, the planner’s problem is as follows

max
n,N

W =

∫ 1−N

1−n−N
[B(θ)− θgn] dθ +

∫ 1

1−N
[B(θ)− θgN ] dθ (6)

s.t. 0 ≤ N ≤ n ≤ 1 and n+N ≤ 1.

The utilitarian welfare W is given by the sum of two terms. The first term is the
aggregate utility of the n travelers in the popular lane. The second term is that of
N travelers in the luxury lane.

We denote by nP and NP the solutions to (6). When this problem has interior
solutions, these are implicitly defined by the following system of FOCs:

B(1− nP −NP )− 2gnP

(
1−NP −

3

4
nP

)
= 0; (7)

B(1− nP −NP ) + g

(
n2
P +

3

2
N2
P − 2NP

)
= 0. (8)

From (7) and (8) we can derive the optimal choice of NP as a function of nP .3

This relationship is given by

NP (nP ) =
1

3

(
2 (1 + nP )−

√
7n2

P − 4nP + 4

)
(9)

and is illustrated in Figure 1 by the green increasing line. This graph displays
a crucial feature of the welfare-maximizing allocation of travelers. The green
line always lies below the 45◦ dotted line, meaning that the social planner finds
it optimal to differentiate between the two lanes. The popular lane contains
strictly more travelers than the luxury lane, nP > NP . Travelers with a type
θ ∈ [1− nP −NP , 1−NP ], less concerned about congestion, are allocated in the
popular lane. Travelers with a type θ ∈ [1−NP , 1], more affected by congestion,
are allocated in the luxury lane.

By implicit differentiation of the FOCs in (7) and (8), we find that ∂NP
∂g

< 0

and ∂nP
∂g

< 0. This reflects the intuition that a larger disutility from congestion
g yields a smaller social reward from a larger coverage of the market. To provide
further comparative statics analysis, we rely on the linear gross benefit function
in Assumption 2 and establish that ∂nP

∂b
, ∂NP

∂b
, ∂nP

∂b0
and ∂NP

∂b0
are all positive. A

3Explicit solutions to this system of equations, using Assumption 2, can be obtained but are
very cumbersome and hard to interpret.
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.

Figure 1: The implicit relationships NP (nP ) (green line) and NM (nM) (red line)

larger benefit from traveling, both in its fixed component b0 and in the slope b, is
associated to larger social reward in dispatching more cars.

When the planner finds it optimal to have all types traveling, the market is fully
covered. This situation is illustrated in Figure 1 by the green solid circle located
at the intersection between the green line (9) and the constraint n + N = 1.
The next Proposition shows conditions under which the social planner finds it
optimal to dispatch all travelers, and characterizes the first-best allocation in this
circumstance.

Proposition 1. Let n̄P and N̄P denote the solutions to problem (6) when there is
full coverage, i.e., when n̄P + N̄P = 1. Then,

n̄P =
1 +
√

7

6
∼= 0.6076; (10)

N̄P =
5−
√

7

6
∼= 0.3924.
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These solutions occur if and only if

g ≤ 2B(0)(
1− N̄P

)2 =
72B(0)(
1 +
√

7
)2
∼= 5.4179×B(0). (11)

Condition (11) illustrates that full coverage occurs when the congestion cost
g is not that severe, and the benefit from traveling of the agent with the lowest
θ is sufficiently large relative to it. More precisely, full coverage arises when the
benefit from traveling on the (popular) lane enjoyed by the agent with the lowest
valuation, B(0), is at least as high as the increase in aggregate congestion cost
this traveler imposes on all agents in the popular lane. Notice that the implicit
derivatives of nP and NP with respect to g and b0 = B(0) show that the planner’s
choices smoothly converge toward the full coverage solution as the relation between
b0 and g approaches that defined in condition (11).

4 Equilibrium analysis

We study under what conditions and to what extent deviations from optimality
arise when travelers are atomistic and when they are served by a monopolistic
supplier. We also study the case in which both types of agent coexist in the
market.

We analyze a sequence of market structures that illustrate the expected stages
in the transition towards a fully centralized markets with AVs. We first look at a
market with atomistic travelers only, in line with the current predominant form of
traffic organization in the real world. In this environment, agents do not take into
account the impact of their traveling choices on others. We show that this results
in overcongestion and in distortions in the travelers’ allocation across lanes.

We then turn to coexistence of atomistic travelers with travelers managed by a
monopolistic firm operating a fleet of AVs, to reflect the initial stages of diffusion
of AVs. A monopolist cares about the effects of each vehicle on the utility of other
travelers it dispatches. As a result, the congestion externality is, at least in part,
internalized. We show that the welfare effects of this are, however, not clear-cut,
and we characterize them in the different circumstances.

Finally, we look at the situation in which all travel services are provided by
the monopolist, with no atomistic travelers on the road any longer. A monopolist
fully internalizes the congestion externality, but other distortions, related to market
power and to distorted incentives in terms of quality provision, emerge. We analyze
the welfare implications of them.

This analysis is performed assuming no road taxes. Road pricing schemes, while
often advocated by economists as effective tools to restore efficient outcomes, are
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rarely implemented in practice, possibly because of their limited popular support.
We will allow for road taxes in the next Section dedicated to them.

4.1 Atomistic travelers

In this Subsection, we study a fully decentralized economy populated by atomistic
travelers only. Agents own their own car, and they pay no fee to travel. There is
no organized market for transportation services.

When travelers are atomistic, it is actually immaterial whether they use an AV
or a conventional vehicle. In both cases, agents make their individual decisions on
if and how to travel only based on the utility they derive from the trip, net of the
congestion cost, disregarding the costs they impose on other travelers. The vast
use of navigation systems with significant computational ability, such as Google
Driving Directions or Waze, currently provide travelers with increasingly accurate
information on the traffic situation. This allows agents to optimize their decisions,
given other travelers’ choices. In this information context, it is meaningful to solve
for the perfect-information pure strategy Nash equilibrium, which is characterized
in the following Proposition:

Proposition 2. Let nA and NA be the equilibrium mass of travelers in the two
lanes when all travelers are atomistic. Then,

nA = NA =
1

2
. (12)

The Proposition illustrates that all atomistic travelers always choose to travel
and they split equally across the two lanes, which feature the same level of con-
gestion. Assumption 1.i) ensures that everyone travels. To get the intuition for
the equal level of congestion across lanes, suppose by contradiction that the two
lanes feature a different mass of travelers, so that, for instance, nA > NA. Then,
any traveler, irrespective of her type θ, would prefer to travel in the less congested
lane because she enjoys higher utility.

Relative to the social planner case, atomistic travelers cause two distortions.
First, there is too little differentiation across lanes. Travelers with the higher
disutility of congestion are forced to travel in a lane whose level of congestion
is too high relative to the first best. Second, when the congestion cost is high,
there is excess travel. The first best prescribes that, under the conditions of high
congestion cost (i.e., when g exceeds the right hand side of (11)), low-θ types do
not travel. To the contrary, all atomistic travelers always travel, as they do not
internalize the congestion cost imposed on fellow travelers.
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4.2 Coexistence of atomistic travelers and a monopolistic
supplier

In this Section, we look at the initial stage of diffusion of AVs. Two groups of
travelers are coexisting. The proportion and the identity of agents in each group
is exogenously given.4 A propotion γ of travelers is atomistic. They own their car,
and, similarly to the case of atomistic travelers in isolation analyzed above, they
pay no fee to travel. A proportion 1 − γ of travelers are non atomistic. They do
not own a car and use the travel services of a firm operating as a monopolist. We
refer to them as corporate. Corporate travelers have to pay a lane-specific fee to
the monopolist in exhcange for the service. The monopolist sets uniforms fares
within lanes: a fare f for the popular lane and a fare F for the luxury lane. Fares
are used by the monopolist as the only instrument to direct travelers to the two
lanes.

We assume that the distribution of corporate consumers is independent of the
type θ. At any interval [θ, θ + ε], with θ ∈ [0, 1] and for any ε > 0 sufficiently
small, there is a fraction γ ∈ (0, 1) of atomistic travelers and a fraction 1 − γ of
corporate travelers.5

We look at a sequential game, in which first the monopolist sets the fares f
and F, and then, simultaneously, all agents, corporate and atomistic, make their
travel decisions. All players are perfectly informed, and we solve for the subgame
perfect Nash equilibrium of the game.

Let us now denote with m and M the mass of corporate travelers in the two
lanes and, as before, with n and N the mass of total (corporate plus atomistic)
agents traveling in the popular and luxury lane, respectively. The following Lemma
illustrates the equilibrium allocation of travelers across the two lanes resulting from
the last stage of the game.

Lemma 1. Assume coexistence of atomistic and corporate agents. Then, for any
pair of fares f and F , and for any m and M satisfying 0 ≤ M ≤ m ≤ 1− γ and
m+M + γ ≤ 1, the mass of travelers in the two lanes is as follows:

n = m
N = M + γ

}
if γ < m−M (13)

and

n = N =
m+M + γ

2
if γ ≥ m−M. (14)

4Agents’ allocation in the two groups depends on long-run decisions, involving, for instance,
the choice to own a car or not, which are unmodeled here.

5Our results would change if we assumed that the distribution of corporate travelers is not
independent of type. For an illustration of the choice between conventional and autonomous
vehicles, see Lamotte, De Palma and Geroliminis (2016).
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This Lemma illustrates that only two situations are possible. When n > N ,
all atomistic travelers travel in the luxury lane. This case, illustrated in (13),
happens when the mass of atomistic travelers is relatively small (i.e. γ < m−M).
All atomistic travelers, given the choices made by the corporate travelers, choose
to travel in the luxury lane. Because of their small mass, even after all atomistic
agents travel in the luxury lane, the congestion level in the luxury lane is still
lower than that in the popular lane. When instead n = N , atomistic travelers
split themselves across the two lanes to equalize the total mass of travelers in each.
This case, as given in (14), refers to a situation in which the mass of atomistic
travelers is relatively large (i.e. γ ≥ m −M). Given corporate travelers’ choices,
if all atomistic travelers chose the luxury lane, its congestion level would exceed
that of the popular lane. This clearly cannot be an equilibrium since any atomistic
traveler in the luxury lane would benefit from switching to the popular lane, now
less congested. Hence, travelers split between the two lanes so as to equalize the
level of congestion across them.

We now analyze in details the case of a large fraction of travelers being atomistic
(a sufficient condition for this is γ > 1

2
), in which the mass of total (atomistic and

corporate) travelers is identical in both lanes, as in (14).6

When the mass of atomistic travelers is large enough, equal congestions levels
across lanes require equal fares in the two lanes, so that f = F . Hence, for all
corporate travelers, the two incentive compatibility constraints in (3) and (5) are
always trivially satisfied, and the individual rationality constraints (2) and (4)
become identical and equal to

B(θ)− θgm+M + γ

2
− f ≥ 0. (15)

Since the monopolist charges the same fare to all corporate travelers, its profit
is affected by their total mass only, and not by the way they split across lanes.
Hence, denoting this total mass byM≡ m+M , and exploiting the fact that B(.)
increases with θ, the monopolist problem can then be written as

max
f

fM (16)

s.t. B(θMA)− θMAg
M+ γ

2
− f ≥ 0

M≤ 1− γ

where θMA is the type of the marginal corporate traveler (where the subscript MA
is a mnemonic for Monopoly & Atomistic). At the optimum, the IR constraint

6In this case, indeed, the mass of corporate travelers is less than 1
2 and so is the upper bound

on m. This means that inequality γ ≥ m−M is always strictly satisfied.
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will always hold as equality for the marginal corporate traveler. Since corporate
travelers are only a fraction 1−γ of the market and they are uniformly distributed
along the unit line, the type θMA of the marginal travelers is equal to θMA = 1− M

1−γ .
This allows us to rewrite the monopolist problem as

max
M

(
B

(
1− M

1− γ

)
−
(

1− M
1− γ

)
g
M+ γ

2

)
M (17)

s.t. M≤ 1− γ

We denote by MMA the solution to (17). When it is interior, this solution is
implicitly defined by the following FOC:

1

2(1− γ)
×

(
3gMMA

2 − 2gMMA(1− 2γ)− 2B′
(

1− MMA

1− γ

)
MMA+ (18)

[
2B

(
1− MMA

1− γ

)
− gγ

]
(1− γ)

)
= 0.

In the special case of a linear benefit function, as in Assumption 2, we solve
for the optimal total mass of corporate travelers:

MMA =
g(1− 2γ) + 2b−

√
g2γ2 + (g2 − 6gb0)(1− γ)− 2gbγ − 2gb+ 4b2

3g
(19)

Next, we establish conditions under which the market is fully covered, that is
MMA + γ = 1.

Proposition 3. When corporate travelers coexist with a large mass of atomistic
travelers, full coverage (e.g. MMA + γ = 1) occurs whenever

g ≥ 2× (B′ (0)−B (0)) . (20)

Condition (20) shows a stark contrast with the full coverage conditions in first
best in (11). The monopolist dispatches all vehicles when the congestion cost g is
sufficiently high. To get the intuition for this possibly surprising result, consider
that, as g gets larger, the aggregate demand curve turns more rigid, as the higher
willingness to pay of higher θ types is increasingly compensated by their higher
congestion cost.7 As a result, the monopolist increases market coverage. The
other determinant of the demand curve faced by the monopolist is, perhaps more
intuitively, B′. The monopolist’s full coverage condition depends then also on
B′ (0), with the same logic as above. This is also different than the planner, who
considers, instead, B (0) only.

7This happens until g hits its upper bound B′ (θ), determined by our Assumption 1.
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Welfare analysis. The emergence of a supplier that manages the vehicles
with a fleet perspective may have an impact on congestion, and, as a result, on
welfare. This is because, by internalizing the congestion externality, it reduces the
level of congestion. We show in this Section that this may be reflected into an
improvement in welfare only in environments in which congestion is a sufficiently
severe problem, so that the social planner would not cover the entire market, that
is, it would exclude low-θ types. Under such circumstances, a monopolist finds it
optimal to restrict supply, in line with the planner’s choice, as long as the demand
function is sufficiently steep. If, to the contrary, congestion is not such a severe
problem, and the planner would cover the entire market, the monopolist may still
find it optimal to restrict supply, but this would be welfare-reducing. Hence, while
the intuition that the emergence of a share of traffic centralization (weakly) reduces
congestion is valid, the welfare effects of this reduction are ambiguous.

To study the welfare effects of the initial steps of the process of traffic cen-
tralization through a monopoly, we first notice that, in the case of full coverage,
social welfare is identical in the cases of atomistic travelers only and of coexistence
between atomistic and corporate travelers. Everybody travels and the mass of
travelers in the two lanes is identical (fares are just a transfer and do not play any
role in the aggregate welfare evaluation). A welfare effect due to the emergence of
a monopoly then comes up only when the monopoly excludes some low θ types.
To see this effect, we respectively denote as WA and WMA the expressions for total
welfare in the cases of atomistic travelers only and of coexistence of atomistic and
corporate travelers, and write

WA =

∫ 1

0

(
B(θ)− θg1

2

)
dθ;

WMA =(1− γ)

∫ 1

1− M
1−γ

(
B(θ)− θgM+ γ

2

)
dθ+ (21)

+ γ

∫ 1

0

(
B(θ)− θgM+ γ

2

)
dθ.

In the case of atomistic agents only, all agents travel and suffer from the same
level of congestion. Instead, in the case of an emerging monopoly, social welfare
is the sum of welfare of corporate travelers (the first line in (21)) and of atomistic
travelers (the second line in (21)). In both cases, the level of congestion is identical
across all travelers, since each lane features a mass of M+γ

2
travelers. However,

while the entire mass γ of atomistic travelers travels, only a fraction of corporate
travelers do.

Take now the difference between these two expressions WMA−WA and denote
it by ∆W . Then:
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∆W = (1− γ)× (22){∫ 1

1− M
1−γ

(
B(θ)− θgM+ γ

2

)
dθ −

∫ 1

1− M
1−γ

(
B(θ)− θg1

2

)
dθ+

−
∫ 1− M

1−γ

0

(
B(θ)− θg1

2

)
dθ

}
+

+ γ

{∫ 1

0

(
B(θ)− θgM+ γ

2

)
dθ −

∫ 1

0

(
B(θ)− θg1

2

)
dθ

}
.

This expression clearly illustrates the pros and cons of the emergence of a
monopoly that excludes some agents from traveling. The first 3 lines express the
effects on corporate travelers. The second line illustrates the welfare gain for those
still traveling, who are now facing a lower level of congestion, while the third
line illustrate the welfare loss for those who are excluded from the market by the
monopolist. Finally, the last line illustrates the positive effect on the welfare of
atomistic travelers, who all still travel when a monopolist emerges, but who now
face a lower level of congestion. The following Proposition illustrates, in the case
of a linear benefit function as in Assumption 2, the conditions under which the
emergence of a small monopolist fleet improves social welfare.

Proposition 4. Assume Assumption 2 holds. Let M̄ ≡ 2b+g(1−2γ)−
√

4b(b−g)+g2−4g(4b0−g)(1−γ)

2
.

Then

• when g ≥ 2 (b− b0), so the monopolist fully covers the market, then WMA =
WA;

• when g < 2 (b− b0), so the monopolist does not fully cover the market, then:

– when g < 4b0, WMA < WA always holds;

– when g > 4b0, then WMA < WA if MMA < M̄ and WA < WMA

otherwise. In particular, for γ infinitesimally close to 1, WA < WMA if
g > 2b0 + 2

3
b.

When g ≥ 2 (b− b0), the monopolist fully covers the market, so the allocation
is identical to that with atomistic travelers only. When, instead, g < 2 (b− b0), the
monopolist reduces coverage. If the congestion cost is low relative to the benefit
for the marginal type under full coverage (g < 4b0), excluding some agents is
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welfare reducing8, so the monopolist’s screening is inefficient no matter how large
the monopoly is. If, instead, congestion is sufficiently high (g > 4b0), excluding
some low types would be welfare enhancing. In this case, the emergent monopoly
increases welfare provided that it does not exclude too many of them, which is
ensured by the condition on M̄.

The emergence of a monopolist weakly reduces congestion vis-à-vis an envi-
ronment with atomistic users only. However, this reduction has ambigous welfare
effects. When congestion is not such a severe problem to start with, the monop-
olist reduces welfare. When congestion becomes a problem, the monopolist may
improve welfare, provided that its incentives to restrict coverage are not too large
relative to the welfare-maximizing level.

4.3 Monopoly

In this Section, we investigate the case in which only corporate travelers exist.
In setting the fares, the monopolist faces the problem of giving travelers the ap-
propriate incentive to choose whether or not to travel and which lane to choose.
Recalling that n and N denotes, as usual, the total mass of travelers in the popular
and luxury lane, respectively, the monopolist problem is

max
f,F

fn+ FN (23)

s.t. B (θ′M)− θ′Mgn− f ≥ 0, (24)

B (θ′′M)− θ′′MgN − F ≥ B (θ′′M)− θ′′Mgn− f. (25)

where θ′M and θ′′M are the marginal travelers in the popular and luxury lane, re-
spectively. Eqn. (24) is the individual rationality constraint for the marginal agent
traveling in the popular lane, while equation (25) is the incentive compatibility con-
straint of the marginal agent traveling in the luxury lane. Because of Assumption
1, (25) implies that the individual rationality constraint for the marginal traveler
in the luxury lane holds too. As to the incentive compatibility constraint for the
marginal traveler in the popular lane, it holds whenever (24) holds as an equal-
ity. As it is standard, this constraint holds as an equality at the solution of the
monopolist’s problem. Also, (25) holds as an equality, which has to be true as
long as there is a strictly positive amount of travelers in each lane. Using the two
constraints (24) and (25) and the fact that θ′M = (1− n−N) and θ′′M = (1−N),

8Note that we cannot use the social planner’s full coverage conditions as our reference. When
atomistic and corporate travelers coexist, the monopolist cannot differentiate congestion across
lanes. As a result of this distortion, for any total mass of travelers in the two lanes, welfare is
different (and lower) than with the social planner, where the two lanes have different levels of
congestion.
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fares are as follows

f =B (θ′M)− θ′Mgn = B (1− n−N)− [1− n−N ] gn, (26)

F = f − g (θ′′M) (1− 2θ′′M + θ′M) = f + g (1−N) (n−N) . (27)

While the popular fare, f , is set to make the marginal traveler just willing to
travel, the luxury fare, F , clearly illustrates the trade-off the monopolist faces in
choosing the optimal degree of differentiation in the number of travelers in the
two lanes. On the one hand, a large difference in the mass of travelers across
the two lanes entails a larger extra-fee paid by the travelers in the luxury lane,
hence a higher mark-up in the luxury lane. On the other hand, a large quality
differentiation across the two lanes implies that the luxury lane, which yields the
higher mark-up, is small. At the optimum, the monopolist strikes the balance
between the two forces, by solving:

max
n,N

(B (1−N − n)− (1−N − n) gn)n+ (28)

(B (1−N − n)− (1−N − n) gn+ g (1−N) (n−N))N

s.t. 0 ≤ N ≤ n ≤ 1 and n+N ≤ 1

At an interior solution, the solutions to problem (28), denoted by nM and NM ,
are implicitly defined by the following set of FOCs

B (1− nM −NM)−B′ (1− nM −NM) (nM +NM) +

− gnM (2− 4NM − 3nM) = 0 (29)

B (1− nM −NM)−B′ (1− nM −NM) (nM +NM) +

+ g
(
3N2

M + 2n2
M − 2NM

)
= 0 (30)

The optimal choice of NM as a function of nM , obtained by equating the equations
(29) and (30) and solving it w.r.to NM is given by

NM(nM) =
1

3

(
1 + 2nM −

√
7n2

M − 2nM + 1

)
, (31)

a relationship illustrated in Figure 1 by the red line.
Before discussing the features of the monopolist’s choices, we characterize the

equilibrium in case of full coverage:

Proposition 5. Let n̄M and N̄M denote the solutions to problem (28) when there
is full coverage. Then,

n̄M =
3 +
√

3

6
∼= 0.7887; (32)

N̄M =
3−
√

3

6
∼= 0.2113.
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These solutions occurs whenever

g ≥ 6 (B′(0)−B(0))

4 +
√

(3)
∼= 1.0467× (B′(0)−B (0)) . (33)

The optimal solutions to the monopolist’s problem in (28) when there is full
coverage is illustrated in Figure 1. This is given by the solid red circle at the
intersection between the implicit relationship between nM and NM in (31) and the
constraint n+N = 1.

Under some conditions, more travelers travel in a monopolistic market relative
to the social optimum. Indeed, whenever 0.8773 × B′ (0) < g < B′ (0) (where
the fact that g < B′ (0) comes from Assumption 1), full coverage occurs under
the monopoly but not under the social planner. This is clearly at odds with
the standard result that a monopolist reduces total output. However, our result
echoes the possibility that a monopolist underprovides quality relatively to the
social optimum (Spence, 1979). Intuitively, in our model, the monopolist’s choices
not only determine the mass of travelers but also the level of congestion and then
quality in each lane. Hence, when B′ (0) is sufficiently low relative to g, the
monopolist has incentives to inefficiently dispatch low-θ travelers, which would be
excluded by a social planner because of their external congestion cost.

We then look at the degree of differentiation across lanes, as compared to
the socially optimal one. While the complexity of the explicit solutions makes it
difficult to establish this comparison when solutions are interior, the result is clear
cut in case of full coverage. When both a monopolist and a social planner choose
to fully cover the market, the monopolist prefers a larger than optimal degree of
quality (i.e. congestion) differentiation across lanes. Too few travelers travel in the
luxury lane and too many travelers travel in the popular lane, as compared to the
social optimum. This is the result of the IC constraint that, as it is clear from
a simple inspection of the incentive compatible fare for the luxury lane in (27),
allows to charge a higher luxury fare in the high quality market the larger the
quality differential across lanes, providing an incentive to overdifferentiate quality
with respect to the social optimum. This intuition squares with the results in
Mussa and Rosen (1978).

A monopoly that manages all the travelers fully internalizes the congestion
externality. At the same time, however, other distortions, related to market power
and to distorted incentives in terms of quality provision, emerge. Such distortions
have an unambigous effect in terms of the level of differentiation of congestion
across lanes: the monopolist overdifferentiates vis-à-vis the social planner. In
moving from atomistic travelers to fully centralized travel, therefore, we transition
from underdifferentiation to overdifferentiation. In the parameter space where the
monopolist also fully covers the market, the only difference between the two market
structures is the level of differentiation across lanes (under atomistic travelers the
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market is always fully covered). In this case, welfare turns out to be larger with
atomistic travelers than with travel managed by a monopolist, and the welfare
dominance of atomistic travel over monopoly increases with the severity of the
congestion cost g.

When, instead, the monopolist does not fully cover the market, the welfare
effects of the transition turns ambigous. In this case, besides overdifferentiating,
the monopolist also has an incentive to restrict the number of vehicles vis-à-vis
atomistic travel. This restriction can be excessive from the welfare standpoint, in
particular when g is small relative to the slope of the benefit function.

5 Equilibrium analysis with taxes

The welfare effects of the transition from atomistic to centralized travel entailed by
AVs are dramatically affected by the possibility to implement a taxation scheme.
An appropriate taxation implements the first best. This Section characterizes the
properties of that taxation scheme. We show that the structure of the optimal
taxes with a centralized market differs sharply from that of a decentralized market
with atomistic travelers. We then discuss the political feasibility of the first-best
restoring tax schemes throughout the transition towards a centralized market. We
focus on per-vehicle unit taxes and we denote with t and T the unit tax levied on
AVs traveling in the popular and luxury lane, respectively.

Our main interest in the transition from a market with atomistic travelers
only to one fully served by a centrally managed fleet of AVs. The market where
atomistic and corporate travelers coexist is just an intermediate stage. In spite of
this, for expositional reasons, we first present the two polar cases of atomistic and
corporate travelers only and then illustrate the analysis of the case in which both
types of travelers are traveling.

5.1 Taxation with atomistic travelers

In an environment with atomistic agents and externalities, it is well known that op-
timality is restored by Pigouvian taxes, which impose on each agent the non inter-
nalized social cost. In this Section, we characterize these charges in our framework,
and we discuss their political feasibility as well as their distributional effects.

The timeline of the game we solve is the following. First, the tax authority
announces a tax scheme. Second, travelers observe it and make their traveling
decisions.

Road charges need to restore differentation in congestion levels across lanes
at its welfare-maximizing level, and, when full market coverage is not socially
efficient possibly, to reduce total travel. Let tAT and TAT denote the unit taxes
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levied on AVs traveling in the popular and luxury lane, respectively, that restore
social optimum. These are described in the following:

Proposition 6. Assume all travelers are atomistic. The pairs of taxes that repli-
cate the social optimum are as follows{

tAT ≤ B (0)

TAT = tAT + g 5−
√

7
18

if g ≤ 72B(0)(
1 +
√

7
)2
∼= 5.4179×B(0);

(34){
tAT = g nP

(
1−NP − nP

2

)
TAT = tAT + g (1−NP ) (nP −NP )

if g ≥ 72B(0)(
1 +
√

7
)2
∼= 5.4179×B(0).

(35)

Taxes increase the relative price of the luxury relative to the popular lane
(TAT > tAT ), thereby shifting some travelers accordingly.

In particular, when B(0) is small, misallocation of travelers across lanes is
the only distortion to be solved, since the social planner as well covers the entire
market. Hence, the optimal pair of taxes - as in (34) - should not restrict market
coverage. A multiplicity of low enough tAT , including tAT = 0, delivers this.
On the other hand, optimal differentiation across lanes is obtained through an
appropriate difference between TAT − tAT , which ensures that the location of the
traveler indifferent across the two lanes mimics that of the social planner. Notice
that the indeterminacy of tAT provides a flexible set of alternatives to the tax
authority, ranging from solutions that minimize tax burden (when only those who
travel in the luxury lanes are taxed), to others associated to a larger tax burden,
paid by travelers in both lanes.

When instead B (0) is large, a social planner would screen out of the market
agents with a low value for the travel, so both the total number of travelers and
their allocation across lanes have to be corrected. The popular tax in (35) is then
uniquely determined and ensures that the market coverage replicates the first best.
The luxury tax still induces an optimal degree of differentiation across lanes.

Taxes as in (34) and (35) are congestion charges, which represent the external
cost imposed by the marginal travelers on fellow riders through their traveling
decisions. They align the incentives of the marginal travelers to social optimality.

The distributional consequences, hence the political feasibility, of such conges-
tion charges depend on how the revenues from them is used (Small, 1992). Since
congestion charges are welfare-improving, an appropriate redistribution scheme
that fully compensates losers could be Pareto-improving. However, probably as a
result of imperfect or unclear compensations, charges are usually not liked by cit-
izens, and therefore rarely implemented (Oberholzer-Gee and Weck-Hannemann,
2002). Without compensation, low θ’s stand to lose from the charge. If the market
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remains fully covered after the charge is implemented, all the θ′s then traveling
in the popular lane face more congestion, and the resulting lower utility. If the
charge excludes the lower portion of the θs, those excluded are worse-off as a result
of the uncompensated charge.

5.2 Taxation in pure monopoly

We now look at the welfare maximizing taxation scheme to be imposed to a com-
pany that manages the entire AVs fleet. We show that it is remarkably different
than the tax to be applied to atomistic travelers. Indeed, a monopolist perfectly
internalizes congestion externality, so congestion charges are not appropriate. Al-
ternative distortions, typical of a monopolist choosing quality levels, emerge. We
show that the first best - restoring scheme turns out to be challenging, from a
political economy perspective, when congestion is particularly severe (g is suffi-
ciently high), so that efficiency requires restricting the total number of vehicles.
In this case, the scheme actually involves a net transfer in favor of the company.
To improve its acceptability, a policymaker could collect a license fee from the
company to balance its budget within the AV market.

In our setting, the monopolist generates two distortions with respect to the
social planner. First, it overdifferentiates traffic across the two lanes compared to
the welfare optimal level, in order to better segment the market, à la Mussa and
Rosen (1979). Second, it modifies the overall number of vehicles traveling.

The timeline of the game we solve is the following. First, the tax authority
announces a tax scheme. Second, the monopolist observes it and sets the fees F
and f . Third, travelers observe the fees and make their traveling decisions.

We consider a per-vehicle tax/subsidy, potentially differing by lane, imposed
on the monopolist.9 The maximization problem the monopolist faces is:

max
f,F

(f − t (n,N))n+ (F − T (n,N))N (36)

s.t. (24)− (25)

where (24) and (25) are the same individual rationality and incentive compatibility
constraints faced by the monopolist in the absence of taxes and already discussed
in Section 4.3. Solving these two constraints w.r.to the monopolist’s fares as in
(26) and (27) and plugging them into the monopolist’s problem in (36) allows to

9Imposing the tax on the monopolist or on the travelers produces identical effects.
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rewrite it as follows

max
n,N

(B (1−N − n)− (1−N − n) gn− t (n,N))n+ (37)

(B (1−N − n)− (1−N − n) gn+ g (1−N) (n−N)− T (n,N))N

s.t. 0 ≤ N ≤ n ≤ 1 and n+N ≤ 1.

Let the solutions to this problem be denoted by nMT and NMT . When solutions
are interior, these are implicitly defined by the following set of FOCs

B (1− nMT −NMT )−B′ (1− nMT −NMT ) (nMT +NMT ) + (38)

− gnMT (2− 4NMT − 3nMT )− t (nMT , NMT ) +

− ∂t (nMT , NMT )

∂nMT

nMT −
∂T (nMT , NMT )

∂nMT

NMT = 0

B (1− nMT −NMT )−B′ (1− nMT −NMT ) (nMT +NMT ) + (39)

+ g
(
3N2

MT + 2n2
MT − 2NMT

)
− T (nMT , NMT ) +

− ∂T (nMT , NMT )

∂NMT

NMT −
∂t (nMT , NMT )

∂NMT

nMT = 0

Let tMT and TMT denote the per-vehicle tax/subsidy in the popular and luxury
lane respectively that restore the social optimum. We establish the following result:

Proposition 7. Let

sMT ≡



0 if g ≤ 36 (B(0)−B′(0))

(1+
√

7)
2

∼= 2.7085× (B(0)−B′(0)) ;

B′ (0)−B (0) + g 4+
√

7
18

if 36 (B(0)−B′(0))

(1+
√

7)
2 ≤ g ≤ 72B(0)

(1+
√

7)
2 ;

B′(1− nP −NP )(nP +NP )+

+g
(
2NP − n2

P − 3
2
N2
P

)
if g ≥ 72B(0)

(1+
√

7)
2
∼= 5.4179×B(0).

(40)
The social optimum is restored by a system of per-vehicle taxes of the following
form

tMT = g n− sMT ; (41)

TMT = g N − sMT .

The Proposition illustrates that social optimality is restored by imposing on the
monopolist a system of per-vehicle taxes/subsidies based on the mass of travelers,
differentiated by lane. tMT and TMT consist of a tax component, which is larger
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the larger the mass of travelers in that lane, and a subsidy component, exogenously
determined by the tax authority, based on the socially optimal number of travelers
and equal across the two lanes.

To understand the logic of this result, first notice that, by plugging the per-
vehicle taxes given in (41) into the FOCs in (38) and (39) and then equalizing
them to solve w.r.to NMT , one obtains

NMT (nMT ) =
1

3

(
2 (1 + nMT )−

√
7n2

MT − 4nMT + 4

)
. (42)

This condition reproduces exactly the equivalent condition (9) for the case of the
social planner. This implies that the tax components of tMT and TMT induce the
monopolist to provide the same differentiation across lanes as the social planner.
Indeed, (42) results only from the tax components of tMT and TMT , while it is
unaffected by the subsidy component. The tax components of the tax provide an
incentive to shift passengers from the popular to the luxury lane, as long as n > N ,
thereby softening the monopolist’s incentive to overcrowd the popular lane.

The taxes restoring the welfare-maximizing allocation across lanes differs dra-
matically vis-à-vis the case of a market with atomistic travelers. Since the mo-
nopolist perfectly internalizes the congestion externality, the optimal taxes are not
congestion charges. They instead align the monopolist’s incentives to set the qual-
ity level of the two lanes to welfare optimality. The logic of this tax is similar, for
instance, to that obtained by Mosca and Lambertini (1999), and by Cremer and
Thisse (1994) in the context of a vertically differentiated oligopoly.

An additional instrument is however needed to eliminate the distortion caused
by the monopolist in screening travelers out to the market in a socially inefficient
manner. Without taxes, as discussed in Section 4.3, the total number of travelers
may be below or above the social optimum, depending on the monopolist’s in-
centives to overprovide or underprovide quality relative to social optimum. After
introducing the tax components of t

MT
and TMT , however, the monopolist always

reduces total travel below the efficient level. To ensure a socially efficient number
of travelers, the monopolist must be granted a subsidy on the total number of cars
traveling, as in (40).

The two components of the taxes serve very different purposes, and also have
remarkably different features. The levels of the tax components only depend on
the monopolist’s choices, being dependent on n and N . In this respect, it is a
very simple tax to set, since it does not require any specific knowledge by the tax
authority, if not the value of g, which represents the magnitude of the effect of
congestion on the travelers’ benefits. On the other hand, the subsidy component
requires a deeper knowledge of the market and a great computational ability by
the tax authority, being based on a perfect knowledge of the the travelers’ benefit
function and of the solution to the first best problem.
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Overall, in equilibrium, the subsidy component may exceed the tax compo-
nent, so that the monopolist receives a net subsidy from the tax authority. This
situation always occurs when congestion is severe enough (g sufficiently high) that
efficiency commands not to fully cover the market. The AVs tax system therefore
requires, under these circumstances, to absorb some funding from general taxa-
tion. Pels and Verhoef (2004) emphasize the political difficulties in implementing
a negative tax scheme on airline companies. The same logic might well apply to
the AVs market. The political feasibility of this tax scheme appears very dubious,
even more so than the congestion charges. Indeed, congestion charges, with an
appropriate redistribution scheme, can in principle improve each agent’s welfare,
while a negative tax would, on aggregate, harm citizens. A potential solution to
improve political feasibility is to associate the scheme to an upfront fixed license
that preserves the budget neutrality.

When, instead, congestion is not so severe a problem, and g is relatively low,
the tax/subsidy scheme involves a net payment by the company, which improves
acceptability.

The tax/subsidy scheme also has distributional consequences across different
types of travelers, since it modifies the fares f and F charged in the popular and
in the luxury lane, respectively.

Under full coverage, f remains unaltered, while travelers in the popular lane
enjoy a lower congestion level. Travelers in the popular lane thus unambigously
benefit from the scheme. F instead decreases, as congestion in the luxury lane
increases, with an unclear net utility effect for those travelers.

Under partial coverage, the mass of travelers increases or decreases depending
on whether the mass of travelers without taxes is above or below social optimum.
When the tax/subsidy is set to decrease the number of travelers (because the social
planner dispatches more vehicles than the monopolist without taxes), the marginal
θ increases, and the congestion level in the popular lane decreases. As a result of
both effects, f unambigously rises. Travelers in the popular lane enjoy a lower
congestion, so the sign of the net change in their utility is unclear. When, instead,
the tax/subsidy is set to increase the amount of vehicles, the effects on f and F
are a priori unclear.

5.3 Taxation with atomistic travelers and monopoly

In this Section, we characterize the set of taxes that restores the social optimum
when a group of decentralized atomistic travelers coexist with a group of corporate
travelers managed by a single company. We show that the taxing schemes markedly
differ across the two groups. The taxing scheme imposed to each group closely
resembles that charged to that group in isolation.
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To find the first-best restoring set of taxes, we use the fact that travelers, atom-
istic and corporate, are exogenously allocated to their groups in fixed proportions,
equal to γ and 1− γ, respectively. In solving for the optimal taxes for each group,
we take the allocation across lanes of the travelers in the other group as given.
A system of optimal taxes is then just composed of a system of taxes on corpo-
rate travelers that restores the social optimum for this group, given the system of
optimal taxes for the atomistic travelers, and viceversa.

The timeline of the game we solve is the following. First, the tax authority
announces a tax scheme T (n,N) and t (n,N), possibile differentiated across groups
of travelers. Second, the monopolist observes it and sets the fees F and f . Third,
corporate and atomistic travelers observe the fees, and simultaneously make their
travel decisions.

Taxes on atomistic travelers. Denote the corporate travelers allocation that
replicates, pro quota, the socially optimal allocation, by mP ≡ (1 − γ)nP and
MP ≡ (1− γ)NP for the popular and luxury lane, respectively. Let the system of
taxes on atomistic travelers that, given the corporate traveler allocation, replicates
the social optimum be denoted as tAMAT and TAMAT for the popular and luxury lane,
respectively. Then,

Proposition 8. Assume the market is populated by atomistic and corporate trav-
elers. Let the corporate travelers be allocated as to replicate, pro quota, the first
best, so that m = mP and M = MP . The pairs of taxes on atomistic travelers
that replicate the social optimum are tAMAT = tAT and TAMAT = TAT as given in
Proposition 6.

The Proposition illustrates that, provided that corporate travelers are allocated
optimally, a congestion tax identical to that derived in the case of atomistic trav-
elers only is able to allocate them in a socially optimal manner.The equivalence
stems from the incentives by atomistic travelers to neglect the external impact
of their decisions. Given that corporate travelers are optimally allocated across
lanes, the equilibrium level of congestion is the same in the two cases of atomistic
only and of co-existence. Hence the tax that aligns the individual utility to wel-
fare maximizing choice for the marginal atomistic agents (the θ type indifferent
between not traveling and traveling in the popular lane, and the θ type indifferent
between traveling in the popular and traveling in the luxury lane) is also the same.

Taxes on corporate travelers. Take now the allocation of atomistic travelers
as given. Denote with a the mass of atomistic travellers allocated in the popular
lane and with A the mass of those in the luxury lane. Denoting, as in Section
4.2, the mass of corporate travelers in the popular and luxury lane by m and M ,
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respectively, the monopolist problem is

max
f,F

(f − t)m+ (F − T )M (43)

s.t. B
(
θ̃′M

)
− θ̃′Mg(a+m)− f ≥ 0, (44)

B
(
θ̃′′M

)
− θ̃′′Mg(A+M)− F ≥ B

(
θ̃′′M

)
− θ̃′′Mg(a+m)− f. (45)

where θ̃′M and θ̃′′M are the marginal corporate travelers in the popular and luxury
lane, respectively. Equation (44) is the individual rationality constraint for the
marginal corporate consumer traveling in the popular lane, while equation (45)
is the incentive compatibility constraint of the marginal consumer traveling in
the luxury lane. Constraints (44) and (45) are the exact analog of the constraints
faced by the monopolist without tax, i.e. (24) and (25), and the discussion provided
there applies. There are however two differences relatively to the other constraints.
First, the congestion cost faced by each traveler depends not only on the the
mass of corporate travelers in the same lane, but also on the mass of atomistic
travelers. Hence, the congestion cost for a type-θ, say, in the popular lane is given
by θg(a+m). Second, the marginal corporate θ is expressed in terms of corporate
consumers only, that is only on the fraction 1 − γ of all travellers. This implies
that θ̃′M = 1− m

1−γ −
M

1−γ and θ̃′′M = 1− M
1−γ .

Using these considerations, fares are as follows

f =B

(
1− m

1− γ
− M

1− γ

)
−
[
1− m

1− γ
− M

1− γ

]
g(a+m), (46)

F = f + g

(
1− M

1− γ

)
(a+m− A−M) . (47)

This allows us to rewrite the monopolist’s problem as follows

max
m,M

{
B

(
1− m

1− γ
− M

1− γ

)
−
[
1− m

1− γ
− M

1− γ

]
g(a+m)− t+

}
m+

(48){
B

(
1− m

1− γ
− M

1− γ

)
−
[
1− m

1− γ
− M

1− γ

]
g(a+m)+[

1− M

1− γ

]
g [a+m− A−M ]− T +

}
M

s.t. 0 ≤M ≤ m ≤ 1 and m+M ≤ 1− a− A

Let the solutions to this problem be denoted by mMAT and MMAT . When solutions
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are interior, these are implicitly defined by the following set of FOCs:g(a+mMAT )

1− γ
−
B′
(

1− mMAT

1−γ −
MMAT

1−γ

)
1− γ

− g
(

1− mMAT

1− γ
− MMAT

1− γ

)×
(49)

(mMAT +MMAT ) +B

(
1− mMAT

1− γ
− MMAT

1− γ

)
− g

(
1− mMAT

1− γ
− MMAT

1− γ

)
×

(a+mMAT )− g(a+ 2mMAT )x+ g

(
1− MMAT

1− γ

)
MMAT + s = 0;

g(a+mMAT )

1− γ
)−

B′
(

1− mMAT

1−γ −
MMAT

1−γ

)
1− γ

 (mMAT +MMAT )+ (50)

− g
[
a+mMAT − A−MMAT

1− γ
+

(
1− MMAT

1− γ

)
+ 1

]
MMAT+

B

(
1− mMAT

1− γ
− MMAT

1− γ

)
− g

(
1− mMAT

1− γ
− MMAT

1− γ

)
(a+mMAT )+

+ g

(
1− MMAT

1− γ

)
(a+mMAT + A+MMAT )− g(A+MMAT ) + s = 0.

Denote the atomistic travelers allocation which replicates, pro quota, the so-
cially optimal allocation, by aP ≡ γnP and AP ≡ γNP for the popular and luxury
lane, respectively. Let the system of taxes on corporate travelers that, given the
atomistic travellers allocation, replicates the social optimum be denoted as tMMAT

and TMMAT for the popular and luxury lane, respectively. Then,

Proposition 9. Assume the market is populated by atomistic and corporate trav-
elers and that atomistic travelers are allocated to replicate, pro quota, the socially
optimal allocation, so that a = aP and A = AP . For any given γ ∈ [0, 1] and for
any socially optimal allocation nP and NP , let:

• xMAT ≡ xMAT (γ, nP , NP ),

• sMAT ≡ sMAT (xMAT ; γ, nP , NP ),

where the explicit forms of these functions are provided in the proof.
The social optimum is restored by a system of per-vehicle taxes on corporate

travelers of the following form

tMMAT = g(mMAT + aP )xMAT − sMAT (xMAT ); (51)

TMMAT = g(MMAT + aP )− sMAT (xMAT ).
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The Proposition illustrates that, provided that atomistic travelers are allocated
optimally, the system of per-vehicle taxes/subsidies that restore the social optimum
for corporate travelers shows some similarities to the case of a monopolist only.
It features a tax component, different across lanes and based on the total mass
of travelers in the same lane, and a subsidy component, exogenously given and
identical across the two lanes.

There is, however, a clear difference between the two cases. The introduction of
a fraction of atomistic travelers, already optimally allocated across lanes, modifies
the monopolist’s incentives in terms of differentiation. As γ grows larger, the
contribution of corporate travelers to congestion in each lane turns smaller, and
the monopolist allocates an increasingly high proportion of corporate travelers
to the luxury lane. When γ is low, this effect is small, and the monopolist still
overidifferentiates across lanes vis-à-vis the social planner. The optimal tax, then,
is geared at shifting some travelers to the luxury lane. It is then lower in the
luxury lane. When γ is high, instead, this effect prevails, and the monopolist
underdifferentiates with respect to the planner. The optimal tax in this case
induces some travelers to shift to the popular lane. It is then lower in the popular
lane. The tax then must depend on γ, so as to restore the correct proportion of
travelers across lanes for different sizes of atomistic travelers. To achieve this, we
weight the tax on the popular lane by xMAT function of γ. As γ increases from
0, xMAT moves down from 1. For high enough values of γ, xMAT is small enough
that the tax on the popular lane turns smaller than the tax on the luxury, thereby
inducing travelers to shift to the popular lane.

6 Conclusions

AVs are expanding very rapidly. For instance, in 2016 General Motors bought
Cruise, an autonomous vehicle start-up, for more than $1bn, and Uber acquired
Otto, a self-driving trucking company, for $680 million. In 2017, Intel agreed to
buy Mobileye, an Israeli car technology firm producing self-driving sensors and
software, in a deal worth more than $15bn.

AVs are triggering a large-scale debate. However, it mostly focuses on techno-
logical, ethical and legal issues (namely, liability). Our paper analyzes the incen-
tives involved and the welfare effects of the transition from a market with atomistic
drivers to a system of centralized traffic, managed by centralized companies.

We first analyze the transition process when there is no road pricing, reflecting
the challenges in implementing this taxation scheme in the real world, due to the
lack of popular support.

In this case, at the beginning of the transition process from decentralized to
centralized traffic, when a small monopolistic supplier emerges, traffic (weakly)
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reduces. The sign of the resulting welfare effect is ambiguous. It tends to be
positive when congestion was severe in the first place, and negative otherwise. In
the transition from decentralized to centralized traffic, we observe a shift from
underdifferentiation to overdifferentiation of the congestion level across lanes. The
monopolist uses differentiation of the congestion levels to extract profit through
market segmentation. Overall, the analysis without taxes emphasizes the tradeoff
between the benefits of monopolistic centralization, in terms of internalization of
congestion externalities, and its costs, in terms of market power exploitation and
quality distortions.

We then analyze first-best restoring taxes. Taxes are remarkably different in
the atomistic and in the centralized monopolistic worlds. They address two very
different types of distortion in the two cases - externality in the atomistic case,
solved by a congestion charge, and market power and distorted quality level in
the monopolistic case, solved by a tax/subsidy. We show that, when the conges-
tion problem is particularly severe, restoring first best in monopoly requires a net
subsidy to the monopolist, which may prove politically challenging. To improve
its acceptability, a policymaker could collect a license fee from the company to
balance its budget within the AV market. We finally show that, when travel-
ers managed by a monopolist coexist with atomistic travelers, the optimal taxing
schemes markedly differ across the two groups. The taxing scheme imposed to
each group closely resembles that charged to that group in isolation.
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Appendix

This Appendix contains the proofs of all Propositions of the paper.

Proof of Proposition 1. Results are obtained with the use of Kuhn-Tucker
technique.

Proof of Proposition 2. First, we prove that nA = NA. By contradiction,
assume that nA > NA: a traveler in the popular lane would find it optimal to
switch to the luxury lane, where the cost of congestion is lower. An identical
argument applies in the case of NA > nA. When, instead, nA = NA = 1

2
, no

agent has an incentive to deviate, either by not traveling (since B (0) ≥ 0), or by

traveling in another lane (since ∂G(n ,θ)
∂n > 0).

Proof of Proposition 3. Results are obtained with the use of Kuhn-Tucker
technique.

Proof of Proposition 4. Let ∆W ≡ WMA −WA. This is a cubic expression in

M whose three roots are M1 ≡ 1 − γ, M2 ≡
2b+g(1−2γ)+

√
4b(b−g)+g2−4g(4b0−g)(1−γ)

2

and M̄ ≡ 2b+g(1−2γ)−
√

4b(b−g)+g2−4g(4b0−g)(1−γ)

2
.

It is easy to establish that M1 <M2 and M̄ <M2. Let ∆M ≡ M1 − M̄.

Then ∆M =
g−2b+

√
4b(b−g)+g2−4g(4b0−g)(1−γ)

2g
. Next, notice that, iff b0 >

1
4
g, we have

that i) ∆M < 0 and ii) ∂∆W
∂M

∣∣
M=1−γ = 1

4
g − b0 < 0.

Hence, two cases may occur:

• if b0 >
1
4
g, then M1 < M̄ <M2 and ∂∆W

∂M

∣∣
M=1−γ < 0. ∆W is positive for

M < 1−γ and, because of the ranking between theMi’s, for any admissible
value of M;

• if b0 < 1
4
g, then M̄ < M1 < M2 and ∂∆W

∂M

∣∣
M=1−γ > 0. ∆W is nega-

tive for any M sufficiently close to 1 − γ and, in particular, for any M ∈[
min{M̄,MMA},M1

]
.

Next, notice that, as γ tends to 1, all Mi’s and MMA tend to 0. Let
LM1 ≡ limγ→1−

∂M1

∂γ
and LMMA

≡ limγ→1−
∂MMA

∂γ
. It is easy to establish

that LM1 < LMMA
iff b0 < −1

3
b+ 1

2
g, which proves our result.

�

Proof of Proposition 5. Results are obtained with the use of Kuhn-Tucker
technique.
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Proof of Proposition 6. When B (0) ≥ g
√

7+4
36

, full coverage occurs both under
the social planner and with atomistic travelers. Since the traveler located at θ = 0
gets utility B (0)− tAT from traveling in the popular lane, because of Assumption
1 .i), a tax equal to tAT means that full coverage occurs as in the social optimum.
Given tAT , TAT as in (34) ensures that the marginal traveler in the luxury lane is
as in the social optimum.

When B (0) ≤ g
√

7+4
36

, full coverage occurs under atomistic travelers only.
Given tAT , TAT as in (35) ensures that the marginal traveler in the luxury lane is
as in the social optimum. �

Proof of Proposition 7. Equalize the FOCs (38) and (39) and substitute for
t = tMT and T = TMT . Then, solve w.r.to N to get (42).

As to the subsidy sMT , first notice that it enters linearly both FOCs (38)
and (39), and then, when exogenously set, does not affect NMT (nMT ) in (42). In
order to find the level of the subsidy that induces the monopolist to choose the
social optimal quantity of travelers, focus first on interior solutions, i.e. no full
coverage by the monopolist and the planner. Equalize the FOC w.r.to n in the
monopolist problem in (37) - given in (38) - to the FOC w.r.to n in the social
planner problem in (6) - given in (7) -, and solve with respect to s. This gives (40)

when g ≤ 72B(0)

(1+
√

7)
2 . An identical result is obtained when using the FOCs from the

monopolist and planner problems w.r.to the mass of luxury travelers.
Focus now on the case of not interior solutions. Applying Kuhn-Tucker con-

ditions, the monopolist subject to a system of tax/subsidy as in (41) fully covers
the market (with a socially optimal degree of differentiation across lanes) when

g ≤ 36 (B(0)−B′(0) + s)(
1 +
√

7
)2 . (52)

Notice that, when s = 0, (52) implies g ≤ 72B(0)

(1+
√

7)
2 . That is, whenever the monop-

olist subject to a system of tax/subsidy as in (41) with s = 0 covers the market,
a social planner would equally do it, but not viceversa.

When s = 0 and (52) holds, a positive subsidy is not needed to restore social
optimality. When a positive subsidy is required for (52) to hold, the smallest
subsidy is obtained by solving (52) w.r.to s when this holds as an equality. This

gives sMT = B′ (0) − B (0) + g 4+
√

7
18

. This is optimal as long as full coverage is

socially optimal, i.e. g ≤ 72B(0)

(1+
√

7)
2 .

Proof of Proposition 8. Assume m = mP ≡ (1 − γ)nP and M = MP ≡
(1− γ)NP . The proof of Proposition 6 applies whenever a = γnP and A = γNP .
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Proof of Proposition 9. First, equalize the two FOCs (49) and (50). Then,
substitute a = γnP and A = γNP and solve w.r.to MMAT , and obtain

MMAT (mMAT ) =
1

3
(1− γ(1−NP + nP )) +

2

3
n− 1

3

[
γ2(NP − nP )2 + (1− γ)2

(53)

(1− γ)(γNP + 2γnP − 2γ + 4mMAT + 2)− 4γmMAT (NP − nP )+

+ (1− γ)(1 + γ(NP − nP )− 6mMATx− 3γnPx− γ − 2mMAT ) + 7m2
MAT

] 1
2

that gives the profit maximizing choice of MMAT as a function of mMAT . Recall
that, at the social optimum, it must be that M

m
= NP

nP
. Solving this equality

w.r.to M and substitute NP = NP (nP ) as in (9), it obtains MMAT (mMAT ) =
NP (nP )
nP

mMAT . Given (9), for this equality to hold, x must be as follows

xMAT ≡
1

9

18nP + γ
(

2(nP + 1)
√

7n2
P − 4nP + 4− 10n2

P − 11nP − 4
)

nP (2− γ)
. (54)

Using (54) in the maximization problem for the monopolist in (48), the implicit
relationship between MMAT and mMAT becomes

MMAT (mMAT ) =
2

3
+

2

3
pL −

1

9
γ

(
8 + 5pL −

√
7p2

L − 4pL + 4

)
+ (55)

− 1

3

[
7p2

L − 4pL + 4− 1

9
γ

(
(48− 20γ)(1− pL)+

+ p2
L(84− 29γ) + 2(2− pL)(3− 2γ)

√
7p2

L − 4pL + 4

)] 1
2

.

As to the subsidy sMAT , first notice that it enters linearly both FOCs (49) and
(50), and then, when exogenously set, does not affect (55).

In order to find the level of the subsidy that induces the monopolist to choose
the social optimal mass of travelers, first plug xMAT from (54) into the expression
for profits of the monopolist in (48).

Next, focus on the case of interiors solutions both for the planner and for the
monopolist. From the monopolist’ problem in (48), take the FOC w.r.to m in (49)
and substitute x = xMAT . Denote the resulting expression as FOCm

MAT (xMAT ).
From the social planner problem in (6), denote the FOC w.r.to n - given in (7) -
as FOCn

P . Equalize these two expressions FOCm
MAT (xMAT ) = FOCn

P and, after
substituting a = γnP , A = γNP , m = (1− γ)nP and M = (1− γ)NP , solve with
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respect to s. This gives sMAT as in the case of g ≥ 72B(0)

(1+
√

7)
2 . An identical result

is obtained when using the FOCs from the monopolist and planner problems with
respect to the mass of luxury travelers.

Focus now on the case of not interior solutions. Applying Kuhn-Tucker con-
ditions, the monopolist subject to a system of tax/subsidy as in (51) fully covers
the market (with a socially optimal degree of differentiation across lanes) when

g ≤ 36 (B(0)−B′(0) + s)(
1 +
√

7
)2 − γ 36((B(0)−B′(0) + s)(7 + 13

√
7)

(1 +
√

7)2(11 + 5
√

7− g(7 + 13
√

7))
. (56)

Notice that, when s = 0, (52) implies g ≤ 72B(0)

(1+
√

7)
2 . That is, whenever the monop-

olist subject to a scheme as in (51) with s = 0 fully covers the market, a social
planner would also do it, but not viceversa.

When s = 0 and (56) holds, a positive subsidy is not needed to restore social
optimality. When a positive subsidy is required for (56) to hold, the smallest
subsidy is obtained by solving (56) w.r.to s when this holds as an equality, which

gives sMAT = B′(0) − B(0) + g 11+5
√

7−γ(7+13
√

7)

18(1+
√

7)
. This is optimal as long as full

coverage is socially optimal, i.e. g ≤ 72B(0)

(1+
√

7)
2 .

Overall, sMAT is as follows:

sMAT ≡



0 if g ≤ g1;

B′(0)−B(0) + g 11+5
√

7−γ(7+13
√

7)

18(1+
√

7)
if g1 ≤ g ≤ 72B(0)

(1+
√

7)
2 ;

B′(1− nP −NP )(nP +NP )+
+g
(
2NP − n2

P − 3
2
N2
P+

−γNP (2−NP )
)

if g ≥ 72B(0)

(1+
√

7)
2 .

(57)

where g1 ≡ 36 (B(0)−B′(0))

(1+
√

7)
2 − γ 36(B(0)−B′(0))(7+13

√
7)

(1+
√

7)2(11+5
√

7−γ(7+13
√

7))
.
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