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Abstract

This paper studies the e�ects of trade on �rm-level innovation in China. Using both eco-

nometrics and a calibrated structural model, we disentangle the mechanisms via which trade

a�ects innovation, focusing on scale e�ects (impact on market size) and competition e�ects

(impact on markups). The structural model also examines heterogeneity of these a�ects across

�rms and studies a new mechanism for competition e�ects: �rms can escape the competition by

innovating into a market segment where competition is less intense. The econometric estimates

and simulations of the calibrated structural model indicate that both scale and competition

e�ects are important for understanding how trade a�ects innovation in China. In particular,

scale e�ects of trade on innovation are positive in the aggregate, whereas competition e�ects

are negative. However, when �rms can innovate to escape the competition, greater competition

induced by lower trade barriers can lead �rms to increase innovation rather than reduce it.

1 Introduction

This paper studies how trade a�ects �rm-level innovation in China through two channels: scale

and competition. On the one hand, an increase in the size of the market available to a �rm can raise

the returns to successful innovation and hence induce greater investment in innovative activities. At

the same time, �rms in a larger market face tougher competition, which may either incentivize or

disincentivize innovation. We conjecture that these market size and competition e�ects are precisely

what drive innovation in China.

To investigate, we study Chinese �rm-level data matched with R&D data, patent data, interna-

tional trade transactions data, and domestic highway data. We use the data to examine whether
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rising rates of innovation by Chinese �rms can be explained by improved access to foreign markets,

and whether China's rising productivity and quality can be explained by rising rates of innovation.

Econometric evidence strongly suggests that increases in foreign market size have positive e�ects

on �rm innovation, while greater competition from other Chinese �rms in export markets reduces

innovation by Chinese �rms in the aggregate.

Motivated by this evidence, we develop a dynamic structural trade model that features both

endogenous competition and innovation. In the model, �rms choose R&D investments to move up a

product grade ladder, where grades di�er endogenously in terms of competitiveness and pro�tability.

The incentives for innovation depend on the size of the market and the levels of competition within

each grade, which in turn depend on the trade environment. We calibrate the key parameters of

the model using the matched Chinese �rm-level data, and simulate counterfactuals to study both

the aggregate e�ects of trade on innovation as well the decomposition of these e�ects into scale

and competition e�ects. Simulations of the calibrated structural model indicate that both scale

and competition e�ects are important for understanding how trade a�ects innovation in China. In

particular, when �rms can innovate to escape the competition, greater competition induced by lower

trade barriers can lead �rms to increase innovation rather than reduce it.

The contributions of this paper to the literature on trade and innovation are thus threefold. First,

it extends the body of work that studies the interaction between market size and �rm-level innovation

to the context of international trade by Chinese �rms. In a domestic setting, Acemoglu and Linn

(2004) �nd large e�ects of potential market size (driven by US demographic changes) on innovation

by pharmaceutical �rms, while Beerli et al. (2018) �nd positive e�ects of domestic market size on

innovation by Chinese �rms across durable goods sectors. In an international trade setting, Lileeva

and Tre�er (2010) �nd positive e�ects of lower US tari�s on innovation by Canadian plants, while

Bustos (2011) �nds positive e�ects of reductions in Brazilian tari�s through the MERCOSUR trade

agreement on innovation by Argentinian �rms. Similarly, Aw et al. (2011) �nd that larger export

markets for Taiwanese electronics �rms leads to greater investments in innovation, while Coelli et

al. (2018) �nd large e�ects of tari� reductions on �rm-level innovation worldwide as measured by

patent data. Our results show that these positive scale e�ects of trade on innovation characterize

innovative behavior by Chinese �rms as well.

Second, we expand on the area of the literature focusing on the interaction between competi-

tion and �rm-level innovation. In particular, we study a model with both endogenous competition

(variable markups) as well as a motive for �rms to innovate in order to move into market segments

with less competition. In this sense, we embed the �escape-the-competition� motive for innovation

emphasized by Aghion et al. (2001, 2005) into a general equilibrium trade model, and show that this

mechanism is important for understanding innovation by Chinese �rms. Our study of both scale and

competition e�ects is similar in spirit to work by Aghion et al. (2017) and Impullitti and Licandro

(2018), although the key economic mechanisms di�er in a meaningful way. In Aghion et al. (2017),

there is no �escape-the-competition� motive for innovation, and greater competition unambiguously

disincentivizes innovation. In Impullitti and Licandro (2018), competition can induce greater inno-

vation amongst oligopolistic �rms due to improvements in static e�ciency, although the extensive

margin of competition (number of rival producers) is not considered.
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By focusing on heterogeneous e�ects of competition across �rms, we also aim to provide some

resolution to the question of whether trade-related competition induces or reduces innovation. As

yet, the empirical evidence is mixed: for instance, Autor et al. (2017) �nd that greater competition

from Chinese imports led US �rms to reduce innovation (as measured by patents), whereas Bloom

et al. (2016) �nd that rising competition from Chinese imports led to an increase in innovative

activities within �rms most a�ected by Chinese import competition. Within the Chinese market,

Bombardini et al. (2018) �nd that increased foreign import competition induced by China's accession

to the WTO encouraged innovation for only the most productive Chinese �rms. These �ndings are

consistent with our model once the combined e�ects of scale and competition across �rms in di�erent

market segments are considered. These results also have important policy implications, as Akcigit

et al. (2017) show how R&D subsidies in response to foreign competition can be welfare-improving

in the long-run, while import tari�s create large dynamic losses.

Finally, we contribute to the literature by studying both scale and competition e�ects in a

general equilibrium setting. In this vein, Atkeson and Burstein (2010) argue that although lower

trade barriers can encourage innovation, the resulting welfare gains are small because of o�setting

general equilibrium e�ects that operate via �rm entry. Building on this work, Atkeson and Burstein

(2018) argue that there is limited scope for innovation subsidies to generate increases in aggregate

productivity and output. However, these theoretical analyses are conducted in an environment with

constant markups, and hence consider only the scale e�ects of trade on innovation. Our work aims

to extend these general equilibrium results by considering economies with endogenous competition

as well.

The outline of the paper is as follows. Section 2 begins by describing the data. Section 3 then

discusses econometric evidence for scale and competition e�ects of trade on innovation. Section 4

then develops the closed economy structural model, while section 5 extends the model to an open

economy. Next, section 6 describes calibration of the model's parameters, and section 7 discusses

the counterfactual exercises that we employ the model to study. Finally, section 8 concludes.

2 Data

We use the 2000�2006 Chinese Manufacturing Enterprises (CME) database, which includes all

state-owned enterprises (SOEs) and large non-SOEs whose annual sales are more than RMB 5 million

(approximately $600,000US). We clean the data following Feenstra et al. (2014). Speci�cally, we

eliminate observations with (a) incomplete or internally inconsistent �nancial variables, (b) fewer

than 8 employees, (c) missing �rm identi�cation, or (d) invalid entry for year.

We merge theses data with export and import data at the HS8 level from the Chinese General

Administration of Customs. We match the CME and customs data following Yu (2015), matching

�rm name or zip code or telephone number. We are able to match 76,946 �rms, which is more than

40% of the �rms and 53% of the export value in the customs data.1 There are two sources of export

data because the CME itself reports the total value of a �rm's exports (not disaggregated by HS8 or

1The 53% is comparable to the match in the Canadian database. The `lost' export value is due to the fact that
many �rms export via trade intermediaries.
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destination). If a �rm is not matched to the customs database but reports zero exports (as opposed

to missing exports) then we treat it as a non-exporter.2 See the online appendix for details of the

CME, the customs data and the matching algorithm.

If the CME �rm is matched to the customs data then we use the customs data. This is 16% of

our sample. If it is not matched then we use CME exports. These exports are sometimes missing

and we set them to zero in cases where the �rm always reports either zero or missing exports and

never positive exports.

Our key variables are exports, quality, markups, and three measures of innovation. We discuss

each of these in turn.

2.1 Innovation data

We use three measures of innovation. The �rst is patents, which we merge in with the CME-

customs matched data. Unmatched �rms are assumed to have no patents. Because a small number

of �rms have thousands of patents, we top code patents at 50; however, our results are not sensitive

to this. The second innovation measure is R&D intensity, which we de�ne as R&D expenditure as a

percentage of �rm sales. Since a few �rms report inexplicably high values, we top code the data at

20%. The third measure is the share of total sales that are generated by new products. These data

are from a new-products question in the CME survey.

We observe that the patent and R&D data are skewed, with very few �rms reporting positive

amounts of one or the other. We therefore also use the principal component of the three measures.

Speci�cally, we calculate the principal component separately by 2-digit CIC industry.

2.2 Markups (and RTFP)

We estimate markups using De Loecker and Warzynski (2012) and so must �rst estimate TFP.

TFP estimation is described in detail in Orr et al. (forthcoming). We start by dropping �rms from

the data based on four criteria that are relevant for productivity analysis. First, �rms must have

complete data on sales, employment, material costs, and capital. Second, they cannot have `holes'

over time: if they appear in years t0 and t1 then they must appear in all years between t0 and t1.

Third, they cannot switch industries or cities over time (city switching is very rare).3 Fourth, we

drop Tobacco (CIC-2 = 16) because it has too few �rms. This leaves us with 772,788 �rm-years and

298,259 �rms in 28 industries.

To prepare the data for estimation, we de�ate each �rm's sales using an industry-level price

de�ator. We de�ate materials input expenditures at the industry level using input price de�ators that

have been �ltered through the Chinese input-output tables.4 We estimate the production function

by CIC-2 industry for Cobb-Douglas and translog, and for value-added and gross-output production

functions. As discussed in Orr et al. (forthcoming), the translog gross-output production function

2There are almost no instances in which a matched �rm has (non-zero) customs exports and zero CME exports.
3Industries are de�ned at the 2-digit Census Industry Classi�cation level (CIC-2).
4We measure labour input using employment and thus do not need a labour de�ator. However, capital is simply

measured in RMB.
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estimates are most sensible as judged by input elasticities, returns to scale, and stability across

speci�cations.5 In particular, we consider �ve di�erent variants of the proxy-variable approach:

1. Case 1 (Vanilla): This speci�cation is exactly as in Ackerberg et al. (2015).

2. Case 2 (Exporting): Same as case 1 except we allow the law of motion for �rm level productivity

to depend on lagged export status. This controls for learning-by-exporting e�ects as in De

Loecker and Warzynski (2012) and De Loecker (2013).

3. Case 3 (Attrition): Same as case 1, except we include the Olley and Pakes (1996) selection

correction terms to correct for attrition bias.

4. Case 4 (Over-identi�cation): Same as case 1, except we include lagged capital and lagged

capital square as extra instruments.

5. Case 5 (Full Model): The case 2-4 modi�cations of case 1 are all introduced simultaneously.

Figure 2.1 reports histograms for the elasticity of output with respect to labour, capital and materials.

Each panel reports �ve histograms, one for each speci�cation listed above and, as is apparent from

the fact that the �ve histograms sit on top of each other, the choice of speci�cation makes little

di�erence. As is standard, the labour and capital output elasticities tend to be close to zero (and

infrequently negative for some �rm-year observations). The returns to scale tend to be strongly

concentrated around 1, which is reassuring. Finally, there is little variation across speci�cations in

the distribution of revenue TFP.

With revenue TFP estimates in hand we estimate markups using the approach in De Loecker

and Warzynski (2012). Since labour shares are notoriously low in the CME (see e.g., Brandt et al.,

2014), we follow Brandt et al. (2017) in basing markups on material inputs. These appear in the

bottom right panel of table 2.1. We only report case 1 and case 5, but the other three cases are

very similar. Note that the log markups are relatively close to 0, with most markups being less than

50%. This is much more sensible than the large markups reported in other research.

2.3 Quality

We will need quality to motivate our model. We note that our method only allows us to calculate

quality for �rms that are matched to the customs data because these are the only �rms for which

we have quantity and price (unit value) data rather than just revenue data. As a result, we use

the quality data to motivate our results, but most of our empirical work will be based on the larger

CME sample.

Our starting point is not the demand system of our theory, but the Berry (1994) method. Given

the richness of our data, we are also able to improve on the implementation proposed by Khandelwal

(2010) and to construct a novel instrument that avoids some of the criticisms of existing instruments

(Ackerberg et al., 2007). Consider a Chinese �rm f that exports an HS8 good h to destination d in

year t. A market is a triplet (h, d, t) and let Ωhdt be the set of �rms selling into the market. In what

5The Cobb-Douglas elasticities (coe�cients on capital, labour and materials) are very similar to those reported
in Brandt et al. (2017). See Orr et al. (forthcoming).
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Figure 2.1: Translog, Gross-Output Production Functions, RTFP and Markups
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6



follows, we will repeatedly see this market triplet. How much consumers in d buy will depend not just

on prices in the market, but on outside options. For outside options, it will be enough here to model

the upper-tier nests. Let H be an upper-tier nest, which in practice is an HS2 or HS4 category. Firm

f 's market share is pfhdtqfhdt/
∑
f ′∈Ωhdt

(pf ′hdtqf ′hdt). This is a core object in demand estimation.

Interestingly, our rich data allow us to model the denominator
∑
f ′∈Ωhdt

(pf ′hdtqf ′hdt) as a �xed

e�ect αhdt. Notice also that Berry's random component of utility will also be subsumed by this

�xed e�ect so that we do not have to estimate this term. Thus, we are left with

ln qfhdt = αhdt + β ln pfhdt + λ∗fhdt (2.1)

where λ∗fhdt is a measure of the quality of what �rm f sells into market (h, d, t).6

Aggregating quality from the �rm-market level (λ∗fhdt) to the �rm level is problematic because

quality is never comparable across goods h. To partially address this, we demean quality using the

average level of quality in market (h, d, t), i.e., we use λ∗fhdt − λ
∗
hdt. We de�ne a �rm's quality in

year t as

λft ≡
∑
(h,d)

ωfhdt

(
λ∗fhdt − λ

∗
hdt

)
(2.2)

where ωfhdt is Chinese �rm f 's exports in year t to market (h, d, t) as a share of its total exports in

year t:

ωfhdt ≡
pfhdtqfhdt∑

(h′,d′) pfh′d′tqfh′d′t

We now turn to instruments. We need a pure supply shock and must avoid demand shocks. One

common assumption is that supply shocks are spatially correlated while demand shocks are not.

This leads to the Hausman-Nevo instrument which uses the prices of �rms in nearby regions as an

instrument for the �rm's price. We do not think this is a good assumption in our context. Our rich

data allow us to take a di�erent approach that has not appeared in the literature. While a �rm may

be a large employer in its industry within a city, the �rm is typically a small employer in its city

overall. Consider a �rm in a 2-digit CME industry in a city and calculate the average wage paid by

�rms in that city who are not in that industry. This is our instrument.

Finally, we follow Khandelwal (2010) in winsorizing price. We do so by �rst demeaning price

within a market (h, d, t), then winsorizing prices above the 95th percentile and below the 5th per-

centile. Finally, we add the market mean back in.

The results appear in table 2.1. In our main results below we will de�ne nests at the HS2 level,

which has almost 100 products. In order to present the results more, clearly, here we �rst present

results at a more aggregate level of HS sections. The table presents estimates of β in equation (2.1).

Consider the �rst row, which pools all �rms exporting chemicals (HS2 codes 28�38). The `Second

Stage' presents the IV estimate of β. `OLS' presents the OLS estimates of β. `First Stage' and

`Reduced Form' are the coe�cients on the instrument when the dependent variable are price and

6We also exploit information about the mode of transportation m, e.g., air or waterborne. This amounts to
treating the market not as an (h, d, t) tuplet but as an (m,h, d, t) tuplet. It makes no di�erence whether we aggregate
over mode, but we think that an HS8 product shipped by air may be quite di�erent than one shipped by sea. At any
rate, this is a minor point empirically.

7



Figure 2.2: Distribution of Quality across Four Speci�cations
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Notes: This �gure is a kernel density for four di�erent quality measures. Quality is at the �rm level
(see equation 2.2) and there are 105,093 �rm-year observations for each density. Two densities are
based on HS2 and two on HS4. Two densities are based on the wage instrument and two are based on
both the wage and extensive-margin instruments.

quantity, respectively. Notice that the IV estimates is always negative and more negative than the

OLS estimate, as expected. The IV estimate is also almost always less than -1 which means that

demand is elastic as required. Notice that there are large numbers of observations, large numbers of

�rms, and large numbers of markets. We can reject endogeneity (`K-P') and the joint hypothesis of

endogeneity and the exclusion restriction (`A-R').

We now turn to the speci�cations that we use to generate our quality measures. We consider four

speci�cations. We de�ne the nest either at HS2 or HS4 and we either have just one instrument or

consider a second instrument. The second instrument is the average number of export destinations

per HS2 in a �rm's city-year, excluding export destinations exported to by �rms in target �rm's own

2-digit CME industry. As in Melitz (2003) and Melitz and Ottaviano (2008), the more destinations

exported to, the more productive is the region or the lower are the exporting �xed costs of the region,

both of which are `supply shocks.' For the case where we have one instrument and HS2 nests, 70

of 85 HS2 products have negative IV price elasticities. At the 5% signi�cance level, 49 are negative

and only 1 is positive.

Figure 2.2 shows the distribution of quality across all four speci�cations. As is apparent, they

are very similar in distributions. Further, in the empirics to come, we get identical results for all

four.
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2.4 Scale and its instrument

There are two ways in which a �rm might experience an increase in the scale of the demand for

its products. The �rst comes from an increase in the domestic or Chinese demand for its products,

the second from foreign demand. Our data record each �rm's total sales and exports so that we

can compute a �rm's domestic sales. However, we do not know this by product. The only product

information for domestic sales is the �rm's 4-digit CME industry code. Since we will always include

�xed e�ects which are 4-digit industry cross time, this measure of domestic scale is subsumed by

the �xed e�ects.7

What is available is foreign demand for a �rm's products and this is our measure of scale.

Speci�cally, we measure scale by Exportsft be a �rm's exports in year t. This is clearly endogenous

and we construct a Bartik instrument as follows. Consider a �rm that �rst exported in year t0. Let

ωfht0 be the share of the �rm's export sales in year t0 that are accounted for by good h. If the �rm

is matched to the customs data then h is an HS8 product. If not, then h is a 4-digit CME industry

code (there are a little more than 400 such codes) and ωfht0 = 1 if the �rm is in industry h and

equals 0 otherwise. Let Mht be world imports of Chinese good h in year t. This is a measure of

the demand shock for h in year t: the larger is Mht, the larger is the potential market for the �rm.

Taking Mht to the �rm level, our instrument for exports (or scale) is:

Scaleft ≡ ln

(
1 +

∑
h

ωfht0Mht

)
(2.3)

2.5 Competition

Most measures of competition are at the industry or industry-year level. Because we include

industry-year �xed e�ects, we cannot use these measures.8 So once again we turn to measures of

competition that can be constructed from trade data.

To motivate our approach consider consider a world geography in which there are countries and,

within China, there are provinces. We treat countries and Chinese provinces as the geographic units

so that Chinese provinces are like countries in the model, meaning, each has its own unique cost

structures. This is illustrated in �gure 2.3. There is a foreign market for some good h in year t. We

are interested in the competition that a target �rm f in province p(f) faces when exporting into this

foreign market. This competition comes from �rms in the same province p(f), from �rms in other

provinces −p(f), and from �rms in other countries. As in our model, the degree of competition comes

from underlying cost di�erences in the various provinces and countries. For �rms in other countries,

the data are not at the �rm level and so are subsumed into the industry-year �xed e�ects.9 For �rms

from the same province, they compete with f but because they also share observed and unobserved

7An alternative approach is to �nd a time- and �rm-varying variable. One such variable is the a count of the
number of kilometres of arterial highway within 20 kilometres of the �rm's address. See Liu et al. (2018). We have
explored these data and found some interesting patterns.

8In the future we may re-visit these other measures using speci�cations without industry-year �xed e�ects.
9This is not quite accurate. We typically have 4-digit industry �xed e�ects, meaning about 400 industries. Using

COMTRADE data we could work at the HS6 level and this will give us variation at the 4-digit industry level. In
early worked we explored this and found reasonable results.
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Figure 2.3: Competition Measure

Foreign Market for Good h in year t 

Other firms  
from Chinese  
province p(f) 

Other firms from  
from other  
countries 

Other firms from  
other Chinese  

Provinces –p(f) 

Firm f   
from Chinese  
province p(f) 

attributes common to all �rms in province p(f), their exports into the foreign market will capture

common shocks and not just competition. For �rms in other provinces −r(f) their exports into the

foreign market will be closer to a pure competition e�ect. To purify this e�ect further, we control

for the wages paid by �rms who are in the same city as f but in a di�erent 2-digit industry.10

Operationally, let X−f,ht be the exports of good h in year t summed over all Chinese �rms who

are not in �rm f 's province. Then:

Competitionft ≡ ln

(
1 +

∑
h

ωfht0X−f,ht

)
(2.4)

where ωfht0 is as before.

3 Econometric Results for Scale and Competition

As before, let f index �rms and note that each �rm is in a 4-digit CME industry i and a city

c. We are interested in the impact of scale and competition on outcomes yft that include quality,

markups, and innovation. We consider regressions of the form:

yft = αf + αit + αct + βScaleft + γCompetitionft + δXft + εft (3.1)

where α's are �xed e�ects and Xft collects time-varying �rm characteristics which, in practice, are a

binary variable for whether the �rm is a state owned enterprise (SOE), a binary variable for whether

the �rm has foreign investors, and the average wage of �rms in the same city c, but not in the

�rm f 's same 2-digit CME industry. The latter controls for cost shocks. Throughout, we cluster

standard errors by �rm so as to allow for serial correlation. We have also experimented with two-way

clustering and our results suggest that this makes no di�erence.

3.1 Quality

We begin with quality even though it is only available for the restricted sample with matched

customs data. Table 3.1 presents estimates of equation (3.1) where the dependent variable is quality.

10Think harder about what other things might drive a wedge between the exports of �rms in other provinces and
the notion of competition.
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In columns 1�3 �rm exports ln(1 +Exportsft) are included as an endogenous variable, in column 4

the competition variable is included as an exogenous variable, and in columns 5�7 both variables are

included with exports being endogenous and competition being exogenous. All speci�cations have

�rm �xed e�ects, city×year �xed e�ects, and industry ×year �xed e�ects where industry is de�ned

at the 4-digit CME level. The number of �xed e�ects appears beneath the observations row. The

�rst stage regression is reported in the bottom panel. Speci�cally, the panel reports the coe�cient

on the instrument, the Kleibergen-Paap F statistic for weak instruments, and the Anderson-Rubin

p value for the joint null of weak instruments and the exclusion restriction. Standard errors appear

in parentheses and are clustered at the �rm level.

Several results stand out. First, when we only include exports (not competition) the instrument

performs well as judged by the �rst stage statistics and the coe�cients on the instrument Scaleft

in both the �rst stage and the reduced forms. The IV results imply that for those �rms induced

to export by rising world demand for their products, exporting causally leads to higher quality.

Satisfyingly, the IV estimate is smaller than the OLS estimate, though not signi�cantly so.11

In column 4 we regress quality on Competitionft and again �nd that more competition from

Chinese �rms in other provinces leads to higher quality.

In columns 5�7 we repeat the exercise of columns 1�3, but this time add in Competitionft.

The reduced form results indicate that both scale and competition matter, though the competition

results are only marginally signi�cant. This weakness is mirrored in the deterioration of the �rst-

stage statistics. This deterioration casts doubt on the validity of the IV results. In subsequent tables,

we will not have this problem because the instrument works well when the sample is expanded beyond

the customs sample to include all �rms.

3.2 Markups and Revenue TFP

Table 3.2 has the exact same structure as the previous table, with only the dependent variable

changing. It is now log markups. The instrument is valid in both IV speci�cations and the reduced

form coe�cients on the instrument come in strongly. We �nd that for those �rms induced to export

by rising world demand for their products, exporting causally leads to higher quality. As expected,

the IV results are much smaller than the OLS results. Competitionft comes in negatively, suggesting

that competition depresses markups, but the results are not statistically strong.

Table 3.3 reports the results when revenue TFP is the dependent variable. Scale-induced expor-

ting is associated with higher revenue TFP and competition with lower relative TFP. (Recall that

what we are doing is estimating di�erential e�ects, not levels, so that the decline in TFP is relative

rather than absolute.) The fact that quality rises and TFP falls suggests that Chinese �rms respon-

ded by focusing on raising quality rather than cutting costs. This is in line with the �ndings of Scott

Orr (citation needed) for the impact of Chinese competition on Indian machinery manufacturers.

11We apologize that, due to time constraints, we are not reporting on coe�cient magnitudes.
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3.3 Innovation

We have three measures of innovation, namely, (1) number of patents, (2) R&D as a share of

sales, and (3) the value of new product sales as a share of sales. We begin by computing the principal

component of these three measures. (This is done separately for each 2-digit CME industry.) The

results of using this principal component appear in table 3.4. The instrument performs well as

judged by test statistics and its high signi�cance in the �rst stages and reduced forms. Also, the

IV results are again smaller than the OLS results, as expected. The coe�cient signs imply that

for those �rms induced to export by rising world demand for their products, exporting causally

leads to higher innovation. Furthermore, competition in foreign markets from Chinese �rms in other

provinces reduces innovation.

Tables 3.5, 3.6 and 3.7 repeat the exercise separately for each of the three underlying components.

These by and large con�rm the insights from using the principal component.

4 Closed Economy Model

Motivated by the econometric results discussed above, we now develop and study a structural

model of trade and innovation. This structural approach will o�er several additional insights. First,

the calibrated model o�ers a quanti�cation of the e�ects of trade on innovation and of how the

levels of these e�ects vary across �rms. Second, the model serves to formally decompose the e�ects

of trade on innovation into the scale and competition channels highlighted by our econometric results.

Finally, it formalizes a theory of how �rms might innovate to escape changes in competition induced

by trade.

4.1 Model environment

4.1.1 Demand

There are two types of goods in the economy: a homogeneous numeraire good and a di�erentiated

good. The di�erentiated good is available in multiple grades indexed by g ∈ {1, · · · , G} with

1 < G < ∞, and each grade of the di�erentiated good is produced by a continuum of �rms of

endogenous measure. There is a measure L of households each endowed with one unit of labor,

which is supplied inelastically. Time is continuous, and each household has preferences given by:

Ūt =

∫ ∞
0

e−βsUt+sds (4.1)

Ut = Q0
t +

G∑
g=1

Qgt (4.2)

Qgt = αg0

∫
Ωg

t

(
sgqgf,t

)
df − 1

2
αg1

∫
Ωg

t

(
sgqgf,t

)2

df − 1

2
αg2

[∫
Ωg

t

(
sgqgf,t

)
df

]2

(4.3)
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Here, Q0
t denotes consumption of the numeraire good, Qgt denotes consumption of a grade g bundle

of the di�erentiated good, qgf,t for f ∈ Ωgt denotes consumption of �rm f 's variety of a grade g good,

and Ωgt denotes the set of �rms producing grade g varieties. Note that preferences are: (i) linear

across time (4.1); (ii) linear across the numeraire and grades of the di�erentiated good (4.2); and (iii)

of the Melitz-Ottaviano (2008) type within a grade of the di�erentiated good (4.3). Furthermore,

note that despite the linearity of preferences in equation (4.2), there is love of variety within each

grade in equation (4.3), and hence no two varieties of the di�erentiated good are perfect substitutes.

The weights {sg}Gg=1 in (4.3) re�ect exogenous quality di�erences across grades, while the pre-

ference parameters {αg0, α
g
1, α

g
2}
G
g=1 are also heterogeneous across grades and can be interpreted as

follows. First, αg0 is a demand shifter capturing the extent to which the household prefers grade g

varieties of the di�erentiated good relative to the homogeneous good or other grades of the di�e-

rentiated product. Second, αg1 indexes the degree of product di�erentiation: as αg1 → 0, all varieties

within the grade become perfect substitutes. Third, αg2 captures the extent of competition e�ects:

as αg2 → 0, utility is additively separable across varieties within the grade, and hence demand for

one variety does not depend on demand for any other variety.

This preference structure implies linear demand functions given by:

q̄gf,t ≡ Ls
gqgf,t =

αg0L

αg1 + αg2N
g
t

+

(
α2N

g
t

α1 + α2N
g
t

)(
L

α1

)
p̄gt −

(
L

α1

)
p̂gf,t (4.4)

where q̄gf,t is aggregate quality-adjusted demand for �rm f 's output, p̂gf,t ≡ pgf,t/s
g is the quality-

adjusted price charged by �rm f , p̄gt ≡ 1
Ng

t

∫
Ωg

t
p̂gf,tdf is the average quality-adjusted price charged by

�rms producing grade g varieties, and Ng
t is the measure of �rms producing grade g varieties. Note

that because of the quasi-linear demand structure (equation (4.2)), the demand for a �rm's output

depends only on the mass of competitors within its own grade as well as the prices charged by these

�rms. In other words, there is competition within grades but not across grades. This allows us to

focus on the e�ects of competition within the �rm's most immediate market, while abstracting from

other sources of competition in order to preserve computational tractability of the model.

4.1.2 Production and pricing

The production structure of the model is as follows. The numeraire good is produced one-for-one

using labor under perfect competition, which implies a unit wage.12 For the di�erentiated sector,

all �rms producing grade g varieties have access to the same production technology, which enables

production of one unit of the good using cg units of labor.

Each �rm f ∈ Ωgt then takes Ng
t and p̄gt as given, and chooses p̂gf,t to maximize pro�ts subject

to the demand function (4.4). Since all �rms within the grade have the same marginal cost, each

�rm chooses the same pro�t-maximizing price, and we henceforth omit the �rm subscript. We also

now omit time subscripts for brevity. The solution to the �rm pro�t-maximization problem implies

that markups (price over marginal cost), sales, and pro�ts for each �rm operating in grade g can be

12We assume that the total labor supply L is large enough such that the numeraire is indeed produced and consumed
in equilibrium.
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expressed as:

µg =
φg + ρg

ρg
(4.5)

yg = Lκgφg (φg + ρg) (4.6)

πg = Lκg (φg)
2

(4.7)

Here, the role of technology (cost per unit of quality demanded) is captured by the composite

parameter:

ρg ≡ cg

αg0s
g
, (4.8)

the role of scale is captured by the composite parameter:

κg ≡ (αg0)
2

αg1
, (4.9)

the strength of competition is captured by the composite parameter:

αg ≡ αg2
αg1
, (4.10)

and φg is an endogenous variable that declines with the mass of �rms operating within the grade:

φg ≡ 1− ρg

2 + αgNg
(4.11)

Note that for these variables, the identi�able parameter set collapses from �ve parameters

{αg0, α
g
1, α

g
2, s

g, cg} to three parameters {ρg, κg, αg}.
Importantly, observe that the measure of active �rms Ng determines the level of competition

within the grade, and as Ng increases, markups, sales, and pro�ts all decline. In equilibrium,

{Ng}Gg=1 is determined endogenously by �rms' innovation decisions, as described below in section

4.1.4. Furthermore, since the household's marginal utility of consuming any given variety is bounded,

there is a maximum price above which the demand speci�ed by (4.4) is equal to zero. We therefore

assume that grade qualities and costs vary in such a way that output and pro�ts are positive for

any �nite Ng.

Assumption 1. For each grade g ∈ {1, · · · , G}, the cost per unit of quality demanded satis�es

ρg < 1.

4.1.3 Innovation

In addition to making production decisions, �rms also engage in innovative activities. We assume

that each �rm has access to the production technology for at most one grade at a time, but can

move up the grade ladder by investing in R&D.13 Speci�cally, a grade g �rm that hires RDg (ag)

13The assumption that �rms produce a single product at a time is without loss of generality if �rms make innovation
decisions at the product level and there are no innovation spillovers across products within a �rm. For issues of
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units of labor for R&D activities advances to grade g + 1 according to a Poisson process with rate

ag. Upon a successful innovation, the �rm adopts the grade g + 1 technology and discards the

grade g technology; there is hence creative destruction within the �rm. The function RDg captures

grade-speci�c innovation costs, and is assumed to satisfy the following regularity properties.

Assumption 2. For each grade g ∈ {1, · · · , G− 1}, the innovation cost function RDg : R+ →
R+ satis�es (i) RDg′ > 0, (ii) RDg′′ > 0, RDg (0) = 0, (iii) lima→0RD

g′ (a) = 0, and (iv)

lima→∞RDg′ (a) =∞.

In what follows, we will study steady-states of the model in which the value of being a grade g

producer, V g, is constant over time. Given the innovation process, the values {V g}G−1
g=1 must then

satisfy the following Bellman equation:

(β + ε)V g = max
ag

{
πg −RDg (ag) + ag

(
V g+1 − V g

)}
(4.12)

where ε is the rate of exogenous �rm exit. Evidently, if V g+1 ≤ V g, a grade g �rm will not choose to

innovate and therefore will optimally choose ag = 0. On the other hand if V g+1 > V g, it is desirable

for the �rm to move up the grade ladder. The optimal innovation decision for the �rm can then be

generally characterized by:

RDg′ (ag) = max
{
V g+1 − V g, 0

}
(4.13)

which admits a unique solution for ag given assumption 2.

The �rst-order condition (4.13) captures the essence of the theory of innovation in this model.

In particular, note that the incentive to innovate depends on the di�erence between pre- and post-

innovation values. The e�ects of scale on innovation can thus heuristically be interpreted as a

proportional change in both V g and V g+1: if the market for the di�erentiated product becomes larger

overall, �rms have greater incentive to innovate. On the other hand, the e�ects of competition may

a�ect V g and V g+1 di�erentially. If a �rm faces more competitors in its current grade (larger Ng),

the value of failing to successfully innovate falls (smaller V g), and hence innovation is incentivized.

Conversely, if competition is tougher in the post-innovation market (larger Ng+1), the value of

successfully innovating falls (smaller V g+1), and hence innovation is disincentivized.

To complete the description of innovation in the model, it remains to specify what occurs at the

boundaries of the grade ladder: how �rms at the frontier grade G innovate, and how �rms enter the

market. First, since the number of grades is assumed to be �nite, we model innovation by �rms at

the frontier by assuming that these �rms innovate to reduce the hazard rate of exit. The value of

operating as a grade G �rm then satis�es:

βV G = max
aG

{
πG −RDG

(
aG
)
− εG

(
aG
)
V G
}

(4.14)

where εG is a function specifying the exit rate at the frontier, and is assumed to satisfy the following

regularity properties.14

tractability, we abstract from the more general case of multiproduct �rms with innovation that spills over across
products.

14In practice, we use a simple functional form εG (a) = 1/a.
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Assumption 3. The frontier exit rate function εG : R+ → R+ satis�es (i) εG
′
< 0, (ii) εG

′′
> 0,

and (iii) lima→0 ε
G′

(a) < 0.

The �rst-order condition for innovation at the frontier is then:

RDG′ (
aG
)

= −εG
′ (
aG
)
V G (4.15)

which admits a unique solution for aG given assumption 3.

Finally, any �rm wishing to enter the market for the di�erentiated good can hire fE units of

labor as an entry cost, following which it obtains the technology for producing a new variety of grade

g = 1. Free entry then requires:

V 1 = fE (4.16)

4.1.4 Mass of �rms in steady-state

To determine the measure of �rms producing each grade of the di�erentiated good, we consider

the implications of a steady-state equilibrium. First, note that at each point in time, a measure NE

of �rms enter and become grade 1 producers, a measureεN1 of grade 1 producers exit the economy,

and a measure a1N1 of grade 1 producers successfully innovate and become grade 2 producers.

Therefore in steady-state, the measure of grade 1 producers must satisfy:

NE =
(
ε+ a1

)
N1 (4.17)

Next, consider the in�ow and out�ow of grade g producers for g ∈ {2, · · ·G− 1}. At each point in

time, a measure ag−1Ng−1 of grade g−1 producers successfully innovate to become grade g producers.

Simultaneously, a measure εNg of grade g producers exit and a measure agNg successfully innovate

to become grade g + 1 producers. Therefore, in steady-state, the masses of �rms must satisfy:

ag−1Ng−1 = (ε+ ag)Ng (4.18)

Finally, at the frontier grade G, a measure aG−1NG−1 of grade G−1 producers successfully innovate

to become grade G producers, while a measure εG
(
aG
)
NG of grade G producers exit. Hence:

aG−1NG−1 = ε
(
aG
)
NG (4.19)

4.1.5 Labor market

With the quasi-linear demand structure, labor market clearing simply requires that the numeraire

good is indeed produced in equilibrium. Speci�cally, the total amount of labor employed by �rms

in the di�erentiated goods sector for production, innovation, and entry costs must be less than the

total labor endowment:

Q̄0 ≡ LQ0 = L−NEfE −
G∑
g=1

Ng [lg +RDg (ag)] > 0 (4.20)
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where production labor hired by each grade g �rm is:

lg = Lκgρgφg (4.21)

4.1.6 Welfare

Household utility at each point in time is given by (4.2). Consumption of the numeraire is given

by (4.20), while consumption of the grade g bundle can be expressed as:

Qg = κgNgφg − 1

2
κgNg (φg)

2 − 1

2
αgκg (Ngφg)

2
(4.22)

Note again from equations (4.20)-(4.22) that of the set of original model parameters {αg0, α
g
1, α

g
2, s

g, cg},
only the composites {ρg, κg, αg} matter for welfare.15

4.2 Equilibrium de�nition and solution

4.2.1 Equilibrium de�nition

A steady-state equilibrium of the model is a mass of entryNE , a sequence of �rm masses {Ng}Gg=1,

a sequence of pro�ts {πg}Gg=1, a sequence of product innovation rates {ag}Gg=1, and a sequence of

�rm values {V g}Gg=1, all of which satisfy the pro�t equation (4.7), Bellman equations (4.12) and

(4.14), R&D optimality conditions (4.13) and (4.15), free-entry condition (4.16), steady-state entry

conditions (4.17)-(4.19), and the labor market condition (4.20).

4.2.2 Solution algorithm

To solve the model, we iterate backwards on the Bellman equation (4.12) according to the

following algorithm, which takes several seconds on a standard personal computer:

1. Guess NG and compute V G and aG from (4.14) and (4.15).

2. For g ∈ {1, · · · , G− 1}, given V g+1, Ng+1, and ag+1, numerically solve (4.12), (4.13), and

(4.18) to obtain V g, Ng, and ag.

3. Compute NE from (4.17).

4. Repeat steps 1-3, adjusting the guess of NG until the free-entry condition (4.16) is satis�ed.

5. Check that the labor market condition (4.20) holds.

5 Open Economy Model

We now extend the model developed above to incorporate multiple (potentially asymmetric)

locations and trade costs. Here,we develop the general case with an arbitrary number of countries,

15While the size of the labor endowment L does not matter independently from the scale composite parameters
{κg}Gg=1 for outcomes within the di�erentiated sector, it does matter for welfare because L determines the size of the
di�erentiated sector relative to the numeraire sector under quasi-linear preferences.
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and then focus on a North-South model in the calibration and counterfactual simulations of the

model.

5.1 Model environment

There are J ≥ 2 locations. These locations are potentially asymmetric in terms of labor endow-

ments {Li}Ji=1, wages {wi}
J
i=1, entry costs

{
fEi
}N
i=1

, production technologies {sgi , c
g
i }
N
i=1, and R&D

costs {RDg
i }
N
i=1. Given the available data, we assume that households in every location have iden-

tical preferences given by (4.1)-(4.3). We also assume that there are iceberg trade costs {τij}Ji,j=1

between locations, where τij ≥ 1 denotes the cost of shipping goods from j to i. Finally, we assume

that the numeraire good is freely traded and produced using 1
wi

units of labor in location i, so

that wi is also the wage in country i.16 As in the closed economy model, we focus on steady-state

equilibria in which the masses of �rms producing each grade are time-invariant.

5.1.1 Demand

Consider a �rm from location j with access to grade g technology. The demand function faced

by this �rm in the location i market takes the same form as (4.4), and is given by:

q̄gij ≡ Lis
g
j q
g
ij =

αg0Li
αg1 + αg2N

g
i

+

(
αg2N

g
i

αg1 + αg2N
g
i

)(
Li
αg1

)
p̄gi −

(
Li
αg1

)
p̂gij (5.1)

where p̂gij is the quality-adjusted price charged by the �rm. Here, Ng
i =

∑J
j=1N

g
ij denotes the

measure of �rms supplying location i with grade g varieties, where Ng
ij is the measure of these �rms

that supply i from j. The average quality-adjusted price charged by �rms supplying grade g varieties

in location i is given by p̄gi = 1
Ng

i

∑J
j=1N

g
ij p̂

g
ij .

5.1.2 Production

With positive trade costs, it is possible that some grades will not be traded across locations. In

contrast with the closed economy model, we therefore now have to di�erentiate between the measure

of �rms that supply location i with grade g varieties, Ng
i , and the measure of �rms that have access

to the technology for producing grade g varieties in location i, Mg
i .

As shown in the appendix, grade g producers in j will �nd it pro�table to sell in i if and only if

their supply cost ρgij ≡
wjc

g
j τij

αg
0s

g
j

is below a certain threshold value ρgi,max:

ρgij ≤ ρ
g
i,max ≡

2 + ρ̄giα
gNg

i

2 + αgNg
i

(5.2)

Observe that the right-hand side of (5.2) does not vary with the source country j. This implies that

in any equilibrium of the model, grade g varieties are supplied to location i from source countries

16As before, we assume that labor endowments in each location are large enough such that the numeraire is
produced and consumed in positive amounts in all locations.
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with the lowest supply costs. Condition (5.2) can also be written as:

ρgij ≤ 1− 1

2
αgρ̃gij (5.3)

where ρ̃gij summarizes the state of technology for all suppliers in the grade g market in location i

relative to technology for �rms from j:

ρ̃gij ≡
J∑
k=1

Ng
ik

(
ρgij − ρ

g
ik

)
(5.4)

Note that given the supply cost ρgij for �rms from j, the term ρ̃gij is greater when there are more �rms

selling in i with supply costs lower than ρgij , or when there are fewer �rms selling in i with supply

costs greater than ρgij . Furthermore, observe that ρ̃gij depends only on the measure of suppliers in i

from all locations other than j, and in particular does not depend on Ng
ij . This implies that in any

equilibrium of the model, either all �rms from j with access to grade g technology sell in i or none

of them do:

Ng
ij =

M
g
j , if ρgij ≤ ρ

g
i,max

0 , o/w
(5.5)

Assuming condition (5.3) holds, the solution for �rm prices then implies the following expressions

for equilibrium markups, sales, and pro�ts:

µgij =
φgij + ρgij
ρgij

(5.6)

ygij = Liκ
gφgij

(
φgij + ρgij

)
(5.7)

πgij = Liκ
g
(
φgij
)2

(5.8)

As in the closed economy, φgij is an endogenous variable that summarizes the e�ect of competition

from other �rms:

φgij ≡
1− ρgij − 1

2α
gρ̃gij

2 + αgNg
i

(5.9)

Note that because �rms from di�erent locations have potentially di�erent production technologies,

what matters for the degree of competition is not only the measure of competitors (Ng
i ), but also

the supply costs of a �rm's competitors relative to its own supply cost (ρ̃gij). Observe that if supply

costs are identical across all source locations, then ρ̃gij = 0 and expressions (5.6), (5.7), and (5.8)

reduce to their closed-economy counterparts (4.5), (4.6), and (4.7). In this special case, the market

for grade g varieties in i resembles a closed economy.

Finally, to ensure that all locations can be pro�tably supplied with each grade of the di�erentiated

good by �rms from at least one location, we make the following assumption.

Assumption 4. For each location i ∈ {1, · · · , J} and each grade g ∈ {1, · · · , G}, the minimum

marginal supply cost satis�es minj∈{1,··· ,J} ρ
g
ij < 1.
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5.1.3 Innovation

The innovation process in the open economy is the same as in the closed economy. Firms in each

location choose investments in R&D and move up the grade ladder stochastically subject to an exit

shock that arrives with identical Poisson rate ε in all locations. The value of being a producer in

location i of a variety of grade g < G then satis�es:

(β + ε)V gi = max
agi

{
πgi − wiRD

g
i (agi ) + agi

(
V g+1
i − V gi

)}
(5.10)

As before, the optimal innovation decision is characterized in general by:

RDg′

i (agi ) = max
{
V g+1
i − V gi , 0

}
(5.11)

Similarly, at the frontier grade G where innovation reduces the hazard rate of exit, the value of a

�rm satis�es:

βV Gi = max
aGi

{
πGi − wiRDG

i

(
aGi
)

+ ε
(
aGi
)
V Gi
}

(5.12)

while the optimal innovation decision is characterized by:

wiRD
G
i

(
aGi
)

= −ε
′ (
aGi
)
V Gi

The key di�erence here relative to the closed economy is that now total pro�ts in (5.10) and (5.12)

are the sum of domestic pro�ts and pro�ts across all potential export destinations:

πgi =

J∑
j=1

πgji (5.13)

5.1.4 Entry

Firms in location i can enter the economy by paying an entry cost of fEi units of labor to obtain

technology for producing a grade 1 variety. Free entry in each location therefore imposes:

V 1
i = fEi (5.14)

5.1.5 Steady-state �rm grade distribution

Following the same logic as for the closed-economy, the steady-state mass of producers for each

grade in location i satis�es the following:

ME
i =

(
ε+ a1

i

)
M1
i (5.15)

where ME
i denotes the mass of entrants. For g ∈ {2, · · · , G− 1}, the equilibrium relation is:

ag−1
i Mg−1

i = (ε+ agi )M
g
i (5.16)
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while at the frontier grade:

aG−1
i MG−1

i = ε
(
aGi
)
MG
i (5.17)

5.1.6 Labor market

In order for the numeraire good to be produced in all locations in equilibrium, the total amount

of labor employed by �rms in the di�erentiated goods sector for production, innovation, and entry

costs must be less than the total labor endowment:

Li −ME
i f

E
i −

G∑
g=1

 J∑
j=1

Ng
jil
g
ij +Mg

i wiRD
g
i (agi )

 > 0 (5.18)

where total production labor hired by grade g producers in j that sell in i is given by:

lgij = Liκ
gρgijφ

g
ij (5.19)

5.1.7 Welfare

Household utility in location i at each point in time is given by:

Ui = Q0
i +

G∑
g=1

sgQgi (5.20)

Since the numeraire is assumed to be freely traded, production and consumption of the numeraire

in each location need not be equal. Each household's consumption of the numeraire in location i is

given by its income net of expenditures on di�erentiated products. Household income is the sum of

wages and �rm pro�ts (we assume that aggregate pro�ts in each location are disbursed equally to

all households in that location). Hence:

LiQ
0
i = wiLi + Πi −

G∑
g=1

J∑
j=1

Ng
ijy

g
ij (5.21)

Πi =

G∑
g=1

 J∑
j=1

Ng
jiπ

g
ji −M

g
i wiRD

g
i (agi )

−ME
i f

E
i (5.22)

Finally, consumption of the grade g bundle can be expressed as:

Qgi = κg
G∑
j=1

Ng
ijφ

g
ij −

1

2
κg

J∑
j=1

Ng
ij

(
φgij
)2 − 1

2
αgκg

 J∑
j=1

Ng
ijφ

g
ij

2

(5.23)

As in the closed economy, note that of the set of original model parameters
{
αg0, α

g
1, α

g
2, s

g
i , c

g
ij

}
, only

the composites ρgij , α
g, and κg matter for welfare.
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5.2 Equilibrium de�nition and solution

5.2.1 Equilibrium de�nition

A steady-state equilibrium of the open-economy model is a list of sequences for entry
{
ME
i

}J
i=1

,

production
{
{Mg

i }
G
g=1

}J
i=1

, supply
{{
Ng
ij

}G
g=1

}J
i,j=1

, pro�ts
{{
πgij
}G
g=1

}J
i,j=1

, innovation probabi-

lities
{
{agi }

G
g=1

}J
i=1

, and �rm values
{
{V gi }

G
g=1

}J
i=1

, all of which satisfy the supply conditions (5.5),

pro�t equations (5.8), Bellman equations (5.10) and (5.12), R&D optimality conditions (5.11), free-

entry conditions (5.14), steady-state entry conditions (5.15)-(5.17), and the labor market condition

(5.18).

5.2.2 Solution algorithm

To solve the model, we employ a computational algorithm similar to that used to solve the closed-

economy model (described in section 4.2.2), which as before takes several seconds on a standard

personal computer. Again, this involves guessing the measure of �rms operating at the frontier

grade in each market, iterating backwards on the Bellman equation (5.10), and then checking the

free-entry condition (5.14) and labor market condition (5.18). Interested readers are referred to the

online appendix for a detailed description of the solution algorithm for the open economy model.

6 Model Calibration

To calibrate the model, we focus on an economy with J = 2 countries and use data for Chinese

�rms as described above, as well as data for Canadian �rms obtained from Statistics Canada. The

latter data are used to represent OECD �rms, so as to capture trade between China and developed

countries as a whole. As such, we scale the number of Canadian �rms by the ratio of OECD to

Canadian gross domestic product, and weight the export data by the relevant China-OECD trade

shares. The implicit assumption made here is that Canadian �rms are representative of OECD �rms

in terms of �rm-level characteristics such as sales, exports, pro�ts, and R&D.

6.1 Model parameters

The only functional form assumptions that need to be imposed before proceeding with the mo-

del calibration are for the innovation costs
{
{RDg

i }
G
g=1

}J
i=1

. Here, we assume constant elasticity

functions:

RDg
i (a) = bgi a

ηgi (6.1)

where bgi measures the level of R&D costs and ηgi captures the sensitivity of R&D costs to the

innovation rate. This parameterization allows us to solve the R&D �rst-order conditions analytically

and speeds up the computation signi�cantly.

The model thus has the following sets of parameters (parameter count in parentheses) - demand

parameters (2G):

ΘD ≡ {κg, αg}Gg=1 , (6.2)
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technology parameters (J2G):

ΘP ≡
{{
ρgij
}G
g=1

}J
i,j=1

, (6.3)

innovation parameters (J (2G+ 1)):

ΘI ≡
{
fEi , {b

g
i , η

g
i }
G
g=1

}J
i=1

, (6.4)

country-level macro parameters (2J):

ΘM = {wi, Li}Ji=1 , (6.5)

and a set of parameters {β, ε,G} that will not be calibrated to data.17

6.2 Assignment of grades

To calibrate the model's parameters, we �rst need to take a stand on what de�nes a �grade� in the

data. In the model, grades are technically de�ned by segmentation of the di�erentiated goods sector

along various dimensions: demand characteristics, production technologies, and innovation costs.

Furthermore, the model's assumptions imply that all �rms within a grade are identical in every one

of these aspects. Hence, assigning �rms in the data to grades is not a straightforward task for two

reasons. First, it is not immediately obvious what the most relevant variables for clustering �rms

should be. For example, should we consider �rms that have similar production costs or innovation

costs as belonging to the same grade? Second, many of the primitive grade-level characteristics are

not directly observable.

To deal with this issue, we explore several avenues. First, the notion of �rms operating in

segmented markets is in essence a demand-side construct: consumers perceive di�erent grades as

having di�erent characteristics that matter for utility. From this perspective, the most natural way

to de�ne grades would be by the quality of products that �rms produce. As discussed in section

2.3, however, we are able to obtain quality estimates only for Chinese �rms that are matched to the

customs data. Hence, while assigning grades based on quality would be economically appealing, this

would preclude us from studying �rms in the full CME sample.

A second option for de�ning grades would be to focus on the interaction between competition

and innovation. From this perspective, the most salient characteristic of a grade is its competitive

environment. It is precisely because grades di�er along this dimension that the model allows us

to study how trade a�ects innovation through not only the standard scale channel but through

competitive e�ects as well. As such, a potential solution is to group �rms based on the markup

estimates described in section 2.2. Given the data available to us at the moment, this is a feasible

option for Chinese �rms, but not for the Canadian �rms that we use to calibrate the open economy

model, although we are currently working with Statistics Canada to estimate markups for Canadian

�rms as well, which would relax this data constraint.

17We set the discount factor and exit rates to typical values (e−β = .95, e−ε = .9). In the baseline analysis, we set
the number of grades at G = 10, and explore how di�erent values of G a�ect our quantitative results.
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Finally, the most straightforward option for de�ning grades is to group �rms based on size. In

the model calibration and simulation described below, we adopt this approach for the time being

due to data availability. Speci�cally, the assignment of �rms to grades in the data is determined by

implementing a k-means clustering algorithm on �rm sales, which �nds the grouping of �rms that

minimizes the within-group variance of sales. To account for di�erences across industries and time,

the clustering algorithm is implemented separately for each industry-year.

To investigate the robustness of this clustering approach, Figure 6.1 compares the characteristics

of grades de�ned by both sales and markups for Chinese �rms in our data. The results are reassuring:

clustering on either �rm sales or markups yields grades that are generally increasing in sales, exports,

pro�ts, R&D expenditures, markups, and quality, and decreasing in the number of operating �rms

and the level of competition from other Chinese �rms (equation (2.4)). In particular, the average

estimated markups within each grade are almost identical whether grades are de�ned by markups

or sales. As such, we are con�dent that the results shown below will be similar to results we hope

to eventually obtain based on markup clustering for both Chinese and Canadian �rms.

6.3 Calibration algorithm

Having assigned �rms in the data to grades, we then calibrate the demand, technology, and

innovation parameters {ΘD,ΘP ,ΘI , } by targeting average sales, exports, pro�ts, and R&D for

�rms within each grade, as well as the number of �rms operating within each grade:

ygi = ỹgi (6.6)

ygxi = ỹgxi (6.7)

πgi = π̃gi (6.8)

RDg
i = R̃D

g

i (6.9)

Ng
i = Ñg

i (6.10)

where x̃ denotes the value of a variable x in the data. The calibration algorithm that achieves this

proceeds in three steps.

First, suppose that the model exactly matches the number of �rms in each grade-market,{
{Ng

i }
G
g=1

}2

i=1
. Then for each grade g ∈ {1, · · · , G}, the two demand parameters {κg, αg} and

four production technology parameters
{
ρgij
}2

i,j=1
can be chosen to exactly match the six moment

conditions (6.6)-(6.8), where sales, exports, and pro�ts are given by equations (5.7)-(5.8). Intuitively,

sales, exports, and pro�ts identify demand, cost, and quality parameters.

Second, suppose that the model exactly matches the number of �rms operating at the frontier

grade in each market,
{
NG
i

}2

i=1
. Then for grade G, the four innovation parameters

{
bGi , η

G
i

}2

i=1

can be chosen to exactly match the two moment conditions (6.9) and the targeted exit rates in each

location, εG
(
aGi
)

= ε. Similarly, for each grade g ∈ {1, · · · , G− 1}, the four innovation parameters{
bGi , η

G
i

}2

i=1
can be chosen to exactly match the four moment conditions (6.9)-(6.10). Intuitively,
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Figure 6.1: Clustering of Chinese �rms by sales and markups
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R&D expenses and the relative distribution of �rms across grades identify the innovation parameters.

Third, to ensure that the model does in fact match moment condition (6.10) for the frontier

grade G, a simple two-dimensional search over the space of values for the entry costs
{
fEi
}2

i=1
is

implemented. Intuitively, the overall level of entry identi�es the entry costs. This last step of the

calibration algorithm ensures that the �rst two steps yield parameter values that allow the model

to match all targeted moments exactly.

Finally, the country-level macro parameters ΘM are calibrated as follows. First, we interpret

the di�erentiated goods sector as representing manufacturing, and choose the labor endowments

{Li}Gi=1 to match manufacturing shares of 40% and 20% in China and the OECD respectively.

Second, the wage in China is chosen as the numeraire, and the OECD wage is chosen to match

relative hourly compensation costs based on data from the Bureau of Labor Statistics' International

Labor Comparisons dataset.

6.4 Calibration results

6.4.1 Model �t

The �t of the model to the targeted moments is shown in Figure 6.2. The model is exactly

identi�ed by construction, and hence the model matches the targeted moments exactly. Note that

the k-means clustering algorithm on sales within industry-year generates groupings of �rms such

that higher grades generally have larger average �rm sales, exports, pro�ts, and R&D, as well as

fewer operating �rms.

6.4.2 Equilibrium innovation rates

The equilibrium innovation rates implied by the model for Chinese and OECD �rms are shown

in Figure 6.3. Note that for both locations, the innovation rates exhibit an inverted-U pattern:

�rms that are either very far from the frontier grade or very close to it choose lower innovation rates

than �rms in the middle of the grade ladder. We interpret this result as being consistent with the

�escape-the-competition� motive for innovation, as �rms in the middle of the grade ladder face the

greatest incentive to invest in R&D, so as to escape from tougher competition at lower grades and

to move towards the frontier grade where competition is less intense and pro�ts are higher.

7 Counterfactual Exercises

To study the e�ects of trade on innovation, we employ the model developed above to simulate

two counterfactual exercises: a 5% reduction in the cost of exporting (for all grades) from China to

the OECD, and a 5% reduction in the cost of exporting (for all grades) from the OECD to China.

In each case, we examine the responses of six variables: (i) �rm sales, (ii) exports, (iii) pro�ts, (iv)

R&D, (v) equilibrium innovation rates, and (vi) the measure of �rms operating in each grade.
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Figure 6.2: Model �t

Figure 6.3: Equilibrium innovation rates
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7.1 Lower export costs for Chinese �rms

First, consider the e�ects of lower export costs from China to the OECD. The results of this

counterfactual simulation are summarized in Figure 7.1. Here, we see that sales, exports, pro�ts,

R&D, equilibrium innovation rates, and the measure of �rms in each grade increase for Chinese �rms

in all grades. This is intuitive: lower export costs lead to greater �rm size and pro�tability, which

raises the incentives for R&D, leading to higher innovation rates. Since �rm values increase, more

Chinese �rms enter the market. For OECD �rms, on the other hand, �rm size and exports fall, and

the measure of operating �rms decreases in all grades. Again, this is intuitive: more competition

from Chinese �rms reduces OECD �rm size and leads some �rms to exit the market.

One might conclude from these results that lower Chinese export costs must therefore reduce

R&D and innovation by OECD �rms. Note from Figure 7.1, however, that the converse is true:

R&D and equilibrium innovation rates increase for OECD �rms in almost all grades. The reason

for this is that the reduction in Chinese export costs a�ects OECD �rms operating in di�erent

grades di�erentially. In particular, it reduces pro�ts for �rms operating in the lowest grades, but

increases pro�ts for �rms operating in the highest grades. This latter e�ect is possible only because

the reduction in Chinese export costs induces exit by some OECD �rms, which reduces domestic

OECD competition. Hence, the reduction in Chinese export costs raises the value of operating in

high grades versus low grades for OECD �rms, which from the R&D �rst-order condition (5.11)

leads to an increase in innovation.

The result that lower Chinese export costs can induce an increase in innovation by OECD �rms

stems from the di�erential e�ects of the scale and competition channels embedded in the model.

In particular, these simulations suggest the importance of accounting for both mechanisms when

evaluating the e�ect of trade on �rm-level innovation.

7.2 Lower export costs for OECD �rms

Next, consider the e�ects of lower export costs from the OECD to China. The results of this

counterfactual simulation are summarized in Figure 7.2, and are in essence the immediate opposite

of those observed in the �rst simulation discussed above. In particular, sales, exports, pro�ts, and

the measure of �rms in each grade increase for OECD �rms and fall for Chinese �rms in all grades.

These responses are again intuitive for the reasons discussed above.

However, in response to lower OECD export costs, R&D and equilibrium innovation rates fall

for both Chinese and OECD �rms. For Chinese �rms, the increase in competition from OECD �rms

reduces the incentive to innovate, hence leading to lower R&D in equilibrium. For OECD �rms, the

fall in export costs induces more OECD �rms to enter the market. Hence, although pro�ts increase

because of the reduction in trade costs, the increase in entry causes pro�ts for �rms operating in

the highest grades to fall relative to pro�ts for �rms in the lowest grades, which also reduces the

incentives for innovation by OECD �rms.
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Figure 7.1: Counterfactual: 5% reduction in export costs from China to OECD
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Figure 7.2: Counterfactual: 5% reduction in export costs from OECD to China
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8 Conclusion

In this paper, we have established empirically that increased market size promotes innovation as

measured by innovation inputs (R&D and patents). Further, increased innovation leads to increased

TFP, higher markups, a larger number of exported products (increased variety), and an increase in

the share of revenues generated by new products. We also found that increased competition within

China has important e�ects on �rm-level innovation, reducing innovation in the aggregate. The

calibrated structural model formalizes these economic mechanisms, and simulations of the model

indicate that accounting for the heterogeneous e�ects of trade on innovation by di�erent �rms

through both the scale and competition channels is essential for understanding �rm-level innovation

in China. In particular, when �rms can innovate to escape the competition, greater competition

induced by lower trade barriers can lead �rms to increase innovation rather than reduce it.
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A Pricing in the Open Economy

Assuming that it is pro�table for grade g producers in j to sell in i, the demand function (5.1)

implies the following optimal quality-adjusted price:

p̂gij =
1

2

(
p̂gi,max + αg0ρ

g
ij

)
(A.1)

where ρgij ≡
wjc

g
j τij

αg
0s

g
j

is the marginal cost of supplying a unit of quality demanded in location i

from location j for a grade g variety (henceforth, the �supply cost�), and p̂gi,max is the maximum

quality-adjusted price for grade g varieties in i at which demand is non-negative :

p̂gi,max =
αg0α

g
1 + αg2N

g
i p̄

g
i

αg1 + αg2N
g
i

(A.2)

The average quality-adjusted price in i can then be written as:

p̄gi =
1

2

(
pgi,max + αg0ρ̄

g
i

)
(A.3)

where ρ̄gi is the average supply cost across producers from all locations supplying grade g varieties

in i:

ρ̄gi ≡
1

Ng
i

J∑
j=1

Ng
ijρ

g
ij (A.4)

Solving equations (A.1)-(A.3), we obtain the following expressions for the optimal, maximum, and

average prices as functions of the masses of suppliers in i,
{
Ng
ij

}J
j=1

:

p̂gij = αg0
(
φgij + ρgij

)
(A.5)

p̂gi,max = αg0

(
2 + αgρ̄giN

g
i

2 + αgNg
i

)
(A.6)

p̄gi = αg0

(
1 + ρ̄gi + ρ̄giα

gNg
i

2 + αgNg
i

)
(A.7)

Note that grade g producers in j will �nd it pro�table to sell in i if and only if p̂gij ≤ p̂gi,max. From

(A.5) and (A.6), this is equivalent to the following condition:

ρgij ≤
2 + ρ̄giα

gNg
i

2 + αgNg
i

≡ ρgi,max (A.8)
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