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1 Introduction

For the past five decades researchers have been actively thinking about optimal multi-

horizon asset allocation. There would be no difference between the single- and multi-

horizon allocations only if asset returns were i.i.d. (or investors would have log pref-

erences). Normative analysis that solves for optimal allocation is very difficult as

emphasized by many authors (Brennan, Schwartz, and Lagnado, 1997, Campbell and

Viceira, 1999, Cochrane, 2014, among many others). That is why researchers and

practitioners alike continue solving the myopic problem and then correct the solution

in ad-hoc ways to account for persistence in returns.1

One can flip the perspective and work to see what observed returns could tell about

horizon-based investments. What returns would be helpful, you might ask. Differ-

ences between short- and long-horizon returns on a given asset should reflect their

dynamic properties. Thus, multi-horizon returns (MHR) should be able to serve as a

useful diagnostic of the models that one could potentially use for estimating expected

asset returns and for multi-horizon allocation amongst these assets. In this paper, we

propose a methodology that explicitly incorporates MHR into testing of asset pricing

models.

Our tests are based on a given model’s implications for the stochastic discount factor

(SDF). Specifying an asset-pricing model via the SDF is a powerful analytical tool that

encodes the risk-return trade-off across multiple assets and across multiple horizons,

which provides the link between MHR and testable implications from the model.

Surprisingly, there is little research on evaluation of SDF models using MHR. The-

oretical work has developed tools allowing researchers to characterize properties of

equilibrium models at different horizons (e.g., Hansen and Scheinkman, 2009, Backus,

Chernov, and Zin, 2014). Empirical work highlights properties of MHR but does not

1For instance, Cochrane (2014) observes: “Even highly sophisticated hedge funds typically form
portfolios with one-period mean-variance optimizers – despite the fact that mean-variance opti-
mization for a long-run investor assumes i.i.d. returns, while the funds’ strategies are based on
complex models of time-varying expected returns, variances, and correlations. Beyond formal port-
folio construction, their informal thinking and marketing is almost universally based on one-period
mean-variance analysis . . . Institutions, endowments, wealthy individuals, and regulators struggle to
use even the discipline of mean-variance analysis in place of name-based buckets . . . ”
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use them to explicitly test models of the SDF (e.g., Campbell, 2001, Kamara, Kora-

jczyk, Lou, and Sadka, 2016).

We make two key contributions. First, we show that an MHR-based test amounts to

a stringent evaluation of conditional implications of a model. In particular, persistent

misspecification shows up in long-run pricing errors. We develop MHR-based GMM

estimation and testing of asset pricing models. In particular, we take care to setup

moment conditions in such a way that their residuals are not serially correlated under

the null of a model. That improves the small-sample performance of the test in a

setting with overlapping observations.

Second, we show that misspecification of the temporal dynamics in state-of-the-art

models of the SDF, as uncovered by MHR, indeed are quantitatively large. In par-

ticular, we consider linear factor models of the form SDF = a− b>F , which arguably

are the workhorse models for empirical risk-return modeling. It is well-known that

such an SDF implies a linear beta-pricing model of expected returns (e.g., Cochrane,

2004). Under the null of these SDFs, the traded factors F span the unconditional

mean-variance efficient (MVE) portfolio. We impose the minimal requirement on a

factor model that it prices its own factors. The new idea in our approach is to impose

this requirement on factor returns at multiple horizons.

We consider nine linear model that either viewed as classic in the literature, or that

are state-of-the-art recent additions. Specifically, we include CAPM, CAPM and

Betting Against Beta (Frazzini and Pedersen, 2014, Jensen, Black, and Scholes, 1972,

Novy-Marx and Velikov, 2016), Fama and French 3- and 5-factor models (Fama and

French, 1993, Fama and French, 2016), versions of the later two models with unpriced

risks hedged (Daniel, Mota, Rottke, and Santos, 2018), a volatility-managed version

of the Fama and French 5-factor model (Moreira and Muir, 2017), and the recent

4-factor model of Stambaugh and Yuan (2017). We show that the dynamics of the

factors are grossly inconsistent with the dynamics implied under the null of the factor

model. In other words, current models of the risk-return trade-off, which are typically

estimated at a monthly or quarterly frequency, do a poor job accounting for the risk-

return trade-off at longer horizons. Our MHR-based tests reject all these models.

The pricing errors are economically large, ranging from 1% to 3.5% per year. Fur-
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ther, we find that models deemed successful on the basis of single-horizon returns

(thus having factors that yield a high maximal SR) tend to do worse at long hori-

zons, that is, they have large MHR pricing errors. As one considers models with

increasingly higher short-run maximal SR, and, presumably, gets closer to the un-

conditional MVE portfolio, it would be natural to expect improved pricing at longer

horizons. In this sense, our results are surprising. Finally, as a robustness check, we

run standard “alpha-regressions” and use Gibbons, Ross, and Shanken (1989) (GRS)

to test whether managed portfolios based on MHR can deliver alpha in the standard,

short-horizon setting. The models are rejected with high maximal information ratios

indicating economic significance via an alternative metric.

The reason the models reject is that the model-implied SDFs do not price the test

assets conditionally. If conditional pricing errors are persistent (autocorrelated), they

may affect longer-horizon excess factor returns. Specifically, persistent pricing errors

that appear “small” at the monthly horizon can become large over multiple horizons

as they accumulate over time. This is the kind of misspecification MHR is detecting

when used as test assets.

An unconditionally MVE portfolio prices assets also conditionally (Hansen and

Richard, 1987). Thus, the rejection suggests that the factors do not uncondition-

ally span the MVE portfolio. However, because we evaluate the models using MHR

to the pricing factors themselves, it follows that there must exist time-varying a’s and

b’s in the SDF that do price MHR correctly. To assess the nature of the misspeci-

fication in more detail, we model time-varying bt and estimate it together with the

corresponding at by including MHR in the set of test assets. The estimated factor

loading has large variation and little relation to the standard conditioning variables

used in asset-pricing. The evidence is puzzling from the perspective of existing evi-

dence and theory.

There are many papers that test conditional versions of factor models. In our no-

tation, that amounts modeling time-varying bt as a linear function of various in-

strumental variables. For instance, Jagannathan and Wang (1996) and Lettau and

Ludvigson (2001) consider conditional versions of the CAPM and the consumption

CAPM using proxies for the conditioning information related to aggregate discount
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rates, such as the dividend-price ratio, to arrive at unconditional linear multi-factor

models with constant factor loadings in the SDF. Other examples include Ferson and

Harvey (1999) and Farnsworth, Ferson, Jackson, and Todd (2002). Our contribution

relative to this literature is to use MHR to infer time-varying bt and to document

that little of variation in bt is connected to those instrumental variables.

Our paper also makes a connection with a literature that seeks to characterize multi-

horizon properties of “zero-coupon” assets, such as bonds, dividends strips, vari-

ance swaps, and currencies. Such work includes Belo, Collin-Dufresne, and Goldstein

(2015), van Binsbergen, Brandt, and Koijen (2012), Dahlquist and Hasseltoft (2013),

Dew-Becker, Giglio, Le, and Rodriguez (2015), Hansen, Heaton, and Li (2008), Lustig,

Stathopoulos, and Verdelhan (2013), and Zviadadze (2017). There is also an earlier

literature that considers multiple frequencies of observations when testing models

(e.g., Brennan and Zhang, 2018, Daniel and Marshall, 1997, Jagannathan and Wang,

2007, Parker and Julliard, 2005).

Notation. We use E for expectations and V for variances (a covariance matrix if

applied to a vector). A t-subscript on these denotes an expectation or variance con-

ditional on information available at time t, whereas no subscript denotes an uncon-

ditional expectation or variance. We use double subscripts for time-series variables,

like returns, to explicitly denote the relevant horizon. Thus, a gross return on an

investment from time t to time t+ h is denoted Rt,t+h.

2 Testing asset pricing models using MHR

In this section, we evaluate the implications of jointly testing whether a proposed

model of the SDF can explain the empirical risk-return trade-off across horizons.

Intuitively, risks that appear very important at a short horizon may be less important

at longer-horizons relative to other, more persistent risks, and vice versa. Analysis of

such dynamics has received little attention in the previous work, despite the relevance

for theoretical models and investment practice.
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2.1 Preliminaries

Let the one-period stochastic discount factor (SDF) from time t to t + 1 be Mt,t+1.

The Law of One Price (LOOP) then states that

Et(Mt,t+1Rt,t+1) = 1,

or

Et(Mt,t+1(Rt,t+1 −Rf,t,t+1)) = 0.

Here Rt,t+1 and Rf,t,t+1 are one-period gross return on a risky and the risk-free assets.

The overwhelming majority of empirical asset pricing papers are concerned with tests

of these relationships, where a period is typically a month or a quarter.

2.2 The MHR Test

The framework offers a natural way to propagate the model implications across mul-

tiple horizons. The multi-horizon SDF and returns are simple products of their one-

period counterparts:

Mt,t+h =
h∏

j=1

Mt+j−1,t+j,

Rt,t+h =
h∏

j=1

Rt+j−1,t+j,

Rf,t,t+h =
h∏

j=1

Rf,t+j−1,t+j.
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LOOP still holds:2

Et(Mt,t+hRt,t+h) = 1, (1)

or, for excess returns,

Et(Mt,t+h(Rt,t+h −Rf,t,t+h)) = 0. (2)

The unconditional version of this condition can be easily tested jointly for multiple

horizons h in a GMM framework.

2.3 Interpretation

To see what MHR add to the evaluation of a candidate stochastic discount fac-

tor, assume the model unconditionally prices one-period returns correctly, i.e.,

E(Mt,t+1Rt,t+1) = 1. Applying the model to two-period returns from time t − 1

to time t+ 1, we can write:

E(Mt−1,t+1Rt−1,t+1) = E(Mt−1,tRt−1,t) · E(Mt,t+1Rt,t+1)

+ Cov(Mt−1,tRt−1,t,Mt,t+1Rt,t+1).

Therefore, if (1) holds at both one- and two-period horizons,

Cov(Mt−1,tRt−1,t,Mt,t+1Rt,t+1) = 0.

To appreciate the meaning of this restriction of the covariance, define one-period

pricing errors as Ms,s+1Rs,s+1 − Es(Ms,s+1Rs,s+1). Because R is a gross return, the

conditional expectation of its product with the SDF is equal to one. Thus, the

2It is immediate from the law of iterated expectations, that an SDF that prices a set of one period
returns conditionally (i.e., Et[Mt,t+1Rt,t+1] = 1), also prices multi-horizon returns to the same set
of assets (i.e., E[Mt−h,t+1Rt−h,t+1] = 1 for any h ≥ 1). This can be seen by recursively iterating on
the following equation for h = 1, 2, ..., etc.: E[Mt−h,t+1Rt−h,t+1] = E[Mt−h,tRt−h,tMt,t+1Rt,t+1] =
E[Mt−h,tRt−h,tEt[Mt,t+1Rt,t+1]] = E[Mt−h,tRt−h,t], where the last equality follows if the model
prices the one-period returns conditionally.
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condition above that the covariance term equals zero implies that past pricing errors

cannot predict future pricing errors. This is the hallmark of a correctly specified

model.

A generalization to (h+ 1)-period returns, under covariance-stationarity, is

E(Mt−h,t+1Rt−1,t+1) = 1 +
h−1∑
j=0

Cov(Mt−h+j,tRt−h+j,t,Mt,t+1Rt,t+1). (3)

Thus, adding information about MHR is a test of whether multi-horizon pricing errors

predict one-period pricing errors.

The virtue of this representation is that it allows us to construct a test on the basis

of moment conditions whose residuals are not serially correlated. This improves the

small-sample performance of the test. Specifically, we consider moment conditions of

the form:

ft+1 =


Mt,t+1Rt,t+1 − 1

(
∑h1−1

j=0 Mt−h1+j,tRt−h1+j,t) · (Mt,t+1Rt,t+1 − 1)

. . .

(
∑hn−1

j=0 Mt−hn+j,tRt−hn+j,t) · (Mt,t+1Rt,t+1 − 1)

 , (4)

where n is the number of horizons used in the test. The null hypothesis is E(ft+1) = 0.

See Hodrick (1992) for a similar argument.3

2.4 Implementation

We estimate and test models using Equation (4) in two ways. First, we estimate the

models using single-horizon returns (SHR), Rt,t+1, of N assets and test on MHR of

the same assets. That is, in the language of GMM, we use a weighting matrix with

upper N×N elements equal to the N -dimensional identity matrix. That corresponds

to the first row in Equation (4). With n horizons, we set the remaining elements in

3That residuals are not autocorrelated follows from Equation (1). For simplicity, consider one

horizon, h. Define zt =
∑h−1

j=0 Mt−h+j,tRt−h+j,t. Then, we have that E(ft ·ft+1) = E(ft ·Et(ft+1)) =
E(ft · ztEt(Mt,t+1Rt,t+1 − 1)) = 0, because, under the null, Et(Mt,t+1Rt,t+1 − 1) = 0 for all t.
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the (n− 1)N × (n− 1)N weighting matrix to zero. We test each model by testing if

the average of the (n − 1)N MHR moment conditions jointly equal zero. This test

is standard and described in, e.g., Cochrane (2004). The spectral density matrix is

estimated as the sample covariance matrix of the moment vector in (4) because there

is no autocorrelation in the moment conditions under the null hypothesis.

Second, we estimate models using all the moments, i.e. including the MHR moments.

In that case, we use the inverse of the spectral density matrix estimated in our

former approach as weighting matrix. Thus, this second test is a two-stage efficient

GMM test, where the information in MHR moments is allowed to affect the estimated

parameters in the stochastic discount factor.

The MHR-based moment conditions are model-implied overidentifying moments. The

geometric nature of aggregating MR makes the moment conditions highly non-

normal. Thus, the asymptotic GMM tests may be badly behaved in the samples

of the length that is available to us. To ensure the p-values account for such issues,

we compute bootstrapped values of the GMM objective function imposing the null

of the model for both tests. We then compare the objective function in the data

to the bootstrapped distribution and find the p-value from this bootstrapped model

specification test, similar to the so-called GMM “J-test.”

The null hypothesis implies that Mt,t+1Rt,t+1 is unpredictable. This can be imposed in

the bootstrap simply by drawing (with replacement) the cross-section of one-period

returns to the test assets as well as any variables in the SDF at random time t.

For example, if the SDF is a function of consumption growth, consumption growth

at time t is aligned in the draw with time t returns. This is a valid approach as

under the null hypothesis the MR are not autocorrelated. We then create MHR and

moment conditions in the bootstrapped samples in the same way as in the data. We

create 2,500 artificial samples of the same length as the data and estimate the model

for each sample to find 2,500 GMM objective function values. These bootstrapped

samples construction impose the property of the null hypothesis that Mt,t+1Rt,t+1 is

uncorrelated with any lagged MHR-based moment.
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3 Linear factor models

3.1 Preliminaries

We explore linear factor models, the most pervasive set of asset pricing models, as an

empirical application of our approach. The focus of linear factor-based modeling is to

find a set of excess return factors that span the conditionally mean-variance efficient

(MVE) portfolio. The reason researchers are interested in this pursuit is that besides

an efficient trading strategy, the MVE portfolio is connected to the SDF. Specifically,

let Ft,+1 be a K × 1 vector of factor excess returns. Then the SDF

Mt,t+1 = at − b>t Ft,t+1, (5)

where at is a scalar that ensures the one-period risk-free bond is priced correctly, and

bt is a K×1 vector proportional to the conditional MVE portfolio weights. This SDF

prices all traded assets, that is, Equation (1) holds.

Equations (1) and (5) imply, when applied to the one-period risk-free bond, that:

at = R−1f,t,t+1 + b>t Et(Ft,t+1). (6)

Equations (2) and (5) imply, when applied to the factors themselves, that:

bt = [Rf,t,t+1Vt(Ft,t+1)]
−1Et(Ft,t+1). (7)

Equation (7) tells us that the conditional MVE weights are related to the dynamic

properties of the factors, that is, the conditional mean and covariance matrix of the

factors. Equations (5) to (7) also combine to give another common representation of

the SDF:

Mt,t+1 = R−1f,t,t+1 − λ
>
t εt+1, (8)

where εt+1 = Vt(Ft,t+1)
−1/2(Ft,t+1 −Et(Ft,t+1)) is i.i.d., zero mean, and unit variance,
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and where

λ>t = bt · Vt(Ft,t+1)
1/2, (9)

are commonly referred to as the conditional prices of risk.

Unfortunately, at and bt are not observed. Thus, unless one is willing to explicitly

model at and bt, it is impossible to measure them. For instance, the literature on

conditional factor models specifies at and bt as a linear function of instrumental vari-

ables (e.g., Ferson and Harvey (1999), Jagannathan and Wang (1996), Lettau and

Ludvigson (2001), among many others).

Note that if bt is proportional to at, bt = at·k, the factors span both the conditional and

the unconditional MVE portfolio. In particular, the portfolio with constant weights

k>Ft,t+1 is both conditionally and unconditionally MVE (e.g., Hansen and Richard,

1987). This result prompts most of the literature to search for factors whose excess

returns span the unconditional MVE portfolio (e.g., Fama and French, 1993). Many

of the aforementioned models feature very high maximal short-run Sharpe ratio (SR).

Thus, the hope is that these models get us close to the unconditional MVE portfolio.

The remaining issue is the modeling of at. The literature circumvents this problem

by focusing on pricing excess returns only. In this case, the level of the corresponding

SDF is not identified and the scalar is typically set to 1 (see, e.g., Cochrane, 2004).

We cannot use this approach when testing the model implications for MHR. The

use of MHR prompts the need to model the level of the SDF and inclusion of the

one-period risk-free rate as a test asset.

The easiest way to model the SDF level when MVE portfolio weights are constant is to

assume that at is constant. This will be our leading case in the paper. Subsequently,

we will show robustness of our results to the case of time-varying at. Thus, we study

the SDF:

Mt,t+1 = a− b>Ft,t+1. (10)
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3.2 Data

We select our models based on their historical importance, recent advancements, and

data availability. Specifically, we include the CAPM, CAPM and BAB (Frazzini and

Pedersen, 2014, Jensen, Black, and Scholes, 1972, Novy-Marx and Velikov, 2016),

Fama and French 3- and 5-factor models, FF3 and FF5, respectively (Fama and

French, 1993, Fama and French, 2016), version of the FF3 and FF5 models with

unpriced risks hedged (Daniel, Mota, Rottke, and Santos, 2018), a volatility-managed

version of the FF5 model (Moreira and Muir, 2017), and the recent 4-factor model of

Stambaugh and Yuan (2017).

The Fama-French 5-factor model includes the market factor (MKT), the value factor

(HML), the size factor (SMB), the profitability factor (RMW; see also Novy-Marx,

2013), and the investment factor (CMA; see also Cooper, Gulen, and Schill, 2008).

The Fama-French 3-factor model only have the first 3 factors. We also consider

FF5+MOM, where MOM refers to the Momentum factor (Carhart, 1997, Jegadeesh

and Titman, 1993). These data are provided on Kenneth French’s webpage. The

returns are monthly and the sample is from July 1963 to June 2017.

We also study versions of these models with unpriced risks hedged out as proposed

by Daniel, Mota, Rottke, and Santos (2018) (DMRS; data available on Kent Daniel’s

webpage). Their alternative factor construction methodology substantially increases

the Sharpe ratios of the factors, which indicates that these revised factors are closer

to spanning the unconditional mean-variance efficient portfolio. See Daniel, Mota,

Rottke, and Santos (2018) for details regarding the factor construction. We consider

two models based on these factors: FF3DMRS and FF5DMRS. The sample period is

July 1963 to June 2017.

Moreira and Muir (2017) show that volatility-timed factors tend to have ’alpha’ rel-

ative to the corresponding original factors. In the spirit of their findings, we consider

a volatility managed version of the FF5 model: FF5V olMan. In particular, we use

the daily return data for these original factors (also available on Kenneth French’s

webpage) to construct realized monthly factor variance. We then divide each factors

return in month t + 1 by the same factor’s realized variance in month t. The factor

sample for this model is then August 1963 to June 2017.

11



Stambaugh and Yuan (2017) propose two factors intended to capture stock mispricing,

in addition to the existing MKT and SMB factors: PERF and MGMT. We denote this

four-factor model as SY. These data are available on Robert Stambaugh’s webpage.

The sample period for these factors starts January 1963 and ends December 2016.

See Stambaugh and Yuan (2017) for details on the factor construction.

Given the recent critique by Novy-Marx and Velikov (2016), we depart from the

BAB factor construction of Frazzini and Pedersen (2014). We use the value-weighted

beta- and size-sorted portfolios on Kenneth French’s webpage as the building blocks

for constructing this factor, following Fama and French (2016) and Novy-Marx and

Velikov (2016). Specifically, we construct four value-weighted portfolios: (1) small

size, low beta, (2) small size, high beta, (3) big size, low beta, and (4) big size,

high beta. The size cutoffs are the 40th and 60th NYSE percentiles. For betas, we

use the 20th and 80th NYSE percentiles. Denote these returns as Rs`, Rsh, Rb`, Rbh,

respectively, where s denotes small size, ` denotes low beta, b denotes big size, and

h denotes high beta. We also compute the prior beta for each of the four portfolios

and shrink towards 1 with a value of 0.5 on the historical estimate. We denote these

as βs`,t, βb`,t, βsh,t, and βbh,t. We construct these portfolios using the 25 size and

market beta sorted portfolio returns, as well as the corresponding market values and

60-month historical betas, given on Kenneth French’s webpage.

The factor return is then constructed as follows:

BABt+1 =
1

β`,t

(
1

2
Rs`,t+1 +

1

2
Rb`,t+1 −Rf,t,t+1

)
− 1

βh,t

(
1

2
Rsh,t+1 +

1

2
Rbh,t+1 −Rf,t,t+1

)
, (11)

where β`,t = 1
2
βs`,t + 1

2
βb`,t, and βh,t = 1

2
βsh,t + 1

2
βbh,t. As a result, the conditional

market beta of BAB should be close to zero, as in Frazzini and Pedersen (2014).

Finally, we get the monthly risk-free rate from CRSP and create the real risk-free

rate by subtracting realized monthly inflation from the nominal rate. The inflation

data are from CRSP as well.
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3.3 Initial evidence of factor dynamics

As we emphasized earlier, Equation (7) implies that b is connected to the dynamic

properties of the model factors. A benchmark case is when factor returns are i.i.d.

and the risk-free rate is constant. In that case, the solution to portfolio allocation

and savings problems are unrelated to the investment horizon, the constant coefficient

SDF prices the assets, and there is nothing to learn from considering multi-horizon

factor returns in addition to the usual one-period returns.

However, as we show here, the factor return dynamics of the anomaly factors are

strikingly far from i.i.d. – much more so than what is the case for the market factor.

As prima facie evidence of these dynamic properties, we report, in Figure 1, Panels

A-C, cumulative autocorrelations for the factors appearing in the considered models.

The market factor exhibits slightly negative autocorrelation at longer horizons, which

the literature attributes to a mean-reverting conditional market risk premium. In

contrast, most of the anomaly factors exhibit strong positive autocorrelation that is

increasing with horizon. Further, the cumulative anomaly autocorrelations in many

cases increase quickly the during first 12 months, in contrast to the market autocorre-

lations which hover around zero and become negative only at the 20-month horizon.

The factor returns are excess returns. Return autocorrelations are therefore driven by

persistent variation in the conditional factor risk premiums. A take-away from these

plots is that the dynamics of the conditional anomaly factor risk premiums appear to

be quite different from that of the conditional market risk premium.

As another illustration of the factor dynamics, Panel D of Figure 1 shows variance

ratios of the log returns to the in-sample MVE portfolio of each of the models we

consider. Recall that the excess portfolio return defined by

F̃t,t+1 = b>Ft,t+1 (12)

is the unconditionally MVE portfolio. We scale the MVE return to have the same

volatility as the market factor. The corresponding simple return is

Rt,t+1 = Rf,t,t+1 + F̃t,t+1.
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We consider horizons from 1 to 60 months. Recall that the variance ratio at horizon

h is:4

V R(h) =
V (logRt,t+h)

h× V (logRt,t+1)
.

As is well known, if logRt,t+1 are uncorrelated over time, then V R(h) = 1 for any

h. If log returns are positively autocorrelated, then V R(h) > 1 , whereas if they are

negatively autocorrelated, then V R(h) < 1.

The variance ratios measure how the variance of (log) returns scale over time relative

to the i.i.d. case – an informative metric for long-horizon investors that is exposed to

longer-run return variance. The plots are striking. The market factor again exhibits

a familiar moderate pattern of first slightly increasing and then decreasing variance

ratios with horizon. For most of the multi-factor models, however, that is not the

case. In fact, several models have variance ratios in the 1.7 to 2.5 range at horizons of

2 to 5 years. That is, an investor that holds these “MVE” portfolios are exposed to

about twice as high variance at the longer-horizons than at the short (e.g. 1-month)

horizons.

These strong non-i.i.d. dynamics implies that the investment horizon becomes impor-

tant for portfolio choice and that Equation (7) may not hold in the case of constant

b, unless expected factor returns line up with conditional variance of factor returns in

exactly the right way. The question we answer next is whether the presented evidence

is in fact associated with statistically and economically significant pricing errors in

the linear SDF. To that effect, we apply the MHR-based test that we have developed

in section 2. We will be able to compute pricing errors associated with the models

and assess their statistical magnitude.

4Variance ratios have been used earlier to assess multi-horizon Euler equation errors (see, e.g.,
Flood, Hodrick, and Kaplan, 1994).
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3.4 Results

3.4.1 Model specification tests

We start by computing pricing errors for the models estimated using only SHR. Thus,

these models match the one-period risk-free rate and factor returns perfectly. The

pricing error for horizon j is E(Mt,t+j(Rt,t+j−Rf,t,t+j)), and the horizons for reported

errors range from 1 to 24 months. The pricing errors should be understood as the

present value of a zero-investment strategy with a notional of $1 for each horizon.

Figure 2 displays the results.

The main takeaway is that the pricing errors for many factors increase with horizon

and become large. For instance, the error is 40% at 24 months for the Stambaugh-

Yuan performance (PERF) factor, 20% at the same horizon for the BAB factor and

the DMRS version of the SMB factor. For comparison, the factor risk premiums are

broadly around 5% per year, so these largest 2-year pricing errors are about 2 to 4

times bigger than the anomaly risk premiums we are trying to explain.

We formally evaluate all the models of the form outlined in Equation (10) in two

different ways, using SHR and MHR for estimation as described in section 2.4 with

one minor modification. Since the factor models we consider are developed to price

excess returns, we formulate the MHR-based moments as excess return moments. In

particular, the GMM moment vector is:

ft =


Mt−1,tRf,t−1,t − 1

Mt−h1,t(Rt−h1,t −Rf,t−h1,t)

. . .

Mt−hn,t(Rt−hn,t −Rf,t−hn,t)

 . (13)

In our actual tests, we again apply the somewhat more involved covariance represen-

tation from Equation (3) to Equation (13) to obtain MHR-based moments that are

not autocorrelated under the null.

We choose horizons hj ∈ {1, 2, 3, 6, 12, 24} months for j = 1, 2, ..., 6. Recall, Rf,t−hj ,t

is the gross risk-free rate realized over the period from t − hj to t, while Rt−hj ,t is
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the vector of gross factor returns realized over the period from t− hj to t. Thus, for

a K-dimensional factor model, we have K · n + 1 moments, where the number of

horizons in our case is n = 6.

Figure 3 displays the testing results. Panel (A) shows p−values indicating rejection

of all models with the exception of the MKT model (the unconditional CAPM) for

both testing approaches. We would like to emphasize the meaning of failure to reject

in this context. The MKT factor is capable of pricing itself at multiple horizons.

That does not imply, however, that the MKT model is well-specified. As we know,

it is easily rejected by a cross-section of equity returns. The failure to reject tells us

that the conditional expectation and variance of the MKT factor line up sufficiently

closely with each other so that the coefficient b in the SDF is close to a constant, per

equation (7).

3.4.2 Economic magnitudes

To gain economic intuition of the rejections of the multi-factor models, we also report

annualized mean absolute pricing errors (MAPE) in Panel (B). MAPE is computed

in two steps. First, because our tests assets span different horizons, we annualize each

horizon’s pricing error via geometric compounding. Second, we report MAPE as the

average of the absolute values of the annualized pricing errors for the MHR-based

moments.

In the case of SHR-based estimation, the MAPE for rejected models range between 1%

and 3.5%. This is of the same order of economic importance as factor risk premiums

in these models. The MAPE decline substantially when MHR are used for estimation.

That is natural because of the change in the objective function. The models change

the intercept and price of risk parameters in the SDF to price long-horizon returns

better. This by itself indicates MHR returns are informative for estimation of a given

SDF. The better fit across horizons means we have to give up on zero pricing errors

at the one-period horizon. MAPE now range from 0.3% to 1.75%. These numbers

are still economically large as factor returns across horizons are positively correlated.

Thus, a substantial amount of the variation in a multi-horizon return strategy can
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be hedged with a static position in the single-horizon returns. A horizon-related

mispricing with annualized MAPE of, say, 1% of can be evidence of large unexplained

SRs (typically referred to as Information Ratios). We discuss this below in the context

of standard GRS “alpha” regressions.

Before that, we note that the one-period maximal SR – a dimension along which

the candidate models are optimized – appears to be positively related to MAPE of

longer-horizon factor excess returns. We demonstrate this observation by constructing

a scatter plot of MAPE versus maximum SR in Figure 4. While there is no ex-ante

reason for this relationship to hold, it is interesting that the pursuit of the maximum

SR, or equivalently, the MVE portfolio, takes us further away from a constant b. One

might have thought the opposite would be the case given that the factors in Equation

(10) span the unconditional MVE portfolio with a constant b in the SDF specification.

3.4.3 GRS test using horizon-managed portfolios

An alternative to the GMM-tests presented so far is the GRS test of whether a given

set of one-period factor returns span the mean-variance frontier of a set of one-period

test asset returns. This test is not a test of whether the model can price MHR, but

it is useful to also couch our results in the typical single-horizon setting most studies

apply.

Furthermore, this test serves an additional purpose as a robustness exercise. Because

we use the one-period risk-free rate to construct MHR, one could be concerned that

model rejections are due the misspecification of our model of the SDF in (10) with re-

spect to the conditional risk-free rate. Indeed, as we discussed, bt that is proportional

to at corresponds to the unconditional MVE portfolio. So far, we have discussed a

particular case of that when both a and b are constant. Because the GRS test is im-

plemented using single-horizon excess returns, its results are mechanically unrelated

to the properties of the risk-free rate.

For our purposes, the test assets are trading strategies in the factors themselves. In

particular, the test asset i = (k, h) is a strategy in factor k, where the time-varying
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weights are given by lagged h-period discounted returns in factor k, i.e.,

Ri,t,t+1 −Rf,t,t+1 ≡ z
(h)
k,t Fk,t,t+1,

where z
(h)
k,t = Mt−h,tRk,t−h,t and Rk,t−h,t =

∏h
s=1(Rf,t+s−1,t+s +Fk,t+s−1,t+s) is the gross

return on factor k from t − h to t.5 The M used in construction of the instrument

z
(h)
k,t is Mt,t+1 = a − b>Ft,t+1, where a and b are estimated by requiring the model to

match the sample means of risk-free rate and the factors.

Then we run the time-series regression

Ri,t,t+1 −Rf,t,t+1 = αi + β>i Ft,t+1 + εi,t+1

for each test asset i and report the standard joint (GRS) test that αi = 0 for all i.

Because the instruments z
(h)
k,t are constructed using the candidate SDF, which in turn

depends on the parameter estimates of a and b, we consider both in- and out-of-

sample instruments. The former use the entire sample to estimate the SDF, whereas

the latter use information only up to time t. We then test whether the factors F span

the mean-variance frontier of these managed portfolios.

Panels A and B of Table 1 report the results of GRS tests on the classic and recent

factor models using lagged pricing errors, z
(h)
k,t , for horizons 1, 2, 5, 11, and 23 months

for each of the factors, i.e., five managed portfolios for each factor. The motivation for

these horizons is to, when multiplying with the current factor return the total horizons

are the same as before (2, 3, 6, 12, and 24). Similar to the case for the GMM test,

it is clear that a conditional version of the factor models would price the horizon-

managed portfolios. However, if the factors span the unconditional mean-variance

efficient portfolio, they should also account for the managed factor portfolios in an

unconditional test.

As the table shows, most models are strongly rejected regardless of whether one

uses the in-sample instruments (see p-value GRS test) or out-of-sample instruments

(p-value, out-of-sample instruments). The exceptions are the market model and

5The weights in a factor are unrestricted since the factors are excess returns.
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FF5V olMan. The former is rejected at the 5%-level based on the in-sample instru-

ments, but not rejected based on the out of sample instruments. The FF5V olMan

model is not rejected based on either in-sample or out-of-sample instrument p-values

when the managed portfolios are based on discounted returns to the volatility man-

aged FF5-factors. If the managed portfolios are based on the original FF5-factors,

however, the model is rejected based on the in-sample instruments. The p-value is

marginally insignificant at 0.11 for the out-of-sample instrument case. Overall, the

findings are in line with the GMM tests in Figure 3.

Also reported are unbiased estimates of the annualized maximum information ra-

tios (IR) attainable using the horizon-managed factor returns. Recall, the squared

monthly information ratio can be obtained from the regressions as α>Σ−1α, where

Σ is the covariance matrix of the regression residuals. MacKinlay (1995) provides

a small-sample adjustment to arrive at an unbiased estimate of this quantity. We

report the maximum of this quantity and zero. To get a sense of magnitudes, it is

natural to compare the maximal IR to the maximal SR combination of the factors. In

FF5, the maximum IR is 0.57 compared to a SR of the factors of 1.09. For the other

models, with the exception of the FF5V olMan, the maximum IR tends to be similarly

large relative to the SR of the corresponding factors. In other words, the GRS tests

show that there is substantial scope for market timing of the factors, providing an

easy-to-interpret measure of the economic significance of the model rejections.

4 Dynamics implicit in a model specification

The rejection of the models is a consequence of factor dynamics unaccounted for

in the linear SDF specification. In this section, we consider these dynamics. Full

accounting for the uncovered role of dynamics and proposing a convincing alternative

to the models is beyond the scope of this paper. We have a more modest objective

of providing an illustration of what accounting for these dynamics might entail and

to suggest a path for future research.
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4.1 Construction of bt

The rejection of the model (10) prompts us to consider the alternative SDF in Equa-

tion (5). Due to our choice of test assets (MHR to the factors themselves), there

exists an SDF of the form in Equation (5) that prices all test assets at all horizons.

To illustrate how much variation in at and bt we are missing, we use MHR to estimate

the SDF.

In theory, Equation (7) offers a direct way to construct bt. The elements in the de-

nominator are easy to obtain. Rf,t,t+1 is observed. Various estimators of conditional

variance are typically similar to each other. In contrast, obtaining conditional expec-

tations of factors is very hard. A large literature is debating the mere presence of

predictability, and predictors are a subject of an active debate. Because the denom-

inator could be viewed as observable, at least for our illustrative purposes, we can

measure something close to bt by replacing conditional expectation in the numerator

with the actual factor. We exploit the relation between this “observed” bt and true

bt to estimate the latter.

We construct an estimate of bt in four steps. First, given the illustrative nature of

the exercise we posit a one-factor structure for bt regardless of a considered model.

Second, we simplify the complicated objective of analyzing multiple factors. In order

to do that, we construct in-sample unconditional MVE portfolio as in Equation (12).

Third, we construct “observed” bt :

b̃t+1 = [Rf,t,t+1Vt(F̃t,t+1)]
−1F̃t,t+1,

where the conditional variance of F̃t,t+1 is estimated by EGARCH(1,1) over the full

sample. Equation (7) implies that Et(b̃t+1) = bt. Fourth, we use that relationship

to estimate a specific proposed functional form of bt using the MHR-based moment

conditions in (13).

The specific functional form of bt that we entertain is:

bt = c0 +
12∑
j=1

cj b̃t−j+1 + c13[Rf,t,t+1Vt(F̃t,t+1)]
−1,
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where, for parsimony, c3 = . . . = c12. Thus, given that b̃t+1 = bt + et+1, we effectively

assume b̃t to be a (restricted) AR(12) process, which is designed to capture its fast

and slow moving components. The last term with a loading c13 reflects the theoretical

relation between bt, the risk-free rate, and the conditional factor variance.

Further, combine Equation (6) with Equation (7) to get:

at = R−1f,t,t+1 + b2tRf,t,t+1Vt(F̃t,t+1).

This completes the specification of the alternative SDF:

Mt,t+1 = at − btF̃t,t+1.

4.2 Estimation results

Figure 5 displays GMM estimation results. As a reference point, we juxtapose them

with MHR-based estimation for the case of constant b from section 3.4. Panel A

shows that we fail to reject the models. FF5DMRS is one exception as it is marginally

rejected at the 10% level.

The pricing errors on Panel B drop across the board relative to the case of constant

b, sometimes six-fold (MKT+BAB), sometimes just 1.5-fold (FF5DMRS). There are

two exceptions: FF5, where the two MAPEs are nearly identical, and FF3, where the

constant b MAPE is two times smaller.

There could be at least two reasons for some inconsistencies between the two panels.

First, MAPE is different from GMM’s objective function, so failure to reject does

not guarantee a drop in the pricing error and vice versa. Second, our illustrative

specification of bt could be more misspecified for some models than for others.

We further demonstrate economic magnitude of the improvement by displaying maxi-

mal SR’s for SHR in Figure 6. Note that we were not targeting SR’s during estimation.

In particular, we provide the annualized Sharpe ratio for each model’s in-sample MVE

portfolio with constant b, b>Ft+1, versus the annualized Sharpe ratio of the timed ver-

sions of the same MVE portfolio with monthly returns (bt/at) · b>Ft+1, as estimated
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using our MHR-based moments. The Sharpe ratios increase as we switch from con-

stant to time-varying SDF coefficients. Thus, we see benefits to factor timing even

in the monthly return case. The magnitude of the improvement is reflected in annu-

alized Information Ratios of a regression of the timed MVE portfolio returns on the

static that averages 0.64 and ranges between 0.3 and 0.9 per year.

4.3 Sources of variation in bt

The estimation procedure delivers nine different bt’s, one for each model. That gives

us an opportunity to study possible drivers behind the variation in b. Analyzing

nine different series is cumbersome, and we are looking for big picture implications

rather than the details of a specific model. That objective calls for studying common

variation in bt’s. These are not easy objects to study because they reflect conditional

variance of factors, which could vary between factors within and across models. Thus,

the more appropriate objects to study would be market prices of risk, λt.

Equation (9) gives the relation between bt and λt as:

bt = λtV
−1/2
t (F̃t,t+1). (14)

Thus, we scale the estimated bt by the respective conditional volatilities of the MVE

portfolios.

Next, we study common variation in λt’s via principal component analysis. The first

two principal components explain 45% and 19% of variation in λt, respectively. We

focus on the properties of these two components for simplicity. The first principal

component loads positively on all models’ λt and has correlation of 0.96 with the

average λt across models, so we can interpret its sign accordingly. The average loading

on PC1 is 0.26. The annualized range of this average price of risk is from about 0 to

1.5.

Figure 7 displays the time series of PC1 and PC2. Both variables appear to be

related to business cycles. This prompts the question if we could relate the dynamics

to standard observable instruments used in the literature.
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Figure 8 displays the results of regressing of the PCs on a recession indicator, the BAB

beta spread, the conditional variance of the market (estimated by EGARCH(1,1)),

the log market dividend to price ratio, and the 10 year over 1 year term spread. The

beta spread is the spread between the high and low market-beta sorted portfolios in

the BAB factor, as described earlier. This variable is included both as an example of

a variable that captures a degree of cross-sectional characteristic heterogeneity.

For PC1, which sign we can easily interpret, the price of risk is significantly negatively

related to the NBER recession indicator and market variance. This is striking and

unexpected. We would venture to say most market participants view recessions and

spikes in volatility as bad times, but this is not reflected in the prices of risk of

these factor models. Either the factor models are missing an important component

of risk or investor expectations are not rational and the price of risk dynamics we

estimate in the data reflects investor expectational errors in these bad times. For

instance, investors could be persistently surprised by the severity of recessions and/or

volatility spikes, leading to lower expected returns in bad times as prices initially

under-react.

More reassuringly, the dividend-price ratio and the term spread are positively asso-

ciated with fluctuations in PC1, as theory and intuition suggests should be the case.

The BAB beta spread is positively associated with the price of risk, indicating that

cross-sectional heterogeneity reflects factor risk premium dynamics. PC2 also load

significantly on the NBER recession indicator and conditional market return variance,

but is unrelated to the other variables.

The overall R2’s are 11.5% and 17.5% for PC1 and PC2, respectively. Thus, the lion’s

share of the estimated variation in the prices of risk in these models is unexplained.

This evidence leaves us with a question of the driving forces behind the variability in

λt, and, therefore, bt.

5 Conclusion

We have developed a GMM-based test that uses multi-horizon returns (MHR) to eval-

uate asset pricing models. We apply this test to a set of nine linear factor models. All
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of the multi-factor models are rejected with high statistical and economic significance.

The reason the models are rejected is that the true dynamics of the factors (excess

returns on portfolios of assets) are quite different from the ones implicitly prescribed

by the null hypothesis.

That MHR are informative about these dynamics goes at the heart of the optimal

multi-horizon asset allocation. In that literature differences in horizons matters only

if returns are non-i.i.d. We use our framework to estimate how the factors in the

candidate models should be timed to be consistent with the observed MHR. We find

that the variation has to be substantial and is not strongly connected to existing

conditional variables in obvious ways. This sort of variation is puzzling. Future

research should focus on understanding the economic forces behind the evidence.
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Figure 1
Cumulative autocorrelations and variance ratios of factors

(A) Fama-French factors (B) DMRS factors
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(C) Stambaugh-Yuan factors (D) Variance ratios
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Panels A, B, and C show the cumulative autocorrelation of the factors in the FF5, FF5DMRS , and
SY models, respectively, for horizons of 1 to 24 months. See the main text for a description of the
individual factors. The sample is monthly, from 1963 to 2017. Panel D shows the variance ratio of
the in-sample MVE combination of the factors in each of the models we consider, for horizons from
1 to 60 months. No autocorrelation corresponds to a variance ratio of 1 at all horizons.
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Figure 2
Term structure of pricing errors, E(M · (R−Rf))

(A) MKT+BAB (B) Stambaugh-Yuan
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(C) Fama-French (D) DMRS
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The panels show factor pricing errors for four factor models for horizons from 1 to 24 months.
Annualized pricing errors at horizon h are (1 + ET (Mt,t+h(Rt,t+h − Rf,t,t+h)))12/h − 1, where ET

denotes the sample average, Rt,t+h is the gross factor return from month t to t + h, and Rf,t,t+h

is gross h-period return from rolling over the riskless bond. The population average of a correctly
specified model is zero. The sample is monthly, from 1963 to 2017.
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Figure 3
GMM tests of linear factor models
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(B) MAPE
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Panel A gives bootstrapped model p-values from one- and two-stage GMM estimation of each mod-
els’ SDF. One-stage estimation obtains the SDF parameters by fitting average one-period factor
returns and risk-free rate. Two-stage GMM in addition uses the MHR-based moments to estimate
parameters. The test assets are excess factor returns at the 1, 2, 3, 6, 12, and 24-month horizons,
as well as the short-term real risk-free rate. Panel B shows MAPE – the annualized mean absolute
pricing error for the multi-horizon excess factor returns. See the main text for a description of each
of the models. The sample is monthly, from 1963 to 2017.
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Figure 4
Max Sharpe ratio of single-horizon factor model vs.
multi-horizon pricing errors
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The figure plots the annualized maximal in-sample Sharpe ratio combination of the factors in each
model against the annualized mean absolute pricing error (MAPE) of the corresponding model, when
the model is estimated using one-period returns and tested on excess factor returns with horizons
1, 2, 3, 6, 12, and 24 months. The sample is monthly, from 1963 to 2017.
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Figure 5
GMM tests of linear factor models with time-varying b

(A) p−values
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(B) MAPE
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Panel A gives the bootstrapped p-values from the J-tests from two-stage GMM estimation of the
SDF implied by each factor model, including multi-horizon excess factor returns in the test assets
at the 1, 2, 3, 6,12, and 24-month horizons. The blue bars corresponds to the case where we have
time-varying at and bt in the SDF, while the red bars to the case of constant a and b. Panel B shows
MAPE – the annualized mean absolute pricing error for the multi-horizon excess factor returns. See
the main text for a description of each of the models. The sample is monthly, from 1963 to 2017.
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Figure 6
MVE portfolio Sharpe ratios when b is constant and
time-varying
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The figure plots the annualized maximal in-sample Sharpe ratio combination of the factors in each
model when b is constant (blue bars) and time-varying (red bars). To assess the economic importance
of the difference, we report the annualized Information ratio obtained from a regression of the
MVE portfolio constructed using the bt/at as the managed portfolio weight on the MVE portfolio
constructed from a constant b.
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Figure 7
Time-series of principal components λt
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Panel A shows the time-series of the first and second principal components of each of the nine factor
models’ monthly price of risk, λt, along with NBER recession indicators (yellow bars). The prices of
risk were estimated using multi-horizon factor excess returns as moments. Note that for each model,
the price of risk is related to bt as follows: λt = bt ∗V art(MVEt,t+1). The sample is from July 1963
to June 2017.
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Figure 8
Dynamics of time-varying prices of risk: Relation to
standard instruments
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The table shows regressions of the prices of risk λt regressed on common conditioning variables: an
NBER recession dummy, the spread in market beta for the BAB factor, the conditional variance of
market returns, the log market price-dividend ratio, and the Treasury bond term spread. Standard
errors are computed using the Newey-West method with 12 lags. The sample is monthly, from 1963
to 2017. The statistical significance of the parameters are given as follows: Three asterisks denote
significance at the 1% level, two at the 5% level, and one at the 10% level.
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Table 1: Long-run factor mispricing as monthly factor return instruments: GRS tests

Standard Factor Models
MKT+

Panel A: MKT BAB FF3 FF5 FF5+MOM

Max Sharpe ratio of factors 0.388 0.657 0.690 1.089 1.246
Max Information ratio 0.411 0.429 0.486 0.572 0.531
p-value GRS test 0.018∗∗ 0.038∗∗ 0.032∗∗ 0.028∗∗ 0.063∗

p-value, out-of-sample instruments 0.309 0.047∗∗ 0.001∗∗∗ 0.022∗∗ 0.035∗∗

Alternative Factor Models
(FF5 assets)

Panel B: FF3DMRS FF5DMRS SY4 FF5V olMan FF5V olMan

Max Sharpe ratio of factors 0.971 1.544 1.653 1.159 1.159
Max Information ratio 0.870 0.821 0.473 0.000 0.589
p-value GRS test 0.000∗∗∗ 0.001∗∗∗ 0.081∗ 0.790 0.023∗∗

p-value, out-of-sample instruments 0.000∗∗∗ 0.002∗∗∗ 0.033∗∗ 0.300 0.111

The table gives the Gibbons-Ross-Shanken (GRS) test p-values from regressions of managed factor
returns, where the time-varying factor weights are based on lagged multi-horizon pricing errors.
The lagged horizons considered are 1, 2, 5, 11, and 23 months. For each factor model, the test assets
are managed positions in the factors of the factor model at hand. So, for the market model, the test
assets are four managed portfolios (corresponding to the four pricing error horizons) in the MKT
factor. “Out-of-sample instruments” means the pricing errors used as instrument are estimated
using only data up to time t, when considering time t+1 returns. Max. Information Ratio (IR)
refers to the square root of the max expected Sharpe ratio one can achieve when combining the
test assets and hedge out the unconditional factor exposures. See MacKinlay (1995) and the main
text for the formula leading to an unbiased estimate of this quantity. The sample is monthly, from
1963 to 2017. Three asterisks denote significance at the 1% level, two at the 5% level, and one at
the 10% level.
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