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Abstract

Using a panel of tract-level bilateral commuting flows, I estimate the causal effect of Los Ange-
les Metro Rail on commuting between connected locations. Unique data, in conjunction with
a spatial general equilibrium model, isolate commuting benefits from other channels. A novel
strategy interacts local innovations with intraurban geography to identify all model parame-
ters (local housing and labor elasticities). Metro Rail connections increase commuting between
locations containing (adjacent to) stations by 15% (10%), relative to control routes selected us-
ing proposed and historical rail networks. Other margins are not affected. Elasticity estimates
suggest relatively inelastic mobility and housing supply. Metro Rail increases welfare $146
million annually by 2000, less than both operational subsidies and the annual cost of capital.
More recent data show some additional commuting growth.
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1 Introduction

High commuting costs limit consumer choice and mobility within cities. Governments consider a
broad range of interventions to mitigate the costs of distance and congestion. Subway and light
rail systems are increasingly popular: Since the 1980s, Atlanta, Austin, Dallas, Denver, Hous-
ton, Los Angeles, Miami, Phoenix, Portland, and Seattle have all built systems. But rail transit is
expensive, costing far more per mile than roads. The benefits of urban rail are less certain in poly-
centric cities built around private automobiles. Do these benefits outweigh costs in automobile-
dominated modern cities?

I study the effects of Los Angeles Metro Rail on commuting and welfare. Los Angeles is a large,
car-oriented region that built an extensive rail network within a decade, making LA Metro Rail
particularly relevant for other cities considering rail transit. I assemble unique data that include
all census tract-to-census tract commuting flows and times in 1990 and 2000 and develop an iden-
tification strategy that exploits both the bilateral and panel aspects of the data to provide the first
direct estimates of the effect of transit on commuting flows. The gravity-like estimating equation
includes origin-year and destination-year fixed effects, allaying standard selection concerns due
to non-random placement of transportation infrastructure.1 Instead, identification of the commut-
ing effect hinges on selecting pairs of locations that satisfy treatment ignorability. In practice, this
means comparing changes in flows between pairs of locations that both receive treatment to pairs
of locations in which just one, or neither, receive treatment.

I use three complementary strategies to select a plausible counterfactual transit network and
recover causal estimates of transit’s effect of bilateral commuting. The first two strategies exploit
historical maps of streetcar and proposed subway routes, and the third defines control pairs by
adjacency to treated pairs and provides a lower bound on the effect size. The effect of LA Metro
Rail is substantial: commuting increases by 11%-15% between connected tract pairs that both
contain stations by 2000. Slightly more distant pairs show increases of 9%-13%, and there is no
effect on tracts further away.

I describe and carefully estimate a quantitative economic geography model to translate the
commuting effects to welfare and account for general equilibrium effects. The model casts the
city as a collection of labor and housing markets (census tracts) connected by commuting, and
generates the gravity equation used to estimate commuting effects.2 However, the model requires
census-tract scaled labor and housing market elasticities that have not been rigorously estimated
before. I therefore develop a new strategy and assemble unique data to identify these parameters.
I first develop a local implementation of a shift-share instrument that exploits tract-level variation
in labor demand within the city. I instrument previously unused data on changes in average wage

1. See Redding and Turner (2015) for a review of this challenge and common solutions.
2. I show how the addition of rich commuting data allows this urban economic geography model to be expressed

by a system three linear (in log) equations. In this respect, the model is a within city analog of Roback (1982), but with
commuting. Albouy and Lue (2015) study larger-scale regional patterns using compensating differentials.
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at tract of work with this local labor demand shock to estimate a local (tract-level) labor supply
elasticity. This elasticity governs how responsive agents are to changes in prices, amenities, and
commuting costs, and is essential to translate treatment effects to utility. Estimates indicate a low
value, implying agents are heterogeneous in their preferred locations and relatively unwilling to
move in response to changes in local characteristics.

I next interact the tract-specific labor demand shocks with the spatial configuration of the
city to generate additional instruments that identify all remaining labor and housing elasticities.
Housing supply is inelastic and estimates reasonable for other parameters. In addition to param-
eterizing the model, this step recovers time-varying, tract-specific fundamentals that correspond
to non-commuting primitives that determine housing and labor supply and demand (such as
productivity and amenities). I estimate the effect of transit on these local fundamentals with a
difference-in-difference strategy, again using the historical streetcar and proposed subway routes
to select control tracts. This provides an explicit test whether transportation infrastructure alters
city structure through commuting or through other channels. The commuting effect dominates;
impacts from non-commuting channels (e.g., amenities) appear minimal.

Transit increases the attractiveness of commuting between connected tracts, leading to sub-
stantial benefits. Preferred estimates show that by 2000, LA Metro Rail generates $109-$146 mil-
lion in annual surplus, or $6-$8 for every ticketed ride. However, these benefits amount to no
more than one-half the annualized cost of construction and net operating expenses, depending
on the discount rate. I draw upon alternative data to test for further changes in commuting after
another fifteen years. Tracts first connected before 2000 see an additional increase in commuting
of 6%-11% by 2015, and tracts connected after 2000 experience a 12%-13% increase in commuting
by 2015. Taking these additional gains into account, benefits exceed operational subsidies, but
only exceed total costs (including capital expenditures) under a very low discount rate. This anal-
ysis suggests that rail transit is unlikely to be cost effective over its first two or three decades as
measured by its primary output, commuting.3

I also assess common methods and assumptions in the growing urban economic geography
literature (e.g., Ahlfeldt et al. 2015; Donaldson 2018; Monte, Redding, and Rossi-Hansberg 2018;
Tsivanidis 2018) with panel data for all tract-tract (bilateral) commuting flows and average work-
place wage; such data are typically unobserved. I compare observed commuting flows to standard
practice, which uses cross-sectional travel survey data to estimate the marginal disutility of travel
time and then infers changes in commuting from computer-modeled changes in travel time. Flow
data are prima facie preferable because changes in bilateral commuting implicitly summarize all
factors that influence usage (like cost and service reliability), in addition to travel time reduc-
tions. Panel flow data offer better measurement of the marginal disutility of travel time (gravity);

3. One important caveat is that while I calculate the commuting effects over a twenty-five year window, I can only
examine other channels between 1990 and 2000. Unmeasured benefits include increased mobility for non-commuters
(those unemployed or not in the labor force) and environmental factors.
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estimates are smaller than in the cross-section, reflecting the importance of time-invariant, pair-
specific characteristics in determining commuting. Commuting flows are also informative about
the connectivity between locations. Compared to measures of “market access”—which describe
potential connectivity—commuting based measures represent more heterogeneity and thus re-
flect a less smooth, and likely more realistic, urban geography. Finally, common practice recovers
workplace wage by assuming that wage perfectly determines employment (conditional on resi-
dential geography and travel time). These recovered wages poorly explain observed wages, and
identifying assumptions that rely on these recovered wages may be implausible. Using this data, I
find a smaller Fréchet shape parameter (labor supply elasticity) than typical, reflecting greater id-
iosyncrasy in location choice. All told, standard implementations of economic geography models
in cities miss some important aspects of the data.

Quantifying the effects of transit is challenging. A hedonic literature notes that commut-
ing benefits of transit are capitalized into housing and land prices (Baum-Snow and Kahn 2000;
McMillen and McDonald 2004). However, this approach primarily considers homeowners, ex-
cluding other commuters. Nor do hedonics easily isolate the commuting benefit; residential
amenities (Chen and Whalley 2012; Kahn 2007), disamenities (Bowes and Ihlanfeldt 2001), produc-
tivity, and expectations may play a role. Price spillovers are another concern, potentially violating
the stable unit treatment value assumption (SUTVA).4 Metropolitan-level analysis suggests that
public transit expansion may enhance aggregate productivity and employment growth (Chatman
and Noland 2014; Duranton and Turner 2012), but has at most a small effect on population growth
(Gonzalez-Navarro and Turner 2018). Such aggregate analysis avoids many issues, but cannot
capture local factors or study urban form.5

The particular research setting is of great interest: Metro Rail installed a relatively large rail
network with forty-six stations on four lines by 2000.6 The experience of Los Angeles is more
informative for most cities considering rail-based mass transit than studies from older, denser
cities (e.g., Gibbons and Machin 2005). It is an active line of inquiry whether new mass tran-
sit infrastructure in less dense cities provides appreciable benefits, particularly given the newer
role of cities as centers of consumption in addition to production (Baum-Snow, Kahn, and Voith
2005; Billings 2011; Glaeser, Kolko, and Saiz 2001). Interest in understanding the economic conse-
quences of Metro Rail has indeed been high, and there is a budding line of research on the topic.7

4. Gibbons and Machin (2005) show that transit can displace housing demand elsewhere; Donaldson and Hornbeck
(2016) discuss the importance of modeling general equilibrium when evaluating transportation infrastructure.

5. At the other end of the spectrum, transportation research often follows McFadden (1974) to study modal choice.
These models require knowledge of the components of travel costs (travel time, reliability, complementary activities,
etc.) and agents’ choice sets. However, these models typically do not endogenize agents’ workplace and residence
decisions, and empirical estimates vary widely. Summarizing many studies, Small and Verhoef (2007) notes value of
time estimates vary from 35%-84% of wage rate for commuting, and from 20%-90% of wage rate for personal travel.

6. Metro Rail officially ran three lines during this period, but one line had two branches and was later separated to
form two separate lines.

7. Schuetz (2015) shows little change in employment near new Metro Rail stations, and Schuetz, Giuliano, and Shin
(2018) asks whether zoning might hinder transit-oriented development near rail stations. Redfearn (2009) studies het-
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Relative to this literature, I use new data to study a new outcome (commuting flows), develop a
comprehensive identification strategy, and report credible estimates of welfare impacts.8

The paper proceeds to describe the setting in Section 2 and data in Section 3. Section 4 describes
identification and estimation of the commuting effect. Section 5 then develops and characterizes
the spatial economic geography model. Section 6 discusses the second identification challenge:
recovering the structural elasticities that parameterize the model. I then report estimates of these
elasticities and the non-commuting effects of transit in Section 7. Section 8 describes commuting
welfare estimation and results, and Section 9 discusses extensions. Section 10 concludes.

2 Setting: Commuting and Transit in Los Angeles

The automobile has dominated commuting in Los Angeles throughout much of the 20th century.
Among the five US Metropolitan Statistical Areas (MSAs) with at least 5 million residents in 1980,
Los Angeles residents were the most likely to commute alone in private vehicles and less than half
as likely to take transit as the next least transit intensive MSA. The dominance of the automobile
and complex geography prone to bottlenecks meant that Los Angeles consistently ranked as the
most congested urban area in the United States. The average trip in LA took one-third longer than
the uncongested time, three times the national average delay (Schrank et al. 2015).

Growing concerns about congestion in the 1970s and 80s were not new. Angelenos adopted
automobiles in large numbers during the rapid growth of the 1920s, leading to early complaints of
crowded streets.9 By the 1960s, momentum for a transit solution was growing. After several failed
referendums, Los Angeles passed Proposition A in 1980, a sales tax increase partially dedicated
to transit. Proposition A suggested only vague corridors to allow later community involvement
(or political wrangling). The plan would eventually combine heavy rail (subway) and light rail
operations to create an interconnected urban rail transit system. Construction began in 1985.

The first light rail line (the Blue Line) opened in mid-1990 (though construction delays meant it
did not reach its urban termini until early 1991). The subway portion experienced several routing
changes and first opened in 1993. This line was expanded, with additional stations opening in
1996 and 1999 (the subway is now run as two lines, Red and Purple). Another light rail line
initially meant to connect to the international airport (the Green Line) opened in 1995 largely in
the median of a new freeway, but was also rerouted. I discuss routing decisions (and shocks) and
the timing of openings in the context of identification in Section 4.

erogeneity in the capitalization of the transit amenities in Los Angeles. Anderson (2014) uses transit worker strikes to
study congestion spillovers to nearby highways.

8. The use of historical and proposed routes is a mainstay of regional economics (e.g., Baum-Snow 2007), but these
tools are only just beginning to be applied within cities (e.g., Heilmann 2018). The adjacency approach applies the
intuition of Dube, Lester, and Reich (2010) to bilateral flow data.

9. Chicago had fewer cars entering its urban core in a twenty-four period than Los Angeles did in half a day in the
early 1920s, despite having a population more than twice as large (Kelker, De Leuw & Company 1925).
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Though I primarily focus on the system by 2000, LA Metro Rail continues to grow. Two lines
have already opened and expanded. The Expo Line reached Culver City (another major employ-
ment center) in 2012 and now extends to Santa Monica, connecting the system to both the beach
and another employment hub. The Gold Line first opened in 2003 and now connects downtown
LA with areas to the east and southeast. The system currently operates 6 lines, 93 stations, and
about 106 miles of rail; current construction will add another line and 17 stations.

3 Data

I develop a panel of tract-level outcomes in 1990 and 2000 that covers Los Angeles County and
four adjacent counties (Orange, Riverside, San Bernardino, and Ventura). This five-county area
is economically distinct from other conurbations and captures most relevant local interactions.
While there is a rich amount of data available, there are some difficulties in obtaining consistent
data over the sample period. I briefly discuss my solutions to these issues and data sources,
additional details can be found in the Appendix.

Geo-normalization. The standard unit of observation is a census tract or tract pair under 1990
Census geography. Tract definitions change over time, and data products that provide consistent
geographies do not include many of the primary variables of interest in this study. I normalize to
1990 geography because it involves the least amount of data manipulation and minimizes round-
ing issues. For data from 2000, I collect data at the block group or tract level. I overlay the 2000
geographies on 1990 tract definitions to spatially assign them to 1990 tracts. For block groups that
map into multiple tracts, I weight block groups to tracts proportionally by area.

Commuting flow data. The primary sources for tract-to-tract commuting flow data are the
1990 and 2000 Census Transportation Planning Packages (CTPP). The CTPP reports aggregate
commuting flows between traffic analysis zones, average travel time, some modal information,
and various other tabulations. In Los Angeles, traffic analysis zones mostly overlap census tracts;
I adjust where necessary. I normalize geographies to 1990 and construct a panel of tract-to-tract
commuting flows. Data suppression standards change across CTPP waves, so I apply consis-
tent rounding and suppression rules when combining data across years. In Section 9, I develop
a similar dataset covering 2002 and 2015 using LEHD Origin Destination Employment Statistics
(LODES), normalized to 2010 geographies. Because of methodological differences in data collec-
tion, I do not combine CTPP and LODES.

Place of residence and place of work data. I draw aggregate data on residential census tracts
and block groups from the National Historic Geographic Information System (NHGIS). I also
use Geolytics’ Neighborhood Change Database (NCDB) to validate identifying assumptions. The
CTPP contains average tract of work wage data unavailable elsewhere, and employment by indus-
try (in 18 aggregate Standard Industrial Classification (SIC) codes). I trim this data to exclude
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implausible changes between 1990 and 2000 levels (see Appendix for discussion). More recent
CTPP products do not include workplace wage, which is the primary data limitation that restricts
my primary analysis to the 1990-2000 period.

Transit data and treatment; other data sources. I obtain shapefiles with location data on Metro
Rail transit stations and lines from the Los Angeles County Metropolitan Transportation Author-
ity (LACMTA) and combine this with published information on the timing of station and line
openings. To construct labor demand shocks, I draw from IPUMS microdata on all workers out-
side of California from the 1990 and 2000 Censuses. I obtain a panel of spatial land use data from
the Southern California Association of Governments (SCAG). I also draw extensively from Kelker,
De Leuw & Company (1925), which includes maps of a proposed subway system and of former
streetcar lines operated by the Pacific Electric Railroad (PER).

4 Commuting Effects of LA Metro Rail

The number of people commuting from residential tract i to workplace tract j at time t, denoted
Nijt, depends on residential tract characteristics, θit, workplace tract characteristics, ωjt, and travel
costs τijt. Let T denote some function of proximity to transit. Commuting is:

Nijt = Nijt

(
θit(Tit), ωjt(Tjt), τijt(Tit, Tjt)

)
(1)

The commuting effect of transit captures how connecting i and j changes commuting through
travel costs τijt. Equation (1) shows that transit can also shift residential or workplace characteris-
tics. Simple regression of commuting flows on transit will not generally differentiate commuting
effects from other margins—even if well identified. I discuss identification the commuting effect
of transit, ∂N∂τ

∂τ
∂T , below, and separately estimate other margins in Section 7.

I rely on both the bilateral and temporal aspects of the flow data. Bilateral data provide a
flexible way to control for residential and workplace characteristics and shocks. Temporal vari-
ation allows pair-specific fixed effects that control for time-invariant pair characteristics. Let Tijt
be a function of Tit and Tjt that denotes proximity to transit at both origin i and destination j. I
estimate:

ln(Nijt) = ωjt + θit + ςij + λDTijt + εijt (2)

where ςij are pair fixed effects and the error captures unobserved, pair-specific shocks to commut-
ing between two locations. Because residential and workplace tract-by-year fixed effects capture
non-commuting effects of transit, λD is the average commuting effect of transit. Equation (2) is
a panel gravity equation, where distance is subsumed (and flexibly controlled for) by the time
invariant pair fixed effects (e.g., Baier and Bergstrand 2007).10 I directly model the effect of transit

10. One concern is thatNijt = 0 for some observations, so ln(Nijt) is undefined. In most specifications, I follow much
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on commuting flows, rather than inferring effects from changes in travel time.
Treatment is defined as proximity of both a residential and a workplace tract to LA Metro Rail

stations. I use three binary definitions of treatment:

i) O & D contain station: both tracts either contain a transit station or have the centroid within
500 meters of a transit station,

ii) O & D <250m from station: both tracts have some part within 250 meters of a transit station,

iii) O & D <500m from station: both tracts have some part within 500 meters of a transit station.

For ease of interpretation, these are mutually exclusive and represent sequentially less access to
transit. For example, tracts that satisfy O & D <250m from station are recoded to not satisfy O
& D contain station. The median tract is 1.38km2, so the O & D <250m from station bin roughly
corresponds to a catchment area of (0km,1.42km] from the station. Only stations open before the
end of 1999 are used to define treatment.11

In some specifications, I supplement Equation (2) with additional covariates and fixed effects:

ln(Nijt) = ωjt + θit + ςij + λDTijt + ιsisjt + x′ijtβ + εijt (3)

Subcounty-by-subcounty-by-year fixed effects, ιsisjt, capture regional shifts in commuting pat-
terns. This allows flexible trends in economic integration between pairs of regions (e.g., down-
town to west Los Angeles), and limits the variation identifying λD pairs of tracts within the same
pair of subcounties. There are few observable, time-varying, pair specific covariates to include
in xijt, but two are potentially important. First, I add controls for proximity to the Century Free-
way, which opened in the mid-1990s and along which the Green Line runs (see Brinkman and Lin
(2017) for local effects of highways). Travel time is also important, but I do not have a time varying
measure of travel time for all pairs of locations. Pair-fixed effects ςij capture most of this variation.
Further, travel time may respond to transit (making it a ‘bad’ control, or collider).

4.1 Identification

Equation (2) is a bilateral flow analog to difference-in-difference (DD) estimation, supplemented
with origin- and destination-by-year fixed effects. Identification requires parallel counterfactual

of the trade literature and exclude pairs with zero flows. There are a few reasons why this reasonable in my setting.
Most pairs connected by transit have non-zero flows, and there is little difference in zero and positive commuting be-
tween treated and untreated pairs. I estimate high-dimension fixed effects Poisson PML models for some specifications,
and results are qualitatively and quantitatively similar (see Appendix). This is because most pairs that are ever zero
(in either 1990 or 2000) are always zero. Always zero pairs do not contribute any variation to models with pair fixed
effects; persistent zeros in panel data are less problematic than in the cross section.

11. The earliest stations opened in July 1990 along the Blue Line, after enumeration of the 1990 Census (in April).
The Blue Line did not become fully operational until early 1991 after both endpoint stations opened. Three Red Line
stations were completed in each of 1999 and 2000: stations completed in 1999 are included, those completed in 2000
were finished after Census enumeration and so are excluded.
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trends: In the absence of treatment, commuting between treated and control tract pairs would
have evolved similarly on average, conditional on separable changes to residential and workplace loca-
tions. This conditioning substantially relaxes standard DD identification. Time-varying origin and
destination fixed effects largely control for the non-random siting of transportation infrastructure,
as well as other potentially confounding shocks (e.g., to school quality, zoning, etc.)

Identification is instead threatened by the placement of transit routes to connect pairs of loca-
tions that would have experienced differential changes in commuting anyway. I limit selection in
route placement by drawing on historical data giving the locations of a proposed subway network
and former streetcar lines. These locations select pairs of tracts that could have plausibly received
transit by 2000 and that share common historical land use and transportation characteristics that
may still influence urban outcomes today. Thus, commuting between selected locations likely
evolves in a similar counterfactual manner.12 I describe the key pieces of evidence supporting this
below.13

I draw from Kelker, De Leuw & Company (1925), which details a feasible rail transit network
designed to accommodate Los Angeles’ booming population in the 1920s. The plan was defeated
largely because of skepticism over private rail management and local opposition to elevated por-
tions of the line.14 This document also shows Pacific Electric Railroad (PER) lines installed in 1925.
The PER, colloquially called Red Cars, was an at-grade railway system that served Los Angeles
through 1961. I define two samples as the union of pairs of tracts near LA Metro Rail by 2000
and pairs that lie within 1km of: (i) the Kelker, De Leuw and Co. subway proposal, “1925 Plan
Sample”; or (ii) PER lines, “PER Sample”. The 1925 Plan Sample itself has two variants: an imme-
diate plan meant to be built right away, and the full plan meant to accommodate build out. Maps
from Kelker, De Leuw and Company (1925) are shown in Figure 1; treated and control tracts are
mapped in Figure 2 (pairs are difficult to map).

The validity of these groups as controls is supported by several lines of reasoning and evi-
dence. First, many control pairs contain one ‘end’ (either the origin or destination) that is treated,
though the other end is not. Such control pairs compare changes in the commuting behavior of
residents of i who work in j (which receives a transit linkage) and those who work in j′ (which
does not). Similarly, workers in j who reside in i are compared with those who reside in i′. These
comparisons control for many potential unobserved motives for changing commuting behavior.

12. Following Baum-Snow (2007), researcher increasingly use historical plans for exogenous variation in infrastruc-
ture placement. I use historical data to select controls rather than instrument for route location, primarily because
Brooks and Lutz (2016) find path dependent effects of historical transit infrastructure. Their finding invalidates histor-
ical networks as instruments within cities, but does suggest their use to define matched control groups.

13. I also develop a bilateral adaptation of the spatial adjacency approach of Dube, Lester, and Reich (2010). This
approach, detailed in Appendix F, provides an alternative identification strategy that only compares changes in com-
muting between a treated pair of tracts to changes in commuting to doubly adjacent tracts. Estimates provide a lower
bound on the effect size if the spatial catchment of treatment is incorrectly defined.

14. The transit system was to be run by Southern Pacific Railroad, which had a significant (and perhaps overlarge)
influence on regional politics (Fogelson 1967). Many of these alignments are part of modern LA Metro Rail.
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Second, route determination was impacted by many factors besides transportation patterns.15

Routes were designed to satisfy political pressures, ensure political support for allocating revenue
to rail projects, and spur political favor for one of the two agencies overseeing rail in Los Angeles.
To illustrate, politicians demanded that heavy rail serve the San Fernando Valley, despite the cost
and difficulty of doing so. It was also deemed necessary to connect Long Beach to ensure their
portion of state gas tax revenue could be diverted to rail funding. At one point, a serpentine route
under consideration was dubbed the ‘wounded knee’ because its illogical shape touched many lo-
cal political jurisdictions. Furthermore, the two agencies overseeing rail had different motivations
and different supporters. The Los Angeles County Transportation Commission promoted light
rail and a broad service area, while the Southern California Rapid Transit District promoted heavy
rail downtown and along dense corridors. The two agencies half-cooperated, half-competed for
limited funds, each seeking the lead role in a viable system. In sum, “politics, outside circum-
stances, and the geography of power . . . played an outsized role in influencing where the new rail
lines would go” (Elkind 2014, p. 50).

There was also significant variation in timing and prioritization of route construction, due
largely to reasons orthogonal to transit demand. Most notably, a geologic shock delayed the west-
ward expansion of the Red/Purple Line by roughly 30 years. The original routing for this line was
to run along Wilshire Boulevard, one of the densest corridors in Los Angeles (as dense as much
of Manhattan). Methane seepage into a nearby Ross Dress-for-Less store exploded on March 24,
1985, leading to federal legislation restricting tunneling along Wilshire. This corridor has appeared
in almost every transit plan from the 1920s until today, and both 1925 Plan and PER Samples select
it as a control. The Green Line route was chosen to minimize construction costs by lying partially
within an under-construction highway. The westward end was first meant to connect to LAX (Los
Angeles’ main airport), but concerns about electromagnetic interference raised by the Federal Avi-
ation Administration disrupted a feasible alignment. The route was then changed to connect to
the aerospace and defense complex around Redondo and El Segundo, but the end of Cold War led
to the decline of this area even as construction on the line was completed. A connection to LAX
is now under construction, and many other tracts selected as controls have become treated as the
network expands.

Furthermore, both treated and selected control tracts tend to be near historical transit corridors.
Rail transit requires and generates relatively linear corridors, as exhibited by both transit and
control routes. Proximity to historical transit also generated persistent changes in land use. Brooks
and Lutz (2016) show that locations that use line streetcar routes still show greater density than
other areas, and that these differences have grown over time. Locations selected as controls are
therefore more likely to be on similar land use trajectories as treated locations.

15. These arguments draw on the excellent historical account of the evolution of LA Metro Rail in Elkind (2014), who
notes that “plotting a subway through the politically decentralized landscape of Los Angeles meant ceding control to
numerous fiefdoms of federal, state, and local politicians” (p. 70).
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Finally, I provide econometric evidence to support the choice of control pairs. Tract-tract com-
muting data before 1990 are unavailable, so I cannot provide direct evidence of parallel flow pre-
trends. However, I compare pre-trends of some economic, transportation, and sociodemographic
aspects in residential tracts using NCDB data from 1970 to 1990.16 The primary economic vari-
ables used throughout this paper show little evidence of differential pre-trends in between treat-
ment and control groups: employment, households, income, and housing values are generally on
similar trends (Appendix Table F1). Tracts treated by 2000 are becoming less college-educated,
have slightly higher poverty rates, and less mobility, however. Transportation behaviors between
treated and control tracts are generally on parallel trends before 1990, though tracts that become
treated show slightly more transit use (Appendix Table F2). Because pre-trends are generally par-
allel, and any tract-level differences are absorbed by the tract-by-year fixed effects in Equation (2),
the unobserved pre-trends in flows are likely also parallel.

4.2 Commuting Flow Estimates

Table 2 indicates that LA Metro Rail led to an average increase of 10%-16% in commuting between
tracts nearest transit stations by 2000. Results are significant across control group specifications,
and robust to the inclusion of subcounty pair-by-year fixed effects and controls for highway prox-
imity. Only tracts containing or within 250m of a station show a significant effect; more distant
tracts more distant do not change. Results are largest using the 1925 Subway Plan control groups,
varying between 11% and 16%. Estimates are smaller using the PER control group, and smallest
(but still significant) with the full sample. Columns 1-5 use a ‘loose’ network, in which tract pairs
with one treated and one control tract are retained. Column 6 uses a ‘tight’ network that excludes
such pairs. This distinction makes little difference in the 1925 Plan samples, but ‘tight’ estimates
shrink in the PER Sample. Standard errors are clustered along three dimensions to be robust to
most error structures: tract pair, residential tract, and workplace tract.17

The results in Columns 4 and 5 further include subcounty pair-by-year fixed effects to account
for secular interregional changes in commuting patterns. These fixed effects increase the size of
most estimated effects. Finally, column 5 adds controls to account for the opening of the Century
Freeway in southern Los Angeles County. Inclusion decreases point estimates by a small amount,
but estimates of the effect of transit on commuting flows are still substantial and significant.

The rich commuting flow data permit modeling heterogeneity by origin and destination prox-
imity and tract connection (reported in the Appendix). Interacting proximity measures for ori-
gin and destination tracts indicate a greater effect of proximity at the destination than the origin
(though estimates are less precise). This suggests commuters are more comfortable traveling a

16. NCDB is, by default, normalized to 2010 geographies. I use the same treatment rules, but this results in higher
observations counts due to denser tracts in 2010 than 1990.

17. Adjacency based estimates, shown in Table F7, support the finding that the tract pairs nearest stations experienced
increased commuting.
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larger distance to a rail station from home than from a rail station to work. Additional results
show that only pairs connected by the same line show a significant increase in commuting. I do
not find evidence of heterogeneous treatment effects by origin-destination distance.

4.3 Commuting Time Estimates

A common expectation of rail transit is that it will relieve automobile congestion. I use changes in
reported CTPP travel times to test whether transit decreases congestion:

τijt = ωjt + θit + ςij + λτ,2km1ij within 2 km,t + λτ,4km1ij 2 to 4 km,t + εijt (4)

where τijt is the average reported travel time from i to j in year t. I use two mutually exclusive
indicators for whether the pair lies within a 2km or 4km corridor of the subway system. Ideally,
I would observe which pairs require driving routes that are potentially affected by transit. Wide
corridors capture routes most likely impacted.

Table 3 shows results for three measures of travel time: average travel time across all modes,
log average travel time across all modes, and average travel time for private cars. For the first two
measures, I include a control for immediate transit station proximity so as to capture confounding
travel time changes for rail commuters. Across all three measures, simpler models yield significant
decreases of 1.3-1.4 minutes, or about 3.2%. Results remain negative but are insignificant with
subcounty pair-by-year fixed effects. While this suggests that there is no congestion effect, the
fixed effects may absorb potentially useful variation. I find no evidence of increased commuting
within the 2km bandwidth.

These results are informative about long run attenuation of the results in Anderson (2014), who
finds that a temporary labor strike disrupting LA Metro Rail service in 2003 increased nearby au-
tomobile congestion. Travel demand is particularly responsive to short run changes in congestion,
so it is unclear how to map temporary to long run responses. For example, Duranton and Turner
(2011) find no aggregate evidence that transit decreases automobile travel.18 When significant, the
results in Table 3 are roughly one-quarter to one-third those in Anderson (2014). This suggests
substantial or complete attenuation of congestion benefits.

4.4 Comparison with Market Access Terms

I compare the direct, commuting based measures of the effect of transit shown above to those
implied by the ‘market access’ approach increasingly used to evaluate transportation infrastruc-

18. At play is the ‘Fundamental Law of Congestion’ (Downs 1962). If this holds, then any improvements to con-
gestion, or air pollution, are transitory; the primary role of transit is enable a larger population. Empirical evidence
generally supports this ‘law’ (e.g., Duranton and Turner 2011; Hsu and Zhang 2014).
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ture.19 Market access terms abstract from two aspects of urban commuting. First, origin-destination
pair fixed effects control for and retain rich, persistent variation in commuting between locations.
At an urban scale, many idiosyncrasies (e.g., schools, parks, job types) determine commuting pat-
terns. These slowly-evolving patterns are not captured by market access terms. Second, market
access terms weight changes in connectivity by characteristics of the destination (e.g., by popula-
tion or wage). Increasing connectivity between two populous locations can therefore have a large
impact on market access, even with zero commuting between them.

The costs of these omissions can be evaluated with panel commuting flow data. Define two
measures that summarize the relative commuting effect of transit at tract of residence:

∆ΞCFi =

∑
sNis∑

s(1− λDTis)Nis
− 1 , ∆ΞMA

i =

∑
s e
−κ̃τisYs∑

s e
−κ̃τis(1− λDTis)Ys

− 1

ΞCFi uses commuting flow data while ΞMA
i is an employment-weighted market access measure.

Employment at j is captured by Yj =
∑

rNrj and, by analogy to the trade literature, is meant to
represent market size. I construct two variants of market access: ΞMA,0

i is the traditional definition
that assumes all locations are connected, while ΞMA,+

i excludes locations that never have a positive
flow in any period (as ΞCFi does implicitly).

Table 4 compares each of the market access measures to ∆ΞCFi at treated locations for several
values of κ̃. There are several takeaways. First, market access terms require knowledge of the
disutility of commuting time, κ̃, and estimates are sensitive to the value chosen. This parameter
is typically estimated in the cross-section. I show (in Appendix G) that panel estimation leads to
substantially smaller values.20 Cross-sectional estimation also ignores pair-specific, time-invariant
determinants of commuting. Distance and travel time only explain about 20% of the variation in
these fixed effects. Clearly, other elements matter as much or more than distance or travel time.

The mean impact is similar for ΞCFi and ΞMA,+
i , but ΞMA,0

i has a much smaller mean. Intu-
itively, ΞMA,0

i includes many more destinations to with which there is no change in commuting,
decreasing the average. Finally, both market access terms underpredict the variation in how im-
pacted by transit locations are. Figure 3 visually compares the three terms using κ = 0.05 and
shows the divergence of commuting and market access terms. Differences in the mean and vari-
ance of predicted effects matter. Mean effects are smaller using market access terms, suggesting
that these terms consistently underpredict changes in accessibility. At the same time, smaller vari-

19. Standard practice proceeds: (1) Use a computer-modeled transportation network to evaluate transit infrastruc-
ture’s impact on travel time. (2) Estimate the marginal disutility of travel time from a cross-sectional commuting sur-
vey. (3) Infer changes in commuting by combining (1) and (2). (4) Calculate change in access by interacting (3) with a
characteristic (e.g., population or total income) of a nearby location, then sum over all nearby locations. This approach
is useful because travel times are much easier to model or scrape than to observe in situ.

20. With a pair fixed effect, κ is almost 0, though this regression is particularly prone to attenuation from measurement
error. Two-step estimation that first estimates pair fixed effects from the panel then regresses these fixed effects on travel
time in the cross-section consistently gives a κ = −0.02.
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ation dampens the effect of treatment on the most impacted places, smoothing modeled economic
impacts. An approach based on commuting flows, while more data intensive, leads to a more
accurate portrait of commuting behavior and responses.

5 A model of urban location choice

To translate the effects of transportation infrastructure to welfare, I describe a quantitative urban
model of residential and workplace choice with commuting that microfounds spatial interactions
between housing and labor markets. The city consists of a collection of N locations, operational-
ized as census tracts, that each contain a labor market and a housing market. There is no restriction
on where agents live and work conditional on being within the city, so agents choose the location
pair that maximizes utility conditional on commuting costs. The model links local, observable
equilibrium outcomes to unobservable economic fundamentals.

The model is similar to that of Ahlfeldt et al. (2015), with five differences: (i) origin-destination
pairs are subject to idiosyncratic preferences, (ii) local housing supply can be exogenously shifted,
(iii) the model can be rewritten as a system of three log-linear equations that exploit the unique
data, (iv) land use is exogenously determined between housing and productive uses, and (v) ag-
glomeration and consumption externalities are excluded from the primary model. The first two
differences are useful generalizations that rationalize variation in observed commuting flows. The
latter two match the empirical setting, simplify exposition, and have little impact (there is little
scope for land use adjustment and externalities are essentially time invariant and captured by
tract fixed effects). I detail relaxing these assumptions in Section 6 and the Appendix; results are
robust to their incorporation.

Joint market household decision: Labor supply and housing demand

Atomistic households make location and consumption decisions. For the location decision, house-
holds choose a tract of work and a tract of residence. Conditional on choosing to live in location i,
households face per unit housing costs Qi and receive amenity B̃i. Conditional on choosing place
of work j, households inelastically provide one unit of labor in exchange for wage Wj . Given the
joint location choice and prices, households make decisions over consumption of housing and a
composite good. Specifically, household o chooses location pair ij, consumption C, and housing
H to maximize the following Cobb-Douglas utility function:

max
C,H,{ij}

Uijo = max
C,H,{ij}

νijoB̃i
δij

(
C
ζ

)ζ ( H

1− ζ

)1−ζ
s.t. C +QiH = Wj

where νijo is household o’s idiosyncratic preference for location pair ij. The cost of commuting
between i and j is captured by δij ≥ 1. The share of household expenditures on housing is 1 − ζ.
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Indirect utility conditional on location pair ij is:

vo|ij =
νijoB̃iWjQ

ζ−1
i

δij

Given this specification, optimal housing consumption for household o conditional on location
pair ij is given by Hijo = (1− ζ)Wj/Qi.21

To map indirect utility to choice probabilities, assume νijo is distributed Fréchet with scale
parameter Λ̃ij = TiEjDij and shape parameter ε > 0. The cdf of ν is thus:

Fij(ν) = eTiEjDijν
−ε

The scale parameter captures mean idiosyncratic preference for location pair ij: Ti captures the
mean utility of residing in i, Ej the mean non-wage utility of working in j, andDij an unobserved
pair-specific shift in the utility of a particular commute. The shape parameter governs the degree
of homogeneity in preferences: for high ε, agents view location pairs homogeneously, while for
low ε, their valuations are heterogeneous. With this distributional assumption, utility maximiza-
tion yields a simple proportional formula for commuting flows. The share of the population that
chooses residential location i and place of work j is:

πij =
Λ̃ij

(
δijQ

1−ζ
i

)−ε
(B̃iWj)

ε∑
r

∑
s Λ̃rs

(
δrsQ

1−ζ
r

)−ε
(B̃rWs)ε

(5)

To relate commuting shares to observable commuting flows, multiply πij by the population of the
market as a whole (N̄ ), so that Nij = πijN̄ .

The city can be viewed either as existing in autarky or being nested in a large, open economy.
This assumption makes little difference outside of welfare calculations (due to homothetic prefer-
ences). In an open economy, no spatial arbitrage requires that the average welfare from moving to
the city equal the reservation utility of living anywhere else. The expected value of moving to the
city is:

E[Uijo] = Γ

(
ε− 1

ε

)
·

[∑
r

∑
s

Λ̃rs

(
δrsQ

1−ζ
r

)−ε
(B̃rWs)

ε

]1/ε

(6)

where Γ(·) is the gamma function and the aggregate population N̄ is implicitly defined. Free
mobility thus requires E[Uijo] = Ū , and aggregate population changes to maintain Ū .

21. Any indirect utility function with a multiplicatively separable idiosyncratic component could be employed. For
example, the sorting literature uses a nested CES parameterization (Epple and Sieg 1999). Davis and Ortalo-Magné
(2011) show that expenditure shares on housing are relatively constant through time in cities in the United States, sup-
porting the Cobb-Douglas assumption. I retain this assumption to maintain comparability with the existing literature.
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Production: Labor demand

A continuum of measure zero firms produces a globally tradable commodity in each location j

under perfect competition.22 Firms select competitively available labor NY and land LY inputs
to maximize profits under constant returns to scale.23 Production is multiplicatively separable in
local productivity Aj and a technology that is identical across j:

Y = AjF (NY
j , L

Y
j ) (7)

Because of the atomistic size of firms, land use decisions are made in accordance with profit max-
imization despite the locally fixed available quantity of land.24 Perfect competition in labor mar-
kets implies that firms pay workers the marginal product of labor: Wj = AjFN (NY

j , L
Y
j ). I assume

Cobb-Douglas production technology: F (NY , LY ) = (NY )α(LY )1−α. Inverse labor demand is
given by:

Wj = αAj

(
LYj

NY
j

)1−α

(8)

Housing supply

Housing is produced by measure zero builders using land for housing LH and material inputs M .
A local, multiplicatively separable housing productivity term C̃i captures local cost drivers such as
geography (e.g., terrain) and regulation. Materials are readily available in all locations at the same
cost, but aggregate local land supply for housing is predetermined.25 Convexity in land pricing
serves as a congestive force, driving up prices in desirable locations until agents look elsewhere.
I specify Cobb-Douglas housing production: H = (LH)φM1−φC̃i.26 Developers sell housing in
location i in a competitive market at unit price Qi to maximize profit: QiH − PLi LH − PMM . The
price of construction materials PM is exogenous and common to all locations.

Because detailed data on housing production is not available, I utilize the zero profit condition
to develop an empirical formula for housing costs. The first order condition of developer profit

22. The primary focus of this study is the flow of people rather than the flow of goods, so I assume that goods are
uniformly available and globally traded.

23. A number of recent papers that compare metropolitan outcomes permit heterogeneity in workforce productivity,
generally by education level (Diamond 2016). Other work has focused on the interaction of skill and the distribution
of economic activity within and across cities (Davis and Dingel 2014). I abstract away from this in an effort to focus on
very local effects — in the empirical application, what is one metropolitan statistical area elsewhere is here more than
2,500 unique locations.

24. Individual firms make unconstrained input decisions, but aggregate land use is predetermined, as is standard in
many urban models, e.g., Glaeser et al. (2008).

25. This simplifies the model while maintaining fidelity to the setting. Strong zoning and the medium time frame of
this study may not match the temporal patterns required for land use change; many studies of land use or housing
supply examine only long-run changes (e.g., Saiz (2010) uses a thirty-year window). Including land use measures does
not greatly change identification or results. There is little evidence of differential land use near transit.

26. Ahlfeldt et al. (2015), Combes, Duranton, and Gobillon (2012), and Epple, Gordon, and Sieg (2010) show that
Cobb-Douglas works well for floor space production with land and material inputs in several settings.
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with respect to construction materials gives:

Qi =
PM

(1− φ)C̃i

(
M

LH

)φ
(9)

Substituting this into into the developer’s profit function and enforcing the zero profit condition

implied by perfect competition gives construction material demand: M∗ = 1−φ
φ

LHPLj
PM

. Enforc-
ing zero profits gives Qi = (PLi L

H + PMM)/((LHi )φM1−φC̃i). Substituting in M∗ gives the cost
function: Qi = Ci(P

L
i )φ, where Ci = (PM )1−φ/(1 − φ)1−φφφC̃i captures the inverse efficiency in

housing production.
The price of land, PLi , responds to changes in demand and land availability: I parameterize it

as a function of local housing density PLi = (Hi/L
H
i )ψ̃, where the parameter ψ̃ > 0 captures local

price elasticity of land with respect to density.27 This parameter provides a congestive force to
the model. Combining the expression for land price with Equation (9) and compressing notation
relates housing supply, price, and land availability:

Qi = Ci

(
Hi

LHi

)ψ
(10)

where ψ = ψ̃φ. As housing productivity C̃i increases, Ci falls, so increases in housing productivity
(decreases in Ci) increase the quantity of housing supplied at any price.

Equilibrium characterization

In equilibrium, labor and housing markets clear in all locations. Labor market clearing requires
that local labor demand equal supply:

NY
i =

∑
r

N̄πri (11)

Commuting shares (1) determine employment in any location. With frictional commuting, work-
ers benefit from residing near work locations. Given the assumptions on household preferences,
housing demand is a constant fraction of the ratio of wage to housing price. Aggregate housing
demand in i is the sum of wage-rent ratios weighted by commuting flows—this takes into account
heterogeneity in income stemming from variation in place of work. Housing market clearing re-
quires that the local housing supply equal demand:

Hi = (1− ζ)
∑
s

N̄πis
Ws

Qi
(12)

27. I discuss an alternate way to close the model in the Appendix. Because I have data on land use, rather than floor
space or use, I frame the model and analysis in terms of land.
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Given model parameters {α, ε, ζ, ψ, κ}, reservation utility Ū , vectors of land availability by use
{LY,LH}, vectors of residential fundamentals {B̃,C,T}, vectors of place of work fundamentals
{A,E}, and matrices of residential-place of work pair fundamentals {D, τ}, an equilibrium is
referenced by price vectors {W,Q}, commuting vector π, and scalar population measure N̄ .

Proposition 1 (Existence and uniqueness). Consider the equilibrium defined by equations (6), (9), (11),
(12), and (13):

i) At least one equilibrium exists across residential locations with strictly positive quantities of residen-
tial land and work locations with strictly positive quantities of land used in production.

ii) There is at most one equilibrium if

2ε(ε+ 1)(1− α)(1− ζ)

1 + ε(1− α)
− 1 ≤ 1

ψ
(13)

Proof. See Appendix.

Existence makes use of the assumption that land use is predetermined and requires that pos-
itive residential land translates to a positive measure of residents and that positive land in pro-
duction translates to a positive measure of workers. However, existence does not require positive
commuting flows between all locations. The presence of zero commuting flows is a common char-
acteristic of commuting data. The uniqueness condition requires that the elasticity of housing
supply (1/ψ) be larger than a function of preference homogeneity and other parameters. The left-
hand term is increasing in ε: The more homogeneous preferences are, the more elastic housing
supply must be to ensure a single equilibrium.28

Recovering fundamentals

The model may have multiple equilibria (though this is unlikely given the low value of ε in Section
6). Regardless, for a given set of parameters, there is a unique mapping from the observed data to
local fundamentals. Model parameters are estimated using these fundamentals and the observed
values of the endogenous variables in combination with instruments to define moment conditions.
B̃i and Ti enter isomorphically; letBi = TiB̃

ε
i and Λij = BiEjDij .29 Local fundamentals A, C, and

Λ can be expressed as unique functions of data and parameters:

28. In this setting, agglomeration in production does not alter the equilibrium uniqueness condition.
29. This mapping diverges from Ahlfeldt et al. (2015), where local fundamentals consist of a composite workplace

term that combines A and E, a residential term that combines B and T, and omits location or pair specific variation
in housing supply C or commute utility D. The components of Λ are not uniquely identified from the data; I use
statistical arguments to separate B, E, and D.
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Proposition 2 (Residual uniqueness). Given parameters {α, ε, ζ, ψ, κ}, observed data {W,Q,π, N̄},
and commuting times τ , then there exists a unique set of fundamentals {A,C,Λ} that are consistent with
the data being an equilibrium of the model.

Proof. See Appendix.

6 Identification and estimation

Local labor and housing market elasticities provide the mapping between local fundamentals (and
interventions that shift them) and observed prices and quantities. Consistent estimates of the
elasticities are required to use observable data to learn about changes to local fundamentals and
to simulate counterfactual scenarios. I develop an identification strategy that uses panel variation
in wages at place of work, housing prices, and commuting flows, permitting the incorporation of
tract and tract-pair fixed effects to flexibly control for unobserved, time-invariant characteristics
that confound identification. This is important as persistent, difficult-to-measure characteristics
can play an anchoring role in cities (Lee and Lin 2018).

All components of the model are expressed in the commuting flow (1), wage setting (8), and
housing price (10) equations. Taking logs delivers a tractable linear system:

wj = g0 + (α− 1)nYj + ln(Aj) (14)

nij = g1 + εwj − ε(1− ζ)qi − εκτijt + ln(BiEjDij) (15)

qi = g2 + ψhi + ln(Ci) (16)

where nYj = ln
(
N̄
∑

r πrj/L
Y
j

)
is log employment density, hi = ln

(
(1− ζ)N̄

∑
s πisWs/QiL

H
i

)
is

log housing density, and g capture remaining constants.30 This system is a within city analog of the
Roback (1982) and Rosen (1979) framework (often used to evaluate amenities) with commuting.
Local fundamentals are potentially functions of covariates (A = A(X) and so on) such as transit
proximity. Equation (15) provides structural interpretation of the components in Equation (2).

This system can be re-expressed to more clearly represent the supply and demand linkages.
First, separate the unobservables into time varying and time invariant components, so that ln(Ajt) =

30. That is, g0 = ln(α), g1 = ln(N̄)− ln
(∑

r

∑
s Λrs

(
eκτrsQ1−ζ

r

)−ε
W ε
s

)
, and g2 = 0.
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āj + ajt, etc. This leads to the following system (omitting constants):

Labor demand in i: wjt = α̃nYjt + āj + ajt (17)

Labor supply to i: ωjt = εwjt + ēj + ejt (18)

Commuting between i and j: nijt = ωjt + θit − εκτijt + d̄ij + dijt (19)

Housing demand in i θit = ζ̃qit + b̄i + bit (20)

Housing supply in i: qit = ψhit + c̄i + cet (21)

where α̃ = α−1, ζ̃ = −ε(1−ζ). The system resembles standard linear supply and demand models,
but for many interconnected housing and labor markets.

6.1 A general approach to identifying local elasticities

I develop a local implementation of a shift-share (e.g., Bartik 1991) instrument to overcome si-
multaneity in Equations (17) to (21). I leverage plausibly exogenous panel variation in tract-level
labor demand, interacting local labor demand shocks with the distance between tracts to create
exogenous variation in local economic conditions. The moment conditions can identify all four
elasticities, though I focus primarily on ε and ψ, as these two embed information about the local
economic environment and cannot be estimated from microdata. I also discuss the robustness of
this strategy to alternative assumptions.

Summary

Identification requires a demand or supply shock that shifts one of Equations (14) to (16) but is
excludable from the others. I construct tract-level labor demand shocks from changes in national
wage and employment levels and ex ante local employment shares by industry. After controlling
for year and census tract fixed effects, the remaining variation consists of changes in wages and
employment determined from ex ante, local industrial composition. These shocks are relevant if
they are correlated with changes in local productivity (∆ajt) and excludable if they are uncorre-
lated with changes in the other local fundamentals. Under these assumptions, the labor demand
shock traces out the labor supply curve. Housing demand in nearby locations shifts in response.
Because this downstream housing demand response will be stronger nearer the workplace origi-
nation of the shock, I take a linear combination of labor demand shocks with weights determined
by a spatial decay function and commuting to map the labor demand shocks to a residential tract.
This derived housing demand instrument traces out the housing supply curve.

Identifying housing demand requires an instrument that shifts housing supply. For agents
who work in j and live in i, a labor demand shock to agents who also live in i but work elsewhere
(in j′) shifts effective housing supply in i. That is, a labor demand shock for workers nij′ with
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j′ 6= j translates into a housing supply shock to workers nij (as long as housing supply is not
perfectly elastic). I again use spatial decay weights and commuting to determine an appropriate
relationship between labor demand shocks and the housing market. Finally, labor demand shocks
in one location alter wages and induce workers to shift employment location.

Detailed description of moment condition construction

Let Rq,Natt be average national wage or total national employment in industry q in year t, N q
j,0 be

the number of workers in each two-digit SIC industry q in the initial year (1990) in tract j, and
Ni,0 =

∑
qN

q
j,0 the ex-ante total employment in tract i. The labor demand shock is formed by

interacting changes in wages or employment with ex ante local employment shares and summing
across industries:

∆zLD,Rjt =
∑
q

Rq,Natt −Rq,Nat0

Rq,Nat0

·
N q
j,0

Nj,0

This demand shock embeds information on ex ante industry shares. When used as an instru-
ment, an implicit assumption is that changes in non-productivity latent variables (e.g., amenities)
are uncorrelated with prior industry structure. To ensure that local factors do not drive national
changes, I exclude all workers in California.

The demand shock instruments the change in wage to identify the slope of labor supply. Place
of residence-by-year fixed effects control for changes in residential amenities that may be corre-
lated with labor demand shocks (see Equation 15). The corresponding moment condition is:

E[∆zLD,Rjt × (∆ejt + ∆dijt)] = 0, ∀i, j (M-1)

Identification requires that the labor demand shock is uncorrelated with unobservable changes in
labor supply (i.e., changes in workplace amenities, e, or travel costs, d). In fact, this can be weak-
ened further by estimating place of work-by-year fixed effects to use as the dependent variable
measuring labor supply conditional on commuting. I discuss and interpret this and the following
identification assumptions later in this section.

A labor demand shock in one location shifts demand for housing in locations where workers
might live, and thus can be used to instrument changes in housing quantity to identify the slope of
the housing supply curve. This requires mapping the labor demand shock to residential locations.
I describe a housing shock to residential location i of the form ∆zHD,Xit = zLD,Xt · ϑi. Weights ϑ
are treated as parametric decay functions of the modeled travel time between locations that ever
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have positive commuting:

∆zHD,Rit (ρ) =
∑
s

e−ρδis1Ňis>0∆zLD,Xst∑
s e
−ρδis1Ňis>0

where δjs is the travel time between j and s, ρ is the spatial decay parameter, and Ňis denotes
the maximum flow value from i to s in any year. The spatial weight, e−ρδis1ňis>0, means that
labor demand shocks nearer a residential location with some commuting connection are more
important than labor demand shocks farther from i or in places with no commuting connection
to i. The resulting inverse-distance weighted labor demand shock identifies ψ, the inverse price
elasticity of housing supply:

E[∆zHD,Rit (ρ)×∆cit] = 0, ∀i (M-2)

Although both elements of M-2 relate to tract i, the housing demand shock draws on labor demand
shocks from any j; I consider later how selecting particular subsets of these j may be useful.

Residents of one location commute to many different locations for work. Workers who live in
i and work in j are sensitive to the housing demands of workers who work in j′ but also live in i.
A labor demand shock to workers ij′ can change the effective housing supply to workers ij. Thus
labor demand shocks for ij′ workers can be used to instrument changes in housing prices for ij
workers and identify the slope of housing demand. To develop an average measure of the shocks
for ij′, j′ 6= j, I employ inverse weighting as before, but excluding own tract j:

∆zHS,Ri(−j)t(ρ) =
∑
s 6=j

e−ρδis1Ňis>0∆zLD,Xst∑
s 6=j e

−ρδis1Ňis>0

Using the place of work-by-year fixed effects in Equation (15) to control for changes in workplace
amenities, the following moment condition identifies ζ̃ = ε(1− ζ):

E[∆zHS,Ri(−j)t(ρ)× (∆bit + ∆dijt)] = 0, ∀ i, j′ 6= j (M-3)

This instrument varies for every commuting pair. It is generally difficult to recover estimates of
housing demand without microdata due to difficulties in quantifying housing services. Nonethe-
less, because tract pairs express more variation than individual tracts, this approach can identify
the housing demand elasticity.

Finally, workers employed at j observe the labor demand shock to j′ 6= j, and may respond by
leaving j for j′. This suggests that a labor demand shock at j′ can be used to instrument changes in
employment at j, functioning as a labor supply shock in j and identifying labor demand. But this
is reflected through residential location, rather than through location at place of work. Consider
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residents in i: A positive shock to j′ entices more workers from i the closer j′ is to i, rather than
the closer j′ is to j. The following weighting uses this intuition and interacts with distance twice:

∆zLS,Rjt (ρ) =
∑
r

 e−ρδrj1Ňrj>0∑
r e
−ρδrj1Ňrj>0

∑
s 6=j

e−ρδsr1Ňis>0∆zLD,Xst∑
s 6=j e

−ρδsr1Ňis>0


The own tract labor demand shock is excluded in order to remove mechanical correlation with
local changes in productivity. The corresponding moment condition is:

E[∆zLS,Rjt (ρ)×∆ajt)] = 0, ∀j (M-4)

This identifies the labor demand elasticity, α̃ = α− 1, and provides an alternative way to estimate
this parameter that is conceptually similar to the competing characteristics instrument of Berry,
Levinsohn, and Pakes (1995).

Because the instruments described above are all weighted averages of the labor demand shock,
the identifying assumptions can be made more transparent. The following reframe M-1 through
M-4 in terms of a labor demand shock (note A-1 is identical to M-1):

E[∆zLD,Rjt × (∆ejt + ∆dijt)] = 0, ∀ ij (A-1)

E[∆zLD,Rjt ×∆cit] = 0, ∀ ij (A-2)

E[∆zLD,Rj′t × (∆bit + ∆dijt)] = 0, ∀ ij′ 6= ij (A-3)

E[∆zLD,Rj′t ×∆ajt] = 0, ∀ j′ 6= j (A-4)

Proposition 3. Assume A1, A2, A3, and A4 are true, ρ > 0, E[∆zLD,Rjt ×∆wjt] 6= 0, housing demand
is downward sloping, and labor and housing supply are upward sloping. Then M1, M2, M3, and M4 are
satisfied and the model is identified.

Proof. Assumptions A-1 to A-4 are derived from M-1 to M-4 using the definitions of the instru-
ments. The requirement that ρ > 0 ensures variation in the labor demand shock across space. The
requirements are standard regularity conditions for identification in a system of simultaneous
equations.

Furthermore, data on commuting flows and workplaces wages in combination with Equation
(19) suggests high-dimensional fixed effects can help control for unobserved confounders. As-
sumptions A-1 and A-3 can be weakened to exploit this:

E[∆zLD,Rjt ×∆ejt] = 0, ∀ j (A-1a)

E[∆zLD,Rj′t ×∆bit] = 0, ∀ i (A-3a)

23



Discussion and comparison to existing approaches

Assumptions A-1 and A-1a require that the local labor demand shocks be uncorrelated with
changes in the local work amenity at j. They are weaker than standard identifying assumptions
using labor demand shocks and than those common in the economic geography literature. When
an aggregate labor demand shock is used to trace out labor supply, identification requires the
shock be orthogonal to any non-wage determinants of labor supply (residential amenities, com-
muting costs, workplace amenities). In my notation, such a condition is

E[∆f(zLD,Rt ) ·∆f(Bt, δt,Dt,Et)] = 0

where f averages over locations. In contrast, Assumptions A-1 and A-1a clarify the spatial require-
ments for identification and are robust to local correlation between improvements in residential
amenities or commuting costs.

The economic geography literature typically identifies ε from cross-sectional variation related
to commuting. For example, Ahlfeldt et al. (2015) and Allen, Arkolakis, and Li (2015) condition on
the time use parameter (κ) estimated from auxiliary models, and require that unobserved, origin-
destination specific amenities are orthogonal to travel time. This is problematic because κ may be
smaller than typically assumed (see Section 4 and Appendix). Ahlfeldt et al. (2015) also require
that there be no variation in (non-pecuniary) workplace utility (E[ln(Ej)

2] = 0). I later show this
assumption is improbable. Monte, Redding, and Rossi-Hansberg (2018) specify production within
a trade framework and recover productivity from cross-sectional trade flows. They assume the
productivity is orthogonal to workplace and origin-destination specific amenities.31 Such indirect
strategies are necessary because wage at place of work is typically unobserved. By comparison,
Assumptions A-1 and A-1a utilize workplace wage data and the census of commuting flows, as
well as rely on panel variation to control potentially confounding, persistent characteristics ēj .

Assumption A-2 requires labor demand shocks be uncorrelated with changes in (inverse)
housing productivity, ∆cit, which measures how efficiently developers provide housing density.
One potential concern with Assumption A-2 is through labor reallocation: If labor demand shocks
alter the pool of workers available for construction, there could be cause for concern. Another is
whether local zoning responds to local labor demand shocks. An alternative is:

E[∆zLD,Rjt ×∆cit] = 0, ∀ i 6= j (A-2a)

31. Using my notation, Ahlfeldt et al. (2015) first estimate εκ, and then use the assumption that E[ln(Ej)
2] = 0 to match

the variation in modeled wages to highly aggregated observable wages. Tsivanidis (2018) estimates κ from models of
commuting, and runs additional models instrumenting τ with plausibly exogenous variation in transit connections to
limit endogeneity concerns. Allen, Arkolakis, and Li (2015) estimate εκ, but then put more structure around time use to
parameterize κ and identify ε. Monte, Redding, and Rossi-Hansberg (2018) assume E[ln(Aj(σ))× ln(EjDij)|σ, κ] = 0,
where σ comes from the trade model.
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This requires productivity shocks in a location be uncorrelated with innovations in nearby hous-
ing efficiency. Labor demand shocks have been used to estimate the aggregate housing supply
elasticity (Diamond 2016; Guerrieri, Hartley, and Hurst 2013; Saiz 2010), but the use of spatially
heterogeneous labor demand shocks at the census tract level to identify a local elasticity is novel.

Assumptions A-3 and A-4 are less central, as the parameters they identify (α̃ and ζ̃) can be
estimated from microdata (conditional on ε). Nonetheless, they can be viewed as providing an
informal overidentification test. Assumption A-3 requires that labor demand shocks in one loca-
tion do not change amenities and commute utility in other locations, and controls for persistent
residential and commuting amenities, b̄i and d̄ij . That is, any innovations to amenities in j or the
unobserved commute utility between i and j must be uncorrelated with national innovations in
labor demand and the share of industry in 1990 in a third location j′ 6= j. A potential cause for
concern is that a large labor demand shock in location j′ could change civic investment in public
amenities in nearby locations i due to fiscal averaging within cities. Assumption A-3a is similar
to A-3, but weaker in that the unobserved commuting shock does not enter. Assumption A-4
requires that labor demand shocks in one location be uncorrelated with nearby changes in pro-
ductivity. Though tract fixed effects āj control for most spatial correlation in industrial location,
this identification assumption may not strictly hold. Nonetheless, estimates appear reasonable.

Identification with Agglomeration and Endogenous Land Use

This model abstracts away from agglomerative forces and endogenous land use determination. I
summarize here how relaxing this alters identification; details are in the Appendix. Identification
of ε and ψ is still possible when agglomeration influences productivity and residential amenities,
though α̃ and ζ̃ can no longer be identified without ex ante knowledge of the parameters that gov-
ern these forces. Agglomerative forces only confound demand elasticities; given the exogenous
demand shocks, supply elasticities are still identified. Agglomeration tends to be highly path
dependent, therefore fixed effects āj and b̄i mostly control for these forces (Davis and Weinstein
2008). Furthermore, Ahlfeldt et al. (2015) show that these forces mostly dissipate within a few
(five) minutes of travel time, limiting their role to confound.

The model phrases labor demand and housing supply in terms of employment and housing
density, respectively. Land use is relatively fixed and primarily captured by the tract fixed effects
āi and c̄i. However, I observe measures of land use (zoning in 1990 and 2001) for housing and
production that let me measure density and examine changes in land use (they are small). As-
sumptions A-2 and A-4 require productivity shocks to be orthogonal to changes in a location’s
ability to provide employment density and housing density. In other words, because these condi-
tions are framed in terms of observable density by use, endogenous land use determination does
not pose a direct threat to identification.32

32. Endogenizing land use is not trivial, however. It requires an additional market clearing condition, changes proper-
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6.2 Estimating the effects of interventions

Estimates of {α̃, ε, ζ̃, ψ} permit recovery of local economic fundamentals by removing the simul-
taneous components of the supply, demand, and commuting equations. These economic funda-
mentals represent economic characteristics of a place that exist outside of a market equilibrium.
In combination with market forces, fundamentals determine equilibrium prices and the distribu-
tion of people. The fundamentals contain information about local productivity, housing supply,
and transportation networks, and can be used to study how policy interventions shift supply and
demand.

Consider a local intervention, T . In general, the intervention could impact any local funda-
mental. The following econometric framework permits estimating the effect of the intervention
on local fundamentals:

nijt = ωjt + θit − εκτijt + ςDij + λDTijt + εDijt (22)

Ŷit = λTit + ςi + εit (23)

where λ = {λA, λB, λC , λE} and λD are the effects to be estimated. Ŷ = {â, b̂, ĉ, ê} contains the
four non-commuting fundamentals, and Equation 22 corresponds to Equation 2 from the com-
muting analysis. Standard econometric techniques (e.g., difference-in-difference, instrumental
variables) can then be performed on the above system. While the full sample should be used to
estimate the structural elasticities, the effects of interventions can be estimated using a restricted
sample if needed to overcome selection bias.33

7 Housing and labor elasticities and non-commuting effects of transit

The shape parameter ε governs the homogeneity in location preference, but is also an extensive
margin labor supply elasticity that conditions on commuting and residential geography. To esti-
mate ε, I first recover workplace by year fixed effects ωit from the Equation 19 (ωit has structural
interpretation ωit = εwit + eit). I then regress changes ωit on changes in wage, instruments by the
wage variant of the labor demand shock. This identifies ε under M-1. Table 5 shows results using
three different methods of estimating ωit. Column 1 estimates ωit from a linear panel, Column 2
uses a separate PPML estimator in each year with a measure of bilateral travel costs, and Column
3 uses a panel PPML estimator with pair fixed effects to control for travel costs. The first stage
is sufficiently strong across all specifications. The value of ε is 0.50 under the linear specification,

ties of the model equilibrium, and alters counterfactual simulations. Such changes make a small numerical differences
due to the constancy of land use in this context. Note that if land use were unobserved, identification would become
more challenging as land use becomes a latent term.

33. Context or theory may dictate additional restrictions, i.e., some λ may be zero. Interestingly, when some λ can be
assumed equal to zero, and others are non-zero, treatment can be used as an instrument to identify some or all of the
structural elasticities. The economic geography literature typically assumes λD 6= 0 and λ = {λA, λB , λC , λE} = 0.
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and between 1.83 and 1.85 in using the nonlinear estimator.34 I take ε = 1.83 from Column 3 as the
preferred estimate. The low value of ε (relative to the trade literature) implies workers are quite
heterogeneous in their location preferences.

Identification of ε in the economic geography literature sometimes requires ωit = εwit (e.g.,
Ahlfeldt et al. 2015). Such an assumption is not supported by the data (see Panel A of Figure
4).35 Instead, ωit is more closely related to workplace employment levels than wage (Panel B
of Figure 4), highlighting the severity of simultaneity when wage is unobserved. It is unlikely
that that the ad hoc moment restrictions used in the literature correctly identify this parameter.
The estimates presented here are closer to extensive margin labor supply elasticity estimates (e.g.,
Falch 2010; Suárez Serrato and Zidar 2016). This low value has important implications for studies
of urban structure: preference heterogeneity limits the responsiveness of agents to changing local
conditions.

The remaining structural parameters are identified using instruments constructed from the
labor demand shocks and a spatial decay parameter, ρ > 0, that governs how the labor demand
shocks propagate across space. I experiment with different values in ln(ρ) ∈ [−10,−2].36 Labor
demand shocks should propagate through the economy following the same decay as commuting,
as these shocks will affect nearby markets only to the extent that workers are willing to commute
to and from those markets. This implies ρ = εκ, and suggests using values of ln(ρ) ∈ [−7.5,−4.5]

based on gravity estimates (see Appendix). I report results for ln(ρ) = −5.5.
Estimates of the inverse housing supply elasticity (Equation 16) appear in Table 6. Results

are estimated in differences using the employment instrument. These estimates imply housing
supply elasticities of about 0.45 when no adjustment is made for income-driven variation in quan-
tity (Columns 1 and 2), and about 0.60 when income can influence housing quantity (Columns
3-6). Including available residential land decreases these estimates.37 Column 2, 4, and 6 exclude
the own tract labor demand shock when aggregating the instrument; this permits local housing
productivity to covary with the local labor demand shock. Estimates are similar. All results sug-
gest that local, tract-level housing provision is inelastic in the Los Angeles region from 1990 to
2000. Saiz (2010) finds the median long-run inverse housing supply elasticity among major U.S.
metropolitan areas to be about 1.75; his estimate for the Los Angeles area is 0.63. My estimates
similarly point to limited medium-run scope for adjustment in local housing stock. This matches

34. Unlike the commuting analysis, accounting for zeros makes a large difference in estimates. This is because any
individual work tract has many zeros, and so incorporating this information into the fixed effect is important.

35. I run a regression of wit on ωit; the R2 is 0.004. If ωit = εwit, then R2 = 1. Kreindler and Miyauchi (2017)
find a modest cross-sectional relationship between ω and w using cell phone data and travel surveys from Dhaka and
Colombo.

36. The value of ρ impacts efficiency but not identification for ρ ∈ (0,∞). As ρ → 0, the spatial correlation of the
shocks increases. In the limit, there is no variation in the instrument, and the system is not identified. On the other
hand, as ρ→∞, shocks do not influence activity elsewhere (autarky), and the system is not identified.

37. If the assumption of Cobb-Douglas housing production is correct, then the coefficient on land should be negative
and equivalent in magnitude to the housing level coefficient, ψ. The coefficients are not statistically different in absolute
value from each other (Columns 3 and 4).
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anecdotal and empirical evidence on the highly regulated California housing market (Quigley and
Raphael 2005).

It is difficult to estimate household expenditure shares or labor demand elasticities in urban
models that use aggregated data (e.g., Diamond 2016). However, estimates in Tables 7 and 8
roughly concur with values derived from other sources, lending additional credibility to the iden-
tification strategy as a whole. Table 7 gives estimates of Equation (15) using the employment
variant of ∆zHS,Xi(−j)t to instrument for housing prices to determine ε(1− ζ), the elasticity of housing
demand. The own tract can be excluded from the regression to limit concerns about the labor
demand shock driving confounding changes in amenities. Results are marginally significant and
vary between -0.66 and -0.87. Using ε = 1.83, these imply a housing expenditure share between
36% and 48% of income, somewhat higher than microdata suggest but not unreasonable for high
cost areas.

Finally, I estimate the inverse elasticity of labor demand (α−1) using demand shocks to nearby
census tracts as an instrument. Results, shown in Table 8 vary between -0.23 and -0.33 when only
employment is taken into account, implying labor’s share of income is roughly 0.7. Column 2
of Table 8 includes the own-tract demand shock, ∆zLD,Rjt , as a control (recall that the instrument
is ∆zLS,Rjt (ρ)). This permits limited spatial correlation (to the extent the observed labor demand
shocks are spatially correlated), and implies a slightly higher labor share of income. Column C
includes the log measure of land zoned for productive uses, but this is measured poorly in the
data.38 Similarly, Column D indicates too large estimates.

Reasonable estimates of α̃ and ζ̃ provides confidence in this interconnected approach to identi-
fication and serve as an informal test of overidentification. Estimation of these parameters is more
demanding than ε and ψ, both in terms of the stringency of the moment conditions and in the
amount of exogenous variation needed to avoid weak instrument problems. Overall, these results
suggest that interacting locally defined labor demand shocks with spatial structure can be used to
create broad, omnipurpose tools for identifying local price elasticities.

7.1 The effects of the LA Metro on non-commuting fundamentals

I now test whether transit shifts non-commuting fundamentals using Equation (23). For tract-level
analysis, I define transit proximity as

Proximity500m
i =

max{0, 500m−mink{disti(MetroStationk)}}
500m

∈ [0, 1]

This normalizes proximity so that it equals one when a tract contains a station, and zero if a tract
is more than 500m from a station. As before, I use the historical subway plan and location of PER

38. Unlike residential land, it is difficult to classify different types of land used in production. For example, it is
unclear whether to add land used for storage. Further, the data show some unusual changes across waves.
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lines to define control groups. I cannot define fundamentals prior to 1990, but I compare pre-
trends on observed market outcomes using NCDB data. The first four columns of Appendix Table
F1 shows that there do not appear to be consistent differences in treated and control locations
among modeled prices and quantities across specifications. I do, however, find some evidence
of different trends in socioeconomic characteristics. I include the 1990 levels of these variables as
control in some specification to permit differential trends.

While Section 4 showed strong evidence that transit increases commuting between connected
locations, there is little evidence it affects other margins: Transit does not consistently shift local
fundamentals. Estimates of the effect of transit on productivity, residential amenities, housing pro-
ductivity, and workplace amenities are shown in Table 9. Transit has little non-commuting effect
after conditioning on regional trends and changes in highway structure. There some evidence of
decreasing workplace amenities near transit, though an effect on this margin is unexpected. While
this might represent an effect of transit on non-pecuniary workplace benefits (e.g. reduced park-
ing), this is more likely due to labor match than a direct consequence of transit proximity. Taken
together, these results indicate that transit is not generating large-scale non-commuting benefits
or costs within the immediate proximity of stations.

Surprisingly, there is no apparent effect of LA Metro Rail on (non-commuting) residential
amenities. An implication is that hedonic estimates of the effect of transit reflect a commuting
benefit rather than other related neighborhood amenities.39 These results only apply to LA Metro
between 1990 and 2000; I cannot extend the non-commuting analysis to more recent years. The
network was limited in size and connectivity at this time. As the transit network has expanded,
it has become more valuable in terms of transportation connectivity. Responses that depend on
scale, or are slower to respond, could potentially manifest in recent years. LA Metro Rail’s pri-
mary effect between 1990-2000 is to expand commuter connectivity in Los Angeles: the city can
accommodate more people with transit.

7.2 Robustness checks: sorting and land use

The model assumes predetermined land use. While identification of the structural elasticities and
transit effects are robust to this, counterfactual simulation may or may not be. I use SCAG zoning
maps to test this channel and find little evidence of association between land use change and
treatment. Table F10 indicates the change in residential land use is very small and statistically
insignificant across richer fixed effects specifications. This is unsurprising given the relatively
fixed nature of land use in urban settings due to the slow depreciation of buildings and very strict
zoning and land use regulation in the LA region.

39. Results are consistent with Schuetz (2015), who shows that retail (a consumption amenity) does not increase near
new rail transit stations in California between 1992 and 2009. Consumption amenities are a common foundation for
residential agglomeration (Ahlfeldt et al. 2015).
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Transit users may differ from those who do not use transit (Glaeser, Kahn, and Rappaport
2008; LeRoy and Sonstelie 1983). If so, transit could induce equilibrium sorting. While the data
limit the explicit addition of heterogeneity to the model, I find no evidence of differential trends
in median household income between treated and control census tracts. Results in Table F10 are
small and insignificant. Figure 5 shows the relationship between transit and rail usage by income
centiles in 1990 and 2000, and reveals no relationship between income and rail usage.

8 Welfare calculations and additional quantitative exercises

To estimate counterfactuals, I employ the succinct hat notation of Dekle, Eaton, and Kortum (2008),
letting X̂it = X ′it/Xit represent the relative change of an observed or estimated variable X to its
counterfactual value X ′. This approach avoids using levels of unobserved fundamentals. Results
are easily interpretable and given as a ratio to the observed price or population level. Further-
more, after solving the model in terms of updated equilibrium prices and populations, estimation
of the counterfactual proceeds easily via an iterative algorithm that quickly finds a fixed point
representing a counterfactual equilibrium. I lay out the algorithm in the Appendix.

8.1 LA Metro Rail and welfare

I estimate counterfactual values of Ŵ, π̂, Q̂ (and sometimes ˆ̄N ) relative to observed data in 2000
under various combinations of the estimated structural elasticities {α, ε, ζ, ψ}. Using estimates
of the fundamental effects of transit from the preceding section, I define alternative scenarios by
adjusting fundamentals so X̂i = 1 − λXTi, for X ∈ {A,B,C,D,E}. The assumption of an open
or closed city plays an important role. In a closed city, total population does not adjust. This
means that there are real utility gains; these gains are equalized across the city through general
equilibrium movements in prices. The model delivers a simple expression for welfare changes as
a function of changes in local fundamentals and prices—a hat-notation variant of Equation (6):

%∆ Welfare ≈ ln ˆ̄U =
1

ε
ln

(
B̂iÊjD̂ijŴ

∗ε
j Q̂

∗−ε(1−ζ)
i

π̂∗ij

)
(24)

for any pair ij, where X̂∗ indicates the equilibrium value ofX in the counterfactual under autarky
(that is, fixing ˆ̄N = 1).40 Because utility is homogeneous of degree one in wage, a proportional
change in utility translates to an equivalent proportional change in wage. To convert this to levels,

40. On a technical note: the expectation underlying this term is infinite for ε ≤ 1, even though Equation (24) can be
calculated for any value of ε 6= 0. Instead of enforcing this arbitrary parameter restriction, I show (in the Appendix)
that Equation (24) is isomorphic to a multinomial logit framework, with ε naturally taking the roll of marginal utility
of income (Train 2009). This expands permissible values of ε; Equation (24) (and similar expressions) can be used for
ε > 0, not just ε > 1.
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I multiply the proportional change in utility by the average annual wage ($31,563) and aggregate
population of workers (6.73 million) in 2000.

Instead, if the city is open, aggregate population adjusts so that the expected utility in the
city is equivalent to Ū . Thus aggregate welfare for incumbent residents is unchanged: No spatial
arbitrage means that the expected utility of city residence is Ū both before and after the change in
fundamentals, so I instead report changes in total population. This statistic captures the change in
the population the city can accommodate under transit with no change to utility.

Annualized costs combine two elements: (i) operating subsidies and (ii) annualized capital
expenditures. The annual operating subsidy for the rail portion of LA Metro’s operations for
2001/2 is about $162 million (2016 dollars). Total system cost for lines and stations completed
by 1999 is $8.7 billion (2016 dollars). Annualizing this expense involves an element of taste. LA
Metro’s borrowing terms at the time were about 6%, so the annual payment for a thirty year loan
is roughly $635 million. However, subways often last for a very long time once built. It may be
appropriate to use a much lower social discount rate (see Weitzman 1998). Assuming a social
discount rate of 2.5% and an infinite horizon, capital expenditures are equivalent to $218 million
per year. Combining with the operating subsidy yields an annualized cost between $380 to $797
million per year (details in the Appendix).

Alternatively, I estimate the deadweight loss to the region generated by LA Metro Rail’s en-
abling sales tax. I use the portion of Proposition A (1980) and Proposition C (1990) exclusively
assigned to rail ($0.004/dollar). I assume full incidence on the composite consumption good for
LA County residents on a base tax of $0.06/dollar. Deadweight loss accounting for migration
responses is -$298 million annually, a bit smaller than other cost estimates, but roughly similar.

Welfare effects by 2000

Table 10 reports the changes in aggregate welfare and population due to LA Metro in percentage
and dollar terms. Estimates of the effect on commuting use results from Table 2, Column 5, the
Subway Plan (All) sample. Columns 1 and 3 exclude travel benefits for automobile users, Columns
2 and 4 include them. All columns use ε = 1.83, α = 0.68, and ζ = 0.65; Columns 1 and 2 use
ψ = 1.69, and Columns 3 and 4 use ψ = 2.29.

Column 1 indicates an annual benefit of $109 million, an increase of 0.05% relative to base-
line. In an open economy, the employed population of the Los Angeles region is 0.11% higher
with Metro Rail. Including travel time increases the closed economy benefit to about $146 million
per year, or about 0.07%. Open economy employment would be about 0.15% higher in this case
(roughly ten thousand people). Closed economy results are virtually unchanged with less elastic
housing supply, while open economy results are slightly smaller.

A general conclusion across all specifications is that the commuting benefit of rail transit in Los
Angeles does not exceed its cost by the year 2000. Regardless of the discount rate, annual benefits
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are almost equal to the operating subsidy (about $160 million) in some specifications. However,
these commuting benefits cannot cover the capital expenses, except at very low discount rates.
Combining both expenses, costs cleanly outweigh benefits.

Discussion and Other Margins

The negative cost-benefit calculations are subject to particular characteristics of LA Metro Rail.
It is important to understand these characteristics when drawing broader conclusions. I focus
on two: (i) the connectivity provided by rail transit, and (ii) land use. Early system planners
considered political factors as much, or more than, the utility of route placement. While this may
have been necessary to ensure feasibility and political support, rail provided a substitute for few
commuters. As Table 1 reveals, only 1-3% of the 1990 population of Los Angeles County lived
and worked in tracts near rail stations by 2000. Serving denser corridors (such as Wilshire) likely
would have generated greater gains. Further, land use regulations inhibited the ability of locations
receiving stations to adjust building stock. Proposition U, passed in 1986, halved allowable density
throughout much of Los Angeles just before LA Metro Rail was brought online. Such legislation
combined with political constraints meant the “coordinated land use and rail planning . . . died a
gory death” (Elkind 2014, p. 71).

There are margins to which this analysis does not speak. The framework does not capture or
calculate the benefits for non-workers. Such effects are particularly important for equity concerns
and unfortunately understudied. Nor can I directly speak to benefits resulting in better transit
provision for non-commuting trips, though this margin should show up as a residential amenity
(which I do not find). Rail transit may also enable better bus transit and connectivity. Available
data do not include information on bus routing and connections, but I do not find a flow effect
within a 2km window of lines, suggesting such benefits are at most small.

Finally, city-wide effects are not captured by this approach. For example, decreased air pol-
lution may provide an additional benefit; a generous estimate using parameters from Gendron-
Carrier et al. (2018) and Los Angeles’ mid-1990s birthrate suggests an additional gain of up to $180
million annually.41 However, as is the case with congestion benefits, such benefits are most likely
transitory due to unexpressed latent travel demand (see Footnote 18).

9 Longer run commuting effects

I use data from the 2002 and 2015 LEHD Origin-Destination Employment Statistics (LODES) to
look for additional effects of transit on commuting flows in more recent years. Because LA Metro
Rail expanded during this period, I estimate a variant of Equation (2) on the LODES panel with

41. The time frame on these benefits is uncertain, as Gendron-Carrier et al. (2018) are unable to measure pollution
responses beyond six to eight years after the opening of a metro system.
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two different effects: (i) New Transit for the effect of new stations (built after 2002) on bilateral
flows, and (ii) Existing Transit for the additional increase between tracts connected by stations
built earlier (between 1990 and 2002). I retain the prior distance bins.

Results (shown in Table 11) indicate that new transit connections increase commuting by 10%-
13% between tract pairs that both contained stations by 2015. For tract pairs slightly farther away,
the increase is 5%-8%, and is insignificant using the PER sample. While these effects are sub-
stantial, they are smaller than the effects of connections between 1990 and 2000. This is likely
because many of the stations built after 2002 connect locations that are more suburban and less
transit-oriented. Tract pairs that had been previously connected by transit (before 2000) experi-
ence additional commuting growth by 2015: pairs both containing a station show another 8%-11%
increase in commuting, and tract pairs a bit further away show an additional 5-9% in commuting.
This is evidence that either (i) aggregate commuting flows take decades to adjust to new transit
modes (i.e., habituation), and/or (ii) that there are increasing returns in transit network size.

A significant omission of the 1990-2000 welfare analysis in Section 8 is the exclusion of these
later benefits. However, the results in Table 11 can be included in longer run welfare analysis if
I assume there are no non-commuting benefits post 2000 (as between 1990 and 2000). There are
then two cases to consider: (1) If increased commuting is due to habituation, the full commuting
increase between previously connected stations is attributable to early system construction; (2)
If, however, there are increasing returns in network size, increased commuting between existing
stations is due to new stations and lines. As a lower bound, the additional benefit is zero. This
allows comparing outcomes using the same capital and operating cost bases.

Under habituation, I combine the effects from Table 2 and the Existing Station effects from Table
11 and simulate the new outcome. Accounting for these additional effects, the closed economy
benefit is $216 million annually, or an increase of about 0.10% (using parameters from Column
2 of Table 10). In an open economy, population is about 0.22% higher because of Metro Rail.
The benefit, while substantial, only exceeds operational subsidies and capital costs if the social
discount rate is very low (about 0.6%).

10 Conclusion

This paper develops and estimates an equilibrium model of a city wherein costly commuting
connects housing and labor markets, and uses this model to estimate the welfare impacts of Los
Angeles Metro Rail. The model is sufficiently parsimonious to permit transparent identification
and estimation of all parameters, yet better reflects the observed spatial distribution of economic
activity than commonly used market access approaches. The elasticity of labor supply plays a key
role governing homogeneity in location preference. A small value indicates agents are relatively
unwilling to relocate and are not very responsive to changes in local conditions or policies. Con-
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versely, it also implies that observed responses to transit correspond to significant utility gains.
Estimates of the remaining elasticities are in line with previous studies, and support the view that
Southern California has a constrained housing supply. I also demonstrate that common imple-
mentations of economic geography models within cities are not consistent with commuting flow
and workplace wage data.

I provide new insights into how transit influences city structure by isolating the commuting
benefit of transit from other margins. LA Metro Rail increases commuting between the census
tracts nearest to stations by 15% in the first decade after construction, relative to control groups
selected by proposed and historical transit routes. Nearby locations also experience a more modest
increase of about 10%. There is some evidence that Metro Rail has a small medium to long run
effect on congestion, reducing travel times in nearby areas by up to 3%. There is little support of
effects through other channels (such as non-commuting amenities).

Welfare estimates point to a range of positive annual benefits of the system from $109 million
to $146 million by 2000. These welfare benefits are smaller than the operational and capital costs of
LA Metro’s light rail and subway lines. I also provide evidence of dynamic effects due to increas-
ing returns or habituation. If these effects are due to slow habituation, the annual benefits of LA
Metro Rail’s network are about $216 million. This benefit is greater than the operational subsidy,
but only approaches the cost of capital under very low social discount rates. While these wel-
fare estimates leave out some other benefits of transit (such as benefits for non-workers), results
warrant a note of caution to cities expecting rail investment to lead to large increases in worker
welfare within ten to twenty-five years.
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Figure 1: Map of Proposed LA Metro Lines and PER Lines in Kelker, De Leuw and Co. (1925)

39



Figure 2: Map of LA Metro lines, stations, and the 1925 Plan and PER Lines

(a) 1925 Plan Sample

(b) PER Lines Sample
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Figure 3: Comparison of Commuting and Market Access measures

Figure 4: Does ω = εw, and if not, what is it capturing?
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Figure 5: Take-up of LA Metro Rail for commuting does not vary by income, but overall take-up
of transit (including bus) does.
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Table 1: Descriptive statistics on transportation in Los Angeles and station placement

LA County Full Sample

Centroid Any Centroid Any
< 500m < 500m < 500m < 500m

(1) (2) (3) (4)

A. Pre-treatment tract characteristics (1990)
% workers at POW tract that receive treatment 11.3% 19.5% 7.2% 12.3%
% workers at RES tract that receive treatment 2.7% 8.1% 1.6% 4.8%
% workers that receive transit connection RES-POW 0.6% 2.9% 0.4% 1.7%

% workers commuting via: Drive alone 71.8% 74.5%
% workers commuting via: Carpool 15.8% 15.8%
% workers commuting via: Bus 6.9% 4.6%

B. Commuting characteristics
Commute time (minutes, 1990) 26.3 [16.8]
Commute time (minutes, 2000) 28.0 [18.3]

Data from Census micro records (from IPUMS) and 1990 CTPP. LA County restricts analysis only to workers both
living and residing in Los Angeles county, while the full sample includes all five counties in the main sample.
Brackets indicate standard deviation. Commute times are weighted by flows.
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Table 2: Effect of Transit on Commuting Flows (by 2000) - Linear

nijt = ln(Nijt)

(1) (2) (3) (4) (5) (6)

Subway Plan (Immediate) Sample

O & D contain station 0.106∗ 0.142∗ 0.153∗ 0.157∗ 0.149∗ 0.154∗

(0.052) (0.059) (0.060) (0.061) (0.061) (0.066)

O & D <250m from station 0.127∗ 0.138∗ 0.128∗ 0.137∗

(0.063) (0.064) (0.065) (0.069)

O & D <500m from station 0.058 0.017 0.016 0.012 0.018
(0.048) (0.053) (0.053) (0.053) (0.055)

N 19238 19238 19238 19222 19222 18296
Subway Plan (All) Sample

O & D contain station 0.127∗∗ 0.147∗∗ 0.152∗∗ 0.162∗∗ 0.146∗∗ 0.152∗∗

(0.044) (0.044) (0.044) (0.046) (0.044) (0.047)

O & D <250m from station 0.115∗ 0.122∗ 0.101∗ 0.109∗

(0.049) (0.050) (0.051) (0.053)

O & D <500m from station 0.054 0.018 0.023 0.013 0.018
(0.035) (0.044) (0.042) (0.042) (0.043)

N 74046 74046 74046 74040 74040 71844
PER Sample

O & D contain station 0.098∗ 0.116∗∗ 0.119∗∗ 0.129∗∗ 0.113∗ 0.084+

(0.042) (0.043) (0.043) (0.045) (0.044) (0.046)

O & D <250m from station 0.104∗ 0.109∗ 0.088+ 0.037
(0.049) (0.050) (0.051) (0.050)

O & D <500m from station 0.054 0.025 0.030 0.019 -0.027
(0.034) (0.041) (0.040) (0.040) (0.043)

N 99074 99074 99074 99054 99054 95382
Full Sample

O & D contain station 0.102∗∗ 0.101∗∗ 0.112∗∗ 0.117∗∗ 0.101∗∗

(0.038) (0.037) (0.038) (0.040) (0.038)

O & D <250m from station 0.074 0.077+ 0.054
(0.046) (0.046) (0.047)

O & D <500m from station 0.028 0.000 -0.003 -0.014
(0.031) (0.037) (0.036) (0.036)

N 291000 291000 291000 290580 290580

Control Network Loose Loose Loose Loose Loose Tight
Tract Pair FE Y Y Y Y Y Y
POW-X-Yr FE Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y
Sbcty-X-Sbcty-X-Yr FE - - - Y Y Y
Highway Control - - - - Y Y

High-dimensional fixed effects estimates of λD . Treatment variables are mutually exclusive with others
in each column. All estimates include tract of work-by-year, tract of residence-by-year, and tract pair
fixed effects. Standard errors clustered by tract pair, tract of residence, and tract of work in parentheses:
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 3: Does transit decrease travel time?

τAll
ijt ln(τAll

ijt ) τCar
ijt

(1) (2) (3) (4) (5) (6) (7) (8)

Within 2km of tracks -1.277∗∗ -1.243∗∗ -0.748 -0.032∗ -0.033∗ -0.026 -1.417∗ -0.766
(0.402) (0.426) (0.481) (0.013) (0.014) (0.016) (0.631) (0.719)

Within 4km of tracks -0.305 -0.304 0.050 -0.006 -0.006 -0.002 0.150 0.293
(0.364) (0.364) (0.398) (0.012) (0.012) (0.013) (0.556) (0.612)

Control Network All All All All All All All All
Tract Pair FE Y Y Y Y Y Y Y Y
POW-X-Yr FE Y Y Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y Y Y
Near station control - Y Y - Y Y - -
Sbcty-X-Sbcty-X-Yr FE - - Y - - Y - Y
Highway Control - - Y - - Y - Y
N 311340 311340 310904 311314 311314 310878 96098 95884

High-dimensional fixed effects estimates of track proximity on driving time. Control network is ‘loose’ (see text).
Treatment variables are mutually exclusive with others in each column. All estimates include tract of work-by-year,
tract of residence-by-year, and tract pair fixed effects. Standard errors clustered by tract pair, tract of residence, and
tract of work in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table 4: Comparing commuting flow and market access measures

Access measure κ Mean S.D. Min Max

ΞCFi - .0390 .0132 .0186 .0866

ΞMA,+
i -0.05 .0408 .0108 .0253 .0904

ΞMA,+
i -0.02 .0379 .0099 .0232 .0818

ΞMA,+
i -0.01 .0368 .0096 .0220 .0788

ΞMA,+
i -0.005 .0362 .0094 .0213 .0773

ΞMA,0
i -0.05 .0169 .0024 .0126 .0199

ΞMA,0
i -0.02 .0133 .0018 .0107 .0152

ΞMA,0
i -0.01 .0121 .0016 .0099 .0136

ΞMA,0
i -0.005 .0114 .0015 .0095 .0128

There are 93 treated observations in each case, simulated using the
statistically significant estimates Table 2, Column 5, in the Subway
Plan (All) Sample.
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Table 5: IV estimates of labor supply elasticity (ε)

ω̂jt

(1) (2) (3)

ln(Wjt) 0.498 1.846∗ 1.830∗

(0.411) (0.835) (0.783)

F-stat (KP) 15.277 16.883 17.328

ω̂ estimated: Linear, PPML PPML
Panel Yr-by-yr Panel

N 2354 2432 2433

Panel instrument variable (IV) estimates of regres-
sion of ω̂jt on wit. Estimated in differences using
wage instrument. KP refers to the Kleinbergen-
Papp F-statistic. Variables are trimmed to exclude
extreme values (see text). Column 1 uses a linear
specification, columns 2 and 3 assume a Poisson
model. Place of work-by-year fixed effects (ω̂jt) es-
timated in the panel in columns 1 and 3 with ij
fixed effects. Column 2 uses ω̂jt estimated year-by-
year with network distance as a control. Standard
errors clustered by tract in parentheses: + p < 0.10,
∗ p < 0.05, ∗∗ p < 0.01
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Table 6: IV estimates of inverse housing supply elasticity (ψ)

qit = ln(Qit)

(1) (2) (3) (4) (5) (6)

ln(Density) 2.221∗∗ 2.292∗∗

(0.706) (0.738)

ln(Hous. Consump.) 1.693∗∗ 1.610∗∗

(0.483) (0.442)

ln(Res. Land) -1.396+ -1.318+

(0.790) (0.778)

ln(Hous. Density) 1.814∗∗ 1.693∗∗

(0.648) (0.504)

Housing Supply Elasticity (1/ψ) 0.450∗∗ 0.436∗∗ 0.591∗∗ 0.621∗∗ 0.551∗∗ 0.591∗∗

(0.143) (0.140) (0.169) (0.170) (0.197) (0.176)

F-stat (KP) 14.830 14.234 12.944 14.218 8.138 11.887
Empl. instrument All Not i All Not i All Not i
N 4550 4548 4500 4498 4500 4498

Panel instrument variable (IV) estimates of regression of median house value on population, housing
consumption, and residential land, using ln(ρ) = −5.5 and employment IV. KP refers to the Kleinbergen-
Papp F-statistic. Variables are trimmed to exclude extreme values (see text). Columns 2, 4, and 6 exclude
own tract during instrument construction. Standard errors clustered by tract in parentheses: + p < 0.10,
∗ p < 0.05, ∗∗ p < 0.01

Table 7: IV estimates of housing demand elasticity (−ε(1− ζ))

nijt = ln(Nijt)

(1) (2) (3)

ln(House Value) -0.662+ -0.659+ -0.871∗

(0.353) (0.353) (0.356)

F-stat (KP) 260.99 261.28 258.84

Sample All All not ii
Travel Time - Y -
N 287598 287598 282754

Panel instrument variable (IV) estimates of regression
of flows on median housing values, using ln(ρ) =
−5.5. Estimated in differences using employment
instrument. KP refers to the Kleinbergen-Papp F-
statistic. Variables are trimmed to exclude extreme val-
ues (see text). All estimates include tract-of-work-by-
year and tract-pair fixed effects. Standard errors clus-
tered by tract in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗

p < 0.01
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Table 8: IV estimates of inverse labor demand elasticity (α− 1)

wjt = ln(Wjt)

(1) (2) (3) (4)

ln(Employment) -0.329∗∗ -0.226∗∗ -0.835
(0.125) (0.082) (0.698)

ln(Prod. Land) 1.210
(0.980)

ln(Emp. Density) -0.553
(0.368)

F-stat (KP) 3.586 2.955 1.798 3.439
Own shock as control - Y Y Y
N 4882 4882 4766 4766

Panel instrument variable (IV) estimates of regression of employment,
employment density and land in production, using ln(ρ) = −5.5. KP
refers to the Kleinbergen-Papp F-statistic. Variables are trimmed to ex-
clude extreme values (see text). Columns 2-4 incllude the own tract
labor demand shock as a control. Standard errors clustered by tract in
parentheses: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

47



Table 9: Transit and non-commuting fundamentals (other effects of transit)

∆Ŷit

(1) (2) (3) (4) (5) (6) (7) (8)

A. Effect on productivity ∆A, α− 1 = −0.226

Proximity500m
i × t -0.089∗∗ 0.009 -0.009 0.008 -0.034 0.006 -0.050+ 0.011

(0.027) (0.030) (0.031) (0.034) (0.028) (0.030) (0.027) (0.030)

N 4882 4858 780 776 1828 1826 2288 2284

B. Effect on residential amenity ∆B, ε(1− ζ) = 0.662

Proximity500m
i × t 0.107∗∗ -0.002 0.030 -0.042 0.070∗ -0.007 0.076∗∗ 0.012

(0.029) (0.032) (0.032) (0.035) (0.029) (0.033) (0.029) (0.033)

N 4534 4518 712 710 1700 1700 2094 2092

C. Effect on inverse housing efficiency ∆C, ψ = 1.693

Proximity500m
i × t 0.070+ 0.006 -0.096∗ -0.044 0.024 -0.025 0.051 0.003

(0.041) (0.046) (0.047) (0.054) (0.042) (0.048) (0.042) (0.048)

N 4484 4476 694 692 1670 1670 2058 2056

D. Effect on workplace amenity ∆E, ε = 1.83

Proximity500m
i × t -0.203∗∗ -0.058 -0.092 -0.154∗ -0.103+ -0.103 -0.104+ -0.115+

(0.058) (0.062) (0.066) (0.073) (0.060) (0.066) (0.059) (0.062)

N 4866 4842 780 776 1830 1828 2286 2282

Sample All All Sim Sim Sal Sal PER PER
Tract FE Y Y Y Y Y Y Y Y
Sbcty-X-Yr FE - Y - Y - Y - Y
Controls - Y - Y - Y - Y

Results from thirty-two regressions of transit proximity on local fundamentals. All regressions include tract fixed
effects. Samples: ‘All’ is the Full Sample, ‘Sim’ is Subway Plan (Immediate), ‘Sal’ is Subway Plan (All), and PER is
the PER Sample. Controls include changes in highway proximity and 1990 levels of log household income, share
of residents with at least a high school degree, and manufacturing employment. Standard errors clustered by tract
in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 10: Welfare estimates in 2000 (in $2016)

(1) (2) (3) (4)

Parameters
α 0.680 0.680 0.680 0.680
ε 1.830 1.830 1.830 1.830
ζ 0.650 0.650 0.650 0.650
ψ 1.693 1.693 2.290 2.290
εκ - -0.020 - -0.020

Change in fundamentals
λD, O & D contain station 0.146 0.146 0.146 0.146
λD, O & D <250m from station 0.101 0.101 0.101 0.101
λτ , O & D <2km from station - -0.033 - -0.033

Closed Economy
Annual ∆ in welfare 0.051% 0.069% 0.051% 0.069%
(in millions of $2016) 108.9 145.7 108.9 145.6

Open Economy
Population ∆ 0.109% 0.146% 0.106% 0.141%

Op. subsidy + capital cost (6%, 30yy) -$797 mil.
Op. subsidy + capital cost (5%, 50yr) -$641 mil.
Op. subsidy + capital cost (5%,∞) -$597 mil.
Op. subsidy + capital cost (2.5%,∞) -$380 mil.
Operation subsidy only -$162 mil.

Op. subsidy refers to the annual operation subsidy. See text and appendices for details.
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Table 11: Dynamic effects of transit on flows (2002-15), Linear

nijt = ln(Nijt)

(1) (2) (3) (4) (5) (6)

Subway Plan (Immediate) Sample, N = 105794

New: O & D contain station 0.101∗∗ 0.103∗∗ 0.121∗∗ 0.123∗∗ 0.131∗∗ 0.133∗∗

(0.035) (0.035) (0.035) (0.035) (0.036) (0.036)

New: O & D <250m from station 0.053+ 0.053∗ 0.075∗∗ 0.076∗∗ 0.082∗∗ 0.083∗∗

(0.027) (0.026) (0.028) (0.027) (0.028) (0.027)

New: O & D <500m from station 0.026 0.026 0.053∗ 0.054∗ 0.043+ 0.045+

(0.026) (0.026) (0.025) (0.025) (0.025) (0.025)

Existing: O & D contain station 0.108∗∗ 0.112∗∗

(0.030) (0.030)

Existing: O & D <250m from station 0.086∗∗ 0.091∗∗

(0.029) (0.029)

Existing: O & D <500m from station 0.058∗∗ 0.061∗∗ 0.029 0.032
(0.022) (0.022) (0.028) (0.029)

Subway Plan (All) Sample, N = 385290

New: O & D contain station 0.109∗∗ 0.102∗∗ 0.113∗∗ 0.106∗∗ 0.119∗∗ 0.112∗∗

(0.031) (0.031) (0.032) (0.031) (0.032) (0.031)

New: O & D <250m from station 0.041+ 0.036 0.050∗ 0.044+ 0.052∗ 0.046∗

(0.023) (0.023) (0.024) (0.023) (0.024) (0.023)

New: O & D <500m from station 0.019 0.016 0.034+ 0.029 0.029 0.025
(0.020) (0.020) (0.020) (0.020) (0.020) (0.020)

Existing: O & D contain station 0.107∗∗ 0.098∗∗

(0.033) (0.032)

Existing: O & D <250m from station 0.066+ 0.061+

(0.035) (0.035)

Existing: O & D <500m from station 0.056∗ 0.049∗ 0.035 0.028
(0.023) (0.023) (0.025) (0.025)

continued...
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Table 11 – continued from previous page

PER Sample, N = 514110

New: O & D contain station 0.101∗∗ 0.097∗∗ 0.103∗∗ 0.100∗∗ 0.108∗∗ 0.105∗∗

(0.033) (0.032) (0.034) (0.033) (0.034) (0.033)

New: O & D <250m from station 0.030 0.026 0.037 0.033 0.039 0.035
(0.024) (0.024) (0.025) (0.024) (0.025) (0.024)

New: O & D <500m from station 0.025 0.024 0.039+ 0.038+ 0.036+ 0.035+

(0.020) (0.020) (0.021) (0.020) (0.021) (0.020)

Existing: O & D contain station 0.098∗∗ 0.099∗∗

(0.035) (0.034)

Existing: O & D <250m from station 0.058+ 0.059+

(0.031) (0.032)

Existing: O & D <500m from station 0.055∗ 0.056∗ 0.040 0.041
(0.022) (0.023) (0.025) (0.025)

Full Sample, N = 1993198

New: O & D contain station 0.109∗∗ 0.092∗∗ 0.108∗∗ 0.092∗∗ 0.110∗∗ 0.094∗∗

(0.033) (0.031) (0.034) (0.032) (0.034) (0.032)

New: O & D <250m from station 0.034 0.017 0.038 0.021 0.038 0.022
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

New: O & D <500m from station 0.022 0.008 0.032 0.019 0.031 0.017
(0.022) (0.020) (0.022) (0.020) (0.023) (0.021)

Existing: O & D contain station 0.091∗ 0.084∗

(0.038) (0.036)

Existing: O & D <250m from station 0.049+ 0.048+

(0.027) (0.029)

Existing: O & D <500m from station 0.056∗ 0.052∗ 0.048+ 0.043+

(0.022) (0.022) (0.025) (0.025)

Tract Pair FE Y Y Y Y Y Y
POW-X-Yr FE Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y
Sbcty-X-Sbcty-X-Yr FE - Y - Y - Y

High-dimensional fixed effects estimates of λD . Treatment variables are mutually exclusive with others in each
column. All control networks are ‘loose’ (see text). All estimates include tract of work-by-year, tract of residence-
by-year, and tract pair fixed effects. Standard errors clustered by tract pair, tract of residence, and tract of work in
parentheses: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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A Discussion of data

In this Appendix section, I discuss all the sources of data that this project draws from and details relevant
to sample construction. I pay particular attention to normalization. I also compare the CTPP and LEHD
LODES data sources, and explain why they are not suitable to be used together.

A.1 Sources

• Census Transportation Planning Project (CTPP)

– 1990 Urban Part II: Place of Work, Census Tract

– 1990 Urban Part III: Journey-to-Work, Census Tract

– 2000 Part 2

– 2000 Part 3

– 2006/10 Part 3 (not used in current draft)

• National Historical Geographic Information System (NHGIS)

– Shapefiles, Block Group and Census Tract, 1990, 2000, and 2010

– Census, Block Group and Census Tract aggregates, 1990 and 2000

• Longitudinal Employer-Household Dynamics (LEHD) Origen-Destination Employment Statistics (LODES)

– Aggregated to tract-to-tract flows, 2002 and 2015, using constant 2010 geographies

• Geolytics Neighborhood Change Database (NCDB)

– Census aggregates in constant 2010 geographies from 1970-2010

• Los Angeles County Metropolitan Transportation Authority (LACMTA)

– Shapefiles on LA Metro stations and lines

– Opening dates for stations and lines

– Ridership data

– Kelker, De Leuw and Company (1925). I georeference this map in ArcGIS, and then processe it
in R to provide geographic data to delineate the 1925 Plan and PER Line samples.

• IPUMS USA

– Microdata on employment, wage, and industry by MSA for all non-CA residents, 1980-2000.

– Microdata on transit in the 1990 and 2000 Censuses for LA area residents.

• Southern California Association of Governments

– Land use and zoning maps: 1990, 1993, 2001, 2005.

• National Highway Planning Network

– Shapefiles for the Century Freeway (I-105)

A.2 Data construction details

See data map on following pages. Where there have been significant and arbitrary data processing deci-
sions, I denote this by P#. See Figure ?? to reference data processing.
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Geographic normalization

Through my primary analysis (all results from 1990 and 2000, excluding the check on pre-trends), the unit
of observation is the census tract according to 1990 Census geographies. The Transportation Analysis Zones
used in Southern California in the 1990 CTPP are equivalent to census tracts from the 1990 Census that have
been subdivided by municipal boundaries if they overlay multiple jurisdictions. I merge TAZs in 1990 that
cross municipal boundaries and assign them to the corresponding census tract. Data from the 2000 CTPP
and 2000 Census are both in 2000 geographies. I therefore overlay shapefiles delineating 2000 geographies
on 1990 census tracts to develop a crosswalk that translates 2000 data into 1990 geographies.F.1 Where
possible, I use 2000 block group data and shapefiles to refine the crosswalk. More precisely, to create the
crosswalk, I intersect the 2000 census tracts and census block group files with 1990 census tracts, and then
clean to provide a set of weights to be used in converting 2000 data to the 1990 geographies. Note that the
intersection method varies according to whether summation or averaging is desired. If summing, weights
are the portion of a 2000 geography that overlays the 1990 census tract. If averaging, weights are the portion
of the 1990 census tract that is covered by a 2000 geography. In all cases, I excluded intersected values that
cover less than 0.5% of the targeted area to reduce noise (P1).F.2

To normalize 2000 flows and travel times to 1990 geographies, the crosswalk is merged twice into the
data, once by origin and once by destination (using the Stata command joinby to ensure all combinations
were made). I then collapse this data by 1990 origin-destination pairs, taking the raw sum areal weights
as the 1990 flow counts and using the areal weights to determine travel times. Many travel times are not
disclosed in the 2000 data, and are treated as missing and are ignored. The 2000 CTPP data do not report
actual counts, instead rounding to the nearest 5 (except for 1-7, which is labeled 4). In order to treat 1990 and
2000 data similarly, I develop two approaches that are conservative, though they throw away potentially
useful variation. Both are similar, but differ in how they treat small numbers. In approach (P2a), I divide
flows by 5, and round to the nearest digit. In approach (P2b), I change any flow values between 1 and
4 inclusive to be 4, and divide by 5 and round to the nearest digit. Small digits are different in the two
years: in 1990, digits <4 have actual meaning, whereas in 2000 digits <4 can only have been created through
the areal weighting process. Both approaches accommodate these differences in a different way, and offer
different truncation points (2.5 for approach (a), and 1 for approach (b)). Approach (b) is my preferred
specification. For all flows-by-mode, I follow approach (b), as not doing so would result in significant left-
truncation. I also drop all pairs with a value of 0 in both 1990 and 2000 for approach (b) (P4). A small
number of locations failed to merge. The flows in these amounted to 0.4% of the population.

I exclude census tracts from the eastern edges of San Bernardino and Riverside counties on the Channel
Islands.

Labor demand shock construction

I construct wage and employment variants of the Bartik (1991) labor demand shock using Census microdata
from 1990 and 2000. I exclude all workers in California. To create measures of national changes in labor
demand, I calculate the change in wage or employment by two digit SIC industry from 1990 to 2000. I
then interact this with the 1990 employment share by industry at each census tract of work to create a
local measure of (plausibly exogenous) change in labor demand. While it would be preferable to use 1980
employment share by industry at tract of work, I have not been able to locate such data.

I then follow the approach described in Section 4 and interact the labor demand shock with the distance
between tracts to model how the shock dissipates into adjacent markets. Because each tract may be joined
to a different number of tracts, I weight by distance and exclude tracts that experience zero commuting
flows (P3).

F.1. This is essentially the reverse process of the Longitudinal Tract Data Base in Logan, Xu, and Stults (2014); I bring
current data to 1990 geographies because merging tracts induces less error than (perhaps incorrectly) splitting tracts.

F.2. There are constant small realignments of census blocks (which aggregate to tracts) to account for roads, construc-
tion, lot mergers, etc. I choose the 0.5% threshold because it is unlikely that this represented a substantive change in the
census tract, but rather just a minor border adjustment.
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Data trimming

The various processes above produce relatively standardized data that accords reasonably well with ad
hoc probes of quality. However, there are instances of extreme values that becomes influential observations
during estimation. I experimented with a number of approaches to deal with this: (i) doing nothing, (iia)
winsorizing in levels, (iib) trimming in levels, (iiia) winsorizing in changes, and (iiib) trimming in changes,
where all winsorizing and trimming takes places at the 1st and 99th centiles. I ultimately settled on (iiib)
trimming in changes, because it reduces the number of influential observations and removes observations
with implausible-seeming characteristics from the data. I also remove observations with top-coded data
where applicable. If a variable was top-coded differently in different years, I standardized the top code to
the most conservative year.

Construction of treatment and control groups

The Dorothy Peyton Gray Transportation Library of LACMTA hosts historical data on proposed transit
plans for the Los Angeles area, including the Kelker, De Leuw and Company (1925) plan. I obtain high-
resolution digital copies of Plates 1 and 2 of this document and georeference them in ArcGIS using im-
mutable landmarks and political boundaries.F.3 I then trace the proposed lines and the existing PER lines
from this map, and convert these traces into shapefiles.

To define treatment status, I spatially join shapefiles on actual LA Metro Rail stations from LACMTA to
both census tract centroids and boundaries. I define treatment in two ways:

• A narrower definition that requires that either (i) the distance from a tract boundary to a station be
exactly 0, or (ii) the distance from a tract centroid to a station be less than 500 meters. Condition (i)
implies that the stations lies within the census tract.

• A broader definition that requires just that the distance from a tract boundary to a station be less than
500 meters.

All treated tracts are included in all estimates. To develop a set of control tracts, I spatially join the shapefiles
descended from the Kelker, De Leuw and Company (1925) document to the census tract shapefiles, and
keep all tracts that have boundaries within 500 meters of the tracks. This assigns non-treated tracts to a
control group for three different reasons: (i) they lie along spurs of proposed track that were never built, (ii)
they are near a built track but distant from a station, (iii) they lie slightly farther away from stations than
nearby treated tracts. Previous iterations of this paper have used alternative definitions of these control
groups, but the use of a 500 meter boundary seems to provide the closest comparison. I perform this
separately for 1990 tract geographies (for the main specifications) and 2010 tract geographies (for use with
the NCDB and LEHD LODES).

A.3 CTPP vs. LODES

I draw data primarily from the CTPP. There are a number of advantages and a few disadvantages of
the CTPP over another popular source of data, the Longitudinal Employer-Household Dynamic (LEHD)
Origin-Destination Employment Statistics (LODES). The benefits of CTPP data:

1. In CTPP data, place of work is determined from household responses to a particular set of census
questions. The response indicates where an individual worked in the week prior to the census, which
may or may not correspond to a fixed establishment. LODES data come from federal tax records,
and so identify people as working at the address on a firm’s tax statement. Thus for firms with
several establishments, there may be clustering at the mailing location that is not indicative of actual
workplace. This is particularly true for large, multi-establishment firms.

F.3. Maps available through the LACMTA library and online at https://www.metro.net/about/library/
archives/visions-studies/mass-rapid-transit-concept-maps/.
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2. The CTPP included median and mean wage at place of work prior in the 1990 and 2000 enumerations.
LODES provides only a few large bins. Accurate measures of local wage at place of work are key to
this analysis, and a novel contribution to the urban trade literature.

3. CTPP data include reported travel times. Thus, these estimates take into account congestion and
other item unobservable to route planning GIS systems that may induce measurement error.

4. CTPP location data is accurately reported, while there is some geographic randomization (within
block group) in LODES data to preserve confidentiality.

5. The CTPP data go back to 1990, while LODES does not begin until 2002. Thus, with CTPP I can fully
capture commuting in ‘pre’ and ‘post’ periods.

Benefits of LODES data:

1. LODES data provide annual measures of commuting between locations since 2002, and the geocod-
ing of workplace mailing address has a higher match rate than in the CTPP.

2. The CTPP has rather odd rounding rules that induce more measurement error in low commute-flow
tract pairs. LODES has no such rounding rules (though there is geographic jittering).

3. LODES is calculated with consistent geography over time, while the CTPP is estimated using what-
ever geographies are decided upon by state census and transportation entities. This means that CTPP
data must undergo geographic normalization, while LODES data does not.

There are two further disadvantages to the CTPP data: (i) not all fields from the 1990 and 2000 CTPP are
reported in the 2006/10 CTPP. Important for this paper is the lack of wage at place of work data in 2006/10.
(ii) Industry coding changed between the 1990 and 2000 census reports.

I have tried combining data sources to provide a more complete panel of commuting flows across time.
There are a number of issues with this approach, namely concern that measurement error in flows drowns
out meaningful variation in observed commuting flow changes over time. In fact, this seems to be the case
when combining the 1990 CTPP with 2002 LODES data, or the 1990 and 2000 CTPP data with more recent
LODES data. Further, the lack of wage at place of work data in LODES is a severe disadvantage. While I
have experimented with alternative (fixed effects) methods to estimate wage at place of work, measurement
error swamps meaningful measurement.
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B Proofs

Proposition 1

To establish Proposition 1i (existence), I utilize a fixed point argument and homogeneity. To establish Propo-
sition 1ii, I make use of Theorem 1ii from Allen, Arkolakis, and Li (2014) (AAL) and the Perron-Frobenius
Theorem.

Existence in a closed economy: Land use is assumed to be predetermined. Denote the set of location pairs
with positive land use for housing and production as C = {ij : LHi > 0 and LYj > 0}, and the cardinality
of C as NC . Assume that LHi > 0 ⇔

∑
s πis > 0 and LYj > 0 ⇔

∑
r πrj > 0. The model can be entirely

expressed in terms of the aggregate population N̄ , the data on land use, local fundamentals, travel costs,
and commuting shares {LHi , LYj , Aj , B̃i, Ci, Dij , Ej , Ti, δij , πij}∀ij∈C . Note that the commuting shares and
aggregate population are endogenous, all else is given.

The commuting share from ij can be written as an implicit function of the vector of all commuting
shares, population, exogenous variables, and models parameters: Define Tij(π; N̄):

Tij(π; N̄) =

Λij
δεij
· Ăεj

(N̄
∑
r πrj)

ε(1−α) ·
(
N̄C̆i ·

∑
s

πisĂs

(N̄
∑
r πrs)

1−α

)−εψ(1−ζ)
1+ψ

∑
r

∑
s

Λrs
δεrs
· Ăεs

(N̄
∑
r′ πr′s)

ε(1−α) ·
(
N̄C̆r ·

∑
s′

πrs′ Ăs′

(N̄
∑
r′ πr′s′)

1−α

)−εψ(1−ζ)
1+ψ

with Ăj = αAjL
Y
j

1−α and C̆i = (1 − ζ)C
1/ψ
i LHi

−1. An equilibrium of the model is the vector π and
aggregate population N̄ such that π is a fixed point of Tij(π; N̄) and the no spatial arbitrage condition is
satisfied. First, note that Tij(π; N̄) is homogeneous of degree zero in N̄ , so Tij(π; N̄) = Tij(π) and the
existence of commuting shares is independent of aggregate population.

Consider Tij(π). By assumption, for all ij ∈ C, we have LHi > 0, LYj > 0, and
∑
r πrj > 0 and∑

s πis > 0. This implies that πij ≥ 0, and πij ≤ 1 because π represent shares. Stacking equations, equilib-
rium commuting shares are a fixed point T (πFP ) = πFP . The function T : [0, 1]NC → [0, 1]NC is continuous
and maps a compact, convex set into itself. Therefore, by the Brouwer fixed point theorem, an equilibrium
vector πFP exists. In a closed economy, aggregate population is fixed, so this establishes existence.

Existence in an open economy: In an open economy, existence of equilibrium follows from Existence in a closed
economy, but also the no spatial arbitrage that requires expected utility to be equalized to Ū in equilibrium.
Denote element ij of πFP be πij . Rewriting the no spatial arbitrage condition:

N̄ =


Ū

Γ
(
ε−1
ε

)
·

∑
r

∑
s

Λrs
δεrs
· Ăεs

(N̄
∑
r′ πr′s)

ε(1−α) ·
(
N̄C̆r ·

∑
s′

πrs′ Ăs′

(N̄
∑
r′ πr′s′)

1−α

)−εψ(1−ζ)
1+ψ

1/ε



1

1−α(1+
ψ(1−ζ)
1+ψ )

Given πFP , existence requires that the preceding equation give a real, finite value of N̄ . This is the case so
long as ε > 1 and α 6= 1+ψ

1+ψ(2−ζ) .

Uniqueness: Rearranging the system in Equations (1), (8), (11), (12), and (10) into a more convenient form
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gives:

W
1+ε(1−α)

1−α
j Ωj = N̄−1K0j

∑
s

W ε
sΩs

Ωj =
∑
r

K1rjQ
−ε(1−ζ)
r

Q
−ε(1−ζ)− 1+ψ

ψ

i Φi = N̄−1K2i

∑
s

W ε
sΩs

Φi =
∑
s

K1isW
ε+1
s

where K0j = Ă
1/(1−α)
j , K1ij = Λijδ

−ε
ij , and K2i = C̆

−1/ψ2

i are functions of predetermined parameters.
This transforms the model into the form of Equation 1 in AAL. Let G represent the matrix of exponents

on the left hand side of the above system in the order (W , Ω,Q, Φ), and let B be the corresponding exponents
on the right hand side:

G =


1+ε(1−α)

1−α 1 0 0

0 1 0 0

0 0 −ε(1− ζ)− 1+ψ
ψ 1

0 0 0 1

 , B =


ε 1 0 0
0 0 −ε(1− ζ) 0
ε 1 0 0

ε+ 1 0 0 0


Note that G is invertible. To address uniqueness, define A = BG−1 and A+ to be the element-wise absolute
value of A. That is,

A+ =


ε[(1−α)−µ]
1+ε(1−α)

1
1+ε(1−α) 0 0

0 0 ε(1−ζ)
ε(1−ζ)+ 1+ψ

ψ

ε(1−ζ)
ε(1−ζ)+ 1+ψ

ψ
ε[(1−α)−µ]
1+ε(1−α)

1
1+ε(1−α) 0 0

(ε+1)[(1−α)−µ]
1+ε(1−α)

(ε+1)(1−α)
1+ε(1−α) 0 0


Theorem 1ii in AAL establishes that there is a unique equilibrium to the model if the spectral radius (largest
eigenvalue) of A+ is less than or equal to one. Thus, uniqueness is established when ρ(A+) ≤ 1.

Because A+ corresponds to a strongly connected graph and is nonnegative, it is irreducible. The Perron-
Frobenius Theorem states that a nonnegative, irreducible matrix has a positive spectral radius with corre-
sponding strictly positive eigenvector. So finding a condition under which ρ(A+) ≤ 1 is identical to de-
termining conditions under which A+x ≤ x for x � 0. Solving the implied system of inequalities gives
condition (13).B.1

Proposition 2

Existence: Ai is uniquely determined from:B.2

Ai =
Wi

α

(∑
r N̄πri

LYi

)1−α

B.1. To ensure the algebra is correct, I have numerically verified ρ(A+) ≤ 1 iff Equation (13) holds.
B.2. Uniqueness of A holds under agglomeration, the other terms are unaffected.
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and Ci is uniquely determined from:

Ci = Q1+ψ
i

(
LHi∑

s N̄πisWs

)ψ
Define an excess demand function:

Dij(Λ) = πij −
ΛijW

ε
j

(
δijQ

1−ζ
i

)−ε
∑
r

∑
s ΛrsW ε

s

(
δrsQ

1−ζ
r

)−ε = 0

Note that D is continuous and homogeneous of degree zero. Homogeneity implies that Λ can be rescaled
and restricted to the unit simplex: {Λ :

∑
r

∑
s Λrs = 1}. This means that D : [0, 1]N

2 → [0, 1]N
2

. So D is
a continuous function from a compact, convex set into itself; the Brouwer fixed point theorem guarantees
existence.

Uniqueness: To establish uniqueness, note that by homogeneity of degree zero, we have
∑
r

∑
sDrs(Λ) = 0.

Define Mij = W ε
j

(
δijQ

1−ζ
i

)−ε
. The Jacobian of D has diagonal elements:

−
Mij · ((

∑
r

∑
s ΛrsMrs)− ΛijMij)

(
∑
r

∑
s ΛrsMrs)

2 < 0

and off-diagonal elements
ΛijMijM{ij}′

(
∑
r

∑
s ΛrsMrs)

2 > 0

where {ij}′ refers to an origin destination pair such that i′ 6= i and/or j′ 6= j. Thus the aggregate excess
demand function exhibits gross substitution, and equilibrium is unique.B.3

Proposition 3

Under the assumption that e−κδij are fixed terms, ∆zHD,Xit , ∆zHS,X(−i)jt, and ∆zLS,Xit are linear combinations

of ∆zLD,Xjt . Therefore, A2 maps directly into M2, and A4 maps directly into M4. Condition M3 imples
E[∆zLD,Xj′t ∆ ln(BitDijt)] = 0, ∀ i, j′ 6= j, which holds given M1.

Welfare under ε ≤ 1 (Frechet is Multinomial Logit)

First, I show that the expression in Equation (24) has an equivalent log-sum representation. Begin by divid-
ing counterfactual and factual expected utilities (from Equation 6):

ˆ̄U =
E[U ′ijo]

E[Urso]
=

Γ
(
ε−1
ε

)
·
(∑

{ij} Λ̃′ij

(
δ′ijQ

′
i
1−ζ
)−ε

(B̃′iW
′
j)
ε

)1/ε

Γ
(
ε−1
ε

)
·
(∑

{rs} Λ̃rs

(
δrsQ

1−ζ
r

)−ε
(B̃rWs)ε

)1/ε
=


∑
{ij} Λ̃′ij

(
δ′ijQ

′
i
1−ζ
)−ε

(B̃′iW
′
j)
ε

∑
{rs} Λ̃rs

(
δrsQ

1−ζ
r

)−ε
(B̃rWs)ε


1/ε

(1)
where {ij} = {rs} track summation sets. Substituting in Equation (1) for some particular ij into the above
twice (once for π′ij and once for πij) and taking logs gives Equation (24).

B.3. See Proposition 17.F.3 in Mas-Colell, Whinston, and Green. An alternative approach could be to use weak diagonal
dominance of this positive matrix (following Bayer and Timmins (2005) but for weaker conditions).
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From Train (2009), the change in consumer welfare due to changes of the characteristics of the elements
in the choice set are:

E[W̄ ′]− E[W̄] =
1

µ
ln

(∑
k∈K1

eV
′
k∑

k∈K0
eVk

)
(2)

where here µ is the marginal utility of income.B.4 Let:

V ′k = ln

(
Λ̃′ij

(
δ′ijQ

′
i
1−ζ
)−ε

(B̃′iW
′
j)
ε

)
Vk = ln

(
Λ̃rs

(
δrsQr

1−ζ
)−ε

(B̃rWs)
ε

)
µ = ε

K0 = K1 = {ij} = {rs}

Taking logs of Equation F-1 then delivers Equation F-2. Note that µ = ε is natural as ε already captures
the utility effect of wage dollars. Thus the Frechet framework is identical to a multinomial logit framework
where the utility from choice ij is:

Uijo = ln

(
Λ̃′ij

(
δ′ijQ

′
i
1−ζ
)−ε

(B̃′iW
′
j)
ε

)
+ εijo

for εijo distributed iid extreme value. In fact, this is very precisely (up to interpretation of amenity terms
and trade costs) the specification often used in the discrete location choice literature (e.g. Bayer, Keohane,
and Timmins 2009). To map interpretation of the change in consumer welfare between the two frameworks,
note:

E[W̄ ′]− E[W̄] = lnE[U ′ijo]− lnE[Uijo] = ln ˆ̄U ≈ %∆ Welfare

That is, welfare change is naturally expressed in relative terms (rather than monetary terms) when used
with Frechet framework. Equation F-2 only requires ε > 0, and so Equation (24) can be used for welfare
evaluation when ε ∈ (0, 1] and well as ε > 1.

B.4. Thanks to Wei You for noting that (24) and a log-sum expression are interchangeable:

ˆ̄U =

(
ˆ̃Λij(

ˆ̃BiŴj)
εQ̂
−ε(1−ζ)
i

π̂ij

)1/ε

=

∑
{ij}

πij
ˆ̃Λij
(
δ̂ijQ̂

1−ζ
i

)−ε
( ˆ̃BiŴj)

ε

1/ε
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C Cost-benefit calculations

This section details the costs of the subway built by 2000. I do not track costs since 2000, as the calculation
becomes much less clear with more recent data. To compare the costs and benefits of transportation inter-
ventions, I require annualized estimates of costs to compare with the annualized welfare benefits calculated
in the text. Costs consist of two components: (i) the annualized cost of capital investment in rail, rail cars,
stations, and similar expenses, and (ii) net operating expenses (operating costs less revenues). Spreadsheet
available by request.

Total Annual Cost = Operating Subsidy + Annualized Capital Expenditure

C.1 Annualized Capital Expenditure

Cost information is from a consolidation of capital expenditures on lines built before 2000 from fiscal bud-
gets.C.1 After adjusting all costs to 2015 dollars, the total capital expenditure for the rail, rolling stock, and
stations built prior to 2000 is $8.7 billion. To annualized this, I assume annual payments are made on this
principal balance over a 30-year horizon with 6% interest rate (the interest rate used for some internal cal-
culations by LA Metro). This gives an annualized capital cost of $634.6 million. This does not include other
financing charges, the cost of planning, or some other expenses.

However, LA Metro’s internal cost of borrowing may not be a suitable social discount rate, and the
30-year horizon may be too short. I provide several alternative definitions: (i) 5% interest over a 50-year
horizon, (ii) 5% over an infinite horizon, and (iii) 2.5% over an infinite horizon. For (i) and (ii), the 5% rate
is roughly equal to a low-yielding municipal bonds in 2000. For (iii), the 2.5% rate is low, roughly equal to
the recent cost of borrowing, and is meant to represent a policy maker that highly values future generation
or is uncertain about future discount rates (see Weitzman 1998). Once built, subways typically remain in
operation for the long run (perhaps forever).

C.2 Operating Subsidies

Like most transit systems in the United States, LA Metro has incomplete farebox recovery, meaning that it
subsidizes a portion of every ride. For rail in 2001, the farebox recovery ratio was about 20%. To estimate
the welfare effects, I use the net subsidy: operating costs less fare revenue. Operating expenses from 1999
or 2000 are unavailable, so I use operating expenses from 2001 and 2002 as a proxy. Rail (light and heavy)
operations total $202.4 million in 2015 dollars, and rail fare revenue is $40.2 million. The net subsidy is
$162.2 million per year.

C.3 Sales Taxes

Most of the funding for the early stages of rail construction in Los Angeles came from federal transportation
grants, and so I ignore any deadweight loss imposed by local sales tax in the primary analysis. However,
as robustness, I perform some deadweight loss calculations. Because preferences are Cobb-Douglas, a
constant share of income is spent on consumption, and so adding sales tax on the composite consumption
goods does not have any direct effect on household housing expenditures.

To incorporate the tax, I apply the following schedule to Los Angeles County residents, making the
simplifying assumption that households purchase the consumption good where they live. The primary
taxes that funded early stages of rail development were Proposition A (1980) and Proposition C (1990).
Proposition A was a half-cent increase with 35% earmarked for subway and light rail, while Proposition C
was a half-cent increase with 45% allocated to subway and light rail. The base right prior is assumed at 6%
(the rate in Los Angeles prior to 1980). Therefore, I model transit sales tax as a an increase from 6% to 6.4%
for Los Angeles County residents.

C.1. Source: http://demographia.com/db-rubin-la-transit.pdf.
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Implementing this in the model is straightforward: Indirect utility with Sales Tax S̄T i in location i is:

vo|ij =
νijoB̃iWjQ

ζ−1
i S̄T

−ζ
i

δij

Population shares that choose residential location i and place of work j are then:

πij =
Λ̃ij

(
δijQ

1−ζ
i S̄T

ζ
i

)−ε
(B̃iWj)

ε

∑
r

∑
s Λ̃rs

(
δrsQ

1−ζ
r S̄T

ζ
r

)−ε
(B̃rWs)ε

(1)

See the next section for counterfactual estimation. Note that, were the tax to apply uniformly across the
entire region, the effect could be estimated simply and analytically.
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D Counterfactual Estimation

First, note that the following hold:

Ŵi = Âi
ˆ̄Nα−1

(∑
r πriπ̂ri∑
r πri

)α−1

Q̂i = Ĉ
1/(1+ψ)
i

(
ˆ̄N
∑
s πisπ̂isWsŴs∑
s πisWs

)ψ/(1+ψ)

π̂ij =
B̂iÊjD̂ijŴ

ε
j Q̂
−ε(1−ζ)
i∑

r

∑
s πrsB̂rÊsD̂rsŴ ε

s Q̂
−ε(1−ζ)
r

where ˆ̄N = 1 in a closed economy. In the case of the open economy, aggregate population can adjust,
ensuring no arbitrage between the city and outside locations. To account for this, define:

ˆ̄N =


∑
r

∑
s

πrsB̂rD̂rs

(
Âs

(∑
r′ πr′sπ̂r′s∑
r′ πr′s

)α−1
)ε
×

Ĉr ·

∑
s′ πrs′ π̂rs′Ws′Âs′

(∑
r′ πr′sπ̂r′s∑
r′ πr′s

)α−1

∑
s′ πrs′Ws′


ψ

−ε(1−ζ)

1+ψ


1+ψ

ε[(1+ψ)−α(1+ζψ)]

Simulating counterfactuals

Simulate closed economy counterfactual, then use that as the initial guess for the open economy counter-
factual:

1. Make an initial guess of wages and housing prices: {Ŵ (0)
i }, {Q̂

(0)
i }. It is useful to set these equal to 1.

2. Estimate {π̂(0)
ij } using {Ŵ (0)

i }, {Q̂
(0)
i }, and {πij}.

3. Main Loop:

(a) Define {Q̂(temp)
i } using {Ŵ (t−1)

i }, {Wi}, {π̂(t−1)
ij }, and {πij}

(b) Define {Ŵ (temp)
i } using {π̂(t−1)

ij }, and {πij}

(c) Define {π̂(temp)
ij } using {Ŵ (t)

i }, {Q̂
(t)
i }, and {πij}.

(d) Update X̂(t) = ξX̂(temp) + (1 − ξ)X̂(t−1) for X̂ ∈ {Q̂, Ŵ , π̂, where ξ is a weight that disciplines
updating.

(e) Estimate movement as:

∆ =
∑
r

|Ŵ (t)
r − Ŵ (t−1)

r |+
∑
r

|Q̂(t)
r − Q̂(t−1)

r |+ 1

N

∑
r

∑
s

|π̂(t)
rs − π̂(t−1)

rs |

(f) Stop when movement is below convergence criterion

4. Initial guess for ˆ̄N (0) using {Ŵ (temp)
i }, {Wi}, {Q̂(temp)

i }, {π̂(temp)
ij }, and {πij}
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5. Main Loop:

(a) Define {Q̂(temp)
i } using ˆ̄N (t−1), {Ŵ (t−1)

i }, {Wi}, {π̂(t−1)
ij }, and {πij}

(b) Define {Ŵ (temp)
i } using ˆ̄N (t−1), {π̂(t−1)

ij }, and {πij}

(c) Define {π̂(temp)
ij } using {Ŵ (t)

i }, {Q̂
(t)
i }, and {πij}.

(d) Define ˆ̄N (temp) using {Ŵ (t)
i }, {Wi}, {Q̂(t)

i }, {π̂
(t)
ij }, and {πij}

(e) Update X̂(t) = ξX̂(temp) + (1 − ξ)X̂(t−1) for X̂ ∈ {Q̂, Ŵ , π̂, ˆ̄N}, where ξ is a weight that disci-
plines updating.

(f) Estimate movement as:

∆ =
∑
r

|Ŵ (t)
r − Ŵ (t−1)

r |+
∑
r

|Q̂(t)
r − Q̂(t−1)

r |+ 1

N

∑
r

∑
s

|π̂(t)
rs − π̂(t−1)

rs |+| ˆ̄N (t) − ˆ̄N (t−1)|

(g) Stop when movement is below convergence criterion

With sales taxes

Everything is very similar with local sales taxes, except the ratio of population shares is:

π̂ij =
B̂iÊjD̂ijŴ

ε
j Q̂
−ε(1−ζ)
i

ˆ̄
iST−εζ∑

r

∑
s πrsB̂rÊsD̂rsŴ ε

s Q̂
−ε(1−ζ)
r

ˆ̄
rST−εζ

ˆ̄
iST = 1.064/1.06 for i in Los Angeles County.
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E Identification under alternative assumptions

In this section, I discuss identification under more general settings that those in the simplest version of the
model presented in the paper. The two modification I consider are: (i) endogenous land use determination
(no zoning), and (ii) the presence of agglomeration and other forces. As discussed in the paper, it is unlikely
that either of these plays a significant role in the environment presented in the paper. Nonetheless, it is
illustrative to work through these variations.

I first display the identification assumptions from the main text. Though these will continue to be
necessary, they will not be sufficient.

E[∆zLD,Rjt ×∆ ln(EjtDijt)] = 0, ∀ ij (A-1)

E[∆zLD,Rjt ×∆ ln(Cit)] = 0, ∀ ij (A-2)

E[∆zLD,Rj′t ×∆ ln(BitDijt)] = 0, ∀ ij′ 6= ij (A-3)

E[∆zLD,Rj′t ×∆ ln(Ajt)] = 0, ∀ j′ 6= j (A-4)

and their simplified versions that accomodate the presence of rich fixed effects:

E[∆zLD,Rjt ×∆ ln(Ejt)] = 0, ∀ j (A-1a)

E[∆zLD,Rjt ×∆ ln(Cit)] = 0, ∀ i 6= j (A-2a)

E[∆zLD,Rj′t ×∆ ln(Bit)] = 0, ∀ i (A-3a)

Below, I describe additional conditions for identification, and their plausibility, under various changes to
model form and data availability.

E.1 Agglomeration in Productivity and Residential Amenity

To describe how the presence of agglomerative forces change identification assumption, define residential
and productive spillovers as in Ahlfeldt et al. (2015):

Productive agglomeration (A-augmenting): Υjt= Υ

(∑
s

kΥ,js

(
NY
st

LYst

))

Residential agglomeration (B-augmenting): Ψit= Ψ

(∑
r

kΨ,ir

(
NH
rt

LHrt

))

where k here represent distance kernals and NH
i = N̄

∑
s πis is residential (employed) population.

If the parameters for the spillovers are known (of both the effects and the distance functions), then it is
not necessary to develop new identification assumptions. Instead, the following substitutions can be made:

wjt − ln(Υjt) for wjt in the labor demand equation
θit − ln(Ψit) for θit in the housing demand equation

Note that these equations reveal why the presence of these forces has little effect in this setting: they are
mostly captured by the fixed effects āj and b̄i.

If the spillovers are omitted from the model, additional moment conditions are required. Moment con-
ditions presented in Assumptions A-1, A-1a, A-2, and A-2a do not change. Recall that those assumptions
identify the key parameters of interest. Moment conditions corresponding to A-3, A-3a, and A-4 are tight-
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ened:

E[∆zLD,Rj′t ×∆ ln(BitΨitDijt)] = 0, ∀ ij′ 6= ij

E[∆zLD,Rj′t ×∆ ln(BitΨit)] = 0, ∀ i

E[∆zLD,Rj′t ×∆ ln(AjtΥjt)] = 0, ∀ j′ 6= j

For these to hold, two additional assumptions are required in addition to Assumptions A-3 (or A-3a) and
A-4:

E[∆zLD,Rj′t ×∆ ln(Ψit)] = 0, ∀ i (S-3)

E[∆zLD,Rj′t ×∆ ln(Υjt)] = 0, ∀ j′ 6= j (S-4)

If these conditions hold in addition to Assumptions A, the model is identified.
However, recall that instrument relevant requires E[∆zLD,Rjt × ∆ ln(Ajt)] 6= 0. Both Ψ and Υ depend

on nearby density, so to the extent location j′ is near i or j, productivity shocks influence density and
Assumptions S-3 and S-4 are unlikely to hold in a strict sense. However, they may hold approximately:
There is significant autocorrelation in the population mass in locations from decade to decade. While this
makes separately identifying agglomeration force difficult, in the context of the model presented here, this
stickiness aids identification because much of ∆Ψ and ∆Υ are captured by time-invariant tract fixed effects.

E.2 Endogenous Land Use

If land use is observed (as here) and the amount of land used in housing and production is determined by
market forces, no additional assumptions need be made for identification. This is not true for the theoretical
model or counterfactual simulations; both would need to be modified with an additional market clearing
condition to account for the additional degree of freedom.

One minor change in interpretation of parameter values must be made if land use is endogenous. The
assumption of congestion in the relationship between land price and residential density can no longer be
supported: PLi 6= (Hi/L

H
i )ψ̃ . This is because of the price of land also depends on the demand for land

for production (and so congestion occurs through displacing employment instead of density costs). ψ has
no role in this alternate model. However, because total output (housing) is observable, we can modify the
model to derive an estimating equation very similar to that in the main paper.

Consider the developer’s problem. Zero profits implies QiHi = PLi L
H + PMM , and the first order

conditions deliver an expression for M under profit maximization. This results in the expression:

QiHi =
1

φ
PLi L

H

which just requires that a constant fraction of developer income be spent on land. Solving this for PLi and
substituting into Equation (6) and solving for Qi delivers the equilibrium expression:

Qi =

(
Hi

LHi

) φ
1−φ

Ci

where Ci = 1−φ
φ2 PM C̃

1/(φ−1)
i contains the same elements as Ci. In fact, the estimating equation based on the

above expression is isomorphic to that in the main text. Here, however, we identify φ
1−φ instead of ψ. Note

that under this interpretation, φ (the share of land in construction costs) is between 0.54 and 0.66, according
to the estimates in Table ??. This is higher that a relatively standard value of 0.25 from Combes, Duranton,
and Gobillon (2012), Epple, Gordon, and Sieg (2010), and Ahlfeldt et al. (2015). However, in Southern
California land value anecdotally makes up high share of transacted real estate value. Alternatively, this
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could be seen as evidence in favor in immutable zoning.
As a quick aside, to complete the theoretical model, it is necessary to specify a land market clearing

condition. I assume that the total land in a tract available for any use is fixed at L̄i; market clearing then
requires LHi + LYi = L̄i.E.1 This condition can be rewritten (using Equation 4):

Hi

(
Ci
Qi

) 1−φ
φ

+NY
i

(
Wi

αAi

) 1
1−α

= L̄i

This equation, in conjunction with the model in the main text, is sufficient to pin down land use.E.2

E.3 Agglomeration and Endogenous Land Use

Because endogenous land use did not alter identification, identification with both agglomeration and en-
dogenous land use does requires the same assumptions as for the case with agglomeration: Assumptions
S-3 and S-4 in addition to Assumptions A.

E.1. Note that this implies ∆LYit = −∆LHit .
E.2. Note that we can also rewrite this market clearing condition as an analytic expression of the observable prices,

quantities, parameters, and the unobservable price of land:

φQiHi
PLi

+NY
i

(
(1− α)WiN

Y
i

αPLi

) 1
α

= L̄i

The price and land can be be calculated from this expression.
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F Additional and Supplementary Results

Bilateral adjacencies

I adapt the adjacency strategy of Dube, Lester, and Reich (2010) to flow data. Groups are defined as a
treated pair, along with all adjacent pairs for which at least one tract is not treated. Thus, for each treated
group ij there is a group g of #i×#j tract pairs, where # represents the number of adjacent tracts plus one
(the treated tract). I then estimate:

yijgt = λTijt + ςij + ςgt + εijt (1)

Each group is permitted to have its own time trend, ςgt. Tracts pairs are thus being compared to only doubly
nearby tract pairs, making the parallel commuting trends assumption more credible. However, estimates
from this adjacency approach are prone to attenuation if the spatial scale of the effect is mismeasured, so
estimates provide a lower bound on the true effect size. To mitigate this attenuation, I expand the immediate
adjacencies to slightly more distant tracts in some specifications.

Adjacency based estimates, shown in Table F7, support the finding that the tract pairs nearest stations
experienced increased commuting. Standard errors are clustered by tract pair, residential tract, and work-
place tract; some tract pairs belong to multiple groups. Column 1 uses tracts pairs both adjacent to those
within 500m of a station as the control; the effect of transit is smaller but significant for tracts nearest a
station. Columns 2 and 3 add tracts further away (adjacent to tracts within 1km of a station), and show
larger effects for tracts nearest a station. Comparing specifications suggests some attenuation of the effect
over space, and do not support increased commuting between slight more distant tracts.

Summary of Additional Results

• Figure F1: Ridership, 1990-2000

• Figure F2: Ridership, 1990-2014

• Figure F3: Glossary of variables and parameters

• Figure F4: Timeline of transportation in Los Angeles

• Table F1: Testing parallel pre-trends in other (non-commuting) tract characteristics, 1970-1990

• Table F2: Testing parallel pre-trends in tract-level commuting behavior, 1970-1990

• Table F3: Is treatment related to zero flows?

• Table F4: Effect of Transit on Commuting Flows (by 2000) - PPML

• Table F5: Tracts near stations on the same line

• Table F6: Interactions of residential and workplace station proximity

• Table F7: Effect of Transit on Commuting Flows (by 2000) - Adjacencies

• Table F8: Effect of Transit on Commuting Flows (by 2000) - Adjacencies, PPML

• Table F9: Transit and non-commuting fundamentals (other effects of transit), robustness

• Table F10: Transit, income change, and land use change
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Appendix Figures and Tables

Figure F1: Ridership, 1990-2000
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Figure F2: Ridership, 1990-2014
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Figure F3: Glossary of variables and parameters

Parameters Interpretation

ε Homogeneity of location preferences (and wage elasticity of labor supply)
ζ Household expenditure share on non-housing goods

ζ̃ = −ε(1− ζ) Price elasticity of housing demand
α Share of (production) income spent on labor

α̃ = α− 1 Inverse wage elasticity of labor demand
φ Share of housing income spent on land
ψ̃ Congestive cost of housing

ψ = ψ̃φ Inverse price elasticity of housing supply
κ Semi-elasticity of commuting with respect to travel time
ρ Spatial decay for instrumental variable construction
λx Treatment effect for outcome x

Variables Interpretation

A Workplace productivity
B = TB̃ε Gross residential amenity

B̃ Simple residential amenity
T Mean residential utility
C Inverse housing efficiency
C̃ Housing productivity
D Mean utility commute (net of time)
E Workplace amenity (net of wage)
C Consumption
H Housing quantity
W Wage
Q Housing price

δ = eκτ Commuting friction
τ Travel time
π Commuting share
N̄ Aggregate population
NY Employment at place of work
LY Land used for production
M Housing materials
LH Land used for housing
PM Price of housing materials

PL = (H/LH)ψ Price of land
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Figure F4: Timeline of transportation in Los Angeles

1925 Comprehensive Rapid Transit Plan for the County of Los Angeles, Kelker, De Leuw and
Co. develop at the request of local governments

1951 Los Angeles Metropolitan Transit Authority (LAMTA) formed
1961 Pacific Electric (Red Cars) end of service
1963 Los Angeles Railway (Yellow Cars) end of service
1964 Southern California Rapid Transit District (SCRTD) formed from LAMTA

3/24/1985 Ross Dress for Less methane explosion in Wilshire-Fairfax
1985 Construction begins on LA Metro Rail

11/20/1985 Department of Transportation and Related Agencies Appropriation Act (1986) includes lan-
guage prohibiting funding of tunnels for transit along Wilshire corridor due to concerns
about methane (HR 3244)

7/14/1990 Blue line opens
2/15/1991 Metro Center station opens

1993 Los Angeles County Metropolitan Transportation Authority forms from SCRTD
1/30/1993 Red line opens, connects system to Union Station
10/14/1993 Century Freeway (I-105) opens
8/12/1995 Green line opens in median of Century Freeway
7/13/1996 Red line expands to Wilshire/Vermont
6/12/1999 Red line expands to Hollywood/Vine
6/24/2000 Red line expands to North Hollywood
7/26/2003 Gold line opens

2006 Purple line renamed from Red line branch
9/20/2006 HR 3244 amended to remove prohibitions on funding of tunnels for transit along Wilshire

corridor
11/15/2009 Gold line expands in East LA

4–6/2012 Expo line opens
3/5/2016 Gold line expands to Azusa

5/20/2016 Expo line expands to Santa Monica
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Table F1: Testing parallel pre-trends in other (non-commuting) tract characteristics, 1970-1990

Model-type variables Other characteristics

ln ln % %
Res. ln ln House Coll. Pov. Moved

Emp. #HHs HHI Value Grads Rate <5yrs
(1) (2) (3) (4) (5) (6) (7)

Subway Plan (Immediate) Sample
Proximity500m

i × t 0.029 -0.011 -0.013 -0.002 -0.008∗ 0.008+ -0.011∗

(0.020) (0.017) (0.013) (0.019) (0.004) (0.005) (0.006)

N 1629 1629 1628 1555 1629 1629 1629

Subway Plan (All) Sample
Proximity500m

i × t 0.012 -0.031+ -0.019 -0.017 -0.013∗∗ 0.012∗∗ -0.014∗∗

(0.020) (0.017) (0.012) (0.018) (0.003) (0.004) (0.005)

N 3786 3786 3779 3688 3786 3786 3786

PER Sample
Proximity500m

i × t 0.002 -0.032+ -0.020 -0.034+ -0.015∗∗ 0.013∗∗ -0.014∗∗

(0.021) (0.017) (0.013) (0.018) (0.004) (0.004) (0.005)

N 4631 4629 4619 4502 4631 4632 4631

Full Sample
Proximity500m

i × t 0.025 -0.027 -0.016 -0.022 -0.015∗∗ 0.015∗∗ -0.016∗∗

(0.020) (0.017) (0.012) (0.017) (0.003) (0.004) (0.005)

N 11651 11641 11567 11407 11657 11733 11659

Tract FE Y Y Y Y Y Y Y
Sbcty-X-Yr FE Y Y Y Y Y Y Y

Each column of each panel presents the results of a different regression, for twenty-eight total. Estimates
show pre-trends from 1970-1990 for tracts treated by 1999. All regressions include tract and subcounty-
by-year fixed effects. Standard errors clustered by tract in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗

p < 0.01
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Table F2: Testing parallel pre-trends in tract-level commuting behavior, 1970-1990

(1) (2) (3) (4) (5) (6) (7) (8)

A. Total workers
Proximity500m

i × t -0.263∗∗ 0.025 0.014 0.029 0.011 0.012 -0.018 0.002
(0.021) (0.020) (0.021) (0.020) (0.020) (0.020) (0.021) (0.021)

N 11685 11643 1632 1629 3792 3786 4643 4631

B. Commuting by automobile
Proximity500m

i × t -0.002 -0.001 -0.003 -0.001 0.000 -0.000 0.001 -0.002
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

N 11686 11644 1632 1629 3792 3786 4643 4631

C. No car households
Proximity500m

i × t -0.146∗∗ -0.012 -0.006 0.014 -0.028 0.021 -0.044 0.007
(0.035) (0.036) (0.040) (0.040) (0.055) (0.038) (0.055) (0.037)

N 7720 7692 1086 1084 2524 2520 3086 3078

D. Transit (rail and bus) commuters, >0
Proximity500m

i × t -0.204∗∗ 0.023 0.043 0.042 -0.117∗∗ -0.007 -0.135∗∗ 0.010
(0.038) (0.044) (0.040) (0.043) (0.040) (0.043) (0.040) (0.044)

N 9708 9669 1617 1614 3726 3721 4459 4448

E. Transit (rail and bus) commuters, all
Proximity500m

i × t -0.001 0.101∗∗ 0.098∗∗ 0.089∗∗ 0.051∗ 0.088∗∗ 0.022 0.097∗∗

(0.020) (0.022) (0.021) (0.022) (0.020) (0.023) (0.021) (0.023)

N 11261 11195 1626 1623 3786 3776 4629 4617

Sample All All Sim Sim Sal Sal PER PER
Tract FE Y Y Y Y Y Y Y Y
Sbcty-X-Yr FE - Y - Y - Y - Y

Each column of each panel presents the results of a different regression, for forty total. Estimates show pre-trends
from 1970-1990 for tracts treated by 1999, except for Panel c, which only covers 1980-1990. Panels A and D are log-
linear; Panels B, C, E estimated by PPML with exposure set to relevant tract population. All regressions include tract
fixed effects. Tracts are 2010 geography. Standard errors clustered by tract in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗

p < 0.01
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Table F3: Is treatment related to zero flows?

1Nijt>0 1Nijt>0 1Nijt>0

(1) (2) (3)

O & D <500m from station 0.032+ 0.020 0.021
(0.018) (0.016) (0.016)

N 1260324 1259720 1259720
Control Network All All All
Tract Pair FE Y Y Y
POW-X-Yr FE Y Y Y
RES-X-Yr FE Y Y Y
Sbcty-X-Sbcty-X-Yr FE - Y Y
Travel Time - - Y

High-dimensional fixed effects estimates of transit on an indicator
for positive flows. Control network is ‘loose’ (see text). All estimates
include tract of work-by-year, tract of residence-by-year, and tract
pair fixed effects. Travel time is measured in minutes. Standard er-
rors clustered by tract pair, tract of residence, and tract of work in
parentheses: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table F4: Effect of Transit on Commuting Flows (by 2000) - PPML

(1) (2) (3) (4) (5) (6)

Subway Plan (Immediate) Sample

O & D contain station 0.101 0.150+ 0.152+ 0.169∗ 0.163∗ 0.193∗

(0.063) (0.079) (0.080) (0.080) (0.081) (0.087)

O & D <250m from station 0.108 0.125 0.120 0.176∗

(0.079) (0.078) (0.079) (0.082)

O & D <500m from station 0.085 0.070 0.064 0.063 0.094
(0.055) (0.059) (0.057) (0.057) (0.058)

N 69614 69614 69614 69596 69596 61922
Subway Plan (All) Sample

O & D contain station 0.105 0.141+ 0.142+ 0.134∗ 0.129+ 0.162∗

(0.065) (0.073) (0.073) (0.067) (0.068) (0.067)

O & D <250m from station 0.138∗ 0.125+ 0.120+ 0.130+

(0.070) (0.066) (0.068) (0.068)

O & D <500m from station 0.111∗ 0.093 0.074 0.072 0.077
(0.050) (0.057) (0.050) (0.051) (0.052)

N 309700 309700 309700 309700 309700 299472
PER Sample

O & D contain station 0.089 0.126+ 0.127+ 0.110+ 0.106 0.054
(0.065) (0.072) (0.072) (0.066) (0.068) (0.069)

O & D <250m from station 0.149∗ 0.133∗ 0.128+ 0.058
(0.068) (0.065) (0.067) (0.067)

O & D <500m from station 0.125∗ 0.110∗ 0.087+ 0.085+ 0.020
(0.049) (0.056) (0.049) (0.050) (0.049)

N 406494 406494 406494 406450 406450 383678
Full Sample

O & D contain station 0.134+ 0.163∗ 0.163∗ 0.125+ 0.124+

(0.069) (0.074) (0.074) (0.065) (0.065)

O & D <250m from station 0.134∗ 0.101+ 0.100
(0.067) (0.061) (0.063)

O & D <500m from station 0.131∗∗ 0.130∗ 0.079 0.078
(0.049) (0.058) (0.048) (0.049)

N 1259500 1259500 1259500 1256986 1256986

Control Network Loose Loose Loose Loose Loose Tight
Tract Pair FE Y Y Y Y Y Y
POW-X-Yr FE Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y
Sbcty-X-Sbcty-X-Yr FE - - - Y Y Y
Highway Control - - - - Y Y

High-dimensional fixed effects estimates of λD . Treatment variables are mutually exclusive with others in
each column. All estimates include tract of work-by-year, tract of residence-by-year, and tract pair fixed
effects. Standard errors clustered by tract pair, tract of residence, and tract of work in parentheses: + p < 0.10,
∗ p < 0.05, ∗∗ p < 0.01
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Table F5: Tracts near stations on the same line

(1) (2) (3) (4)

O & D contain station, same line 0.205∗∗ 0.192∗∗ 0.153∗ 0.144∗

(0.077) (0.064) (0.062) (0.059)

O & D contain station, not same line 0.075 0.089 0.058 0.042
(0.091) (0.079) (0.078) (0.076)

O & D <250m from station, same line 0.145∗ 0.112∗ 0.093+ 0.062
(0.066) (0.055) (0.054) (0.051)

O & D <250m from station, not same line 0.105 0.093 0.085 0.047
(0.078) (0.068) (0.067) (0.065)

O & D <500m from station, same line 0.041 0.045 0.046 0.014
(0.054) (0.041) (0.040) (0.038)

O & D <500m from station, not same line -0.048 -0.052 -0.037 -0.073
(0.066) (0.054) (0.054) (0.052)

Control Network 1925 Imm 1925 All PER Lines All
Tract Pair FE Y Y Y Y
POW-X-Yr FE Y Y Y Y
RES-X-Yr FE Y Y Y Y
Sbcty-X-Sbcty-X-Yr FE Y Y Y Y
Highway Control Y Y Y Y
N 19222 74040 99054 290580

High-dimensional fixed effects estimates of λD . Treatment variables are mutually exclusive with
others in each column. All control networks are ‘loose’ (see text). All estimates include tract of
work-by-year, tract of residence-by-year, and tract pair fixed effects. Standard errors clustered by
tract pair, tract of residence, and tract of work in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table F6: Interactions of residential and workplace station proximity

D contains D<250m from D<500m from
station station station

O contains station 0.140∗∗ 0.078 0.083
(0.045) (0.079) (0.113)

O<250m from station 0.024 0.018 0.054
(0.051) (0.066) (0.057)

O<500m from station 0.197∗ -0.100 0.059
(0.077) (0.089) (0.064)

Control Network 1925 Plan (All), Loose
Tract Pair FE Y
POW-X-Yr FE Y
RES-X-Yr FE Y
Sbcty-X-Sbcty-X-Yr FE Y
Highway Control Y
N 74040

High-dimensional fixed effects estimates of λD from one regression. Treatment
variables are mutually exclusive all others. All estimates include tract of work-
by-year, tract of residence-by-year, and tract pair fixed effects. Standard errors
clustered by tract pair, tract of residence, and tract of work in parentheses: +

p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table F7: Effect of Transit on Commuting Flows (by 2000) - Adjacencies

(1) (2) (3)

O & D contain station 0.087∗ 0.171∗∗ 0.170∗∗

(0.041) (0.060) (0.060)

O & D <250m from station -0.022 -0.032 -0.032
(0.046) (0.059) (0.059)

O & D <500m from station -0.015 -0.049 -0.049
(0.039) (0.050) (0.050)

O & D <1000m from station -0.005
(0.031)

Adjacency Base 500m 1000m 1000m
Tract Pair FE Y Y Y
Group-X-YrFE Y Y Y

N 217517 301662 301662

High-dimensional fixed effects estimates of λD estimated from adjacen-
cies (see text). Treatment variables are mutually exclusive with others in
each column. All estimates include tract pair and group-by-year fixed
effects. Standard errors clustered by tract pair, tract of residence, and
tract of work in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table F8: Effect of Transit on Commuting Flows (by 2000) - Adjacencies, PPML

(1) (2) (3)

O & D contain station 0.029 0.113 0.113
(0.066) (0.094) (0.094)

O & D <250m from station -0.020 -0.003 -0.003
(0.045) (0.060) (0.060)

O & D <500m from station -0.015 -0.010 -0.010
(0.039) (0.048) (0.048)

O & D <1000m from station 0.038
(0.033)

Adjacency Base 500m 1000m 1000m
Tract Pair FE Y Y Y
Group-X-YrFE Y Y Y

N 341794 484533 484533

High-dimensional fixed effects estimates of λD estimated from adjacen-
cies (see text). Treatment variables are mutually exclusive with others in
each column. All estimates include tract pair and group-by-year fixed
effects. Standard errors clustered by tract pair, tract of residence, and
tract of work in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table F9: Transit and non-commuting fundamentals (other effects of transit), robustness

(1) (2) (3) (4) (5) (6) (7) (8)

A. Effect on productivity ∆A, α− 1 = −0.25

Proximity500m
i × t -0.093∗∗ 0.009 -0.009 0.007 -0.036 0.005 -0.052+ 0.010

(0.028) (0.030) (0.032) (0.034) (0.028) (0.031) (0.028) (0.031)

N 4882 4858 780 776 1828 1826 2288 2284

B. Effect on residential amenity ∆B, ε(1− ζ) = 0.125

Proximity500m
i × t 0.059∗ -0.006 0.026 -0.029 0.018 -0.009 0.021 -0.002

(0.024) (0.026) (0.027) (0.029) (0.024) (0.027) (0.024) (0.027)

N 4534 4518 712 710 1700 1700 2094 2092

C. Effect on inverse housing efficiency ∆C, ψ = 2.292

Proximity500m
i × t 0.073+ -0.009 -0.103∗ -0.058 0.034 -0.013 0.063 0.013

(0.039) (0.044) (0.044) (0.050) (0.040) (0.046) (0.040) (0.047)

N 4534 4526 712 712 1694 1694 2086 2084

D. Effect on workplace amenity ∆E, ε = 1

Proximity500m
i × t -0.245∗∗ -0.050 -0.095+ -0.137∗ -0.119∗ -0.092 -0.131∗ -0.100+

(0.051) (0.054) (0.057) (0.062) (0.052) (0.057) (0.051) (0.055)

N 4866 4842 780 776 1830 1828 2286 2282

E. Effect on workplace amenity ∆E, ε = 0.498

Proximity500m
i × t -0.271∗∗ -0.045 -0.097+ -0.127∗ -0.128∗ -0.085 -0.147∗∗ -0.091+

(0.049) (0.053) (0.054) (0.059) (0.050) (0.054) (0.050) (0.053)

N 4866 4842 780 776 1830 1828 2286 2282

Sample All All Sim Sim Sal Sal PER PER
Tract FE Y Y Y Y Y Y Y Y
Sbcty-X-Yr FE - Y - Y - Y - Y
Controls - Y - Y - Y - Y

Results from forty regressions of transit proximity on estimated local fundamentals. All regressions include tract
fixed effects. Controls include changes in highway proximity and 1990 levels of log household income, share of
residents with at least a high school degree, and manufacturing employment. Standard errors clustered by tract in
parentheses: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table F10: Transit, income change, and land use change

(1) (2) (3) (4) (5) (6) (7) (8)

A. Change in residential land
Proximity500m

i × t -0.016∗∗ 0.006∗∗ 0.001 0.001 0.001 0.001 -0.000 0.002
(0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

N 4948 4930 774 770 1840 1838 2306 2300

B. Change in household income
Proximity500m

i × t -0.015 -0.016 0.003 -0.019 -0.001 -0.005 -0.006 -0.005
(0.015) (0.017) (0.017) (0.018) (0.016) (0.017) (0.016) (0.017)

N 4954 4940 762 760 1824 1824 2280 2278

Sample All All Sim Sim Sal Sal PER PER
Tract FE Y Y Y Y Y Y Y Y
Sbcty-X-Yr FE - Y - Y - Y - Y
Controls - Y - Y - Y - Y

Results from sixteen regressions of transit proximity on residential land and household income measures. All
regressions include tract fixed effects. Controls include changes in highway proximity and 1990 levels of log
household income, share of residents with at least a high school degree, and manufacturing employment.
Standard errors clustered by tract in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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G Gravity and Commuting Costs

Gravity estimates

First, a note on measures of travel time/cost:

• Network Travel Cost: calculated from a road network using GIS software. This only available in the
cross-section, but is available for all pairs.

• Travel Time: average pair travel time from the CTPP. Panel data, but only available between pairs
with positive commuting that satisfy disclosure requirements.

The Network Travel Cost (or similar variants using Google Maps) is mostly standard in the new EG litera-
ture. To translate between the two, roughly divide Network Travel Cost by 2.

Table G1 provides cross-sectional estimates of travel time disutility using several estimators and both
years. Estimates are roughly consistent with the previous literature, and suggest that the Travel Time–
Network Travel Cost conversion is reasonable.

Table G2 compares estimates of:

nijt = ωjt + θit − εκτijt + ln(Dijt)

nijt = ωjt + θit − εκτijt + ςDij + ln(Dijt)

The second of these is particularly prone to measurement error in reported or modeled travel times, because
the fixed effect means that any autocorrelation in error magnifies the issue.

Table G3 first estimates ςDij , then runs the following for 1990 or 2000:

ςDij = −εκτij + uij

Permanence of unobserved determinants of commuting flows

Roughly half of the variation in commuting flows is due to unobserved, time-invariant characteristics. This
details the analysis that leads to this conclusion. First, I run gravity models of commuting in the cross
section with and without travel time:

nij = ωj + θi − εκτij + ln(Dij)

The inclusion of travel time increases theR2 from 0.20 to 0.26 in 1990, and 0.17 to 0.21 in 2000. This suggests
that while travel time plays an important role, other factors are important.

Second, I run the panel gravity model with and without pair fixed effects:

nijt = ωjt + θit + ςDij + ln(Dij)

The model without pair fixed effects has an R2 of 0.18 (or 0.21 if restricted to observations that have two
non-zero commuting flows), but jumps to 0.81 with pair fixed effects. This regression excludes travel time.
Regressing the pair fixed effects on travel time or network-based measures of travel cost:

ς̂Dij = εκτij + ln(Dij)

lead to R2 values of between 0.07 and 0.19.
Putting this together, pair fixed effects explain about 60% of the variation in the panel, conditioning

on origin- and destination-by-year fixed effects. Only about 20% of these fixed effects are explained by
commuting time, meaning 80% are not. Putting these together, we see that about 48% of commuting flows
are explained by time-invariant, non-distance characteristics.
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Table G1: Estimating travel costs from single year cross-sections

1990 2000

(1) (2) (3) (4) (5) (6) (7) (8)

Travel Time -0.0108∗∗ -0.0244∗∗ -0.0085∗∗ -0.0200∗∗

(0.0003) (0.0008) (0.0002) (0.0007)

Network Travel Cost -0.0187∗∗ -0.0528∗∗ -0.0186∗∗ -0.0510∗∗

(0.0004) (0.0019) (0.0003) (0.0010)

N 291000 290580 291000 290580 1259500 1256986 764988 758066

Model Linear PPML Linear PPML Linear PPML Linear PPML
POW FE Y Y Y Y Y Y Y Y
RES FE Y Y Y Y Y Y Y Y

Adjust: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table G2: Estimating travel costs from the panel

(1) (2) (3) (4) (5) (6)

Travel Time -0.0095∗∗ -0.0003∗ -0.0220∗∗ 0.0001
(0.0002) (0.0001) (0.0007) (0.0002)

Network Travel Cost -0.0186∗∗ -0.0518∗∗

(0.0003) (0.0013)

N 775721 291000 774602 785883 311334 1257775

Model Linear Linear Linear PPML PPML PPML
Tract Pair FE - Y - - Y -
POW-X-Yr FE Y Y Y Y Y Y
RES-X-Yr FE Y Y Y Y Y Y

Adjust: + p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

Table G3: Estimating travel costs from a two step estimation

(1) (2) (3) (4) (5) (6)

Travel Time -0.0143∗∗ -0.0109∗∗ -0.0179∗∗ -0.0149∗∗

(0.0004) (0.0003) (0.0004) (0.0004)

Network Travel Cost -0.0198∗∗ -0.0244∗∗

(0.0008) (0.0005)

N 145500 145500 145440 382697 402811 628712

Model Linear Linear Linear PPML PPML PPML
Year 1990 2000 - 1990 2000 -

Standard errors clustered tract of residence and tract of work in parentheses: + p < 0.10, ∗ p < 0.05, ∗∗

p < 0.01
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