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Abstract

�e pa�erns of production underlying the recent rise of global value chains (GVCs) have become

increasingly complex. NAFTA supply chains, for example, are now deeply integrated: Using Mexican

customs data, I �nd that exports to the U.S. use a much higher share of American inputs than exports to

other countries. However, the conventional framework used to measure GVCs ignores this heterogene-

ity since it assumes that all output uses the same input mix. I develop a new framework that combines

input-output data with additional information on supply chain linkages in order to construct GVCs

re�ecting the use of inputs observed in the la�er. Improving measurement ma�ers quantitatively since

it a�ects both value-added trade measures and counterfactual experiments: I show that incorporating

Mexican customs data raises the estimated share of U.S. value in U.S. imported Mexican manufactures

from 17% to 30% and doubles the U.S. welfare cost of a NAFTA trade war.
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1 Introduction

While this paper was wri�en, the North American Free Trade Agreement (NAFTA) got renegotiated for the

�rst time since its inception in 1994, the United Kingdom discussed its potential exit from the European

Customs Union, and the seeds of a possible full-blown trade war between the United States and China

were sown. What are the potential costs of these economic shocks? How do they ripple across country

borders? Are the shocks ampli�ed in this age of globalization where over two-thirds of world trade is in

intermediate inputs? Does a higher tari� on imported Mexican vehicles hurt the American worker more

or less depending on the share of American value built into these cars?

Addressing these questions requires developing a more accurate and systematic understanding of the

nature of the global value chains (GVCs, henceforth) underlying world trade than has so far been achieved.

Indeed, measuring GVCs requires taking a stand on how to use multi-country input-output data to trace

value across di�erent stages of production. �e conventional approach does this by assuming that all

output, within each country-industry, is built with the same input mix. �is assumption is sharply at odds

with the evidence on supply chain linkages based on richer micro-level datasets showing that, in reality,

the use of inputs depends on the downstream use of output. For example, while the conventional approach

assumes a common input mix in all Mexican vehicle production, �gure 1 uses Mexican customs microdata

to show that the U.S. accounts for a colossal 74% of the foreign inputs embedded in vehicles sold to U.S.

consumers but for only 18% of the inputs of those sold to German consumers.
1

I show that accurately measuring GVCs ma�ers because it a�ects the quantitative exercises carried out

by both academics and policymakers to study global trade in a world of highly fragmented production. In

particular, I show that taking the heterogeneity in the use of inputs into account is crucial for quantifying

the implications of economic shocks and the extent of globalization through value-added trade measures.

My main theoretical contribution is to develop a new measurement framework that leverages both

input-output data and other sources of information, such as that in �gure 1, to be�er measure GVC �ows.

�e motivation is that while input-output data contains no information on supply chain linkages − i.e.

which inputs are used for which output − researchers o�en have access to small but rich micro-level

datasets providing some supply chain information about some country-industries. Hence, while existing

microdata is o�en too limited for measuring GVCs directly, combining available microdata with input-

output datasets yields more accurate GVCs than the conventional GVCs based solely on the la�er.

My main empirical result is that measuring GVCs while incorporating Mexican customs data roughly

doubles both the share of U.S. value in U.S. imported Mexican manufactures and the U.S. welfare cost of

a NAFTA trade war. �ese results are in line with Yi’s (2003) landmark study arguing that deep vertical

specialization magni�es the e�ects of economic shocks and showcase how conventionally measured GVC

�ows miss crucial elements present in today’s highly fragmented supply chains. More generally, any

1
Ultimately, the challenge surrounding GVC measurement is about aggregation and would (mostly) disappear in �rm- or

product-level input-output datasets. However, current datasets are so highly aggregated that this is a major issue for both aca-

demic and policy work. For example, the widely-used WIOD features only 19 manufacturing industries. To put this into perspec-

tive, this means that 6 trillion dollars of U.S. manufacturing output is divided into only 19 categories. �is issue is unlikely to

disappear anytime soon. First, many countries do not construct �rm-to-�rm datasets. Second, building a multi-country �rm-level

input-output database requires merging �rm-level data across countries and faces considerable political and legal roadblocks.
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Figure 1: Distribution of Foreign Inputs Used in Mexican Final Good Motor Vehicle Exports to

the U.S. and Germany: �e shares are constructed using Mexican customs shipment-level data for

2014; details are discussed in section 2.4.1. In contrast to these charts, the conventional approach

for measuring GVCs assumes common input distributions across destinations.

question studied by the GVC literature can be revisited with this new measurement framework while

incorporating whatever additional information is both relevant and available in each context.

I kick o� in section 2 by developing a general GVC theory that can accommodate, with further as-

sumptions, how di�erent classes of microfounded models behave in equilibrium and what implications

they have on GVC �ows. �is general theory is useful for two reasons. First, because it formalizes the

connection between the literature on counterfactuals based on microfounded theories of production and

the literature on value-added trade based on equilibrium theories of production − two literatures that have

evolved mostly independently and in parallel. Second, because it formalizes the key insight underlying this

paper: �at any input-output dataset is consistent with many di�erent GVC networks. In particular, the

general GVC theory is useful for comparing how di�erent equilibrium theories of production construct

GVCs from input-output data. For example, most trade models incorporate intermediate inputs by assum-

ing that technology features roundabout production in which all of a country-industry’s output is produced

with the same input mix.
2

While microfoundations di�er substantially, all roundabout models imply that

GVCs should be constructed recursively from input-output data using �rst-order Markov chains.

I argue in favor of models featuring specialized inputs− models in which goods sold to di�erent coun-

tries and industries are built with di�erent input mixes. Specialized inputs models weaken the proportion-

ality assumptions built into roundabout production models and instead imply that GVCs be constructed

using higher-order Markov chains.
3

In other words, while roundabout models construct a unique GVC

network out of any given input-output dataset, specialized inputs models are consistent with many GVC

networks. Importantly, the la�er can incorporate the heterogeneity in �gure 1 while the former cannot.

2
Roundabout models come in many varieties, some examples include Krugman and Venables (1995), Eaton and Kortum (2002),

Balistreri et al. (2011), di Giovanni and Levchenko (2013), Bems (2014), Caliendo and Parro (2015), Ossa (2015), Allen et al. (2017).

3
In equilibrium, specialized inputs can be thought of as a generalization of input-output analysis in which the expenditure

shares are conditional on both the purchasing country-industry and the subsequent supply chain through which inputs �ow.
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�e case for specialized inputs is supported by both the anecdotal and empirical evidence on modern

supply chains in which input suppliers customize their goods to be compatible with speci�c downstream

uses and in which �rms make complex decisions when deciding where to locate each stage of their supply

chain. For example, the lithium ba�ery supplier in Apple’s famously long iPod supply chain manufac-

tures it exactly to the size of the metal frame while the screen supplier ensures that the touch, color, and

dimming capabilities are in line with Apple’s iOS so�ware (Linden et al. 2011). Today, this form of input

specialization is ubiquitous (Rauch 1999, Nunn 2007, Antràs and Staiger 2012, Antràs and Chor 2013) and

implies that the use of inputs varies depending on the use of output since �rms exporting to di�erent coun-

tries and industries have di�erent supply chains.
4

As �gure 1 illustrates, Mexican vehicle manufacturers

exporting to the U.S. rely heavily on U.S. supply chains while those exporting to Germany do not.

I then argue in section 3 that the distinction between roundabout production and specialized inputs

ma�ers because di�erent GVC networks lead to di�erent quantitative counterfactual predictions. For the

sake of clarity, and at the cost of generality, I illustrate this with the simplest possible microfoundation

for specialized inputs − basically, an extension of the perfect competition Armington model where each

country-industry produces a speci�c variety for each market. Since this model features specialized inputs,

many parameterizations �t the input-output data and this ma�ers quantitatively because the welfare gains

from trade depend on the expenditure share on domestic inputs used in the production of domestically-

sold goods. In other words, mapping the model to di�erent GVC networks delivers di�erent counterfactual

estimates following any economic shock− even though all parameterizations replicate the same data in the

benchmark equilibrium. In particular, roundabout production is a knife-edge parameterization in which

the welfare gains depend on the aggregate domestic expenditure share as in Arkolakis et al. (2012).
5

I quantify the potential mismeasurement by constructing bounds on counterfactual estimates using

the specialized inputs model − i.e. the GVC networks that minimize/maximize the gains from trade. For

example, the autarky bounds in the 2014 World Input-Output Database (WIOD) with a trade elasticity of

5 are wide and increasing in trade openness: the U.S. gains (relatively closed) lie between 2.6-4.0% but the

Taiwan gains (relatively open) lie between 12-129%. Intuitively, the lower (upper) bounds correspond to

GVCs in which many (few) domestic inputs are used to produce domestically-sold goods. Meanwhile, the

knife-edge roundabout model where all output uses the same input mix predicts gains of 3.5% and 18%.
6

Analogously to counterfactuals, section 4 shows that measures of globalization − i.e. measures quan-

4
Various recent studies suggest that the use of inputs, within country-industries, depend on the downstream use of output.

For example, within-industry exports vary across destinations due to quality (Bastos and Silva 2010), trade regime (Dean et al.

2011), and credit constraints (Manova and Yu 2016). Likewise, the use of imports varies across �rm size (Gopinath and Neiman

2014, Blaum et al. 2017a, 2017b, Antràs et al. 2017), multinational activity (Hanson et al. 2005), �rm capital intensity (Scho� 2004),

and the quality of output (Fieler et al. 2017). Further, recent research has made explicit connections between imports and exports

through quality linkages (Bastos et al. 2018), trade participation (Manova and Zhang 2012), and rules-of-origin (Conconi et al.

2018). Finally, production processes vary also in terms of the intensity of labor inputs. Processing trade �rms export lower-cost

labor assembly goods (De La Cruz et al. 2011, Koopman et al. 2012) while �rms exporting to richer countries hire higher-skilled

workers (Brambilla et al. 2012, Brambilla and Porto 2016). �us, value-added shares also di�er depending on the use of output.

5
�e su�ciency of input-output data for both measuring GVCs and quantifying the e�ects of economic shocks is intimately

linked to the roundabout assumptions. In the more general case of specialized inputs, however, this su�ciency no longer holds.

6
While these exercises rely on a speci�c class of microfoundations, I conjecture that richer models yield similar qualitative

implications. Other specialized inputs microfoundations include Yi (2003), Yi (2010), Costinot et al. (2012), Antràs and Chor (2013),

Fally and Hillberry (2016), Johnson and Moxnes (2016), Blanchard et al. (2017), Antràs and de Gortari (2017), and Ober�eld (2018).
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tifying the fragmentation of production such as value-added trade (Hummels et al. 2001, Johnson and

Noguera 2012, Koopman et al. 2014) or average downstreamness (Antràs et al. 2012) − also depend on the

GVC network. In particular, while the literature de�nes these measures directly with input-output analysis

(Leontief 1941), I de�ne them broadly using the general GVC theory. �is is useful because the former are

only consistent with the equilibrium of roundabout production models whereas the general theory can be

used to derive the correct measures for other equilibrium theories such as specialized inputs.

I quantify the potential mismeasurement by constructing approximate bounds on measures of global-

ization using the specialized inputs model. In particular, I argue that value-added trade might be severely

mismeasured and thus may be misguiding trade policy. For example, while counterfactual exercises typi-

cally dominate academic debates, policy debates like the NAFTA renegotiation are o�en based on measures

of supply chain integration such as how much U.S. value-added returns home through Mexican imports.
7

Higher shares are typically interpreted as proxying higher costs of disruption − i.e. restricting Mexican

imports will ripple back and hurt the U.S. more when it provides more value to these supply chains − and

conventional (roundabout) estimates put the share of U.S. value-added in Mexican manufacturing imports

at about 17%. In contrast, I show that the same 2014 WIOD data is consistent with bounds as low as 6%

and as high as 47%. In other words, the data is consistent with both li�le and highly integrated Mexican-

American supply chains.
8

In a second exercise, I revisit Johnson and Noguera (2012) − who found that

the U.S.-China value-added de�cit is smaller than the gross de�cit − and show that specialized inputs are

actually consistent with both a value-added surplus and a much larger de�cit.

In sum, the key message of sections 2, 3, and 4, is that many GVC networks are consistent with any

input-output dataset and that constructing bounds based on specialized inputs is useful for determining the

potential mismeasurement trickling over from the GVC �ows to quantitative counterfactual estimates and

measures of globalization. Since all GVC networks exhaust the information contained in the input-output

data, the la�er can shed no further light on which estimates are most accurate.

Finally, section 5 improves measurement by incorporating new sources of information. Speci�cally, I

use the la�er to discipline a set of targets in the objective function of a quadratic program that searches over

all GVCs consistent with a given input-output dataset. �is approach thus constructs the best informed

guess of the true GVC network while exploiting more information than that contained in input-output

data and is useful when the additional information is insu�cient for measuring GVC �ows directly. For

example, since Mexican customs data contains no information on domestic transactions, GVCs cannot

be directly measured because there is not enough information to convert the foreign input expenditure

shares in �gure 1 into overall input expenditure shares.
9

In such cases, researchers can still improve

measurement by taking a stand on how to map the additional information into expenditure shares with

auxiliary assumptions. However, in general, these expenditure shares will not aggregate up perfectly to the

input-output data− because they rely on some imperfect assumptions− and this is where the optimization

7
For example, U.S. Secretary of Commerce Wilbur Ross argued in the Washington Post (September 21, 2017) that disrupting

Mexican-American supply chains was not worrisome since Mexican imports contained ‘only’ 16% of U.S. value-added (in 2011).

8
In contrast to �gure 1, computing value-added trade requires tracing where value is created along all stages of production.

9
Directly measuring GVC segments requires very rich data such as datasets covering the universe of country-level �rm-to-

�rm transactions. However, these are quite rare. Belgian data is one exception (see Tintelnot et al. 2017, Kikkawa et al. 2017).
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problem becomes useful. �e la�er takes these shares as targets and reallocates �ows in order to construct

the GVC network that is closest to the researcher’s targets among all the GVCs consistent with a given

input-output dataset. In sum, while these GVCs ultimately still depend on some assumptions, they are

closer to the true GVCs underlying input-output data since they weaken the roundabout GVCs’ strong

(theoretical) assumptions by using additional (empirical) information.

Incorporating Mexican customs data reveals that Mexican-American supply chains are more integrated

and disrupting them is more costly than previously thought. Speci�cally, I map the customs data to the

optimization targets by taking the stand that Mexico only does processing trade − i.e. that exports use

only imported inputs. �e GVCs based on this best-informed guess then imply that 30% of the value in

U.S. imported Mexican manufactures is U.S. value-added and not 17% as given by the roundabout GVCs.

In addition, the U.S. welfare cost of a NAFTA trade war is about twice as high as implied by the la�er.

�is GVC framework is easily adaptable and can incorporate additional information in a practical

manner. While large datasets on supply chain linkages are rarely available, researchers o�en have access

to partial snippets of the overall supply chains underlying global trade that are extremely informative

about how intermediate inputs are used. My application focuses on Mexico since I have access to Mexican

microdata, but the tools can be readily applied to study any other aspect of global production networks

with other datasets. Moreover, the type of information brought in can be tailored to the speci�c question

being asked. For example, while Chinese customs data might not be of immediate relevance for studying

a NAFTA trade war, it might be of paramount importance when considering a U.S.-China trade war.

From a history of science standpoint, this paper is inspired by Samuelson (1952) who asked how to

measure bilateral trade �ows in the presence of only aggregate export data. �is paper takes the same

idea to the next iteration: How to measure GVC �ows in the presence of only bilateral input-output data?

From a philosophy of science standpoint, this paper is inspired by Popper (1959) and argues for a falsi�able

approach to GVC measurement. �at is, instead of imposing the theoretically-based roundabout approach

outright, I argue in favor of studying GVCs under initially broad sets of plausibly accurate GVCs obtained

through specialized inputs and to then re�ne these estimates as more information becomes available.

�e paper’s structure is as follows. Section 2 provides the GVC framework used to compare the equilib-

rium theories of roundabout production and specialized inputs in the three next sections. Section 3 studies

counterfactuals, section 4 studies measures of globalization, and section 5 studies GVC measurement. �e

appendix provides additional results and details on numerical implementation. All code is posted online.

2 �e Hunt for GVCs: �e Measurement Challenge

�is section provides the GVC framework used throughout the paper to discuss counterfactuals, measures

of globalization, and measurement in a GVC world. I proceed in four steps. First, I describe the data con-

tained in multi-country input-output datasets. Second, I develop a general theory that provides notation

and a unifying framework for comparing speci�c theories of production − this will also prove useful for

deriving explicitly the connection between the literature on structural models and counterfactuals and the

literature on measures of globalization. �ird, I use the general GVC theory to discuss three speci�c the-

5



ories of production: two widely used theories given by a world of ‘only trade in �nal goods’ and a world

of roundabout production and a third more modern theory with specialized inputs. Fourth, and �nally, I

provide empirical evidence in favor of specialized inputs using Mexican customs shipment-level data and

U.S. domestic input-output tables.

2.1 Multi-Country Input-Output Data

Let J denote both the set and number of countries and K the set and number of industries. I de�ne

S = J × K as the set and number of country-industries, with a generic element s ∈ S being a country-

industry denoted as s = {j,k} with j ∈ J and k ∈ K. Multi-country input-output datasets typically contain

data on bilateral intermediate input �ows across two country-industry pairs, with X (s ′, s) the dollar value

of intermediate inputs sold from country-industry s ′ to country-industry s, and �nal good �ows between

a country-industry and consumers, with F (s ′, j) the dollar value of �nal goods sold from country-industry

s ′ to consumers in country j. �ese are the basic building blocks from which all other aggregate moments

are built. For example, the gross output and gross domestic product of country-industry s ′ equal

GO
(
s ′
)
=
∑
s∈S

X
(
s ′, s

)
+
∑
j∈J

F
(
s ′, j
)

, GDP
(
s ′
)
= GO

(
s ′
)
−
∑
s∈S

X
(
s, s ′

)
.

�ere are currently various sources of multi-country input-output datasets such as those produced by

the World Input-Output Database Project (WIOD), the Global Trade Analysis Project (GTAP), the Institute

for Developing Economies (IDE-JETRO), the Eora Global Supply Chain Database (Eora MRIO), and the

OECD Inter-Country Input-Output Tables (ICIO). Each dataset has its own advantages and limitations and

the analysis in this paper can be readily applied to each. I focus throughout on the WIOD − the most

widely used dataset by the international trade literature − which is available in its 2016 release for J = 44

countries, K = 56 industries (19 in manufacturing), and for the years 2000-2014 (see Timmer et al. 2015).

2.2 A General GVC�eory

GVC �ows constitute the key building blocks of this theory. De�ne G (·) as the dollar value of goods

�owing from an initial country-industry down through a speci�c ordered set of country-industries all the

way to �nal consumption. To �x ideas, suppose there is a single industry (i.e., S = J). Take three countries

j, j ′, j ′′ ∈ J. �en G (j ′, j) denotes the dollar value of �nal goods sold from j ′ to j while G (j ′′, j ′, j) is the

dollar value of intermediate inputs sold from j ′′ to j ′ which j ′ uses as inputs for the �nal goods sold to j.

More generally, intermediate inputs may be traded at a stage of production that is N ∈ N stages

upstream relative to the production of �nal consumption goods. I write a generic truncated GVC �ow as

GN
(
jN, jN−1

, . . . , j1, j
)

where the superscript N on GN (·) indicates the dimension of this function, i.e.

N is the number of nodes previous to �nal consumption that are speci�ed. Every node corresponds to a

country jn ∈ J ∀n and the n is only meant to indicate the node at which country jn is located. �e �ow

GN
(
jN, jN−1

, . . . , j1, j
)

thus indicates the dollar value of inputs from jN sold to jN−1
, that jN−1

uses to

produce new inputs sold to jN−2
, so on and so forth, until the goods arrive at j1 and are put into �nal goods
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shipped and sold to consumers in j. Since using apostrophes is cumbersome with largeN, in general I will

use the notation G1

(
j1, j
)

instead of G (j ′, j) and likewise G2

(
j2, j1, j

)
instead of G (j ′′, j ′, j).

�e extension to a multi-industry world is immediate. GVCs can be de�ned generically as follows.

De�nition 2.1. For any length N ∈ N, GN : SN × J → R+
is the function describing truncated GVC

�ows leading to �nal consumption in countries in J through a sequence ofN upstream stages of production

given by an element of SN =
∏N
n=1

S.

A generic GVC is GN
(
sN, . . . , s1

, j
)

and, as before, I refer to the elements of a country-industry pair as

sn = {jn,kn} with jn ∈ J the country and kn ∈ K the industry of sn ∈ S, where the n is only meant

to indicate the node of GN (·) at which sn is located. For example: a �ow of length N = 1 could be

G1

(
s1

, j
)
= G1 ({Mexico,cars} , U.S.), the sales of Mexican cars to U.S. consumers, while a �ow of length

N = 2 could be G2

(
s2

, s1
, j
)
= G2 ({U.S.,steel} , {Mexico,cars} , U.S.), the sales of U.S. steel in the form of

intermediate inputs that are used exclusively by the Mexican car industry to produce �nal goods sold to

U.S. consumers. Analogously for any N ∈ N and any sequence of production in SN that produces a �nal

good eventually sold to consumers in some country in J.

�e measurement challenge embedded in this GVC theory is that the word truncated appears in def-

inition 2.1. Speci�cally, GN (·) is a truncated GVC because it only speci�es the �ow through N stages of

production even though its most upstream stage, sN, also uses inputs and the full chain of production

is characterized by a (potentially) in�nite number of stages. Since GN (·) is unobserved in the data, the

challenge is to develop a theory of production − i.e. a reasonable set of assumptions − that links GVC

�ows across di�erent stages of production. �at is, take an arbitrary GN
(
sN, sN−1

, . . . , s1
, j
)
. Since this

tells how many inputs are sold from sN to the sequence sN−1 → · · · → s1 → j then there has to be some

relation with the �ow GN−1

(
sN−1

, . . . , s1
, j
)

of inputs that sN−1
itself sells to this production sequence.

In its most general form, the only restriction I impose is that �ows across di�erent stages of production

must satisfy ∑
sN∈S

GN
(
sN, sN−1

, . . . , s1
, j
)
6 GN−1

(
sN−1

, . . . , s1
, j
)

. (1)

�at is, the right-hand side denotes the value of intermediate inputs sold by sN−1
to be used through

the sequence in GN−1

(
sN−1

, . . . , s1
, j
)
. �e le�-hand side denotes the total value of intermediate inputs,

across all sources sN ∈ S, sold to sN−1
and used down this same sequence of production. Imposing equa-

tion (1) thus implies that the total value of inputs purchased by sN−1
for a speci�c downstream sequence

of production need be less or equal than the value of the output that sN−1
itself produces for that sequence.

�is theory is general and can encompass most production processes. It relies only on the key restric-

tion that the value of output not fall as goods �ow down the value chain. Whenever the value of output

increases, thus implying equation (1) holds with strict inequality, I say that value was added at theN−1th

stage of production to the inputs purchased from stage N. For example, this theory assumes that∑
s2∈S

G2
(
s2

, {Mexico,cars} , U.S.

)
6 G1 ({Mexico,cars} , U.S.) .

�e right-hand side indicates the dollar value of Mexican cars sold to U.S. consumers and corresponds to

7



a truncated GVC �ow because the Mexican car industry uses intermediate inputs produced further up-

stream to produce these cars. Meanwhile, G2 ({U.S.,steel} , {Mexico,cars} , U.S.) is the dollar value of U.S.

steel bought as inputs directly in order to produce these exports, so that the summation across all pos-

sible input sources s2 ∈ S yields aggregate input sales to the downstream sequence on the right-hand

side. �e inequality holds strictly if the Mexican car industry adds domestic value-added directly into the

intermediate inputs purchased from the previous stage of production.

I refer to equation (1) as the GVC challenge which can only be solved by taking a stand on how to trace

value across stages of production. �at is, on how GN
(
sN, sN−1

, . . . , s1
, j
)

and GN−1

(
sN−1

, . . . , s1
, j
)

relate to each other across all stages and sequences of production.
10

2.2.1 Relation to Multi-Country Input-Output Data

GVC �ows are not observed directly in input-output data. Rather, the data contains only some (non-

exhaustive) information about the true GVCs. Disentangling GVCs from the data then requires using an

equilibrium theory of production in order to �ll in with assumptions whatever information is not available.

I now describe the information that is available in input-output data. �e �rst thing to note is that the

data provides precise information about the last stage of production. Hence, the simplest GVC �ows, those

with N = 1, are observed and �nal good �ows can be de�ned in terms of GVCs as

F
(
s ′, j
)
= G1

(
s ′, j
)

. (2)

�is mapping is the basic building block from which all theories of intermediate input trade will build

upon since this is the only part of the supply chain that is observed directly in input-output data.

Second, bilateral intermediate input �ows are much more complicated since they aggregate the dollar

value of inputs traded across two country-industries across all stages of the supply chain. �e relation

between these aggregate �ows and GVC �ows is given by

X
(
s ′, s

)
=

∞∑
N=2

∑
sN−2∈S

· · ·
∑
s1∈S

∑
j∈J

GN
(
s ′, s, sN−2

, . . . , s1
, j
)

. (3)

�e �ow GN (·) is the input value from s ′ sold to s at the Nth stage of production and used through the

downstream sequence sN−2 → · · · → s1 → j. Summing up across sN−2 ∈ S, …, s1 ∈ S, j ∈ J thus delivers

the aggregate input value from s ′ sold to s at the Nth stage of production used across all downstream

sequences of production. �e �rst summation across N > 2 then sums up the input value traded across

all stages of production. �is aggregate value thus equals the input �ows reported in input-output data.

Hence, while input-output data provide precise information on X (s ′, s) and F (s ′, j), disentangling the

GVC �ows GN
(
sN, . . . , s1

, j
)

across all upstream production stages N > 2 requires further assumptions

since a lot of the information is potentially lost in the aggregation into bilateral input �ows in (3).

10
Two further comments about the interpretation of GN (·). First, GVCs can be interpreted directly as �rm-level supply chains

by �xing K as the set of �rms instead of the set of industries. Second, though the paper is wri�en in terms of a static production

world where all goods are produced simultaneously, this theory can also accommodate dynamic models since s can be interpreted

as a country-industry-time triple in which inputs of past periods �ow down the value chain to be used as inputs in future periods.
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2.3 Two Old Solutions, and One New One

I discuss three possible solutions to the GVC challenge − each given by a set of assumptions corresponding

to a speci�c equilibrium theory of production. Importantly, constructing a GVC network out of input-

output data only requires specifying how GVCs behave in equilibrium and not on how such equilibrium

was achieved. Hence, while microfoundations vary substantially, for the purposes of GVC measurement

the speci�c microfoundation can be ignored and all that ma�ers is how the theory implies that value

be traced across stages of production in equilibrium. Of course, computing counterfactuals does require

unpacking a microfoundation and this will be done in the next section.

2.3.1 �e ‘Only Trade in Final Goods’ Solution

�e simplest solution to disentangling GVCs in (1) is to assume that GVC linkages are non-existent. Starting

from the observed GVCs G1

(
s1

, j
)
, assume that the mapping into previous stages at N > 2 is given by

GN
(
sN, sN−1

, . . . , s1
, j
)
= 0, (4)

across any production sequence. Substituting into the de�nition of intermediate input �ows in equation (3)

implies that

⇒ X
(
s ′, s

)
= 0,

across all country-industry pairs s ′ and s since inputs are not used at any stage of production. Hence,

these GVCs imply that �nal output is entirely domestic value-added created at the most downstream stage

of production

⇒ GO
(
s ′
)
= GDP

(
s ′
)
=
∑
j∈J

G1
(
s ′, j
)
=
∑
j∈J

F
(
s ′, j
)

.

�ese assumptions are extreme and at odds with today’s global economy since over two-thirds of world

trade is in intermediate inputs. Indeed, most datasets report X (s ′, s) > 0 for the majority of country-

industry pairs so that this GVC characterization cannot be squared with current data. However, these

restrictions were still widely imposed even a few decades ago. For example, both the modern version of

the Armington model developed by Anderson (1979) and the classical Ricardian model of Dornbusch et al.

(1977) assume that intermediate inputs play no role so that both microfoundations can be characterized, in

equilibrium, by these GVC �ows. While this paradigm is less prevalent today, it is an useful starting point

for showing how to map more complex theories of international trade into the above GVC framework.

2.3.2 �e Roundabout Solution

Disentangling GVCs in the presence of intermediate input trade is much more complex since, in principle,

many theories of production can solve the GVC challenge in (1). �is observation motivates this paper

since, so far, both the literature on counterfactuals and the literature on measures of globalization have

largely focused on the solution in which every single dollar of output within each country-industry is

produced using the exact same input mix. Formally, this implies solving the mapping by assuming the

9



existence of a set of technical coe�cients a (s ′ |s) denoting the expenditure share on inputs from s ′ used

by s to produce output at any stage of production and for any sequence of production. Starting from the

observed GVCs, G1

(
s1

, j
)
, the mapping into previous stages of production at N > 2 is given by

GN
(
sN, sN−1

, . . . , s1
, j
)
= a

(
sN
∣∣sN−1

)
GN−1

(
sN−1

, . . . , s1
, j
)

. (5)

Rearranging, any GVC �ow is thus characterized entirely by �nal good �ows and the technical coe�cients

⇒ GN
(
sN, sN−1

, . . . , s1
, j
)
=

N∏
n=2

a
(
sn
∣∣sn−1

)
F
(
s1

, j
)

. (6)

Substituting into the relation between GVC �ows and intermediate input �ows in (3), the following

holds

⇒ X
(
s ′′, s ′

)
= a

(
s ′′
∣∣s ′ )

∑
s∈S

X
(
s ′, s

)
+
∑
j∈J

F
(
s ′, j
) .

In other words, since X (s ′, s) and F (s ′, j) are observed in input-output data, this theory of production can

only be squared with the data if the technical coe�cients are given by

⇒ a
(
s ′ |s

)
=
X (s ′, s)

GO (s)
. (7)

�e expenditure by s on inputs from s ′ is simply given by aggregate value of inputs purchased from s ′

relative to gross output. Since gross output is typically larger than aggregate intermediate input purchases,

this implies that every dollar of output of s has a share of domestic value-added given by

⇒ β (s) = 1 −
∑
s ′∈S

a
(
s ′ |s

)
=
GDP (s)

GO (s)
. (8)

�e roundabout solution is currently the most popular approach for incorporating intermediate inputs

into structural models of international trade (see footnote 2).
11

In particular, it is so highly tractable that

the measurement problem regarding how to disentangle GVCs is completely eliminated as long as one has

input-output data at hand. Roundabout production implies that any GVC �ow in (6) is characterized by

�nal good �ows and the technical coe�cients, but since the la�er are characterized by input-output data

as well in (7), then any GVC �ow is fully and uniquely characterized by input-output data.

In other words, any roundabout microstructure has GVCs that can be characterized, in equilibrium, by

the mapping in (6) and is thus equivalent to input-output analysis (Leontief 1941) − a measurement frame-

11
It is also enormously in�uential beyond trade. Roundabout production has been widely used ever since Samuelson (1951)

provided the key insight that input-output analysis is consistent with the equilibrium of a constant returns to scale production

economy. For example, it has been used in the macroeconomics literature following the seminal input-output models of Domar

(1961), Hulten (1978), and Long and Plosser (1983) to study business cycles (Basu 1995), growth (Jones 2011), misallocation (Jones

2013, Bigio and La’O 2016, Caliendo et al. 2017), aggregate �uctuations (Acemoglu et al. 2012, Carvalho and Gabaix 2013, Carvalho

2014, di Giovanni et al. 2014, Baqaee 2014, Baqaee and Farhi 2017), and development accounting (Bartelme and Gorodnichenko

2015, Cuñat and Zymek 2017). As the GVC literature, these papers can be extended to specialized inputs.

10



work fully characterized by input-output data and with no degrees of freedom.
12

Importantly, though,

while input-output analysis is de�ned directly as a set of input and value-added shares given by (7) and

(8), I derived these input shares from �rst principles in the sense that I imposed assumptions on the map-

ping of GVCs across di�erent stages of the value chain in (5) and then derived the input shares as an

implication. �is la�er approach is more useful since now I can impose di�erent assumptions on to the

general GVC theory and compare the implications regarding how to disentangle GVCs across theories.

2.3.3 �e Specialized Inputs Solution

�e specialized inputs solution generalizes the roundabout solution and assumes that the use of inputs

depends on the destination of output and the use of output, both in terms of whether goods are sold as

�nal goods or intermediate inputs and to which industry they are sold to as inputs in the la�er case. �e

GVC �ow of inputs used directly for the production of �nal goods is thus given by

G2
(
s2

, s1
, j
)
= aF

(
s2

∣∣s1
, j
)
F
(
s1

, j
)

, (9)

where aF (s
′′ |s ′, j) is the share of inputs from country-industry s ′′ used in the �nal goods produced by

country-industry s ′ that are sold to consumers in market j. Analogously, the use of intermediate inputs in

the production of new intermediate inputs is given by

GN
(
sN, sN−1

, . . . , s1
, j
)
= aX

(
sN
∣∣sN−1

, sN−2
)
GN−1

(
sN−1

, . . . , s1
, j
)

, ∀N > 3, (10)

where aX (s ′′ |s ′, s) is the share of inputs from country-industry s ′′ used in the production of intermediate

inputs by country-industry s ′ sold to country-industry s. Note that while the intermediate input shares

depend on the destination and use of inputs, they are common across all stages of production. �at is, the

input mix used to produce inputs in s ′ and sold to s is the same in all production stages N > 2.

In this context, value-added shares also depend on the destination and use of output and are given by

βF
(
s ′, j
)
= 1 −

∑
s ′′∈S

aF
(
s ′′
∣∣s ′, j) > 0, βX

(
s ′, s

)
= 1 −

∑
s ′′∈S

aX
(
s ′′
∣∣s ′, s) > 0.

�ese shares have to be greater or equal than zero given the assumption in (1) that the dollar value of

output never falls as goods �ow along the value chain. Further, at least one of these shares has to be

strictly positive since GDP in every country-industry s ′ in the data is positive.

Relative to the roundabout solution, now it is not possible to characterize input shares directly using

the input-output data. Rather, this GVC solution is richer since there are many di�erent sets of input shares

that perfectly �t the data (i.e. many GVC networks replicate the same bilateral trade, gross output, and

gross domestic product �ows). To see this, substitute in the specialized inputs solution in (9) and (10) into

12
Input-output analysis is typically described using matrix algebra. Imposing the GVC mapping (5) on the de�nition of bilateral

intermediate input �ows in (3) and using matrix algebra implies that

⇒ X = aF+ a2F+ · · · = a [I− a]−1

F,

whereGO = [I− a]−1

F is gross output and [I− a]−1

is known as the Leontief inverse matrix.
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the set of linear constraints relating GVC �ows to the observed input-output data in (3) to obtain

X
(
s ′′, s ′

)
=

∞∑
N=2

∑
sN∈s ′′

∑
sN−1∈s ′

∑
sN−2∈S

. . .

∑
s1∈S

∑
j∈J

[
N∏
n=3

aX
(
sn
∣∣sn−1

, sn−2
)]
aF
(
s2

∣∣s1
, j
)
F
(
s1

, j
)

. (11)

Equation (11) is tedious but straightforward and sums up the inputs sold by s ′′ to s ′ across all stages and

chains of production. Conditional on N, the �rst two stages of the sequence are sN = s ′′ and sN−1 = s ′

(I abuse notation slightly by indicating two summations over single-valued sets). �e subsequent summa-

tions sum up the use of inputs across all downstream sequences of production sN−2 ∈ S, . . . , s1 ∈ S, j ∈ J,

while the summation over N > 2 sums up the exchange of inputs across all production stages.

Fortunately, the recursive structure of the specialized inputs solution assumed in (10) implies that the

mapping between input shares and input-output data in (11) can be rewri�en much more succinctly as

X
(
s ′′, s ′

)
=
∑
s∈S

aX
(
s ′′
∣∣s ′, s)X (s ′, s)+∑

j∈J
aF
(
s ′′
∣∣s ′, j) F (s ′, j) . (12)

In words, the right-hand side sums up all the intermediate inputs from s ′′ used by s ′ to produce further

downstream inputs sold to all s ∈ S and �nal goods sold to all j ∈ J. Since this is the total value of inputs

sold from s ′′ to s ′, it has to equal the observed �ow X (s ′′, s ′).

Since all of the information in input-output data is contained in X (s ′, s) and F (s ′, j), any set of input

shares aX (s ′′ |s ′, s) and aF (s
′′ |s, j) satisfying (12) for all bilateral pairs characterize a system of GVC

�ows that perfectly �t the observable data. Crucially, ��ing the data requires imposing S× S restrictions

but the specialized inputs GVC network depends on S× S×(S+ J) input shares. �ese degrees of freedom

imply that there are many di�erent GVC networks that replicate the same observable data. In particular,

the roundabout solution is the knife-edge case in which the use of inputs is independent of the use output.

�at is, when aX (s ′′ |s ′, s) = aF (s
′′ |s ′, j) = a (s ′′ |s ′ ) ∀s ∈ S and ∀j ∈ J then (12) implies (7).

2.3.4 Taking Stock

Of the three discussed solutions to the GVC challenge in (1), each subsequent theory is more general than

the previous and all three are useful for understanding the aggregation issues present in input-output data.

First, a few decades ago, bilateral trade data did not distinguish between intermediate input and �nal

good trade and so, in practice, the data was silent regarding whether the ‘only trade in �nal goods’ solution

was potentially accurate or not. Current input-output datasets, however, show that the majority of world

trade is in intermediate inputs and so are now disaggregate enough to be able to reject this GVC theory.

Second, the roundabout solution incorporates intermediate input �ows albeit in a highly simpli�ed manner.

In particular, this theory is the knife-edge case that �ts the data perfectly in a unique way, but it also

implicitly implies assuming that further disaggregating the data would yield no additional insights or

information. �ird, and more generally, the specialized inputs solution �ts the data perfectly in many

ways and thus implicitly assumes there is important information hidden by the aggregation present in

input-output datasets. �e rest of the paper is concerned with using the specialized inputs solution to

12



understand the implications of such aggregation in currently available input-output datasets.

As a �nal comment, note that there are many other potential ways of disentangling the GVC challenge

in (1). For example, a richer form of input specialization could depend on input shares aX (s ′′′ |s ′′, s ′, s)

where the input mix used in s ′′ for exports to s ′ is tailored according to the further downstream production

stage at s. More formally, this corresponds to building GVCs recursively using third-order Markov chains

while the above specialized inputs and roundabout solutions correspond to the special cases of second-

order and �rst-order Markov chains.
13

Alternatively, one could move beyond recursive GVCs and assume

instead �nite GVCs with output at some stage N > 1 consisting entirely of domestic value-added. I focus

on the specialized inputs solution since it is, in my view, the most natural and tractable way of generalizing

the roundabout solution in order to account for the pa�erns observed in �gure 1. But the reader should

keep in mind that this GVC framework can be used to study many other solutions in future research.

2.4 Evidence for Specialized Inputs

�e empirical evidence in favor of specialized inputs has been steadily accumulating over the last couple of

years (see footnote 4). On the intermediate input side, Manova and Zhang (2012) found that large Chinese

�rms export to more countries and use inputs from more source countries than small �rms while Bastos

et al. (2018) showed that Portuguese �rms selling to richer countries export higher quality products built

with higher quality inputs. On the value-added side, Brambilla et al. (2012) and Brambilla and Porto (2016)

discovered that Argentinian �rms exporting to richer countries hire relatively more skilled workers and

pay higher wages while Koopman et al. (2012) and Kee and Tang (2016) established that Chinese processing

trade �rms use less domestic value-added than non-processing trade exporting �rms. �ese facts imply

that both the use of intermediate inputs and value-added varies at the country-industry level depending

on the use of output in a variety of se�ings. I now provide further evidence for Mexico and the U.S.

2.4.1 Evidence from Firm-Level Data

�e case for specialized inputs is supported by Mexican customs data. Speci�cally, I use the universe of

import/export shipments in 2014 to show that the use of inputs varies in exports to di�erent markets. I

proceed in three steps. First, for each �rm I construct its aggregate input purchases from and exports to

each country. Second, I assume that all output within each �rm is produced using the same input mix

and obtain the dollar value of imports from each country used in the exports to each country at the �rm-

level.
14

. �ird, I take all of the �rms within a manufacturing industry and compute the aggregate value of

imports from a given source used in the exports to a given destination. �is delivers the distribution of

foreign inputs used in exports to each destination market − which should be common across markets if

the roundabout solution were accurate at the industry-level.
15

13
A previous version of this paper, de Gortari (2017), shows how to disentangle GVCs using Markov chains of any order.

14
�is assumption is strong in multi-product �rms where di�erent goods likely use di�erent inputs. However, imposing a

common input mix within the �rm is weaker than imposing it within industries; Ludema et al. (2018) take the same approach.

15
Customs data does not contain domestic purchases so value-added shares cannot be measured at the �rm-level and this

analysis also rests on assuming common value-added shares across �rms within an industry. Imposing the roundabout solution

at the industry-level also assumes this and so, in this respect, this analysis is just as restrictive as the conventional approach.
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Figure 2: Foreign Input Shares in Mexican Manufacturing Exports Across Destinations: Each chart

presents the share of foreign inputs sourced from Mexico’s four main trade partners and a rest of

world remainder (y-axis) used in Mexico’s manufacturing exports to each of its four main trade

partners (x-axis). �at is, cells across rows within each column sum up to 100%. �e shares are

constructed using Mexican customs shipment-level data and these nine manufacturing industries

account for 95% of Mexico’s �nal good manufacturing exports. In contrast, assuming the round-

about solution at the industry-level implies common input distributions across export destinations.

Figure 2 con�rms the prevalence of specialized inputs in Mexican manufacturing �nal good exports at

the level of aggregation consistent with typical multi-country datasets.
16

Speci�cally, each column in each

chart plots the share of foreign inputs sourced from Mexico’s four main trade partners − the U.S., China,

Canada, and Germany − and a rest of world remainder used in exports to each of these markets. In other

words, the cells across a column represent the distribution of foreign inputs used to produce a speci�c

type of manufacturing exports and add up to 100%. For example, motor vehicles is Mexico’s main export

16
�e la�er is an important point since one could de�ne di�erent �rms as di�erent manufacturing industries and then the

distribution of inputs used in exports to di�erent destinations would be common by construction since I have assumed a com-

mon use of inputs within the �rm. However, the charts in �gure 2 are presented at the relevant level of aggregation since, for

example, manufacturing �ows in the WIOD are available for only 19 aggregate manufacturing industries. Going forward, while

multi-country datasets are likely to become more disaggregate over time it is unlikely that these datasets become available at a

disaggregate enough level to be consistent with the roundabout solution at the industry-level anytime soon (see footnote 1).
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Figure 3: Implied and True Input and Value-Added Shares Within the Computer and Electronics

Industry: Each chart presents the expenditure share on the top four input suppliers, the other 385

input suppliers, and value-added (y-axis) in the production of the top �ve subindustries (x-axis).

�e le� chart plots shares implied by imposing the roundabout solution on the aggregate 3-digit

industry computer and electronics while the right panel plots the true shares using the disaggregate

6-digit data. Data is from 2007 U.S. input-output tables from the Bureau of Economic Analysis.

industry and the corresponding chart shows that the use of inputs in exports to the U.S. and Germany

di�er substantially (i.e. these are the distributions in �gure 1).

Overall, �gure 2 shows substantial heterogeneity in input shares in sales to di�erent destinations and

reveals interesting pa�erns. In particular, the U.S. tends to have an outsized role as input supplier in

the exports that return to its own market − thus con�rming the widely-available anecdotal evidence that

Mexico-U.S. trade is based heavily on goods that cross the border back and forth. Sections 4 and 5 will show

this translates into a high share of U.S. content in U.S.-bound exports through richer empirical analysis

that traces where value is created across all stages of the value chain.

2.4.2 Evidence from Disaggregate Domestic Input-Output Tables

�e case for specialized inputs is also supported by domestic input-output tables. Speci�cally, the U.S.

Bureau of Economic Analysis reports data for the year 2007 at a level of disaggregation of both 389 and

71 industrial categories (roughly 6- and 3-digit NAICS codes). �is data is useful because it can help study

whether the use of inputs− at the industry-level− varies depending on the industry to which output is sold

to. I conduct the following thought experiment: Compare the input shares of the 6-digit industries bundled

into single 3-digit industries. If only 6-digit industries with common input mixes are bundled together then

there is no aggregation issue. If not, then the roundabout solution at the 3-digit is misspeci�ed.

Figure 3 illustrates the aggregation issue in the 3-digit computers and electronics industry. �e la�er is

composed of twenty 6-digit industries − the �ve largest are semiconductors, navigation instruments, elec-

tronic computers, communication equipment, and other electronics − while its four largest input suppliers

15



are other electronic components, semiconductors, broadcast and wireless communication equipment, and

computer storage devices. Figure 3’s le� panel shows that imposing the roundabout solution at the 3-digit

implies all 6-digit subindustries use the same input and value-added mix. Figure 3’s right panel, however,

uses the disaggregate 6-digit data to show that input shares vary substantially within each subindustry.

For example, computer storage devices are used intensively in electronic computers (14.9% of output value)

but only marginally in other subindustries; in contrast, the le� chart assumes a common 2.4% share.
17

Appendix section A.1 shows similar pa�erns hold across all U.S. manufacturing industries in that there

is substantial heterogeneity in input shares across sales to di�erent industries. �is exercise is informative

about multi-country tables since the la�er are typically available at an industrial classi�cation level similar

to the 3-digit NAICS. Hence, while this exercise cannot be done with multi-country tables, it is likely that

the issue of industrial aggregation is just as prevalent as implied by the U.S. domestic tables.
18

3 GVCs and Counterfactuals

A �rst strand of the GVC literature is concerned with understanding the implications of economic shocks,

such as changes in trade barriers, on international trade. In particular, in an in�uential contribution, Arko-

lakis et al. (2012) (ACR henceforth) argued that, with some assumptions in hand, the welfare gains from

trade − across a variety of microfoundations − rely only on the domestic expenditure share and thus de-

pend only on data and a trade elasticity. �ough their benchmark analysis is carried out in a world of ‘only

trade in �nal goods,’ they also prove that their results extend to roundabout production.

�is section shows that, in more complex equilibrium theories of production than that of roundabout

production, the quantitative implications of economic shocks di�er depending on how GVCs are con-

structed using input-output data. Conceptually, the starting point is section 2’s solutions to the GVC

challenge in (1) since these theories determine how to build the benchmark equilibrium’s GVC network.

�e next step is to go deeper and unpack the microfoundation underlying these equilibrium theories of

production in order to pin down how the GVC network changes following any economic shock.

I proceed in four steps. First, I develop the simplest microfoundation for specialized inputs through a

variant of the Armington model. Second, I extend the ACR insights and show that the gains from trade

depend on the change in a set of domestic expenditure shares − though here the relevant shares are

the expenditures on domestic inputs used for the production of domestically-sold goods. Since any input-

output dataset is consistent with many GVC networks delivering di�erent values for the la�er, this implies

that any counterfactual exercise is consistent with a range of numerical values. �ird, I show formally that

the aggregate domestic expenditure share is not the relevant su�cient statistic in a world of specialized

inputs because it fails to capture how changes in trade barriers ripple through GVC linkages. Fourth,

and �nally, I show how to construct bounds on any counterfactual exercise based on the class of models

consistent with the above su�cient statistics formulas and illustrate this empirically with the 2014 WIOD.

17
Note that what ma�ers is the relative di�erence in shares across columns; the shares in levels are low since there are 389

6-digit industries. Also note that, in contrast to �gure 2, these are shares of output value and thus include a row for value-added.

18
�e issue of aggregation in input-output data motivated an important literature in the 1950’s with several papers developing

conditions under which aggregation is innocuous. �e outlook on whether they might hold in practice was grim, though. In the

words of Hatanaka (1952) and McManus (1956), “�ere is very li�le chance that they will be ful�lled by any model”.
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3.1 Armington Meets Specialized Inputs

I extend the Armington model with roundabout production (such as in Costinot and Rodrı́guez-Clare 2014)

to specialized inputs. �ere are J countries and K industries, with each country-industry s ∈ J×K

producing J di�erentiated varieties − each tailored to a speci�c market. �e roundabout model is the

special case in which each country-industry produces the same di�erentiated variety for all markets.

�e model is based on �ve main assumptions: (i) both intermediate inputs and �nal goods are produced

with the same technology, (ii) production is specialized in terms of destination country but not destination

industry, (iii) production features constant returns to scale with an upper-tier Cobb-Douglas production

function across labor and intermediate inputs from each industry and a lower-tier constant elasticity of

substitution (CES) composite of inputs across source countries, (iv) market structure is perfect competition,

(v) the only source of value-added in country j is equipped labor L (j) and commands a wage w (j).

3.1.1 Production

Formally, assumptions (iii) and (iv) imply the model can be described directly in terms of unit prices, the

dual, with the price of a unit of goods from s ′ sold to j given by the marginal cost

p
(
s ′, j
)
= w

(
j ′
)β(s ′,j) ∏

k ′′∈K

 ∑
s ′′∈J×k ′′

α
(
s ′′
∣∣s ′, j) (p (s ′′, j ′) τ (s ′′, j ′))1−σ(k ′′)


γ(k ′′|s ′ ,j )

1−σ(k ′′)

,
(13)

where notation is such that country-industry pairs are summarized by s ′′ = {j ′′,k ′′} and s ′ = {j ′,k ′}. �e

upper-tier Cobb-Douglas is characterized by β (s ′, j), the value-added share, and γ (k ′′ |s ′, j), the expendi-

ture share on industry k ′′ inputs, with β (s ′, j) +
∑
k ′′∈K γ (k

′′ |s ′, j) = 1. �e lower-tier CES composite

is characterized by two parameters. First, an elasticity σ (k ′′) > 1 governing the substitutability of indus-

try k ′′ inputs purchased across sources j ′′ ∈ J − i.e. the industry k ′′ composite combines inputs across

sources as indexed by s ′′ ∈ J×k ′′. Second, a set of exogenous input shi�ers α (s ′′ |s ′, j) governing the

relative expenditure on industry k ′′ inputs from each source j ′′ ∈ J satisfying

∑
s ′′∈J×k ′′ α (s ′′ |s ′, j) = 1

∀k ′′ ∈ K. In addition, p (s ′, j) depends on the endogenous wage paid in s ′,w (j ′) , and the prices that j ′ it-

self pays for inputs purchased from each source s ′′, p (s ′′, j ′), times an exogenous trade cost τ (s ′′, j ′) > 1

governing how many units melt when shipped from s ′′ to j ′.

Production is specialized in that s ′ puts in speci�c shares of domestic value-added and inputs from each

s ′′ into its exports to each market j. �at is, of every dollar sold from s ′ to j a share β (s ′, j) is domestic

value-added embedded directly by s ′ while the expenditure share on s ′′ inputs is endogenous and given

by

a
(
s ′′
∣∣s ′, j) = α (s ′′ |s ′, j) (p (s ′′, j ′) τ (s ′′, j ′))1−σ(k ′′)∑

t ′′∈J×k ′′ α (t ′′ |s ′, j) (p (t ′′, j ′) τ (t ′′, j ′))1−σ(k ′′)
× γ

(
k ′′
∣∣s ′, j) . (14)

�ese input expenditure shares are disciplined by the parameters α (s ′′ |s ′, j) and I interpret this hetero-

geneity as a simple way of (exogenously) capturing the interdependencies across di�erent stages of the
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value chain.
19

Note, however, that input speci�city is eroded as goods �ow down the value chain. �at is,

every country j ′ has access to speci�c inputs from each source s ′′, available at unit cost p (s ′′, j ′) τ (s ′′, j ′),

but can use them to produce new goods for any downstream market j. Further, note this microfoundation

is slightly more restrictive than the specialized inputs described in (9) and (10) since the input shares in

both intermediate inputs and �nal goods are common and only vary across destinations: aX (s ′′ |s ′, s) =

aF (s
′′ |s ′, j) = a (s ′′ |s ′, j). While generalizing is straightforward, I focus on this case for parsimony.

3.1.2 Consumers

As is standard, I assume consumers aggregate goods across industries using an upper tier Cobb-Douglas ag-

gregator with ζ (k ′ |j) denoting the expenditure share on industry k ′ �nal goods by consumers in country

j. Further, within each industry consumers aggregate varieties across source countries into a CES com-

posite with the same elasticity of substitution σ (k ′) > 1 as above and with the free parameters ϕ (s ′ |j)

disciplining the share of �nal goods from s ′ purchased by consumers in each j. �e price index is then

P (j) =
∏
k ′∈K

 ∑
s ′∈J×k ′

ϕ
(
s ′ |j

) (
p
(
s ′, j
)
τ
(
s ′, j
))

1−σ(k ′)


ζ(k ′|j )

1−σ(k ′)

, (15)

and the expenditure share on �nal goods from each source country-industry s ′ equals

πF
(
s ′ |j

)
=

ϕ (s ′ |j) (p (s ′, j) τ (s ′, j))1−σ(k ′)∑
t ′∈J×k ′ ϕ (t ′ |j) (p (t ′, j) τ (t ′, j))1−σ(k ′)

× ζ
(
k ′ |j

)
. (16)

3.1.3 Mapping the Model to Input-Output Data

Mapping the model to the data requires building the model’s analogs of the input-output table elements.

From the consumer’s side, �nal good purchases in j from source s ′ equal a share of aggregate income

F
(
s ′, j
)
= πF

(
s ′ |j

)
×w (j)L (j) .

�e intermediate input side is constructed by noting that a share of the dollar exports to a given market is

used to pay for the inputs embedded in them. �us, aggregate intermediate input sales from s ′′ to s ′ must

equal the total value of inputs used by s ′ to produce exports sold to all destinations

X
(
s ′′, s ′

)
=
∑
j∈J

a
(
s ′′
∣∣s ′, j)

 ∑
s∈j×K

X
(
s ′, s

)
+ F

(
s ′, j
) . (17)

Given the input shares and �nal good �ows, these S× S equations implicitly de�ne the S×S input �ows.
20

�ere are multiple parameterizations of this model that can perfectly �t the input-output data. Speci�-

19
�ese parameters can be further unpacked and made endogenous in richer models, for example Antràs and de Gortari (2017).

20
Alternatively, input �ows can be computed directly with linear algebra through X = a [I− a]−1

F. �is approach is remi-

niscent of the Leontief inverse matrix but requires a matrix of size S2 × S2
instead of size S× S.
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cally, conditional on any vector of iceberg trade costs τ (s ′, j) > 1 and elasticities of substitution σ (k) > 1,

the parameters ϕ (s ′ |j) adjust to match �nal good �ows, the input mix parameters α (s ′′ |s ′, j) adjust to

match intermediate input �ows, and the Cobb-Douglas shares β (s ′, j), γ (k ′′ |s ′, j), and ζ (k ′ |j) adjust

to match GDP and gross output. Since the microstructure permits destination-speci�c input expenditure

shares, it can produce many di�erent GVC networks that aggregate up to the same input-output data.

In particular, the roundabout model corresponds to the knife-edge case of no specialization in which

exports to all markets use the same input mix.
21

With these restrictions, (17) delivers the property of

roundabout models that input shares are proportional to bilateral trade shares. �at is, when value-added

and input expenditure shares are common across markets, then there is a single parameterization that �ts

the data and delivers the exact same GVC network in equilibrium as the one given by input-output analysis

if β
(
s ′, j
)
= β

(
s ′
)

,γ
(
k ′′
∣∣s ′, j) = γ (k ′′ ∣∣s ′ ) , and α

(
s ′′
∣∣s ′ , j

)
= α

(
s ′′
∣∣s ′ ) ,∀j ∈ J,

⇒ a
(
s ′′
∣∣s ′, j) = a (s ′′ ∣∣s ′ ) = X (s ′′, s ′)

GO (s ′)
.

(18)

Hence, while roundabout models may �t the data perfectly, this cannot be interpreted as evidence for the

roundabout approach since many other specialized inputs models also �t it perfectly. Moreover, input-

output data contains no information identifying which GVC networks are most accurate.

3.2 �e Gains from Trade

Building on the insights of ACR, the welfare change following any shock to trade barriers depends on a set

of domestic expenditure shares. I derive this formula using the exact hat-algebra approach in four steps.

Speci�cally, let a hat variable denote the ratio of a given variable x across two equilibria, i.e. x̂ = x1/x0,

and let τ̂ (s ′, j) denote the (exogenous) change in trade costs of goods shipped from s ′ to j. As is standard,

to make notation cleaner I assume that domestic trade costs do not change, i.e. τ̂ (s ′, j) = 1 ∀s ′ ∈ j×K.

First, I derive the change in expenditure shares. From (14), the change in input expenditures from

source s ′′ used by s ′ for goods sold to j as a share of overall expenditure on industry k ′′ inputs equals

â (s ′′ |s ′, j)

γ (k ′′ |s ′, j)
=

(p̂ (s ′′, j ′) τ̂ (s ′′, j ′))1−σ(k ′′)∑
t ′′∈J×k ′′ a (t

′′ |s ′, j)× (p̂ (t ′′, j ′) τ̂ (t ′′, j ′))1−σ(k ′′)
. (19)

Analogously, from (16), the change in the share of �nal good expenditures from source s ′ by consumers

in j relative to overall expenditure on industry k ′ �nal goods equals

π̂F (s
′ |j)

ζ (k ′ |j)
=

(p̂ (s ′, j) τ̂ (s ′, j))1−σ(k ′)∑
t ′∈J×k ′ πF (t

′ |j)× (p̂ (t ′, j) τ̂ (t ′, j))1−σ(k ′)
. (20)

21
To be clear, I am using the term roundabout when referring to production processes in which all output uses the same

input mix and in which the model is implemented literally in that the industries in the theory are mapped one-to-one to the

industries in the data (for example, as in Costinot and Rodrı́guez-Clare 2014, Caliendo and Parro 2015, and Caliendo et al. 2017).

More generally, this specialized inputs model can also be interpreted as a more disaggregate multi-industry roundabout model in

which country j has K× J industries in which the goods produced by industry k for country j are only sold to country j. �e

mapping to the data is not one-to-one, however, since the theory has K× J industries per country whereas the data has K.
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Both expenditure changes (19) and (20) depend on the exogenous Cobb-Douglas and elasticity parameters,

the exogenous change in trade costs, the initial GVC network, and the endogenous change in unit prices.

Second, to derive price changes in terms of domestic expenditures, substitute (19) into (13) to obtain

p̂
(
s ′, j
)
= ŵ (j)β(s

′
,j)
∏
k ′′∈K

(
â
(
s ′′
∣∣s ′, j)− 1

1−σ(k ′′) × p̂
(
s ′′, j ′

)
τ̂
(
s ′′, j ′

))γ(k ′′|s ′,j )
, (21)

where s ′′ can be a source located in any country, that is s ′′ ∈ J × k ′′. �en take (21) de�ned in terms of

domestic industries of j, i.e. s ′ = {j,k ′} and s ′′ = {j, k ′′}, and substitute (21) repeatedly into itself. In the

limit, domestic unit prices depend exclusively on changes in domestic expenditure shares

p̂
(
s ′, j
)
=
∏

s ′′∈j×K

ŵ (j)β(s
′′

,j) ×
∏

s ′′′∈j×K
â
(
s ′′′
∣∣s ′′, j)−γ(k ′′′|s ′′ ,j )

1−σ(k ′′′)

δ(k ′′|s ′,j ) , (22)

with s ′, s ′′, and s ′′′ domestic industries of j. �e change in domestic prices thus depends on the change in

domestic wages and in expenditures on domestic inputs used in the production of domestically-sold goods.

Further, (22) captures the domestic expenditure change across all stages of the supply chain through

δ
(
k ′′
∣∣s ′, j) = 1[k ′′=k ′] + γ

(
k ′′
∣∣s ′, j)+ ∑

s ′′′∈j×K
γ
(
k ′′
∣∣s ′′′, j)γ (k ′′′ ∣∣s ′, j)+ . . . .

�at is, δ (k ′′ |s ′, j) captures the aggregate (gross) use of k ′′ inputs used in all upstream production stages of

a purely domestic supply chain for inputs that are eventually embedded in goods sold by s ′ domestically.
22

�ird, the change in the price index of country j can be wri�en in terms of the change in �nal expen-

diture shares from some source s ′ by substituting in (20) into equation (15)

ˆP (j) =
∏
k ′∈K

(
π̂F
(
s ′ |j

)− 1

1−σ(k ′) × p̂
(
s ′, j
)
τ̂
(
s ′, j
))ζ(k ′|j )

. (23)

Finally, substituting the price changes in (22) into the price index change in (23), de�ned domestically

with s ′ ∈ j×K, delivers the welfare change
ˆW (j) = ŵ (j) / ˆP (j) in terms of domestic expenditure changes

ˆW (j) =
∏

s ′∈j×K

π̂F (s ′ |j) 1

1−σ(k ′) ×
∏

s ′′∈j×K

∏
s ′′′∈j×K

â
(
s ′′′
∣∣s ′′, j)γ(k ′′′|s ′′ ,j )δ(k ′′|s ′ ,j )1−σ(k ′′′)

ζ(k ′|j ) . (24)

�is formula incorporates various elements found previously such as the GVC elements from Antràs

and de Gortari (2017), the domestic expenditure shares from ACR, and the multi-industry input-output

22
Note that δ (k ′′ |s ′, j ) contains value-added counted multiple times. Since the focus is on domestic shares, writing the Cobb-

Douglas shares γ (k ′′ |s ′, j ) for country j as a K×K matrix γ delivers the corresponding δ (k ′′ |s ′, j ) shares as δ = [I− γ]−1

.
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linkages of Caliendo and Parro (2015). Speci�cally, �rst, in a single-industry world this formula becomes

ˆW (j) =

[
π̂F (j |j)× â (j |j, j)

1−β(j,j)
β(j,j)

] 1

1−σ

, (25)

and the change in welfare depends on the change in the share of �nal goods purchased domestically and the

change in the share of domestic inputs used in the production of domestically-sold inputs. Each term cap-

tures the relative importance of domestic goods in the production of a purely domestic supply chain.
23

�is

formula is similar to that derived by Antràs and de Gortari (2017) in a multi-stage Ricardian model where

welfare depends on the expenditure share on goods produced through purely domestic supply chains.

Second, ACR’s benchmark analysis without intermediate inputs is nested here by imposing β (j, j) = 1

ˆW (j) = π̂F (j |j)
1

1−σ .

Further, ACR’s generalization to intermediate inputs under the roundabout solution − corresponding to

the assumptions in (18) − while imposing symmetry, i.e. π̂F (j |j) = â (j |j), is also nested and given by

ˆW (j) = π̂F (j |j)
1

β(j)(1−σ)
. (26)

Hence, ACR’s insight that the gains from trade depend on some form of domestic expenditure shares is

also true in the world of specialized inputs. �ird, and �nally, imposing the roundabout assumptions in

(18) directly on (24) delivers the formula of Caliendo and Parro (2015). In sum, (24) extends the roundabout

multi-industry ACR formula with input-output linkages to specialized inputs.

3.3 �e Import Demand System is Not CES

Before delving further, it is helpful to pause and analyze why specialized inputs imply that aggregate

expenditure shares are insu�cient for tracing the implications of changes in trade barriers. In a nutshell,

this occurs because GVCs play a role in propagating trade shocks and specialized inputs determine the

structure of these trade linkages. In words, if both Ford and Volkswagen assemble vehicles in Mexico

but have di�erent supply chains, then changes in Mexican trade costs with di�erent export partners have

asymmetric e�ects on input suppliers depending on the structure of Ford and Volkswagen’s supply chains.

Formally, this can be stated in terms of ACR’s restriction concerning how third country trade shocks

pass through into relative imports; I discuss only the intuition, the proof is in appendix section B. In

a single-industry world, the partial elasticity of imports in j ′ from source j ′′ 6= j ′ relative to domestic

purchases (i.e. from j ′) with respect to changes in trade costs with a third country i ′′ 6= j ′ depends on (i)

the direct e�ect on relative imports present when j ′′ = i ′′, (ii) a substitution e�ect from i ′′ inputs into both

23
�e exponents capture the gross domestic output used in the production of a dollar of �nal goods: �e power 1 on π̂F (j |j )

is the dollar of �nal goods while the power on â (j |j, j ) equals the use of intermediate inputs across all stages of the supply chain

(1 − β (j, j))× 1 + (1 − β (j, j))× (1 − β (j, j))× 1 + · · · = (1 − β (j, j)) /β (j, j) .
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j ′′ and j ′ inputs, and (iii) a supply chain e�ect into j ′′ and j ′ inputs derived from the change in downstream

production. Crucially, the la�er two e�ects depend on the di�erential importance of each export market j

for inputs from j ′′ relative to j ′ and on how trade costs with i ′′ a�ect exports to each j.

�e la�er two e�ects thus illustrate how changes in third-country trade barriers a�ect imports asym-

metrically depending on the depth of supply chain integration. �ese channels are in line with the empiri-

cal evidence suggesting that specialized inputs play a crucial role in propagating trade shocks. For example,

Barrot and Sauvagnat (2016), Carvalho et al. (2016), and Boehm et al. (2018) show that supply chain dis-

ruptions due to natural disasters are propagated by input speci�city through trade networks. Increases in

suppliers’ marginal costs mostly a�ect tightly-linked �rms, rather than entire industries symmetrically as

in roundabout models. �e knife-edge roundabout model, however, is the one case in which the e�ect is

symmetric since all exports get built with the same inputs. In other words, in roundabout models all export

markets j are equally important for inputs from j ′′ and j ′ and so the two la�er e�ects disappear. �is is

the very special case in which model satis�es the ACR condition “the import demand system is CES”.

Finally, note that the gravity equation’s empirical success is not evidence for the roundabout model.

Appendix section B.1 shows that gravity regressions fare well across simulations of the specialized inputs

model even though structural gravity does not hold: While third country trade costs shi� bilateral trade

�ows asymmetrically, on aggregate the bilateral terms dominate. In practice, this misspeci�cation leads

to a�enuated trade elasticity estimates and is similar to introducing classical measurement error − thus

suggesting a downward bias in gravity-based elasticities when deep supply chain linkages are pervasive.

3.4 Bounding Counterfactuals

3.4.1 Autarky Gains from Trade - Single Industry Bounds

I begin by showcasing the bounds approach to counterfactuals in a simpli�ed se�ing. For now, I ig-

nore the data’s industrial dimension and assume there is a single industry per country, i.e. S = J, and

compute the bounds on the gains relative to autarky. In this case, the change in expenditure shares

equals the observed equilibrium’s expenditure shares, i.e. π̂F (j
′ |j ′ ) = πF (j

′ |j ′ ) /1 and â (j ′ |j ′, j ′ ) =

a (j ′ |j ′, j ′ ) / (1 − β (j ′, j ′)). SinceπF (j
′ |j ′ ) is observed in the data andβ (j ′, j ′) = 1−

∑
j ′′∈J a (j

′′ |j ′, j ′ ),

the only endogenous variables are the input shares a (j ′′ |j ′, j).

�e autarky bounds for country j ′ in any model delivering a welfare formula as in (25) are given by

min/max

{a(j ′′|j ′,j )}j ′′∈J,j∈J

∑
j ′′∈J a (j

′′ |j ′, j ′ )

1 −
∑
j ′′∈J a (j

′′ |j ′, j ′ )
× ln

a (j ′ |j ′, j ′ )∑
j ′′∈J a (j

′′ |j ′, j ′ )
,

subject to X
(
j ′′, j ′

)
=
∑
j∈J

a
(
j ′′
∣∣j ′, j) (X (j ′, j)+ F (j ′, j)) , ∀j ′′,

∑
j ′′∈J

a
(
j ′′
∣∣j ′, j) 6 1, ∀j,

a
(
j ′′
∣∣j ′, j) > 0, ∀j ′′, j.

(27)

�e objective function is a concave transformation of (25), while the constraints restrict the search to GVCs
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Home

Home Home

Foreign Foreign

Home

X(H,H) =$48

X(F,H) =$12

X(H,H) + F (H,H)

=$100

X(H,F) + F (H,F)

=$20

Roundabout Lower Bound Upper Bound

a (H |H, H): Share of H inputs in sales to H 40% 48% 38%

a (H |H, F): Share of H inputs in sales to F 40% 0% 50%

X (H |H, H): Dollar value of H inputs in sales to H $40 $48 $38

X (H |H, F): Dollar value of H inputs in sales to F $8 $0 $10

ˆW (H) : Autarky gains from trade in H 7.6% 3.7% 8.7%

Figure 4: GVC Networks in a Simple Home vs Foreign Example: For simplicity, let Home’s value-

added share be common across destinations and given by β (H) = $60/$120 = 50%, while its

domestic �nal good share is πF (H |H ) = $52/$60 = 87%. �e gains are relative to autarky and

computed using (25) with 1−σ = −5. Since home is a relatively closed economy, the upper bound

is mechanically close to the roundabout estimates. �at is, the la�er assign a lot of domestic inputs

into all output and so many domestic inputs can be shi�ed out of exports into domestically sold

goods ($8) but few domestic inputs can be shi�ed into exports from domestically sold goods ($2).

that replicate the input-output data.
24

�is optimization is relatively easy to solve since the objective

function is well-behaved and the constraints are linear. In the special case with constant value-added

shares, i.e. β (j ′, j) = β (j ′) ∀j ∈ J, this becomes a simple linear program bounding a (j ′ |j ′, j ′ ) directly.

Crucially, computing these bounds requires only zooming in on all import-export linkageswithin coun-

try j ′. �at is, while the world economy depends on J× J× J input shares, (27) solves only for J× J

endogenous variables. �is occurs because this model features li�le specialization in that country j ′ buys

speci�c inputs from j ′′, but can then use them to produce exports to any market. Hence, the specialized

inputs linkages through country j ′ extend at most from its immediate import suppliers to its direct export

markets. In other words, the observed bilateral trade �ows to and from country j ′ curtail its domestic

network and computing the bounds requires only searching for extremal domestic GVC linkages.
25

Figure

4 illustrates this in a simple two-country network with constant value-added shares.

Figure 5 plots the gains from trade relative to autarky in the roundabout model (ACR) and in specialized

inputs models with both common and destination-speci�c value-added shares (note the log scale) using the

2014 WIOD. Since the la�er class of models nest the former the bounds are wider and any value within the

bounds is feasible since the optimization constraints are linear and any convex combination of the lower

and upper bounds is a possible initial trade equilibrium. Now, while the optimization does not depend

24
Computing autarky bounds incorporates trade imbalances automatically. First, the imbalances observed in the benchmark

equilibrium are fed in through the input-output data. Second, the autarky equilibrium assumes, by construction, no imbalances.

25
�is breaks down with a higher degree of specialization. For example, bounds on GVCs built with third-order Markov

chains, i.e. a (j ′′′ |j ′′, j ′, j ), would be wider, but computing them comes at a substantial cost in dimensionality (see footnote 13).
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Figure 5: Single-Industry Autarky Welfare Gains from Trade: Both roundabout estimates and spe-

cialized inputs bounds based on (25); the la�er computed with (27). All counterfactuals use round-

about trade elasticity 1 − σ = −5. Note the log scale. Data is from 2014 WIOD (at country level).

on the trade elasticity, the la�er is necessary for transforming the solutions into bounds. However, while

using specialized inputs models to measure elasticities is a fascinating research topic, it is beyond this

paper’s scope. �us, I simply set a roundabout trade elasticity of 1 − σ = −5, in line with mainstream

estimates (Anderson and van Wincoop 2003, Costinot and Rodrı́guez-Clare 2014, Head and Mayer 2014);

the reader can transform any of these numbers x to an elasticity 1 − σ through (1 + x)(1−6)/(1−σ) − 1.

�e bounds on the gains from trade are wide and increasing in trade openness. For example, the U.S.

ACR gains, a relatively closed economy with only 10% of its total inputs purchased abroad, are low at 2.9%

while the range with destination-speci�c value-added shares lies between 1.2-3.1% indicating the gains

might actually be 60% lower or 10% higher. �e range is relatively small, however, with a ratio between

the upper and lower bounds of 2.6. In contrast, very open economies are consistent with a wide range

of domestic GVC networks since one can �nd both trade equilibria in which goods sold domestically use

either mostly domestic inputs or almost no domestic inputs. For example, Taiwan imports about 40% of its

total inputs and has a bounds ratio of 45%/3% = 15. Full results are reported in appendix section A.3.
26

26
�ese bounds feature a mechanical correlation where distance between the ACR gains and the upper bound increases with

trade openness. �is occurs because trade equilibria where domestically-sold goods use arbitrarily few domestic goods (a high

upper bound) can only be found in countries that trade a lot (�gure 4 provides further intuition). In practice, extremely open

economies like the small European markets on the right of �gure 5 feature upper bounds that are quite literally o� the charts.

24



3.4.2 Autarky Gains from Trade - Multiple Industry Bounds

Computing the autarky bounds with multi-industry data is analogous but more complex numerically. In

particular, incorporating destination-speci�c (Cobb-Douglas) value-added and industry shares is challeng-

ing since the welfare gains in (24) are highly nonlinear in these terms. First, because the direct and in-

direct linkages captured by δ (k ′′ |s ′, j) are a function of these shares (see footnote 22). Second, because

the Cobb-Douglas shares capture cross-industry linkages and so the optimization has to be done glob-

ally across all of a country’s GVC network and cannot be done in isolation within each country-industry.

Hence, to make things simple, I avoid these issues and focus on the special case where industry-level

expenditures are �xed and given by the data − that is, β (s ′, j) = β (s ′) = GDP (s ′) /GO (s ′) and

γ (k ′′ |s ′, j) = γ (k ′′ |s ′ ) =
∑
s ′′∈J×k ′′ X (s ′′, s ′) /GO (s ′) ∀j ∈ J.

�e autarky bounds for country j ′ in any multi-industry model delivering the welfare formula (24) are

found by solving for the extremal GVC networks within every pair of industries separately. Speci�cally,

the extremal domestic shares in country j ′ for the industry pair k ′′ and k ′ are found through

min/max

{a(t ′′|s ′,j )}t ′′∈J×k ′′ ,j∈J

a
(
s ′′
∣∣s ′, j ′ ) ,

subject to X
(
t ′′, s ′

)
=
∑
j∈J

a
(
t ′′
∣∣s ′, j)

 ∑
s∈j×K

X
(
s ′, s

)
+ F

(
s ′, j
) ,∀t ′′ ∈ J×k ′′,

∑
t ′′∈J×k ′′

a
(
t ′′
∣∣s ′, j) = γ (k ′′ ∣∣s ′ ) ,∀j ∈ J,

a
(
t ′′
∣∣s ′, j) > 0,∀t ′′ ∈ J×k ′′, j ∈ J,

(28)

where s ′′ = {j ′,k ′′} and s ′ = {j ′,k ′} are domestic country-industries. Optimization problem (28) is a

linear program with J × J endogenous variables and easy to solve numerically. �e bounds are then

constructed by solving this problem for the K×K industry pairs and inserting the solutions into the

terms â (s ′′ |s ′, j ′ ) = a (s ′′ |s ′, j ′ ) /γ (k ′′ |s ′ ) and π̂F (s
′ |j ′ ) = πF (s

′ |j ′ ) /ζ (k ′ |j ′ ) in (24).

It is well known that multi-industry models deliver larger gains from trade (Costinot and Rodrı́guez-

Clare 2014) and �gure 6 shows the same is true for the bounds. �is is not by construction, rather, the

multi-industry bounds are larger and overlap li�le with the single-industry bounds because heterogeneity

in openness across industries leads to disproportionate e�ects on the gains from trade. To understand this

be�er, imagine a world in which the input mix used across all industries were common. As shown by Ossa

(2015), the multi-industry gains in this very special world are still higher as long as there is heterogeneity

in the elasticities of substitution across industries. However, with common elasticities, the gains are the

same in both the multi- and single-industry data. Yet, �gure 6 is built with common elasticities and delivers

higher multi-industry gains. In other words, even relatively closed countries might have some very open

industries consistent with many GVC networks− thus increasing the gains from trade even in the presence

of zero heterogeneity in the trade elasticities.
27

Full results are reported in appendix section A.3.

27
Mixing both approaches and incorporating heterogeneity in elasticities may produce even wider bounds.
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Figure 6: Multi-Industry Autarky Welfare Gains from Trade: Both roundabout estimates and spe-

cialized inputs bounds based on (24); the la�er computed with (28). All counterfactuals use round-

about trade elasticities 1 − σ (k) = −5 ∀k ∈ K. Note the log scale. Data is from 2014 WIOD and

aggregated to J = 30 largest economies with K = 25 industries each (see appendix section A.2).

3.4.3 Arbitrary Changes in Trade Costs

Ultimately, perhaps the most relevant exercise is computing bounds on counterfactuals based on real world

and policy-motivated events. Relative to the autarky case, however, computing bounds following arbitrary

changes to trade barriers requires much heavier numerical work for three reasons. First, the counterfactual

gains in general depend on the full GVC network whereas in autarky they depend only on the domestic

GVC network. Hence, while the multi-industry autarky bounds relied on solving K×K separate linear

optimization problems of size J× J each, computing bounds in general requires solving a single global

problem for all input-shares a (s ′′ |s ′, j); that is, with J×K× J×K× J endogenous variables. Second,

the objective function is now given by the full nonlinear formula in (24). �ird, the constraints are also

nonlinear since they include �xed points for the counterfactual changes in unit prices and wages.

While describing the procedure for constructing exact bounds is straightforward and described in ap-

pendix section C, its implementation is le� open to the future because its dimensionality and nonlinearity

prevent it being solved with current computing power. Having said this, I have also developed a proce-

dure for constructing approximate bounds that is much less computationally intensive and applied it to

studying a NAFTA trade war in which trade barriers between Mexico and the U.S. increase by 50%. While

instructive, it will become clear in section 5 that the approximate bounds are not very informative about

the true bounds and so the exercise is relegated to appendix for the interested reader. Instead, section 5 will
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show how to construct alternative and arguably be�er informed point estimates for these counterfactuals.

Overall, the bounds show that quantitative counterfactual predictions based on input-output data may

vary substantially depending on how the data is used to construct GVCs.
28

Further, since all GVC networks

perfectly �t the same data, the la�er can shed no further light on which speci�c estimates are most rea-

sonable − an important point since the literature o�en takes the roundabout point estimates at face value.

I now take a detour through a parallel literature using input-output data to measure the fragmentation of

production and show that similar insights apply there. �e paper’s last section revisits both literatures and

shows that additional information can be used to obtain be�er informed point estimates.

4 GVCs and Measures of Globalization

A second strand of the GVC literature is concerned with developing measures that be�er capture the

extent of fragmentation of production across borders and stages of the supply chain than those based on

traditional gross trade �ow statistics. �e most in�uential measures are those based on value-added trade

(Hummels et al. 2001, Johnson and Noguera 2012, Koopman et al. 2014, Wang et al. 2013), which capture

where value is created rather than where value is shipped from, and those based on upstreamness (Fally

2012, Antràs et al. 2012, Antràs and Chor 2013), which capture a country’s average position along the value

chain. Without being exhaustive, the literature has also developed measures to capture the factor content of

trade (Tre�er and Zhu 2010), value-added exchange rates (Bems and Johnson 2017), international in�ation

spillovers (Auer et al. 2017), and business cycle synchronization (di Giovanni and Levchenko 2010, Johnson

2014b, Duval et al. 2016, di Giovanni et al. 2017). I refer to these generically as measures of globalization.

�is section shows that measures of globalization vary substantially across GVC networks built from

the same input-output dataset. For clarity, I focus on value-added trade decompositions but the same ideas

hold generally. I proceed in three steps. First, I show that any measure of globalization can be de�ned

using the general theory of GVCs from section 2. �is contrasts with the conventional approach which

de�nes these measures directly with the roundabout solution. �e more general de�nition proves useful

since this permits the comparison of di�erent theories of production in terms of their implications on

these measures. Second, I show how to construct bounds when imposing the specialized inputs solution.

�ird, and �nally, I use the WIOD to construct the bounds on the share of U.S. value-added in imported

Mexican �nal goods and the U.S.-China value-added de�cit and �nd they are very wide. �is suggests that

conventional roundabout value-added estimates may be highly mismeasured.

A key di�erence between this section on measures of globalization and the previous section on counter-

factuals is that here I no longer need to take a stand on a speci�c microfoundation in order to do empirical

analysis. �at is, while I still need to assume that the theory of production is given by either the round-

about or specialized inputs solution, I need only assume that the theory of production delivers these GVCs

28
Note that the autarky bounds do not depend explicitly on the Armington microfoundation and only on the su�cient statistics

formula (24). �at said, more realistic models incorporating elements such as tari� income, �xed costs, and monopoly power

may not be consistent with ACR-type formulas. My goal has been to illustrate in the simplest way how quantitative results

di�er depending on how input-output datasets are interpreted. While outside the scope of this paper, I conjecture that richer

microfoundations − which may or may not deliver ACR-type formulas − deliver similar qualitative results in the sense that

multiple GVC networks both replicate the input-output data and deliver di�erent quantitative counterfactual estimates.
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in equilibrium but can disregard the speci�c microfoundation that delivers such equilibrium. In this sense,

this section is much more �exible than the previous one in that it requires much fewer assumptions.

4.1 Decomposing Value-Added Trade

Decomposing �nal good consumption into where value-added is produced is useful for understanding how

�nal consumption in some country, say the U.S., is linked to the production of another, say China, through

�nal good exports of a third country, say Mexico. Further, this decomposition is useful for constructing

value-added trade imbalances such as the di�erence between the aggregate �ow of, say, Chinese value-

added consumed in the U.S. arriving through �nal good exports of any country and the total U.S. value-

added that is eventually consumed in China. More speci�cally, in the most general form, the value-added

from s ′′ that arrives through �nal good exports of s ′ and is consumed in country j is de�ned as

VA
(
s ′′
∣∣s ′, j) = 1[s ′′=s ′]

G1
(
s ′, j
)
−
∑
s2∈S

G2
(
s2

, s ′, j
)

+

∞∑
N=3

∑
sN−2∈S

· · ·
∑
s2∈S

GN−1
(
s ′′, sN−2

, . . . , s2
, s ′, j

)
−
∑
sN∈S

GN
(
sN, s ′′, sN−2

, . . . , s2
, s ′, j

) .

(29)

�e �rst term imputes value-added created directly at the assembly stage, appearing only if s ′′ = s ′, while

the remaining terms impute value-added created by s ′′ at all further upstream stages of production and

which eventually arrives, through any possible sequence, to s ′ to be shipped to consumers in j.

Value-added trade can be rewri�en in terms of a model’s equilibrium GVC network once one takes

a stand on the equilibrium theory of production solving the GVC challenge in (1). To exemplify this, I

begin by showing how this decomposition simpli�es once one assumes the specialized input solution in

(9) and (10), and then show how it relates to the other solutions. To make the exposition clearer, I derive

the decomposition separately for the value-added created at each stageN. First, the value-added by s ′′ at

the most downstream stage, N = 1, into �nal good sales of s ′ to j equals

VA1
(
s ′′
∣∣s ′, j) = 1[s ′′=s ′]βF

(
s ′, j
)
F
(
s ′, j
)

, (30)

where the superindex on VA is meant to index the stage at which this value-added is produced. Clearly,

since the most downstream stage is that of �nal production, s ′′ adds value-added to �nal good sales of s ′

if and only if s ′′ = s ′, and the decomposition is given by the share of value-added βF (s
′
, j) in each dollar

of output times the sales of �nal goods. Second, the value-added generated at the N = 2 upstream stage

is given by

VA2
(
s ′′
∣∣s ′, j) = βX (s ′′, s ′)aF (s ′′ ∣∣s ′, j) F (s ′, j) , (31)

and equals the intermediate input value-added share times the level of inputs from s ′′ used in �nal good

28



sales from s ′ to j. �ird, and �nally, the value-added created at any further upstream stage N > 3 equals

VAN
(
s ′′
∣∣s ′, j) = ∑

sN−1∈S

. . .

∑
s2∈S

βX
(
s ′′, sN−1

) [ N∏
n=3

aX
(
sn
∣∣sn−1

, sn−2
)]
aF
(
s2

∣∣s ′, j) F (s ′, j) , (32)

with sN = s ′′ and s1 = s ′. Hence, the total value-added of s ′′ embedded in �nal good sales of s ′ to j is

given by the sum of value-added by s ′′ created at all stages of production

VA
(
s ′′
∣∣s ′, j) = ∞∑

N=1

VAN
(
s ′′
∣∣s ′, j) .

While writing the decomposition in terms of summations across stages of production is useful for

illustrating the intuition behind it, in practice it is tedious to implement numerically. �is can be avoided

by writing the de�nitions compactly with linear algebra. To see this, �rst, organize �nal good �ows F (s ′, j)

into a vector F of size 1×SJ. Second, organize the input shares aX (s ′′ |s ′, s) into a matrix aX stacked as

aX =


aX (1 |1, 1) aX (1 |1, 2) . . . aX (1 |1, S) aX (1 |2, 1) . . . aX (1 |S, S)

aX (2 |1, 1) aX (2 |1, 2) . . . aX (2 |1, S) aX (2 |2, 1) . . . aX (2 |S, S)
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

aX (S |1, 1) aX (S |1, 2) . . . aX (S |1, S) aX (S |2, 1) . . . aX (S |S, S)

 ,

of size S× S2
, and let aF be an analogous matrix of elements aF (s

′′ |s ′, j) but of size S × SJ. �ird, let

βX and βF be vectors of elements βX (s ′, s) and βF (s
′
, j) and of size 1 × S2

and 1 × SJ. Finally, denote

the Kronecker product with ⊗ and the Khatri-Rao, or column-wise Kronecker, product with ∗ to de�ne

the following auxiliary matrices. Let
˜F = F ∗ (ISJ×SJ) be of size SJ × SJ, ãX = aX ∗ (IS×S ⊗ 11×S) of

size S2 × S2
, ãF = aF ∗ (IS×S ⊗ 11×J) of size S2 × SJ,

˜βX = βX ∗ (IS×S ⊗ 11×S) of size S × S2
, and

˜βF = βF ∗ (IS×S ⊗ 11×J) of size S× SJ. �e matrix with elements VA (s ′′ |s ′, j) of size S× SJ, stacked

as aX, is given by

VA = ˜βF
˜F+ ˜βX [I− ãX]−1 ãF ˜F. (33)

�e relation between matrix and full notation is that the term
˜βF

˜F summarizes the value-added created

at the most downstream stage and is the matrix representation of (30). Analogously,
˜βX (ãX)

N−2 ãF ˜F

is the matrix representation of VAN (s ′′ |s ′, j) for N > 2 so that the second term in (33), given by∑∞
N=2

˜βX (ãX)
N−2 ãF ˜F = ˜βX [I− ãX]−1 ãF ˜F, is the matrix representation of (31) and (32).

Since the roundabout solution is a special case of specialized inputs, its value-added decomposition is

nested in (33). Indeed, imposing the GVC mapping in (5) on (29) delivers the value-added decomposition

VA = β [I− a]−1 ˜F, (34)

where now
˜F = F ∗ (IS×S ⊗ 11×J) is a matrix of size S × SJ, β is a diagonal matrix of elements β (s) of

size S× S , and a is the matrix of technical coe�cients a (s ′ |s) of size S× S. �is is the standard formula

29



used in the GVC literature and mirrors those in Johnson and Noguera (2012) and Koopman et al. (2014).

�e key di�erence between the specialized inputs and roundabout decomposition of value-added trade

is that the former depends on an inverse matrix [I− ãX]−1

of size S2× S2
while the la�er depends on the

Leontief inverse matrix [I− a]−1

of size S× S. �e former is larger since it summarizes the larger set of

information contained in the specialized inputs technical coe�cients in which input shares vary depending

on the use and destination of output.
29

Finally, decomposing value-added by source in the world of ‘only

trade in �nal goods’ is trivial since, by construction, all value-added is created at the assembly stage. �at

is, imposing the GVC mapping in (4) implies that the value-added decomposition in (29) becomes

VA
(
s ′′
∣∣s ′, j) = 1[s ′′=s ′]F

(
s ′, j
)

.

�is discussion illustrates the value of section 2’s general theory of GVCs. While value-added trade

has been conventionally de�ned directly in terms of roundabout GVCs as in (34), de�ning this measure

generally in (29) is useful for deriving this decomposition in other equilibrium theories of production.
30

4.2 Bounding Value-Added Trade

Conditional on an input-output dataset and an equilibrium theory of production, measures of globalization

can be bounded. In particular, the specialized inputs bounds on the value-added from country-industry t ′′

embedded in the �nal goods shipped from country-industry t ′ to consumers in country i are given by

min/max

{aX(s ′′|s ′,s ),aF(s ′′|s ′,j )}

∞∑
N=1

VAN
(
t ′′
∣∣t ′, i) ,

subject to X
(
s ′′, s ′

)
=
∑
s∈S

aX
(
s ′′
∣∣s ′, s)X (s ′, s)+∑

j∈J
aF
(
s ′′
∣∣s ′, j) F (s ′, j) , ∀s ′′, s ′,

∑
s ′′∈S

aX
(
s ′′
∣∣s ′, s) 6 1, ∀s ′, s, (35)∑

s ′′∈S
aF
(
s ′′
∣∣s ′, j) 6 1, ∀s ′, j,

aX
(
s ′′
∣∣s ′, s) ,aF

(
s ′′
∣∣s ′, j) > 0, ∀s ′′, s ′, s, j.

�e endogenous variables are the destination-speci�c input shares for the production of both inputs and

�nal goods. Similarly to the autarky bounds optimization (27) and (28), the constraints are all linear and

ensure that the constructed GVC network replicate the observed input-output data. In contrast, however,

this optimization searches globally over the full GVC network. �at is, whereas the autarky optimization

searches separately within each industry s ′, here the objective function depends on how value �ows across

all stages and sequences of production and thus needs to account for the world economy as a whole.

29
�e invertibility of these matrices can be shown with the arguments of Hawkins and Simon (1949). In the words of Solow

(1952), the necessary condition is that no group of industries be “self-exhausting”.

30
Further, de�ning concepts cleanly at this general level should also prove useful for resolving outstanding debates in the

literature based on speci�c equilibrium theories of production. For example, the ongoing debate about how to de�ne certain

(roundabout) value-added measures between Koopman et al. (2014), Los et al. (2016), Johnson (2017), and Koopman et al. (2018).
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In practice, this problem cannot be solved exactly with current computing power since the optimization

is highly nonlinear and highly dimensional. Speci�cally, sinceVAN (t ′′ |t ′, i) is a polynomial of orderN in

the endogenous variables, the objective function is an in�nite sum of polynomials of every order. Further,

with J countries and K industries, JK× JK× (JK+ J) endogenous variables need to be solved for.

A straightforward alternative is to, instead, truncate the objective function and implement an approx-

imate bounds approach. De�ne the N-th order bounds as the solutions to the optimization problem

min /max

N∑
N=1

VAN
(
t ′′
∣∣t ′, i) , (36)

subject to the same constraints in (35). �ough a solution to (36) does not deliver the bounds on (35) when

N <∞, the bounds are close whenN is big. �is occurs because value created in very upstream stages of

production represents a small share of �nal good output and so the terms corresponding to higher-order

polynomials beyond N are relatively unimportant when N is large enough.
31

In the limit N → ∞, the

approximate bounds converge to the true bounds.

�e approximate bounds approach is more easily implemented numerically since the �rst-order bounds,

when N = 1, are characterized by a linear program while the second-order bounds, when N = 2, are de-

�ned by a quadratic program. Both can be feasibly solved in high dimensions. �e problem can be further

simpli�ed by focusing on the heterogeneity in input shares while keeping constant value-added shares.

�at is, when imposing that βX (s ′, s) = βF (s
′
, j) = GDP (s ′) /GO (s ′), the second-order bounds are

solved by a linear program while the third-order bounds, withN = 3, are solved by a quadratic program.
32

In practice, I will show that even the second-order bounds are quite informative about the true bounds.

4.3 Value-Added Trade in the World Input-Output Database

4.3.1 U.S. Value-Added Returned Home�rough Imported Mexican Final Goods

One of the most important features of trade in the NAFTA region is that supply chains have become

deeply integrated. �is integration is o�en proxied with measures such as the amount of U.S. value-added

that returns home through �nal good imports from its NAFTA partners and, in particular, these statistics

received widespread a�ention during the recent NAFTA renegotiation (see footnote 7). �ese measures

ma�er because, �rst, they say something about how each NAFTA country is exploiting its comparative

advantage by specializing on speci�c segments of the supply chain instead of on specializing on di�erent

goods and, second, because it informs how changes in trade barriers ripple across country borders.
33

But how much U.S. value actually returns home through, say, Mexican imports? Figure 7 shows that

current estimates might be o� by a wide margin. Speci�cally, �gure 7 provides estimates for the U.S. con-

31
Formally, the gross value traded at upstream stage N decays at least at rate (1 − min {βX (s

′
, s)})

N−2 (1 − min {βF (s
′
, j)}).

32
In this case the linear inequality constraints in (35) are replaced by

∑
s′′∈S aX (s

′′ |s ′, s ) =
∑
s′′∈S aF (s

′′ |s ′, j ) = 1−β (s ′).
33

Policymakers typically interpret a high share of U.S. content in, say, Mexican imports as higher supply chain integration

and so higher costs of disruption. �e exact quantitative e�ects, of course, depend on elasticities of substitution and the costs of

relocating supply chains across countries. However, Blanchard et al. (2017) showed this basic intuition holds formally. Speci�cally,

they show that countries like the U.S. should set lower tari�s on imports containing a high share of their own domestic content.
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Figure 7: Share of U.S. Value-Added in U.S. Imported Mexican Final Goods: Roundabout point

estimates are based on the input-output analysis decomposition in (34). Specialized inputs bounds

correspond to second-order bounds on the decomposition in (33) computed with (36) whenN = 2

and with common value-added shares. Numbers at top are gross Mexican �nal good imports in

each manufacturing industry (in billion dollars). Data is from the 2014 WIOD.

tent in imported Mexican manufacturing �nal goods in 2014. �e roundabout point estimates correspond

to the conventional estimates used in both academia and policy in which, for example, about 17% of the

$118 billion of imported Mexican manufactures corresponds to U.S. value-added created at upstream stages

of production. Figure 7 also provides the second-order bounds when using the specialized inputs decom-

position in (33) together with the optimization problem in (36). �is shows that the true share may be as

low as 6% or as high as 47%. Intuitively, the shares vary because, conditional on the level of U.S. imported

Mexican goods, the upper bound corresponds to GVCs in which Mexico uses a lot of U.S. inputs to produce

these goods while the lower bound corresponds to GVCs in which Mexico uses very few U.S. inputs.

Of course, the true bounds are wider and thus the true estimates may not even be contained within

these second-order bounds. However, the la�er are so wide that I hope this is su�cient to convince the

reader that, in practice, the share of U.S. value in imported Mexican goods may be highly mismeasured.

4.3.2 U.S.-China Trade Imbalances

Another widely cited value-added trade measure is the value-added trade balance between the U.S. and

China. In particular, Johnson and Noguera (2012) showed the trade de�cit looks less extreme if it is com-

puted as the di�erence between the U.S. value consumed in China and the Chinese value consumed in the

U.S. instead of the di�erence in gross exports between the two countries. �e reasoning is that the former
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Figure 8: U.S.-China Trade Imbalances: �e series with circles corresponds to the gross trade bal-

ance. �e other three series correspond to the value-added trade balance. Roundabout point esti-

mates (diamonds) are based on the input-output analysis decomposition in (34). Specialized inputs

bounds (triangles) correspond to second-order bounds on the decomposition in (33) computed with

(36) when N = 2 and with common value-added shares. Data is from the 2000-2014 WIOD.

provides a be�er measure of how both economies are relatively linked, and one that does so in terms of the

�nal consumer’s perspective, since gross exports from, say China, in principle may say li�le about China’s

importance to those exports (i.e. how much value-added China contributes).

But is it really true that the U.S.-China trade de�cit is smaller when computed in value-added terms?

Figure 8 plots the U.S.-China trade balance both in gross and value-added terms between 2000-2014. �e

di�erence between the gross trade balance (circles) and the value-added trade balance based on the round-

about solution (diamonds) replicate the �nding in Johnson and Noguera (2012) that the gross de�cit in

2004 overstates the value-added de�cit by about 25%. Furthermore, the evolution of both series across

time looks exactly like the third �gure in Johnson (2014a). However, specialized inputs tell a potentially

di�erent story.
34

�e second-order bounds show these �ndings may actually be more pronounced in that

the value-added balance at the upper bound is a surplus. Alternatively, these �ndings may actually be

reversed in that the value-added de�cit at the lower bound is larger than the gross de�cit. Intuitively, a

34
Since the value-added trade balance is based on the decomposition of value-added trade VA (s ′′ |s ′, j ), the bounds are found

by replacing the objective function in (35) with

∞∑
N=1

∑
t′′∈USA×K

∑
t′∈J×K

VAN (t ′′ |t ′, CHINA ) −

∞∑
N=1

∑
t′′∈CHINA×K

∑
t′∈J×K

VAN (t ′′ |t ′, USA ) .
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value-added surplus means that in reality China is exporting back to the U.S. a lot more U.S. value than is

currently accounted for. Meanwhile, a larger value-added de�cit means that in reality China is exporting

back so li�le U.S. value that this imbalance is much larger than when studied in gross terms.

As before, �gure 8 does not necessarily imply that the value-added de�cit is not smaller than the gross

de�cit. But it does illustrate how facts that are part of conventional wisdom may be pure arti�ce of how the

roundabout solution constructs GVCs. �e key point being that more knowledge about the GVC networks

underlying input-output datasets is required in order to make either statement convincingly. Indeed, the

bounds in �gure 8 deliver a stark message: �e di�erence between the conventional estimates of value-

added and gross trade balances is dwarfed by the the potential mismeasurement in the former.

5 GVCs and Measurement: Bringing in New Sources of Information

�is last section is devoted to a third strand of the GVC literature concerned with measuring GVC �ows.

�e motivation is that both academics and policymakers o�en need an informed best guess of the e�ects of

a policy change or of the value of a speci�c measure of globalization. But, since input-output datasets are

consistent with wide ranges of values, delivering point estimates requires making additional assumptions.

Instead of focusing on the roundabout solution, I propose an alternative approach in which information

beyond that contained in input-output data is exploited in order to obtain be�er informed best guesses.

I proceed in three steps. First, I show how to incorporate the additional information in the objec-

tive function of an optimization problem that delivers GVC point estimates that are both consistent with

input-output data but more accurate than the roundabout GVCs. Second, I implement this approach using

Mexican customs data and revisit the counterfactuals and value-added decompositions of sections 3 and 4.

�ird, I discuss an alternative approach in which the additional information is used to narrow the bounds

on the la�er exercises by imposing additional constraints on the bounds optimization problems.

5.1 Disciplining GVCs with New Sources of Information

I propose a new GVC measurement framework that constructs a speci�c GVC network through an opti-

mization problem that exploits both the input-output data and other sources of information as follows

min h
({
aX
(
s ′′
∣∣s ′, s)}

s ′′∈S,s∈S ,

{
βX
(
s ′, s

)}
s∈S ,

{
aF
(
s ′′
∣∣s ′, j)}

s ′′∈S,j∈J ,

{
βF
(
s ′, j
)}
j∈J

)
,

subject to X
(
s ′′, s ′

)
=
∑
s∈S

aX
(
s ′′
∣∣s ′, s)X (s ′, s)+∑

j∈J
aF
(
s ′′
∣∣s ′, j) F (s ′, j) , ∀s ′′,

∑
s ′′∈S

aX
(
s ′′
∣∣s ′, s)+ βX (s ′, s) = 1, ∀s, (37)∑

s ′′∈S
aF
(
s ′′
∣∣s ′, j)+ βF (s ′, j) = 1, ∀j,

aX
(
s ′′
∣∣s ′, s) ,aF

(
s ′′
∣∣s ′, j) ,βX

(
s ′, s

)
,βF

(
s ′, j
)
> 0, ∀s ′′, s, j.
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�e objective function h (·) depends on the endogenous input and value-added expenditure shares and

(potentially) some exogenous parameters. For example, a simple and tractable objective function is given

by targeting exogenous values for each share and minimizing the weighted sum of squared deviations

h (·) =
∑
s ′′∈S

∑
s∈S
ω0

X

(
s ′′
∣∣s ′, s) [aX (s ′′ ∣∣s ′, s)−a0

X

(
s ′′
∣∣s ′, s)]2+∑

s∈S
ω0

X

(
s ′, s

) [
βX
(
s ′, s

)
−β0

X

(
s ′, s

)]
2

+
∑
s ′′∈S

∑
j∈J
ω0

F

(
s ′′
∣∣s ′, j) [aF (s ′′ ∣∣s ′, j)− a0

F

(
s ′′
∣∣s ′, j)]2+∑

j∈J
ω0

F

(
s ′, j
) [
βF
(
s ′, j
)
− β0

F

(
s ′, j
)]

2

.

In this case, a0

X (s ′′ |s ′, s), a0

F (s
′′ |s ′, j), β0

X (s ′, s), and β0

F (s
′
, j) are targets for the endogenous variables

andω0

X (s ′′ |s ′, s),ω0

F (s
′′ |s ′, j),ω0

X (s ′, s), andω0

F (s
′
, j) correspond to the weights on each target. While

other objective functions can be used, I will focus throughout on this quadratic form since it is the simplest

nonlinear function that can be solved in high dimensions (i.e., it has linear �rst-order conditions).
35

Both the targets and the weights in h (·) are chosen by the researcher and this is where the additional

information is used to discipline the GVC network. �at is, the constraints on (37) restrict the optimization

problem to only search across GVC networks consistent with the input-output data and it is in this sense

that the optimization exhausts the information contained in the la�er. �e additional information is then

used to pin down a speci�c GVC network, among all networks consistent with the input-output data,

through the objective function by ensuring that the constructed GVC network is the one closest to the

researcher’s targets in the sense of minimizing the weighted sum of squared deviations.

�is approach is useful when a researcher has some information about the GVCs underlying input-

output data that is insu�cient for fully measuring the �ows directly. For example, a researcher with

access to the universe of �rm-to-�rm transaction data for a whole country, say Belgium, could build seg-

ments of the GVC �ows crossing through Belgium directly with the microdata − for example, the shares

aF (s
′′ |s ′, j) for s ′ ∈ BEL×K. Since the microdata should be, in principle, consistent with the aggregate

input-output data then this GVC network will perfectly aggregate up to the la�er (i.e. the input-output

data for Belgium is redundant). However, in practice, many �rm-level datasets are informative about GVC

�ows but too limited for measuring the la�er directly. For example, most countries construct customs-level

datasets but these cannot be used to measure GVC �ows directly since they lack the universe of domestic

transactions. To see why, note that the information in �gure 1 corresponds to expenditure shares in terms

of overall foreign input expenditure shares. �at is, the 74% in �gure 1 corresponds to∑
k ′′∈K aF ({USA,k ′′} |{MEX, cars} , USA)∑

j ′′∈J\MEX

∑
k ′′∈K aF ({j

′′
,k ′′} |{MEX, cars} , USA)

= 74%.

�e denominator cannot be measured in customs data because it requires knowing what share of overall

output value is spent on foreign inputs − which requires knowing the expenditure on domestic input

purchases and domestic value-added.
36

�e same is true for the other input and value-added shares.

35
�is approach follows a long tradition of exploiting linearity to solve for high-scale optimization problems in economics

and developed by such giants as Kantorovich (1939), Koopmans and Beckmann (1957), Dorfman et al. (1958), and Dantzig (1963).

36
Note that while �gures 1 and 2 provide foreign expenditure shares from speci�c countries, the data describes import ship-

ments at the country-industry level and so the shares can be constructed at this level (i.e. from a speci�c s ′′ ∈ J×K).
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Hence, customs data cannot be used to measure a speci�c segment of the GVC network directly. In-

stead, the measurement framework (37) provides a workaround by le�ing a researcher take a stand on how

to map the customs data into the input shares through the targets. However, in general, the researcher’s

targets will not aggregate up to the input-output data since they are based on additional information plus

some auxiliary assumptions that are not fully accurate. �us, the optimization problem is useful because

it reallocates �ows in order to deliver a GVC network that aggregates up to the input-output data while

also respecting the researcher’s targets. In sum, while both the roundabout GVCs and the GVCs built

through (37) ultimately depend on some assumptions, the la�er are built by replacing some assumptions

with additional information and thus should be closer to the true GVCs underlying input-output data.

In terms of numerical implementation, careful inspection of (37) reveals the problem is de�ned for a

speci�c country-industry s ′. �at is, (37) delivers input shares from all sources s ′′ in the production of in-

termediates sold to all country-industries s and countries j. �is problem is larger than the multi-industry

counterfactual bounds in (28) since the la�er has more structure because the upper tier Cobb-Douglas pro-

duction function requires only searching for the input shares from suppliers within industry k ′′. However,

it is a smaller problem than the multi-industry value-added bounds in (35) which requires searching over

the full GVC network and thus for input shares across all country-industries s ′ simultaneously. While

the measurement problem (37) is also large and nonlinear, exact solutions can be computed (see appendix

section D.1 for implementation details). Overall, measuring a full GVC network when minimizing the

weighted sum of squared deviations requires choosing a set of weights and targets and solving S optimiza-

tion problems, one for each s ′ ∈ S, of size (S+ 1)× (S+ J) each.
37

5.2 Improving Measurement with Mexican Customs Shipment-Level Data

I now construct GVCs with (37) while disciplining the targets using Mexican customs data. In order to map

this data to the targets I take the stand that Mexico only does processing trade − i.e. that imported inputs

are only used to produce exports and that exports only use imported inputs.
38

While this assumption is re-

strictive and not fully accurate in reality, it provides an useful and, in my view, reasonable starting point for

showing how this measurement framework can be used. More generally, (37) provides a common ground

for beginning a conversation on the best practices for GVC measurement: For example, this application

can be studied with other auxiliary assumptions while keeping the same numerical procedure.

Assuming processing trade implies that the foreign input distribution becomes the overall input ex-

penditure distribution. Speci�cally, index �rms by f and let XfX (s ′′ |s ′, s) be the dollar value of inputs

from s ′′ used by a �rm f producing in Mexican industry s ′ selling to s. Analogously, let XfF (s
′′ |s ′, j) be

the �ow but for inputs used to produce �nal good exports. Both these objects can be constructed using

the customs data as described in section 2.4.1 and can be interpreted in dollar values when assuming that

37
�e problem cannot be made smaller without further structure because the input shares across suppliers and destinations of

s ′ are interlinked through the constraints. �e problem can be generalized, though, by choosing an objective function featuring

complementarities across country-industries s ′ ∈ S and thus solving for the full GVC network in a single optimization problem.

38
Mexico and China are the largest countries where processing trade is widely prevalent. For example, De La Cruz et al. (2011)

show that in 2003 about 96.6% of transportation equipment exports were processing trade and of this 74% is foreign and 26% is

domestic value-added. More generally, that exports use a higher share of imported inputs than domestically-sold goods appears

to be a fairly common feature across countries (see Kee and Tang 2016 for evidence on China and Tintelnot et al. 2017 on Belgium).
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exporting �rms do only processing trade. I de�ne the targets for the Mexican industry-level input shares

s ′ ∈ MEX×K as

a0

X

(
s ′′
∣∣s ′, s) = ∑

fX
f
X (s ′′ |s ′, s)∑

t ′′∈S
∑
fX
f
X (t ′′ |s ′, s)

×
(
1 − β0

X

(
s ′, s

))
,

a0

F

(
s ′′
∣∣s ′, j) = ∑

fX
f
F (s
′′ |s ′, j)∑

t ′′∈S
∑
fX
f
F (t
′′ |s ′, j)

×
(
1 − β0

F

(
s ′, j
))

,

(38)

where, for now, I target the roundabout value-added shares given by input-output data: β0

X (s ′, s) =

β0

F (s
′
, j) = GDP (s ′) /GO (s ′). From the processing trade assumption, the targets in (38) equal zero when

inputs are domestic, i.e. s ′′ ∈ MEX×K, or the destination is domestic, i.e. s ∈ MEX×K or j = MEX.

However, since processing trade does not hold fully in reality, these targets deliver a GVC network that

does not aggregate up to the observed input-output data. �e optimization problem (37) resolves this issue

by reallocating GVC �ows to ensure that they �t both the input-output data while respecting (as much

as possible) the targeted shares. Finally, since computing counterfactuals and measures of globalization

requires the full GVC network, I proceed conservatively and maintain the roundabout shares in all other

countries. �at is, when s ′ ∈ (J\MEX)×K I set
39

aX
(
s ′′
∣∣s ′, s) = aF (s ′′ ∣∣s ′, j) = X (s ′′, s ′)

GO (s ′)
. (39)

Table 1 presents the share of U.S. value in Mexican manufacturing imports and the costs of a NAFTA

trade war according to the roundabout solution (column I), the approximate bounds on specialized inputs

(II and III), and the GVCs obtained when using Mexican customs data (IV and V). �e di�erence between

the la�er two columns is that IV targets common value-added shares across all output, while V targets 50%

more value-added in Mexican domestic sales and 50% less in exports than at the overall industry level −

in line with De La Cruz et al. 2011 who show exports use domestic value-added less intensively.
40

�e main takeaway is that Mexican-American supply chains are more integrated and disrupting them

is more costly than suggested by conventional estimates. For example, in motor vehicles − the largest

imported manufacturing industry − the U.S. imports back around 38% of its own domestic value whereas

the roundabout estimates predict a smaller share of only 17%. For overall manufacturing, the U.S. share is

about 30% and also substantially higher than the roundabout estimate of 17%. �ese di�erences are in line

with the input shares observed in �gure 2: While the customs data show that Mexico uses a high share of

American inputs to produce exports to the U.S., these estimates trace value across all stages of production

and con�rm that a large part of these exports is American value-added. In contrast, the roundabout ap-

proach waters down the U.S. content in exports to the U.S. since it assumes a common share of U.S. content

in exports to all countries. With specialized inputs, however, since the U.S. content in exports to the U.S.

39
To �x ideas, note that solving (37) with the shares in (39) as targets in all countries delivers the roundabout GVCs.

40
Formally, in column V for s ′ ∈ MEX × K if s ∈ MEX×K or j = MEX then β0

X (s
′
, s) = β0

F (s
′
, j) = 1.5 × β (s ′)

and if s ∈ (J\MEX)×K or j ∈ J\MEX then β0

X (s
′
, s) = β0

F (s
′
, j) = 0.5 × β (s ′). In both columns IV and V, the weights

are given by ω0

X (s
′′ |s ′, s ) = a0

X (s
′′ |s ′, s )X (s ′, s), ω0

F (s
′′ |s ′, j ) = a0

F (s
′′ |s ′, j ) F (s ′, j), ω0

X (s
′
, s) = β0

X (s
′
, s)X (s ′, s), and

ω0

F (s
′
, j) = a0

F (s
′
, j) F (s ′, j). �ese weights are designed to put more weight on the targets corresponding to bilateral trade

�ows which are more important and to the most important input suppliers therein.
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Roundabout

Specialized Inputs Specialized Inputs

Common V.A. Low Export V.A.

Approx. Bounds Mex. Customs Mex. Customs

Lower Upper + Proc. Trade + Proc. Trade

U.S. Value-Added in

I II III IV V

Mexican Imports (%)

Total Manufactures 17 6 47 27 30

Basic Metals 9 1 9 5 5

Chemicals 17 3 63 33 37

Coke, Re�ned Oil Prod. 14 4 78 43 25

Computers, Electronics 23 7 44 13 16

Electrical 19 5 43 25 28

Food, Tobacco 9 5 55 37 39

Machinery 14 3 32 20 24

Metal Products 14 5 59 27 32

Motor Vehicles 17 10 52 37 39

Non-Metallic Minerals 8 2 47 24 17

Other Transport 16 3 44 24 30

Pharmaceuticals 9 7 39 15 24

Rubber, Plastics 19 3 58 34 41

Textiles 12 3 31 24 26

Wood, Paper 14 2 49 33 38

Welfare Cost of Unilateral

U.S-Mexico Trade War (%)

Mexico 2.43 2.15 3.02 2.16 1.74

U.S. 0.19 0.14 0.22 0.37 0.46

If Mexico Retaliates (%)

Mexico 3.68 3.25 4.66 3.24 3.31

U.S. 0.26 0.19 0.29 0.50 0.62

Table 1: U.S. Value-Added in Mexican Manufacturing Imports and the Welfare Costs of a NAFTA

Trade War: Column I is computed with the roundabout GVCs while II and III correspond to the

approximate specialized inputs bounds depicted in �gures 7 and 11. Columns IV and V correspond

to GVCs obtained through (37) when disciplining the targets with Mexican customs data and a

processing trade assumption; IV targets common value-added shares and V targets 50% more direct

Mexican value-added in domestic sales and 50% less in exports. Data is from the 2014 WIOD.

increased then the U.S. content in exports to other countries is now lower.

In terms of counterfactuals, table 1 uses section 3’s model to study the welfare cost of a NAFTA trade

war in which the U.S. unilaterally increases trade barriers on Mexican imports by 50% and of a war in which

Mexico retaliates and also increases trade barriers on U.S. imports by 50%. Columns IV and V show that

incorporating the deep integration between the U.S and Mexico doubles the U.S. welfare cost of a NAFTA

trade war relative to the roundabout (ACR) estimates and decreases the cost for Mexico. �ese opposing

e�ects are due to the asymmetric implications of Mexican customs data for each country: By increasing

the share of U.S. inputs in U.S.-bound Mexican exports, U.S. consumers are more exposed to a NAFTA trade
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war while Mexican consumers are less. However, note that I targeted the roundabout input shares within

the U.S. since I do not have U.S. customs data. �is suggests that incorporating the la�er − which would

likely reveal a high share of Mexican inputs in Mexican-bound exports − might increase the welfare cost

for Mexico. Finally, note that the counterfactual estimates in columns IV and V are substantially outside

of the approximate bounds in II and III computed in appendix section C.3. �is provides evidence that

the procedure for computing approximate bounds on counterfactuals following arbitrary changes to trade

barriers discussed in section 3.4.3 produces ranges that are not very informative about the true bounds.
41

Finally, while I have focused on incorporating Mexican customs data, this new GVC measurement

framework is �exible enough to let researchers incorporate whatever additional information is both rel-

evant and available in each context (all code is online here). In particular, table 1’s analysis can readily

be improved by further including other countries’ customs data. Moreover, researcher’s can incorporate

more abstract forms of information as long as one takes a stand on how to map such information into the

optimization targets. For example, since NAFTA supply chains are shaped by rules of origin (Conconi et al.

2018), a researcher without access to customs data could still obtain a GVC network with highly integrated

NAFTA supply chains by mapping the (abstract) rules-of-origin criteria into the optimization targets.

5.3 Disciplining the Bounds with New Sources of Information

�e measurement framework (37) provides an alternative to the roundabout point estimates by construct-

ing GVCs that are disciplined by both input-output data and additional information. However, there is

another way of doing this through a procedure that is closer to the bounds approach of sections 3 and 4.

Additional information can be exploited in order to narrow the bounds by using it to impose additional

constraints on the optimization problems used to construct bounds on counterfactuals and measures of

globalization in (28) and (35). �is approach is conceptually di�erent from the measurement framework

in (37) for three reasons. First, instead of delivering an alternative to the roundabout point estimates

it provides narrower ranges than the bounds based solely on input-output data. Second, this approach

exploits the additional information through the constraints instead of the objective function and this has

important implications on the feasibility of the problem. �ird, this approach delivers bounds that are

speci�c to a given statistic of interest such as a counterfactual or value-added trade decomposition while

the measurement in (37) minimizes a feature of the GVCs themselves and thus provides GVC estimates

that can then be used to construct any statistic of interest.

While constructing narrower bounds is an interesting alternative approach to GVC measurement, I be-

lieve it is less useful in practice for three reasons. First, policy questions o�en require having a precise best

guess to speci�c questions so that constructing ranges of values is unappealing in certain contexts. Second,

this approach is hard to implement numerically in practice since, as in the measurement framework in (37),

the additional information needs to be mapped into additional constraints using some auxiliary assump-

tions and this can lead to the optimization problem having no feasible solutions. In contrast, incorporating

41
�e counterfactual estimates reported in columns IV and V are built with a slightly more general model than that of section

3. Speci�cally, while that model assumes aX (s
′′ |s ′, s ) = aF (s

′′ |s ′, j ) = a (s ′′ |s ′, j ) , columns IV and V allow aX (s
′′ |s ′, s )

and aF (s
′′ |s ′, j ) to be di�erent. �us, the approximate bounds in II and III might also be o� because they correspond to a more

restricted model. Crucially, though, the relevant roundabout estimates for this more general model are still those in column I.
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the additional information through the objective function does not a�ect the problem’s feasibility in any

way. �ird, and most importantly, current computing power is insu�cient for constructing exact bounds

on both counterfactuals following arbitrary changes in trade barriers and measures of globalization even

without the additional information. Hence, this approach cannot be implemented for many interesting

questions and so I believe that the measurement framework in (37) is a more practical way of incorporat-

ing additional information into GVC measurement. Still, for the interested reader, appendix section D.2

illustrates how additional information can be used to narrow the bounds in a stylized example.

6 Conclusion

In sum, this paper’s message is twofold. First, that conventional GVC �ow estimates are potentially mis-

measured and that this trickles down into the answers to both quantitative counterfactuals and the mea-

sures of globalization used to quantify the fragmentation of production across countries. Second, that

by incorporating more information and improving GVC measurement, researchers can then go back and

answer these questions more precisely. While this point is, perhaps, obvious, it has mostly been ignored.

In particular, Mexican customs data con�rms the anecdotal evidence that Mexican-American supply

chains are highly integrated and measuring GVCs while incorporating this information increases the U.S.

content of imported Mexican manufactures and the U.S. welfare cost of a NAFTA trade war. �ese facts

are in line with the intuition on how GVC linkages magnify the e�ects of economic shocks (Yi 2003) and

dampen a country’s incentive to manipulate its terms-of-trade: Import tari�s are more costly when imports

have more domestic content because they ripple back and hurt domestic suppliers (Blanchard et al. 2017).

�e avenue for future research is extraordinarily rich. First, section 5’s measurement framework is

quite versatile and can be used to conduct many new exercises. For example, it can be used with the same

Mexican customs data but when de�ning the targets di�erently, it can incorporate more microdata such as

other countries’ customs data or any other information that a researcher may �nd relevant, and it can be

used with other objective functions. Second, this new measurement framework may be a useful stepping-

stone towards future alternative and more e�ective frameworks that also incorporate new information. In

this sense, this paper is only a �rst step in a research line on the best methods and practices for conducting

GVC measurement. By abandoning the roundabout approach, the possibilities become endless.

Finally, there remains the issue of constructing multi-country input-output datasets themselves accu-

rately. While this paper’s theoretical and numerical procedures are derived with an accurate dataset in

mind, the empirical results are all based on the WIOD. �e la�er is not free of measurement assumptions

and so, in principle, its input-output �ows might be mismeasured. Going forward, new dataset releases are

ge�ing more accurate so that this issue becomes less important and, further, I believe this paper’s insights

might be used in future research to be�er measure both input-output data and GVCs simultaneously.
42

42
For example, in the spirit of Ba�en (1982), Golan et al. (1994), Canning and Wang (2005), and Wang et al. (2010).
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A Data and Additional Results

A.1 Evidence for Specialized Inputs from Domestic Input-Output Tables

Figure 9 summarizes the industry aggregation bias across all U.S. manufacturing as proxied by the coef-

�cient of variation−standard deviation relative to mean−of input shares from each source within each

3-digit code.
43

In the absence of aggregation bias, there is no heterogeneity in input shares at the 6-digit

level and the coe�cient of variation is zero. Alternatively, when the aggregation is done across industries

with substantial heterogeneity the coe�cient of variation is large. Each column in �gure 9 corresponds

to a given 3-digit manufacturing industry, with each circle corresponding to the coe�cient of variation

of input shares from some 6-digit input supplier across the 6-digit subindustries of the 3-digit industry;

the size of each circle is proportional to the importance of each input supplier. Figure 9 reveals one key

takeaway: �ere is substantial variation in input shares within each 3-digit industry. For example, the

�ve biggest circles for computers and electronics are those from the sources in �gure 3. �e largest circle

corresponds to other electronic components (the most important supplier) and, as �gure 3’s right panel

shows, since there is relatively li�le variation in input shares the coe�cient of variation is 0.8. In contrast,

the high variation in computer storage devices visible in �gure 3 yields a coe�cient of variation of 2.7.

Figure 9: Variation in Domestic Industry Input Shares in U.S. Manufacturing Sales Across Domes-

tic Industries: Each circle corresponds to the coe�cient of variation − standard deviation relative

to mean − of the input shares from a speci�c 6-digit input supplier across all 6-digit subindustries

within each 3-digit industry on the x-axis. Circle size is proportional to the share of aggregate input

purchases by the 3-digit industry from each source. In contrast to this chart, assuming the round-

about solution at the 3-digit industry-level implies zero variation across all 6-digit subindustries.

Data is from 2007 U.S. input-output tables from the Bureau of Economic Analysis.

43
Speci�cally, for each 3-digit industry k3dig ∈ K3dig

I compute the coe�cient of variation of the input shares a (t |k ) from a

given source t ∈ K6dig
across all the 6-digit subindustries k bundled in k3dig

. For example, for the 3-digit industry computers and

electronics, �gure 9 plots one circle for the coe�cient of variation ofa (printed circuit assembly |k ) across all 6-digit subindustries

indexed by k, and another circle for a (computer storage devices |k ). Analogously, across all 6-digit suppliers t ∈ K6dig
.
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A.2 WIOD Aggregation

�roughout the paper I aggregate the WIOD’s 56 industries slightly in order to eliminate some very small

industries and reduce the size of the numerical optimization problems. �e following table presents the

aggregation across industries.

Industries

Raw WIOD Aggregated WIOD

# % of GDP # % of GDP

Crop, animal production, hunting, related service activities 1 3.1 1 7.2

Forestry and logging 2 0.2 1 7.2

Fishing and aquaculture 3 0.3 1 7.2

Mining and quarrying 4 3.7 1 7.2

Manufacture of food products, beverages and tobacco 5 4.3 2 4.3

Manufacture of textiles, wearing apparel and leather 6 1.7 3 1.7

Manufacture of wood and of products of wood and cork 7 0.6 4 2.3

Manufacture of paper and paper products 8 0.6 4 2.3

Printing and reproduction of recorded media 9 0.3 4 2.3

Manufacture of coke and re�ned petroleum products 10 2.4 5 2.4

Manufacture of chemicals and chemical products 11 2.6 6 2.6

Manufacture of basic pharmaceutical products 12 0.8 7 0.8

Manufacture of rubber and plastic products 13 1.1 8 1.1

Manufacture of other non-metallic mineral products 14 1.2 9 1.2

Manufacture of basic metals 15 2.8 10 2.8

Manufacture of fabricated metal products 16 1.5 11 1.5

Manufacture of computer, electronic and optical products 17 2.5 12 2.5

Manufacture of electrical equipment 18 1.5 13 1.5

Manufacture of machinery and equipment n.e.c. 19 2.2 14 2.4

Manufacture of motor vehicles, trailers and semi-trailers 20 2.8 15 2.8

Manufacture of other transport equipment 21 0.9 16 0.9

Manufacture of furniture; other manufacturing 22 0.8 4 2.3

Repair and installation of machinery and equipment 23 0.2 14 2.4

Electricity, gas, steam and air conditioning supply 24 3.3 17 3.9

Water collection, treatment and supply 25 0.2 17 3.9

Sewerage; waste collection, treatment and disposal 26 0.3 17 3.9

Construction 27 7.5 18 7.5

Wholesale and retail trade and repair of motor vehicles 28 0.9 19 8.9

Wholesale trade, except of motor vehicles and motorcycles 29 4.9 19 8.9

Retail trade, except of motor vehicles and motorcycles 30 3.1 19 8.9

Land transport and transport via pipelines 31 2.6 20 4.5

Water transport 32 0.4 20 4.5

Air transport 33 0.5 20 4.5

Warehousing and support activities for transportation 34 1.0 20 4.5

Postal and courier activities 35 0.2 21 7.1
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Industries

Raw WIOD Aggregated WIOD

# % of GDP # % of GDP

Accommodation and food service activities 36 2.4 21 7.1

Publishing activities 37 0.4 22 8.1

Motion picture, video, television, sound recording, music 38 0.4 22 8.1

Telecommunications 39 1.5 22 8.1

Computer programming, consultancy, information service 40 1.3 22 8.1

Financial service, except insurance and pension funding 41 2.9 23 4.7

Insurance, reinsurance and pension funding 42 1.3 23 4.7

Activities auxiliary to �nancial services and insurance 43 0.5 23 4.7

Real estate activities 44 5.4 24 5.4

Legal, accounting; head o�ces; management consultancy 45 2.2 22 8.1

Architectural and engineering; technical testing and analysis 46 0.7 22 8.1

Scienti�c research and development 47 0.5 22 8.1

Advertising and market research 48 0.3 22 8.1

Other professional, scienti�c and technical; veterinary 49 0.7 22 8.1

Administrative and support service 50 2.3 21 7.1

Public administration, defense, compulsory social security 51 5.4 25 11.8

Education 52 2.3 25 11.8

Human health and social work activities 53 4.0 25 11.8

Other service activities 54 2.1 21 7.1

Activities of households as employers 55 0.1 21 7.1

Activities of extraterritorial organizations and bodies 56 0.0 21 7.1

Table 2: WIOD Industrial Classi�cation: �e shares refer to percent of world GDP.
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A.3 Autarky Gains from Trade

Country

% of Aggregate Single-Industry Multi-Industry

World Domestic

ACR

Common Dest.-Spec.

ACR

Common

GDP Share Bounds Bounds Bounds

AUS 1.8 87.9 4.5 2.3 4.8 1.9 5.2 7.0 5.9 13.1

AUT 0.5 68.6 12.0 5.5 16.0 3.9 21.5 19.0 11.7 140.1

BEL 0.7 57.6 19.6 8.0 34.6 4.7 82.5 30.3 17.2 227.6

BGR 0.1 67.3 16.4 7.5 22.3 4.8 36.4 26.5 19.7 223.0

BRA 3.0 88.2 3.0 1.8 3.1 0.9 3.2 3.6 2.7 4.9

CAN 2.3 78.3 7.3 3.7 8.4 2.6 9.6 12.8 8.9 68.8

CHE 0.9 77.0 9.3 3.8 11.7 3.8 15.3 13.6 9.2 61.1

CHN 13.7 93.6 3.8 1.0 4.0 1.0 4.6 3.9 2.3 4.3

CYP 0.0 68.5 11.3 7.0 13.8 5.1 15.6 19.9 18.2 51.6

CZE 0.3 64.4 19.3 6.1 31.0 4.8 108.8 31.4 21.1 261.2

DEU 4.9 76.0 8.5 3.2 10.6 3.1 13.3 11.3 7.4 70.5

DNK 0.4 65.1 11.6 5.0 16.4 2.9 22.3 20.2 12.9 175.7

ESP 1.7 80.3 6.6 3.3 7.6 2.2 8.6 10.5 7.3 42.8

EST 0.0 60.3 19.6 8.6 31.6 6.1 66.2 55.9 37.9 287.9

FIN 0.3 74.1 9.3 4.3 11.4 2.5 14.1 12.3 8.0 70.5

FRA 3.5 79.0 6.6 3.5 7.6 2.2 8.4 9.1 6.2 44.7

GBR 3.7 82.1 6.1 3.3 6.8 2.5 7.4 9.5 6.9 33.7

GRC 0.3 75.1 7.5 5.1 8.4 3.2 8.9 10.5 8.4 39.7

HRV 0.1 69.7 10.8 5.6 13.7 3.9 16.8 24.9 20.5 121.6

HUN 0.2 48.6 25.4 10.1 73.9 4.8 817.3 39.9 22.7 474.5

IDN 1.2 81.8 5.1 2.6 5.8 1.2 6.4 6.9 5.0 20.5

IND 2.8 83.9 3.9 2.1 4.2 0.7 4.6 4.7 3.3 20.2

IRL 0.3 39.7 30.2 10.9 ∞ 5.7 ∞ 38.4 23.7 ∞
ITA 2.7 83.4 5.8 2.5 6.6 1.9 7.5 7.2 4.8 28.2

JPN 6.0 85.3 4.3 2.4 4.6 1.2 4.9 6.2 5.2 10.9

KOR 1.8 78.2 9.8 2.5 12.2 2.0 18.4 12.7 8.9 39.6

LTU 0.1 55.8 16.9 8.7 28.8 6.6 39.4 26.3 19.8 176.2

LUX 0.1 41.1 66.7 11.4 ∞ 7.5 ∞ 99.5 65.4 ∞
LVA 0.0 74.6 12.6 5.9 15.5 4.9 20.9 32.3 26.0 140.3

MEX 1.7 71.6 6.8 4.0 8.2 1.8 9.0 11.2 7.6 41.8

MLT 0.0 41.2 46.7 16.7 ∞ 5.2 ∞ 59.9 42.9 ∞
NLD 1.1 63.2 14.7 5.4 23.5 4.6 41.3 28.9 18.0 217.3

NOR 0.6 78.0 6.2 2.4 7.5 2.4 8.6 9.3 6.9 28.3

POL 0.7 74.6 11.0 4.5 13.7 3.7 18.4 17.8 11.1 111.2

PRT 0.3 74.3 9.0 4.9 10.6 3.2 12.3 14.3 9.9 104.0

ROU 0.3 75.4 9.7 4.5 11.8 3.0 14.8 14.0 11.6 51.8

RUS 2.3 90.6 5.0 3.0 5.4 3.0 5.8 6.6 5.8 8.7
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Country

% of Aggregate Single-Industry Multi-Industry

World Domestic

ACR

Common Dest.-Spec.

ACR

Common

GDP Share Bounds Bounds Bounds

SVK 0.1 59.5 20.8 7.7 36.6 5.4 123.7 40.9 28.4 318.5

SVN 0.1 65.1 15.3 6.9 21.9 5.8 33.1 24.4 16.3 185.1

SWE 0.7 74.5 9.2 4.1 11.4 3.5 13.9 12.4 8.0 60.8

TUR 1.0 78.7 7.0 3.2 8.2 2.1 9.5 11.4 7.8 77.1

TWN 0.7 66.5 14.4 4.3 21.9 3.0 44.5 18.4 12.2 129.4

USA 23.1 89.7 2.9 1.9 3.0 1.2 3.1 3.5 2.6 4.0

ROW 14.2 79.5 10.6 5.8 12.1 3.8 14.6 12.5 8.6 24.5

Mean 2.3 72.0 12.8 5.2 14.9 3.4 42.5 20.3 14.0 102.8

Weighted 10.6 83.8 6.3 3.0 7.3 2.1 10.6 8.4 5.8 30.0

Table 3: Welfare Gains from Trade Relative to Autarky: �e aggregate domestic share refers to the

aggregate share of inputs purchased domestically and is a good proxy for trade openness. Com-

mon bounds refers to common value-added shares across destinations in the single-industry case

and common value-added and industry-level expenditure shares across destinations in the multi-

industry case. �e weighted means use world GDP shares as weights. Data is from 2014 WIOD.
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B �e Import Demand System is Not CES

For the sake of clarity, I restrict a�ention to a single industry world (the multi-industry extension is im-

mediate). To begin, de�ne the dollar value of inputs from source j ′′ used by country j ′ to produce exports

for market j as

X
(
j ′′
∣∣j ′, j) = a (j ′′ ∣∣j ′, j) (X (j ′, j)+ F (j ′, j)) ,

and note that X (j ′′, j ′) =
∑
j∈JX (j ′′ |j ′, j) . Take j ′′ 6= j ′ and i ′′ 6= j ′. Start with the identity X (j ′′, j ′) =∑

j∈JX (j ′′ |j ′, j) and di�erentiate with respect to trade costs with a third country to obtain

∂ lnX (j ′′, j ′)

∂ ln τ (i ′′, j ′)
=
∑
j∈J

X (j ′′ |j ′, j)

X (j ′′, j ′)

∂ lnX (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
.

From the de�nition of X (j ′′ |j ′, j) , di�erentiate and obtain

∂ lnX (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
=
∂ lna (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
+
∂ ln (X (j ′, j) + F (j ′, j))

∂ ln τ (i ′′, j ′)
,

=
∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)
+
∂ lna (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
−
∂ lna (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)
.

From the de�nition of input expenditures in (14), di�erentiate and obtain

∂ lna (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
= (1 − σ)

(
1[j ′′=i ′′] − a

(
i ′′
∣∣j ′, j)) .

Substituting these two equations into the ratio of bilateral imports yields

∂ lnX (j ′′, j ′) /X (j ′, j ′)

∂ ln τ (i ′′, j ′)

=
∑
j∈J

(
X (j ′′ |j ′, j)

X (j ′′, j ′)

∂ lnX (j ′′ |j ′, j)

∂ ln τ (i ′′, j ′)
−

X (j ′ |j ′, j)

X (j ′, j ′)

∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)

)
,

=
∑
j∈J

(
X (j ′′ |j ′, j)

X (j ′′, j ′)

(
∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)
+ (1 − σ) 1[j ′′=i ′′]

)
−

X (j ′ |j ′, j)

X (j ′, j ′)

∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)

)
.

Hence, the partial elasticity of imports in j ′ from source j ′′ 6= j ′ relative to domestic purchases with respect

to changes in trade costs with a third country i ′′ 6= j ′ equals

∂ lnX (j ′′, j ′) /X (j ′, j ′)

∂ ln τ (i ′′, j ′)
= (1 − σ) 1[j ′′=i ′′] +

∑
j∈J

(
X (j ′′ |j ′, j)

X (j ′′, j ′)
−

X (j ′ |j ′, j)

X (j ′, j ′)

)
∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)
. (40)

�e �rst term captures the direct e�ect on relative imports present when j ′′ = i ′′; this is the only

e�ect in roundabout models. More generally, however, GVC linkages play a role. �e partial elasticity

∂ lnX (j ′ |j ′, j) /∂ ln τ (i ′′, j ′) captures the change in domestic input purchases due to both a substitution

from domestic inputs towards more imports from i ′′ and a supply chain e�ect derived from the change in

downstream production as proxied by the change in exports to each j. �at is

∂ lnX (j ′ |j ′, j)

∂ ln τ (i ′′, j ′)
= − (1 − σ)a

(
i ′′
∣∣j ′, j)+ ∂ ln (X (j ′, j) + F (j ′, j))

∂ ln τ (i ′′, j ′)
.
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Further, the term in parenthesis in (40) ampli�es/dampens the e�ect on relative imports depending on the

di�erential importance of each export market j for inputs from j ′′ relative to j ′.
In words, if Mexican exports to Germany use mostly Japanese inputs, then a reduction in Mexico-

Germany shipping costs reduces both imports from Japan and domestic input sales following the substi-

tution towards more German inputs. However, imports from Japan fall relatively more since exports to

Germany use Japanese inputs intensively. On net, the supply chain e�ect exerts an opposing force and

increases Japanese imports relatively more than domestic sales following the rise in exports to Germany.

�e supply chain e�ect thus illustrates how changes in third-country trade barriers a�ect imports

asymmetrically depending on the depth of supply chain integration. �e knife-edge roundabout model,

however, is the one case in which the e�ect is symmetric since all exports get built with the same inputs.

In other words, the roundabout model satis�es the ACR condition “the import demand system is CES”

the conditions in (18) ⇒ ∂ lnX (j ′′, j ′) /X (j ′, j ′)

∂ ln τ (i ′′, j ′)
= (1 − σ) 1[j ′′=i ′′].

B.1 Gravity Regressions in Specialized Inputs Models

I illustrate the e�ects of running gravity regressions on data generated by specialized inputs models

through simulations. Assume that there are J = 25 countries and a single industry per country. In

each simulation I sample parameters from random distributions. Speci�cally, I take draws β (j ′, j) ∼

Uniform(0, 1), α (j ′′ |j ′, j) ∼ Lognormal(0, 1), ϕ (j ′ |j) ∼ Lognormal (0, 1). I normalize the la�er two

shares so that

∑
j ′′∈J α (j ′′ |j ′, j) = 1 and

∑
j ′∈Jϕ (j ′ |j) = 1. To obtain symmetric trade costs I take

ρ (j ′, j) ∼ Uniform (0, 1/2) and de�ne τ (j ′, j) = 1 + ρ (j ′, j) ρ (j, j ′) for j ′ 6= j and τ (j, j) = 1. For the

roundabout model I run similar simulations while imposing common input shares α (j ′′ |j ′ ).
�e only missing parameter is the elasticity of substitution that I set to σ = 6 so that the roundabout

trade elasticity is 1 − σ = −5. In each simulation I construct the input-output table and run the following

regression

lnX
(
j ′, j
)
= δ0 + δexp

(
j ′
)
+ δimp (j) + θ ln τ

(
j ′, j
)

,

where δ0 is the intercept, and δexp (j
′) and δimp (j) are exporter and importer �xed e�ects. �e coe�cient

θ equals the trade elasticity in the roundabout model if input shares are driven entirely by trade costs, i.e.

if α (j ′ |j) = 1/J for all pairs. More generally, the coe�cient θ will di�er from the trade elasticity since

these parameters do vary.

Figure 10 presents the range of estimates for θ across 10, 000 simulations of the roundabout and spe-

cialized inputs models. As discussed, θ di�ers from the trade elasticity because of the exogenous input

share parameters but note that on average it exactly equals the trade elasticity. In contrast, in specialized

inputs models structural gravity does not hold and thus the recovered value for the trade elasticity θ does

not match its structural interpretation. �at is, on average, θ 6= 1 − σ. While the average estimate in the

roundabout model hits precisely the structural trade elasticity value of 1−σ = −5, the average estimate in

specialized inputs is lower at −4.47 re�ecting the fact that trade costs with third countries a�ect bilateral

trade �ows through supply chain linkages. �is a�enuation can be understood as introducing classical

measurement error by consequence of model misspeci�cation.
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Figure 10: Gravity Regressions: �e histograms correspond to trade elasticity estimates across

10, 000 simulations of roundabout and specialized inputs models. All simulations use 1 − σ = −5.
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C Bounds on Welfare: Arbitrary Changes in Trade Costs

C.1 Solving for an Equilibrium, Given a GVC Network

Suppose, for now, that we have an observed GVC network described by the input shares a (s ′′ |s ′, j) and

πF (s
′ |j). Remember that the input-output �owsX (s ′, s) and F (s ′, j) are known, that the elasticities σ (k)

are given, and that we seek to solve for the change in all endogenous variables following an arbitrary

change to trade barriers τ̂ (s ′, j). �is can be done in six steps. First, the Cobb-Douglas expenditure shares

can be recovered from the GVC network as follows

β
(
s ′, j
)
= 1 −

∑
s ′′∈J×K

a
(
s ′′
∣∣s ′, j) ,

γ
(
k ′′
∣∣s ′, j) = ∑

s ′′∈J×k ′′
a
(
s ′′
∣∣s ′, j) .

ζ
(
k ′ |j

)
=
∑

s ′∈J×k ′
πF
(
s ′ |j

)
.

Clearly, the Cobb-Douglas shares add up to one

β
(
s ′, j
)
+
∑
k ′′∈K

γ
(
k ′′
∣∣s ′, j) = 1,∑

k ′∈K
ζ
(
k ′ |j

)
= 1.

Second, conditional on a change in wages ŵ (j), the change in unit prices p̂ (s ′, j) is found through the

following �xed point

p̂
(
s ′, j
)
=
∏

s ′′∈j×K

ŵ (j)β(s
′′

,j) ×
∏

s ′′′∈j×K
â
(
s ′′′
∣∣s ′′, j)−γ(k ′′′|s ′′ ,j )

1−σ(k ′′′)

δ(k ′′|s ′,j ) ,

â
(
s ′′
∣∣s ′, j) = (p̂ (s ′′, j ′) τ̂ (s ′′, j ′))1−σ(k ′′)∑

t ′′∈J×k ′′ a (t
′′ |s ′, j)× (p̂ (t ′′, s ′) τ̂ (t ′′, j ′))1−σ(k ′′)

× γ
(
k ′′
∣∣s ′, j) .

�ird, this delivers the change in �nal good shares and �nal good �ows

π̂F
(
s ′ |j

)
=

(p̂ (s ′, j) τ̂ (s ′, j))1−σ(k ′)∑
t ′∈J×k ′ πF (t

′ |j)× (p̂ (t ′, j) τ̂ (t ′, j))1−σ(k ′)
× ζ

(
k ′ |j

)
,

ˆF
(
s ′, j
)
=
π̂F (s

′ |j)πF (s
′ |j)× ŵ (j)GDP (j)

F (s ′, j)
.

Fourth, the change in bilateral intermediate input �ows can be found with the �xed point

ˆX
(
s ′′, s ′

)
=

1

X (s ′′, s ′)

∑
j∈J

â
(
s ′′
∣∣s ′, j)a (s ′′ ∣∣s ′, j)

 ∑
s∈j×K

ˆX
(
s ′, s

)
X
(
s ′, s

)
+ ˆF

(
s ′, j
)
F
(
s ′, j
) .
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Fi�h, the change in unit wages can be updated through

ŵ (j) =
1

GDP (j)

∑
s ′∈j×K

 ∑
s∈J×K

ˆX
(
s ′, s

)
X
(
s ′, s

)
+
∑
j∈J

ˆF
(
s ′, j
)
F
(
s ′, j
)
−
∑

s ′′∈J×K

ˆX
(
s ′′, s ′

)
X
(
s ′′, s ′

),

Sixth, and �nally, repeat steps two to �ve using the new guess for the change in unit wages until a �xed

point is found. �is delivers a new equilibrium in which the endogenous variables for any country can be

found as the product of the benchmark variable times the hat variable. �e change in welfare can be found

by substituting the change in the shares of the GVC network into the welfare formula (24).

C.2 Solving for the Exact GVC Bounds

�e previous subsection showed how to compute the change in welfare following an arbitrary change to

trade barriers for a given benchmark GVC network. Computing the bounds requires, in addition, searching

across all GVC networks consistent with a given input-output dataset and �nding the ones that minimize

or maximize these gains. In other words, the bounds are found by solving

min/max the welfare formula in (24),

subject to X
(
s ′′, s ′

)
=
∑
j∈J

a
(
s ′′
∣∣s ′, j)

 ∑
s∈j×K

X
(
s ′, s

)
+ F

(
s ′, j
) ,∀s ′′, s ′,

∑
s ′′∈J×k ′′

a
(
s ′′
∣∣s ′, j) = γ (k ′′, ∣∣s ′ ) ,∀k ′′, s ′, j

a
(
s ′′
∣∣s ′, j) > 0,∀s ′′, s ′, j,

the �xed point for unit prices and wages holds.

�e optimization problem solves jointly for a GVC network that �ts the input-output data in the bench-

mark equilibrium and the counterfactual equilibrium following the exogenous change to trade barriers.

�e solution is given by the combination of benchmark and counterfactual equilibria that minimize or

maximize the gains from trade for some country j. Solving this problem is very hard numerically because

the objective function is highly nonlinear, the constraints are highly nonlinear, and the problem is very

large because it depends on solving for the full GVC network across all country-industries in the world.

C.3 Solving for Approximate GVC Bounds

While �nding the extremal GVC networks − i.e. the exact bounds − is hard numerically, approximate

bounds can be constructing by noting that computing general counterfactuals for a given GVC network is

straightforward. In other words, computing counterfactuals across a given set of GVC networks produces

a range of values for any exercise that may, in principle, be informative about the true exact bounds. For

example, this can be done with the previously constructed GVC networks underlying the autarky bounds

but when shocking the model with a di�erent set of changes in trade costs. Further, since the mapping to

input-output data depends on the linear restrictions in equation (17), additional GVC networks can easily

be constructed by taking convex combinations of the extremal autarky GVC networks.

�e results in �gure 11 are found in this way. First, I take the GVC networks underlying the autarky

bounds and roundabout point estimates in �gure 6 and then construct a new GVC network by taking

convex combinations of the three benchmark networks within each s ′ ∈ S. �is delivers a full GVC

network characterized by a (s ′′ |s ′, j) and πF (s
′ |j). I then assume that either trade costs from Mexico
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Figure 11: Approximate Bounds of a NAFTA Trade War: �e le� panel plots the U.S. and Mexico

welfare loss following a 50% increase in trade barriers on U.S. imported Mexican goods across

10,000 GVC networks that replicate the 2014 WIOD. Each dot is a GVC network constructed as

a random convex combination, within each country-industry, of the GVCs corresponding to the

autarky lower bound, roundabout solution, and upper bound underlying �gure 6. �e right panel

plots the welfare losses when Mexico retaliates and trade barriers on Mexican imported U.S. goods

also increase by 50%. Note the true bounds on these counterfactuals are wider than these sets.

to the U.S. increase by 50% or that both trade costs from Mexico to the U.S. and from the U.S. to Mexico

increase by 50% and compute the new equilibrium in changes using the above approach. I then compute

the welfare loss for Mexico and the U.S using the welfare formula (24).

Figure 11 shows the results across 10,000 convex combinations of these three benchmark networks.

�e sets depicted in �gure 11 show substantial, but not huge, deviations to the predictions of a roundabout

model.
44

In this particular example, the roundabout model tends to underpredict the costs of NAFTA trade

war for Mexico and overpredict for the U.S. relative to the overall set. �ough, of course, the true GVC

bounds might look quite di�erent and, further, the true GVC network may be quite di�erent from the

average network. Indeed, the point estimates in columns IV and V of table 1 are pre�y far from these

approximate bounds. �is indicates that while this exercise is instructive, the approximate bounds are in

practice quite far away from the true bounds (at least for this speci�c exercise).

44
�e curious reader may wonder why these sets are not convex combinations of the three benchmark estimates. �ere are

two reasons. First, the convex combinations are within industry pairs so, for example, there are some GVC networks in which

the U.S. is close to the lower bound input shares in some industries but close to the upper bound in other industries. Second, the

autarky gains are monotonic in the domestic input shares and so there is a one-on-one relation between convex combinations

(at the country level) and the gains from trade. �is is not true in general, though, since the counterfactual equilibrium depends

nonlinearly (and possibly non-monotonically) on the observed equilibrium through the �xed point in unit prices and wages.
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D GVCs and Measurement

D.1 Disciplining GVCs with New Sources of Information: Numerical Implementation

I write the optimization problem in (37), when minimizing the weighted sum of squared deviations, in

terms of linear algebra. I proceed in �ve steps. First, since the optimization is done separately within each

country-industry s ′ ∈ S, �x s ′. Second, use the input-output data to de�ne the vectors X1 = [X (s ′, s)],
X2 = [X (s ′′, s ′)], and F1 = [F (s ′, j)] of size 1 × JK, JK × 1, and 1 × J. �ird, de�ne the endogenous

variables as vectors

aX =



aX (1 |s ′, 1)
.
.
.

aX (1 |s ′, S)

aX (2 |s ′, 1)
.
.
.

aX (S |s ′, S)


, βX =

 βX (s ′, 1)
.
.
.

βX (s ′, S)

 , aF =



aF (1 |s
′
, 1)

.

.

.

aF (1 |s
′
, J)

aF (2 |s
′
, 1)

.

.

.

aF (S |s
′
, J)


, βF =

 βF (s
′
, 1)

.

.

.

βF (s
′
, J)

 ,

of sizes JKJK × 1, JK × 1, JKJ × 1, and J×1. Fourth, stack the targets and weights into analogous

vectors and call them a0

X, β0

X, a0

F, β0

F,ω0

aX
,ω0

βX
,ω0

aF
, andω0

βF
. �e optimization problem in (37) can

be wri�en as a quadratic program as follows

min


aX − a0

X

βX − β0

X

aF − a
0

F

βF − β
0

F


T

diag


ω0

aX
ω0

βX

ω0

aF
ω0

βF



aX − a0

X

βX − β0

X

aF − a
0

F

βF − β
0

F

 ,

subject to

 IJK×JK ⊗ X1 0JK×JK IJK×JK ⊗ F1 0JK×J
11×JK ⊗ IJK×JK IJK×JK 0JK×JKJ 0JK×J

0J×JKJK 0J×JK 11×JK ⊗ IJ×J IJ×J



aX
βX
aF
βF

 =

 X2

1JK×1

1J×1

 ,


aX
βX
aF
βF

 > 0,

where diag{·} is a diagonal matrix, ⊗ is the Kronecker product, I is the identity matrix, and 0 and 1 are

matrices of zeros and ones. O�en, numerical quadratic programming solvers de�ne the objective function

as
1

2
xTQx+cTx, in which case the above objective function can be rewri�en in these terms as

x =


aX
βX
aF
βF

 , Q = diag


ω0

aX
ω0

βX

ω0

aF
ω0

βF

 , c = −diag


ω0

aX
ω0

βX

ω0

aF
ω0

βF



a0

X

β0

X

a0

F

β0

F

 .

D.2 Disciplining the Bounds with New Sources of Information

Given the practical and numerical challenges described in section 5, I implement this exercise only illus-

tratively and hope that future research might use these tools to conduct more serious analysis. First, I

restrict a�ention to narrowing the single-industry autarky gains from trade bounds when incorporating
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new sources of information. Analogous procedures can be implemented for the bounds with multi-industry

data, the bounds on general counterfactuals, and the bounds on measures of globalization. Second, since

the main text already shows how to use Mexican customs data to construct alternative point estimates,

here I take other forms of new sources of information from the literature in order to narrow the bounds.

Analogous procedures can be implemented for narrowing the bounds with the Mexican customs data.

Take China, Germany, and the United States − the largest economies of the American, Asian, and

European continents. Figure 12 shows how �gure 5’s ranges become smaller when imposing additional

restrictions into the optimization problem in (27). For example, suppose that a�er careful analysis of

�rm-level data, it becomes clear that exports to a given market use a high share of imports from that

same market. Column B shows that the upper bounds tend to fall, relative to the benchmark in A, when

imposing a home-bias share of at least 20% of inputs from each j ′′ as a share of total inputs in the exports to

j ′′ itself since now fewer intermediate input imports can be put into goods sold on the domestic market.
45

Alternatively, suppose �rms o�shore production to countries that produce particularly suitable inputs.

Column C shows that imposing a share of at least 50% of domestic inputs in all exports increases the lower

bound since now a certain amount of domestic inputs must be exported.

Measuring value-added shares more accurately also delivers sharper bounds. For example, De La Cruz

et al. (2011) and Koopman et al. (2012) show that when processing trade is pervasive, exports o�en contain

li�le domestic value-added. Column E presents the ranges when imposing twice as much domestic value-

added in domestically sold goods than in exported goods, while column F further restricts the range by

imposing a high share of inputs from the same market to which goods are exported to. �e upper bound

falls dramatically because both restrictions require that each dollar of exports contain a high share of

imported inputs. Alternatively, Kee and Tang (2016) documented an upward trend in the share of domestic

value in Chinese exports over the last decade as China began exploiting its comparative advantage in

high domestic content industries. Column H shows that the lower bounds increase when imposing a high

domestic value-added share and also a high domestic input share in exports since disrupting trade becomes

more costly once domestic consumption becomes more tightly linked with international trade.

While incorporating new sources of information to obtain alternative point estimates as discussed in

section 5 or to narrow the bounds as described here is complementary, I view the former approach as

more practical. �e reason is that the optimization problem (37) includes the new information through the

objective function and is thus always well de�ned. Narrowing the bounds, however, can be problematic

because it includes the new information through additional constraints. �e la�er can sometimes lead

to there not existing any solutions to the optimization problem (or in other words, the bounds are not

even consistent with a single point estimate). Further, since current computing power is too limited for

computing exact bounds on counterfactuals following arbitrary changes to trade barriers and on measures

of globalization this implies that narrowing the bounds cannot be done either.

45
�is could be driven by multinational �rms o�shoring a production stage within otherwise domestic supply chains (Hanson

et al. 2005), or by compatibility in quality (Bastos et al. 2018), or rules-of-origin (Conconi et al. 2018).

57



China Germany United States

Figure 12: Narrowing the Bounds on the Welfare Gains from Trade Relative to Autarky: �e bench-

mark bounds in A and D correspond to the ranges in �gure 5. �e bounds in B and C impose com-

mon value-added shares and include additional restrictions. �e bounds in E, F, G, and H incorpo-

rate destination-speci�c value-added shares and include additional restrictions. In every exercise, I

omit the restrictions on the domestic shares a (j ′ |j ′, j ′ ) in order to not restrict the ranges directly.

Further, in order to get feasible solutions, I only apply the restrictions to the top trading partners.

XXX
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