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Abstract 

This study presents the first large-scale empirical examination of the role of pollution monitoring 
and information disclosure on consumer behavior. In 2013, China launched a nation-wide, real-time air 
quality monitoring and disclosure program, the first-of-its-kind in history. Exploiting this natural 
experiment and its staggered introduction across cities and using rich data sets on information roll-out, 
pollution, economic activities, and health outcomes, we show that information is a key determinant of 
avoidance behavior. Consumer activities (online searches, day-to-day shopping, and housing demand) are 
much more responsive to pollution when such information becomes widely available. In addition, free 
public access to pollution information reduces the mortality rate from pollution exposure by nearly 9%. It 
generates a health benefit that is equivalent to 10 ug/m3 reduction in PM10, with an associated social 
Willingness-to-Pay in the order of RMB 120 billion annually. Among the twenty most polluted countries, 
only four (including China) have installed comprehensive pollution monitoring system. Our findings 
therefore highlight the potentially large welfare gains in improving information access in developing 
countries and provide a benchmark for policy discussions on building information infrastructure in these 
countries.   
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1. Introduction 

 Economists have long emphasized the importance of information in decision making. In almost 

any decision environment, perfect information is necessary to ensure individually optimal choices and 

general market efficiency (e.g., Stigler, 1961). In some real-world settings, however, choices depend on 

information that is costly to obtain, difficulty to keep track of, or hardly noticeable. Examples range from 

food nutritional contents (Bollinger, Leslie, and Sorensen, 2011), occupational safety (Viscusi and Aldy, 

2003), taxation (Chetty, Looney, and Kroft, 2009), to the returns to education (Jensen, 2010). In this paper, 

we focus on the context of air pollution, where most pollutants are odorless, invisible, and vary 

substantially from day to day even within a small geographic area. Obtaining accurate information on 

pollution can be particularly challenging in developing countries, where pollution information is not 

collected or deliberately withheld and public access is often hindered by a lack of infrastructure to 

disseminate information. Consequently, questions like whether citizens can in fact engage in effective 

pollution avoidance, what kinds of information provision policies are effective, and what is the value of 

information remain largely unanswered.  

 China provides a unique setting for studying the role of pollution information. The daily average 

concentration of fine particulate matter (PM2.5) is over 60 ug/m3, or about six times of the World Health 

Organization guideline. Despite the hazardous level of exposure, citizens used to have very limited access 

to information on pollution. Comprehensive monitoring network is absent. Dissemination of pollution-

related information is politically controlled and, in many cases, forbidden. In 2013, in response to the 

social outcry on the lack of transparency, China launched a nation-wide, real-time air quality monitoring 

and disclosure program.  The social impact of this program is profound.  For example, the term “smog” 

(“wu mai” in Chinese) has become for the first time a buzzword in social media in China in 2013 and has 

remained a popular search phrase since then. 

The emergence of the monitoring and disclosure program provides a unique opportunity to study 

changes in behavior upon a sharp and permanent increase in the availability of pollution information.  We 

use this natural experiment of improved information provision and exploit its staggered introduction 

across cities to study how short- and long-term avoidance behavior, as well as the health consequence of 

pollution exposure, changes with better information. In particular, our study focuses on how the same 

amount of air pollution affects outcomes differently before versus after individuals have pollution 

information. To overcome the challenge that reliable pollution monitoring data are only available after 
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disclosure, we draw air pollution measure from satellite data. Thus, our estimation framework allows us 

to isolate changes in the outcome-pollution relationships due to improved pollution information. 

 We compile a rich database on information, pollution, economic activities, and health outcomes 

in China that spans both before and after the disclosure program took place. We begin by presenting 

evidence that the disclosure program substantially changes the public access to pollution information and 

raises public awareness about pollution issues. On the access side, we show that the frequency of 

newspaper articles on air pollution related topics rises significantly from once-per-week to essentially 

daily. In addition, there is a rapid increase in the availability of mobile phone applications (“apps”) that 

stream air pollution monitoring data to users. On the awareness side, we document a sharp increase in 

air pollution related searches (such as “smog”, “masks”, or “air purifiers”) after pollution disclosure is 

implemented in a city.    

 We then examine how both short- and long-run avoidance behavior responds to pollution 

disclosure. In our short-run analysis, we process the universe of credit and debit card transactions in China 

from 2011 to 2015 to build a measure of outdoor purchase trips. Linking purchase activities to ambient 

air pollution, we show that the disclosure program boosts pollution avoidance by triggering a negative 

purchase-pollution elasticity of about 2%. As expected, avoidance concentrates in plausibly “deferrable” 

consumption categories, such as supermarket shopping, dining out, and entertainment, rather than in 

“scheduled” trips such as bill-pays, business-to-business wholesales, and cancer treatment sessions.  

 Our long-run avoidance analysis turns to the housing market. We start with a commonly-used, 

publicly available real estate price index for 100 major cities and relate the index to cross-city variation in 

air quality. Exploiting the staggered roll-out of the disclosure program, we find an increase in air pollution’s 

explanatory power over the real estate price index after the program is in place. Motivated by such 

aggregate-level evidence, we then leverage geo-location information from the universe of new home 

sales in Beijing during 2006-2014 to conduct transaction-level analyses. We examine changes in the 

relationship between housing values and pollution levels induced by the program using two different 

research designs. 

 First, we employ pixel-averaging technique (“oversampling”) to enhance the original satellite 

data’s spatial resolution from 10-by-10 km to 1-by-1 km by sacrificing temporal resolution from daily to 

annual (e.g., Fioletov et al., 2011; Streets et al., 2013). The high-resolution pollution measure allows us to 

conduct cross-sectional comparison of home values within fine geographic regions, such as zip codes. We 
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estimate a home value-pollution elasticity of -0.6 to -0.8 post disclosure. In contrast, for periods before 

the disclosure program, the elasticity is small and statistically insignificant (-0.10 to 0.09).  

 Second, we link China’s emission inventory database with business registries to identify locations 

of a fixed group of major polluters in Beijing: the 10% of facilities that account for 90% of total industrial 

air emissions. This allows us to estimate separate “distance gradient” curves (e.g., Currie et al., 2015) that 

express the home value as a function of proximity to the nearest major polluter before and after pollution 

disclosure. While there is no correlation between housing prices and proximity to polluters prior to the 

monitoring and disclosure program, housing values are 27% lower within 3 km of a major polluter 

afterwards, which corresponds to 42% of the interquartile range of the housing price dispersion.2 Thus, 

the disclosure program facilitates residential sorting and the capitalization of air quality in the housing 

market, with a potential to improve social welfare.  

 Our last set of empirical analyses examine changes in the mortality-pollution relationship as 

information access improves. Using nationally representative mortality data from the Chinese Center for 

Disease Control and Prevention (CDC), we find a 5 to 7 percentage points reduction in the mortality-

pollution elasticity (especially for cardio-respiratory causes) post monitoring. Assuming a linear dose-

response function and combining our findings with existing estimate on the causal effect of pollution on 

mortality in China (e.g., Ebenstein et al., 2017), access to pollution information has reduced premature 

deaths attributable to air pollution exposure by nearly 9%. 

We make four main contributions to the literature. First, our study presents the first large-scale 

empirical examination of the role of pollution monitoring and information disclosure on avoidance 

behavior. A recurrent theme in our finding is that information is a key determinant of avoidance. There is 

little evidence that consumer activities (online searches, day-to-day shopping, and housing demand) 

respond to pollution until such information became widely available. Existing literature on pollution 

avoidance and revealed-preference estimation of the value of clean air (Chay and Greenstone, 2005; 

Cutter and Neidell, 2009; Graff Zivin and Neidell, 2009, 2013; Currie et al., 2015; Muehlenbachs, Spiller, 

and Timmins, 2015; Ito and Zhang, 2016; Deschênes, Greenstone, and Shapiro, 2017; Sun, Kahn, and 

Zhang, 2017; Barwick et al., 2018) implicitly assumes that agents have perfect information on their actual 

pollution exposure and the relationship between exposure and health. Examination of the departure from 

the perfect information assumption is largely theoretical (Leggett, 2002; Kunminoff, Smith, and Timmins, 

                                                           
2 The average housing price in Beijing grew by 262% during our sample period. 
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2013), and we provide the first real-world analysis of a transition from restrained access to free public 

access to information on pollution exposure. Our findings could provide an explanation for why 

environmental quality appears to be severely undervalued in developing countries (Greenstone and Jack, 

2015), where a comprehensive and well-functioning information infrastructure is often lacking. 

Second, our study presents the first quantification exercise of the value of pollution information 

that arises from a reduction in mortality rates through more effective avoidance. Free public access to 

pollution information reduces the mortality rate from pollution exposure by nearly 9%. It generates a 

health benefit that is equivalent to 10 ug/m3 reduction in PM10, with an associated social Willingness-to-

Pay in the order of RMB 120 billion annually using recent WTP estimates in the literature (Ito and Zhang, 

2018). Our findings highlight the potentially colossal welfare gains in improving information access in 

developing countries, many of which are experiencing the worst mortality damage from pollution 

exposure in the world. Among the 20 countries with the highest PM2.5 level (annual median > 46 ug/m3), 

only four (Nepal, Saudi Arabia, India, and China) have installed comprehensive pollution monitoring 

system. 3  China's success provides a benchmark for policy discussions on building information 

infrastructure in these countries.   

Third, our study to our knowledge is the first to demonstrate the success of a national pollution 

disclosure program in a developing country setting. We show that, first, there are strong demands on the 

release of pollution monitoring data and pollution-related topics, both from the media and from the 

general public. Second, pollution disclosure ultimately alters ways in which individuals cope with pollution 

exposure both in the short and in the long run. One of the most prominent examples in a developed 

country is the launch of the U.S. Toxic Release Inventory (TRI) that publicizes toxic emissions from major 

emitters (e.g., Hamilton, 1995; Bui and Mayer, 2003; Oberholzer-Gee and Mitsunari, 2006; Konar and 

Cohen, 2006; Banzhaf and Walsh, 2008; Sanders, 2012; Mastromonaco, 2015). Most related to our work, 

Sanders (2012) and Mastromonaco (2015) show that strengthening in TRI’s reporting rule has a negative 

and significant impact on value of homes near toxic pollution emitters. 

 More broadly, our work contributes to the information economics of consumer choice by focusing 

on information of environmental quality. Growing evidence suggests that consumers often misperceive 

                                                           
3 According to WHO’s PM2.5 statistics 2016, the top 20 most polluted countries (starting with highest annual median 
PM2.5 concentration) include Nepal (94 ug/m3), Qatar, Egypt, Saudi Arabia, Niger, Bahrain, Cameroon, India, 
Bangladesh, Iraq, Kuwait, Pakistan, Afghanistan, Chad, Central African Republic, China, Nigeria, Uganda, Sudan,  and 
Equatorial Guinea (46 ug/m3). 
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product attributes, such as food nutritional contents (Bollinger, Leslie, and Sorensen, 2011), insurance 

policy costs (Kling et al., 2012), vehicle fuel economy (Allcott, 2013), and retirement savings (Bernheim et 

al., 2015). Information programs are sometimes observed to help consumers’ perception of product 

attributes (e.g., Smith and Johnson, 1988), improve consumer choices (e.g., Hastings and Weinstein, 2008), 

and even drive up average product quality (e.g., Jin and Leslie, 2003; Bai, 2018). We extend this literature 

to citizens’ air pollution exposure. By providing the first evidence on the effect of a national-scale air 

quality disclosure program, our study shows that the absence of reliable information on air quality can 

lead to suboptimal choices in terms of avoidance behavior and residential locations and can have 

important health and welfare consequences.  

 The rest of this paper is organized as follows. Section 2 reviews institutional details on pollution 

disclosure and awareness in China. Section 3 describes data sources. Sections 4 to 7 report the effect of 

disclosure on information access, pollution awareness, short-term avoidance behavior, and long-term 

avoidance behavior, respectively. Section 8 examines mortality effects. Section 9 concludes.   

 

2. Institutional Background 

2.1. Pre-Disclosure Pollution Awareness in China 

 This section briefly introduces air pollution awareness in China before the implementation of the 

disclosure program. We first discuss general awareness to air pollution problems and awareness of 

pollution exposure such as short run fluctuations in local air pollution levels. 

 Awareness of air pollution problems existed even among the ancient Chinese. The Chinese word 

for “smog” is composed of two characters: the first represents "fog", and the second means "muddy air". 

Usage of this second character and the meaning date back at least to the Han dynasty (206 BC - 220 AD). 

Air pollution continues to be a relatively frequent topic in the modern era. For example, People’s Daily, 

the official newspaper of the Chinese government, contained articles related to "air pollution" or 

"atmospheric pollution" in about 15% of the daily issues since 1980 (9.2% in the 1980s, 12.7% in the 1990s, 

22.3% in the 2000s). Awareness of pollution problems can also be inferred from individuals’ reported 

willingness to trade off income for better environmental quality. Among the 1,000 Chinese respondents 

who took the World Value Survey in 1990, more than 75% reported to be willing to "give part of their 

income" if they were certain that the money would be used to prevent environmental pollution, and more 
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than 80% would agree to “an increase in taxes if the extra money were used to prevent environmental 

pollution”. 

 We believe that public access to pollution exposure, i.e. daily fluctuations, is almost absent prior 

to the reform. The official source of pollution information was MEP’s website, which began to publish a 

daily air pollution index (API) in June 2000 for 86 major cities. Public access to the information had at least 

two obstacles. First, API was not well incorporated into the mass media publications or broadcasts prior 

to the disclosure reform. No documentation that we are aware of exists as to whether any TV or radio 

programs has broadcast API on a regular basis. Second, the reported API prior to the reform only partially 

reflected true air quality because it did not incorporate PM2.5, which turns out to be the major air pollutant 

in many Chinese cities. Recent academic investigation has also found evidence of manipulation of the API 

data (Chen, Jin, Kumar and Shi, 2012; Ghanem and Zhang, 2014). Anecdotal evidence of the lack of 

awareness in air pollution exposure until perhaps very shortly prior to the reform came from a public 

outcry in early 2012 that the government API corresponded poorly with the Air Quality Index (AQI) 

published by the U.S. Embassy and consulates in several major cities.4 Interestingly, the U.S. Embassy has 

been reporting AQI since as early as 2008. The absence of large-scale, public complaints about information 

inconsistency until this very recent event likely reflects the long-standing lack of general awareness to 

pollution exposure. In fact, the debate was triggered to a large extent by the rising use of social media 

which spread the U.S. Embassy’s data. 

 

2.2. The Pollution Disclosure Program 

 Regulation of air pollution in China started in 1982 with the establishment of the Atmospheric 

Environmental Quality Standards (AEQS) which set limits for six air pollutants including Total Suspended 

Particulate (TSP), coarse particulate matter (PM10), sulfur dioxide (SO2), nitrogen oxides (NOx) and ozone 

(O3). The AEQS was renamed the Ambient Air Quality Standards (AAQS) in 1996, and it initiated monitoring 

of four additional pollutants including nitrogen dioxide (NO2), lead (Pb), fluoride and Benzo[a]pyrene. 

 The natural experiment of this study is the 2013 revision of the AAQS, which we refer to as the 

disclosure program. The program is promulgated under the backdrop of China’s 12th and 13th five-year 

plans that set pollution reduction as one of the bureaucratic hard targets (e.g., Wang, 2018). The 

                                                           
4 Part of this is confusion. Both API and AQI are piecewise linear functions of pollutant concentration, but the 
functional forms are different.  
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disclosure program was described by the Ministry of Environmental Protection of China (MEP) as an effort 

to improve environmental quality, and to protect human health, with the focus of building a scientific 

system of air quality monitoring. The program contained two major provisions. First, it initiated 

continuous monitoring of major air pollutants, including PM2.5, PM10, O3, CO, NO2, and SO2. This led to the 

installation of a comprehensive network of monitors which were built in three waves. In the first wave, 

monitoring networks were built and active monitoring started by December 31, 2012 in 74 cities that 

represented the country’s key population and economic centers such as the provincial capital cities. By 

October 31, 2013, the second wave was completed, adding an additional 116 cities. In the final wave, 

achieved by November 20, 2014, the program reached the remaining 177 cities. Roll-out of the program 

is plotted in Figure 1. By the end of the third wave, the program had built more than 1,400 monitoring 

stations in 337 cities covering an estimated 98% of the country’s population. Second, it established a 

pollution data dissemination system to report a real-time Air Quality Index (AQI) that incorporates 

multiple pollutants’ concentrations and translates them from units of measurement (such as ug/m3 for 

PM2.5) to a single scale of 0-500. Monitoring results are displayed in real-time on MEP’s website. Both 

hourly and daily AQIs are available at individual station and city levels, with an interactive map showing 

locations of monitoring stations. We provide a screenshot of the website interface in the Appendix. 

Importantly, the government allows private parties to access and stream data directly from the web. This 

functionality spurs a surge in private websites and mobile phone applications that report real-time air 

quality information. We provide more details in Section 4. 

 

2.3. The Internet Environment 

 Rising Internet and mobile phone usage among the Chinese provides a unique opportunity to 

investigate pollution awareness. Data from the China Internet Network Information Center (CINIC) show 

that, by the end of 2012, China had about 0.56 billion (or about 40% of population) Internet users, more 

than 80% of whom were active search engine users. A dozen search engines are freely available to the 

public. Among the various search engines, Baidu is the most popular. CINIC’s 2013 survey of more than 

2,800 phone respondents shows more than 99% of Internet users have heard of the Baidu search engine 

(seconded by Google, 87%), and 98% have used it in the past six months (seconded by 360, 43%). National 

Bureau of Statistics data show that mobile phone (traditional phone and smartphone) prevalence rose 

from 73.5 per 100 population in 2011 to 95.6 per 100 population in 2016. Nielsen’s data show a 

smartphone penetration rate of 72% in 2013.      
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3. Data 

3.1. Mass Media Data 

 We draw on two sources of media data to illustrate the evolution of pollution information access. 

First, we look at publication trends by People’s Daily, the government’s official newspaper. From People’s 

Daily’s digital archive, we apply a keyword search to pull articles whose title or content contain “air 

pollution”, “atmospheric pollution”, or “smog”. This data allows us to construct trends in the prevalence 

of pollution-related topics over time.  

 Second, we measure availability of mobile phone applications (“apps”) that contain air pollution 

information. We apply keyword search (including “air pollution”, “atmospheric pollution”, or “smog”) 

using Apple’s App Store API to obtain apps’ initial release information. The API returns the 200 most 

relevant apps for the input keyword. As will be explained in Section 4, for comparison purpose, we also 

obtain release information for other major categories such as gaming, reading, and shopping.  

 

3.2. Web Search Data 

 We use search index data from Baidu, the most widely used search engine in China. The index 

data began 2011 and summarizes search for a given search query in a city on a given day among both 

desktop and mobile users. Our measurement of awareness is search index for the word “smog”, which is 

the buzzword for air pollution. The index captures all search queries for “smog” as well as terms that 

contain the word “smog”. While the exact mapping between the index and the underlying raw search 

traffic is unknown, it is likely based on a similar algorithm for Google Trends which reflects search intensity, 

e.g., total number of searches of the topic relative to all other topics in a city and day.  

 

3.3. Card Transactions Data 

 We measure purchase trips using UnionPay’s administrative records on the universe of debit and 

credit card transactions from 2011-2015. UnionPay is the only inter-bank payment network and the 

largest such network in the world in terms of both the number and value of transactions, ahead of Visa 

and Mastercard. The UnionPay data captures a big swath of the total economy: during our study period, 
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total transaction values in the UnionPay database sums up to RMB 66 trillion, which amounts to about 

59% of national consumption and 22% of total GDP. This is to our knowledge the most comprehensive 

data with fine spatial and temporal resolution on consumption activities for China. The size of the original 

database is about 20  gigabytes per day worth of transactions. To reduce computational burden, we focus 

on all transactions of a 1% random sample of cards.5 For each transaction, we observe the corresponding 

merchant name, transaction amount and time, and we use these information to assign the transaction to 

a unique city by week. Our key outcome variable is purchase rate, defined as the ratio between (1) total 

number of transactions occurred in a city by week, and (2) total number of cards with any transactions in 

the city by year, i.e. “active cards”.6 In our 1% sample, we observe a total of 350 million transactions and 

an average of 163,000 active cards at any given point in time.  

 Two additional features of the data worth mentioning. First, our data contains a small fraction 

(about 4%) of card transactions that are made online. Penetration of online shopping grows during our 

study period and varies substantially across cities. For this study, we drop online transactions and focus 

on transactions made through traditional point-of-sale (POS) venues. Second, we do not observe purchase 

items associated with each transaction. However, UnionPay does have a taxonomy of merchants by broad 

categories, such as department stores, supermarkets, etc. We use merchant category information in some 

of our specifications below.  

 

3.4. Housing Market Data 

 We draw housing market data from two sources. First, we use new real estate price index for 100 

major cities from the China Real Estate Index System (CREIS). These cities account for over 46% of 

population, and we map out the location of these cities in Figure 1. CREIS index is computed as area-

weighted sum of price quotes among all new real estate projects (including both residential and 

commercial projects) in a city and month. The underlying sample includes all new projects with at least 

                                                           
5 We take a 1% random sample of cards on Jan 2011, and we pull the universe of their transactions through Dec 
2015. We then take a 1% random sample of new cards opened on Feb 2011, and pull the universe of their 
transactions through Dec 2015, and so forth.  
6 It is intrinsically difficult to identify when does a card “die” as unused cards may be used in the future. Instead, we 
choose to focus on “active” cards, i.e., those that we see any transactions during the year.  
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10,000 m2 in total floor area.7 CREIS constraints the influence of exceptionally large projects on the index 

by winsorizing each individual project’s weight in a city and month to be at most 3%.  

 We also obtain transaction-level data for nearly all new homes sold in Beijing from January 2006 

to April 2014. The data contains housing transaction date and price, along with other characteristics of 

the transacted unit, including geo-location of the apartment complex, floor and size of the transacted unit. 

We observe a total of over 660,000 transactions in about 1,300 apartment-complexes in our data. The 

vast majority of the complexes are on market for a streak of years before sold out. The market is fluid in 

general. Among all 660,000 transactions, over 84% occur when the associated complex is on market for 

less than a year, and less than 4% are on market for over 5 years. Among all the 1,300 complexes, 64% are 

entirely sold out in 3 years.   

 In the Appendix, we use the Beijing transaction data to replicate CREIS housing index in Beijing. 

We find that the overall trends between CREIS and transaction data agree with each other, but the time 

path of CREIS index appears much smoother. There are several potential explanations. First, CREIS 

includes non-residential projects, and therefore may have a larger underlying sample. Second, CREIS’ 

winsorization rule, explained above, may reduce fluctuations in the index. We recognize that errors in the 

CREIS measurement may attenuate our identification of the housing value – pollution relationship. 

However, we choose to incorporate to include CREIS data in our analysis as (1) it covers a much wider 

geographic extent than our transaction data, and (2) it is publicly available and is the most widely used 

indicator of real estate prosperity in China. Below we refer to the CREIS data as simply the housing index. 

 

3.5. Satellite Data 

 We measure ambient air pollution using aerosol optical depth (AOD) from NASA’s MODIS 

algorithm installed on satellite Terra’s platform. The original data has a geographic resolution of 10 km x 

10 km and a scanning frequency of 30 min, which we used to compute average AOD levels at the city by 

day level from 2006-2015. MODIS records, under cloud-clear condition, the degree to which sunlight is 

scattered or absorbed in the entire atmospheric column corresponding to the overpassed area. As such, 

AOD captures concentration of particle pollution such as sulfates, nitrates, black carbons, and sea salts, 

and therefore can serve as a proxy for outdoor particulate matter pollution (e.g., van Donkelaar, 2006). In 

                                                           
7 For Beijing, Shanghai, Guangdong, Shenzhen the inclusion cutoff is 30,000 m2.  
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the appendix, we document the strong correspondence between AOD and the post-disclosure PM2.5 

monitoring data from China.   

 We favor the MODIS AOD measurement over alternatives (such as satellite-based ground-level 

PM2.5 predictions) for several reasons. First, MODIS data can be easily aggregated from daily to monthly 

and annual levels. This allows us to use the same pollution measure throughout our analysis. In contrast, 

processed satellite-based PM2.5 data products are often provided only at certain temporal interval (e.g., 

annual) and cannot be dis-aggregated in a straightforward manner. Second, MODIS AOD allows us to 

observe overlapping 10 km x 10 km grid cells it scans, which is essential for the oversampling exercise in 

Section 7. Processed data products are often mapped onto a fixed set of grid cells. Finally, while MODIS 

AOD is a common input in most satellite-based data products that predict ground-level PM2.5, the precise 

relationship between AOD and PM2.5 is far from being nailed in either the economics literature or the 

atmospheric science literature. We choose to abstract away from the modeling complexity in this study. 

Of course, an obvious disadvantage is that our elasticity estimates throughout the paper should be 

interpreted in terms of changes in AOD. 

 

3.6. Polluter Data 

 We draw emission sources data from the Chinese Environmental Statistics (CES) database which 

is MEP’s annual survey of all major industrial polluters. CES firms are required to report detailed 

environmental emissions data every year, and the data are ultimately used to produce environmental 

Yearbook statistics. While the exact criteria that MEP uses to define major polluter is unknown, CES 

provides the most comprehensive coverage of polluters’ emission information in China (Liu, Shadbegian, 

and Zhang, 2017; Zhang, Chen, and Guo, 2018). We use the 2007 CES which is the most recent round we 

have access to. We observe a total of 587 polluters in Beijing, and we obtain information on each polluter’s 

name and total industrial emissions (i.e., summation of volumes across all pollutants).   

 Because we only observe a cross-section of polluters in 2007, and our study period spans 2006-

2014, we need to identify polluters that are present for the most of our study period. We do so by linking 

firms’ names to firm registry data from Qixin, or “firm information” (www.qixin.com). Among the 587 

polluters in Beijing, we are able to match 532 on Qixin and obtain their operation status and address in 
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2018.8 Among the matched firms, 407 are still operating in 2018. Our study therefore focuses on these 

407 polluters.  

 

3.7 Mortality Data 

 Our mortality data is sourced from the Chinese Center for Disease Control and Prevention’s (CDC) 

Disease Surveillance Points (DSP) system. During our sample period of 2011-2014, DSP covers 161 

counties with a total of 73 million, or about a 5% representative sample of China’s population. DSPs death 

information is drawn from hospital records and surveys on the deceased person’s household. DSP is one 

of the highest-quality health databases that has been used in recent medical (e.g., Zhou et al., 2016) and 

economic research (e.g., Ebenstein et al., 2017). Our analysis is based on an extract of DSP 2011-2014 

prepared by the CDC for the purpose of this research project. In this extract, an observation is a county x 

week x sex x age-group, and for each observation, we observe the number of people in the county covered 

by the DSP, total death counts, and death counts for the following six cause-of-death groups: chronic 

obstructive pulmonary disease, heart diseases, cerebrovascular diseases, respiratory infections, digestive 

diseases, and traffic accidents. 9  The first four causes are intended to measure deaths related to 

cardiovascular diseases, which have been observed to be closely related to air pollution exposure, while 

the latter two causes are intended to serve as placebo-style outcomes.10  

 

4. Pollution Disclosure and Information Access: News Media 

 We consider two venues through which the general public are most likely to access pollution 

information: newspapers and mobile phone apps. In Figure 2, panel A, we count number of days in each 

month when People’s Daily, the government’s official newspaper, mention “air pollution”, “atmospheric 

pollution”, or “smog” in any articles. Prevalence of pollution topic is low in the 1990s, growing gradually 

overtime to reach a rate of about 5 days of mention per month shortly before 2013. Almost immediately 

following the disclosure program’s initial roll-out, frequency of pollution mention jumped to roughly 20 

                                                           
8 We use Baidu’s Map API to geo-locate firms using Qixin’s address information.  
9 We have also requested deaths due to diarrhea (as a subgroup to digestive diseases), but due to very low number 
of deaths in this cause group, we do not turn out to use it in the analysis below. 
10  The ideal data would of course contain a more comprehensive list of causes, but we are constrained by 
administrative complications of data extraction. 
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days per month. It is obvious, by simply browsing pollution-related articles before and after 2013, that the 

increase in news mention is partly explained by news media’s new ability to talk about pollution “in 

numbers” thanks to the disclosure program, e.g., exceptionally high pollution events, ranking of cities in 

terms of average air quality, etc.  

 We then examine availability of pollution-related mobile phone apps. Unlike newspapers, which 

provide pollution information at a daily frequency, information from apps are more readily accessible in 

real time. Given the high mobile phone penetration in China, pollution apps may serve as a significant 

venue through which the public learn about their pollution exposure at the moment. As described in 

section 3, because for each category we only observe the 200 most relevant apps at a given point in time, 

the release time distribution likely contains a survivorship component: some oldest apps have lost 

popularity, while some newest apps might still take time to rise to the top. In other words, the release 

time distribution using the most relevant apps might contain too little mass in the tails than the 

distribution of all apps. To difference out the survivorship component, we compare release time 

distribution of pollution apps with a “control” group of apps from various categories which we believe 

capture the majority of commonly-used apps. These categories are gaming, music, video, reading, finance, 

sports, education, shopping, and navigation.  

 Figure 2, panel B presents the distribution of release time of apps. The graphical pattern shows a 

clear surge in the density of apps released after disclosure, relative to non-pollution apps. The largest 

jump in release risk occurs in the quarter following the disclosure program’s initial roll-out. In total, about 

82% of pollution apps are released post Jan 2013. This fraction is 62% for non-pollution apps. In the 

Appendix, we provide an example screenshot from one of the pollution apps. These apps typically contain 

a chart that displays the evolution of hourly pollution levels in the past. Some apps also provide general 

health behavior guidelines (e.g., avoid outdoor activities) when pollution is high.  

 

5. Pollution Disclosure and Pollution Awareness: Web Searches 

 In this section, we present evidence that the disclosure program increases the public’s awareness 

of pollution-related issues. One way to measure awareness is by the demand for pollution-related 

information. We do so by looking at internet searches of terms related to the buzzword “smog” using data 

from Baidu, the go-to search engine in China.  
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 We first document the national, overall trend of smog searches. Figure 3, panel A plots raw search 

index time series for the term “smog”. Our data suggests a sharp increase in smog searches starting 

January 2013, i.e. the month of initial roll-out. Post-2013 smog searches also exhibit a strong secular 

pattern where the index is highest in winter seasons. This pattern coincides with the fact that smog is 

more severe in winter partly due to coal-fueled heating.  

 We also leverage the roll-out timing to conduct event study of smog searches shortly before and 

after a city begins to disclose air pollution. For this examination, we use city x daily search index for “smog”, 

which breaks down the national time series by over 300 prefecture cities. Due to substantial differences 

in search activities across cities and the frequent presence of days with zero search indexes for small cities, 

we present the event study on normalized (mean 0, standard deviation 1) scale. Figure 3, panel B plots 

the mean of standardized search indexes in the year before and the year after monitoring roll-out. We 

estimate the event study conditioning only on month-of-year dummies (12 indicators) and year dummies 

(5 indicators), and we normalize search index to 0 in the month prior to the roll-out (i.e., event month “-

1”). The graphical pattern suggests a flat and stable pre-trend in smog searches in the city. Searches began 

to rise rapidly when the disclosure program started. By one year after disclosure, smog searches have 

increased by about 75% of a standard deviation. In the Appendix, we report estimates of the search event 

study using a flexible range of econometric specifications. We have also examined other pollution-related 

search terms such as “mask” and “air purifier”, and the event studies show similar results.  

 

6. Pollution Disclosure and Short-Run Avoidance: Purchase Trips 

 We conceptualize purchase trips as a function of ambient pollution levels, and we examine how 

such relationship changes as pollution disclosure occurs in the city. Our estimation equation is as follows: 

 

 PurchaseRate𝑐𝑡 = ∑ 𝛽𝑘 × ln avg Pollution𝑐𝑡
12
𝑘=−12 × 1(𝑡 = 𝑘)  

      + ∑ 𝛼𝑘 × 1(𝑡 = 𝑘)12
𝑘=−12 + 𝑋𝑐𝑡 ⋅ 𝛾 + 𝜀𝑐𝑡    (1) 

 

 The outcome variable “PurchaseRate𝑐𝑡” is number of card consumptions in city c on week t per 

100 active cards in the city by year (see Section 3). The pollution measure “ln avg Pollution𝑐𝑡” is logged 

AOD in the city x week. The key parameters of interest is 𝛽, which represents changes in purchase rate 
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per 1% increase in AOD. To examine changes in the purchase-pollution relationship before vs. after 

disclosure, we allow 𝛽 to vary by event month k relative to the disclosure time. Because roll-out time 

varies, cities do not have equal number of available pre and post periods. In our analysis, we look at an 

event window of 39 months (24 months before and 15 months after disclosure). This event window is 

chosen so that there are nearly identical county by day observations underlying each event month. In 

other words, there is no composition change underlying the event study graph, and so changes in the 𝛽𝑘 

coefficients are not due to sample selection. We identify 𝛽 using week-to-week variations in air pollution 

net of a flexible set of geographic and time controls (𝑋𝑐𝑡) that include city fixed effects, week-of-year fixed 

effects, and year fixed effects. As detailed below, we also experiment with increasingly stringent fixed 

effects to test the robustness of our change-in-gradient estimates. So that our 𝛽  estimates are 

representative of the average card, we weight the regression using denominator of the dependent 

variable, i.e., number of active cards. 𝜀𝑐𝑡 is an idiosyncratic error term. Standard errors are clustered at 

the city level. In the Appendix, we show our estimation is robust to ex-ante reasonable but substantially 

different econometric specifications.  

 Figure 4 summarizes the 𝛽𝑘 coefficients. Here we present binned 𝛽𝑘 coefficients that vary at the 

quarterly (3-month) level to aggregate out noises in time trends. Two patterns emerge. First, before 

disclosure, the 𝛽𝑘 estimates remain flat and statistically indistinguishable from zero. This suggests a stable 

and weak relationship between purchase and satellite-based pollution measure before individuals have 

access to information. Second, 𝛽𝑘 estimates exhibit a level-shift and become strongly negative following 

disclosure. There is some suggestive pattern that the post-disclosure purchase-pollution gradient 

weakens overtime. Potential explanations include (1) fatigue, where citizens may only pay close attention 

to daily pollution data for a limited period of time, and (2) stocking of defensive investments, where 

increased ownership of anti-smog equipment, such as air masks, helps citizens to achieve pollution 

reduction without having to staying indoor on high pollution days.  

 Table 1 provides point-estimates view of Figure 4. The econometric specifications in this table are 

modified from equation (1) in two ways. First, we include full interactions between the pollution term and 

the post-disclosure dummy variable, so that the coefficient on “Log(Pollution)” represents the OLS 

purchase-pollution gradient before monitoring, and the coefficient on “Log(Pollution) x 1(after 

monitoring)” represents changes in the gradient after monitoring. Second, we increasingly tighten the 

fixed effects strategy we use to exploit finer variation in the data. Column 1 uses simple city, week-of-year, 

and year fixed effects, which corresponds to the specification in Figure 4. Column 2 uses city and week-
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of-sample fixed effects. This is essentially a cross-sectional specification, exploiting variation in pollution 

in the same week-in-time, across cities with high vs. low pollution. Column 3 further adds region x year 

fixed effects to column 2’s specification, allowing for potentially common trends in transactions and 

pollution that are specific to each region.11 Column 4 is our most stringent specification, controlling for 

city and region x week-of-sample fixed effects. We obtain similar estimation results across the board. 

 Although we find that pollution information matters for short-term avoidance, the magnitude of 

the effect is modest. The average change-in-gradient estimate in Table 1, inversely weighted by the 

standard errors across columns 1-4, is 21.9 weekly transactions per 100 cards. This represents a 2.5% 

change relative to the dependent variable mean 870.6. In the appendix, we use POS merchant category 

information to look at changes in purchase-pollution gradient for several major categories including 

supermarkets, dining, and entertainment. We focus on these groups because the “deferrable” nature of 

these purchase trips likely makes them more subject to pollution avoidance. We find strong evidence that 

over 75% of the change in overall purchase-pollution gradient is explained by these purchases. On the 

other hand, we conduct placebo-style tests looking at the impact of information roll-out on “scheduled” 

consumptions including billings (e.g., bills in utilities, insurance, telecommunication, and cable services), 

government services (e.g., court costs, fines, taxes), large enterprise wholesales, as well as cancer 

treatment centers. We find no statistical evidence that information availability changes “scheduled” 

consumptions’ responses to air pollution. In the next section, we begin to examine longer term avoidance 

behavior through the housing market. 

 

7. Pollution Disclosure and Long-Run Avoidance: Housing Market 

 We now turn to assess housing market responses to pollution disclosure. In Section 7.1, we 

evaluate how pollution disclosure changes the dynamic relationship between monthly real estate index 

and pollution exposure in 100 major cities.  In Section 7.2, we use transaction-level data in Beijing to study 

how pollution disclosure changes the cross-sectional relationship between home value and pollution 

exposure. In Section 7.3, we replicate the analysis in Section 7.2, but using distance to major polluter, 

rather than ambient air quality, as a proxy for pollution exposure. In Section 7.4, we discuss our findings 

in the context of the current literature.  

                                                           
11 ``Region'' is a conventional partition of cities by location: North (36 cities), Northeast (38 cities), East (105 cities), 
Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities). 
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7.1. Pollution and Real Estate Prices in 100 Cities 

 Consider estimating a dynamic relationship between housing index and air pollution. We regress 

housing index in city (c) and month (t) on current air pollution, air pollution in the recent past, and, as a 

placebo-style exercise, air pollution in the near future: 

 

ln HousingIndex𝑐𝑡 = ∑ 𝛽𝑠 × ln avg Pollution𝑐(𝑡+𝑠)
3
𝑠=−3 + 𝑋𝑐𝑡 ⋅ 𝛾 + 𝜀𝑐𝑡     (2) 

 

where the 𝛽𝑠’ are leads (𝛽3, 𝛽2, 𝛽1), current (𝛽0), and lags (𝛽−1, 𝛽−2, 𝛽−3) coefficients on logged AOD.12 

We include city by month-of-year fixed effects and year fixed effects controls in 𝑋𝑐𝑡 to mirror our control 

strategy in bank-card daily usage analysis. Standard errors are clustered at the city level. To examine the 

role of information, we estimate equation (2) separately for periods before and after pollution disclosure, 

and compare how 𝛽𝑠’ coefficients differ. 

 We summarize the results in Figure 5. In the spirit of an event study, we present leads pollution 

coefficients reversely on the left-hand-side of the chart, followed by current pollution coefficient, and lags 

pollution coefficients on the right-hand-side. Before disclosure, pollution exposure does not seem to 

matter: lead terms in pollution are insignificant and flat in trend, so are current and lagged pollution terms. 

For periods after disclosure, the leads pollution coefficients again show a flat and insignificant pattern as 

before. However, the current pollution term is more negatively related to the real estate index, with 

lagged pollution coefficients to be even more negative. The graphical pattern in Figure 5 suggests that, 

post disclosure, (1) air pollution becomes more explanatory of the real estate index among the 100 cities, 

and (2) air pollution may affect real estate price beyond its impact in the current month.   

 We now turn to estimate the effect of pollution disclosure on the housing-pollution elasticity. We 

estimate a counterpart of equation (1), but now at the monthly level. To capture lagged effect of pollution, 

we define our pollution measure to be “ln avg Pollution”, or the log of mean pollution across months t, 

t-1, t-2, and t-3. Essentially, we are estimating the effect of pollution in the past quarter on housing price 

                                                           
12 We focus on 3 leads and 3 lags. We have confirmed that our estimation results persistent if we expand the window 
of examination, e.g., 6 leads and 6 lags, although each additional lead or lag coefficient we include decreases our 
study sample mechanically by one more month.  
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this month. The rest of the estimation framework mirrors the bank-card analysis. We examine how the 

relationship between “ln HousingIndex” and “ln avg Pollution” evolves as a function of event time k 

relative to the disclosure month. Our estimation equation is:  

 

 ln HousingIndex𝑐𝑡 = ∑ 𝛽𝑘 × ln avg Pollution𝑐(𝑡,𝑡−1,𝑡−2,𝑡−3)
36
𝑘=−32 × 1(𝑡 = 𝑘)  

      + ∑ 𝛼𝑘 × 1(𝑡 = 𝑘)36
𝑘=−32 + 𝑋𝑐𝑡 ⋅ 𝛾 + 𝜀𝑐𝑡    (3) 

 

 We choose an event window of 32 months before and 36 months after. Given the time span of 

our data, this window ensures a balanced number of observations for each event month. To obtain more 

precise time path, we allow 𝛽𝑘 to vary at the quarter level, i.e., one elasticity estimate per event quarter. 

1(𝑡 = 𝑘) are indicators for event quarter k. 𝑋𝑐𝑡 include city x month-of-year fixed effects and year fixed 

effects.13 We also include leads pollution coefficients in 𝑋𝑐𝑡 to mirror our specification in equation (1). 

Standard errors are clustered at the city level.  

 Figure 6 is the event study plot. The average pre-disclosure housing-pollution elasticity is about 

2% and statistically insignificant. The event quarter estimates trended flat for the pre-period, followed by 

a sharp decrease promptly in the disclosure roll-out quarter (event quarter 0). The post-disclosure 

elasticity is about 3% and is significant at the conventional statistical level. To interpret the coefficients, 

first notice the connection between Figure 5 and Figure 6. The pre-disclosure (post-disclosure) elasticity 

estimate in Figure 6 is mechanically the sum of the coefficients on exposure months 0, 1, 2, and 3 for the 

pre-disclosure (post-disclosure) period. So together, Figures 5 and 6 suggest that, on average, current and 

lagged pollution are explanatory of the housing market after disclosure (but not before disclosure), and 

that such change occurs promptly around the time when pollution disclosure begins in the city.  

 In Table 2, we experiment with specification changes in the same manner with Table 1. It is 

perhaps useful to note that our cross-city price-pollution elasticity estimate is close to previous work using 

similar data (e.g., Zheng et al., 2014). But due to CREIS index’s winsorization issues we mentioned in 

Sectiont 4, we next move to the examination of housing market responses using transaction-level data.  

 

                                                           
13 In the Appendix, we show our results are robust to a series of alternative fixed effects controls.  
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7.2. Pollution and Housing Prices in Beijing 

 We now examine the impact of pollution disclosure using detailed transaction-level data on the 

universe of new homes sold in Beijing from Jan 2006 to April 2014. We rely on the following features of 

the data that we consistently observe for every unit sold: transaction price, transaction date, apartment 

complex name and address, floor level, and unit size. We again employ a change-in-slope approach and 

estimate the degree to which the housing price-pollution relationship shifts before and after pollution 

disclosure. Although we observe each individual transaction, our pollution measure is at a more 

aggregated level. Below we describe how we collapse the effective amount of information in the 

transaction data to match the granularity of the satellite-based pollution data. 

 Outcome variable: quality-adjusted apartment-complex x year price levels. We first take the 

universe of transactions in our data and construct the outcome variable from the following regression: 

 

ln TransactionPrice𝑖𝑐𝑡 = 𝑋𝑖𝑐𝑡 ⋅ 𝛾 + 𝜂𝑐𝑦 + 𝜀𝑖𝑐𝑡    (4) 

 

where ln TransactionPrice𝑖𝑐𝑡 is logged transaction price of unit i in apartment-complex c on date t. The 

unit characteristics matrix 𝑋𝑖𝑐𝑡  includes floor fixed effects, sale month-of-year fixed effects, and a 

quadratic term in unit size. The outcome variable of our hedonic price-pollution regression is therefore 

�̂�𝑐𝑦, which are apartment-complex x year level, residualized averages of housing outcome after controlling 

for the observable aspects of the transaction. In this regression, the average apartment-complex x year 

cell contains 153 underlying transactions.  

 Pollution variable: AOD at 1-by-1km x year resolution. Our sub-city level analysis requires a 

pollution measure with a high level of spatial resolution. We employ a frontier method in atmospheric 

science called “oversampling” that re-processes the original AOD data to increase its spatial resolution 

from 10-by-10 km to 1-by-1 km, while sacrificing the temporal resolution from daily to annual. 

Oversampling takes advantage of the fact that MODIS scans a slightly different, but overlapping, set of 

pixels at a given location on each of the satellite’s overpass. When the researcher is not interested in the 

high temporal dimension (such as in our case, where we only need annual information on pollution), it is 
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possible to average across the overlapping overpasses to enhance the geo-spatial resolution of the AOD 

measure.14 Figure 7 presents pre- and post-oversampling average AOD concentration in the city of Beijing.  

 We then put our housing and pollution variables in a hedonic regression: 

 

  �̂�𝑐𝑦 = α ⋅ ln avg Pollution𝑐𝑦 + 1(PostDisclosure = 𝑘) 

    + 𝛽 ⋅ ln avg Pollution𝑐𝑦 × 1(PostDisclosure = 𝑘) + 𝑍𝑐𝑦 ⋅ 𝛾 + 𝜀𝑐𝑦    (5) 

 

where ln avg Pollution𝑐𝑦 is logged oversampled AOD level in year y in the 1-by-1km region that contains 

the apartment-complex c. Because we only have 14 months of post-disclosure housing market, we allow 

𝛽, the housing-pollution elasticity estimate, to simply vary by pre- vs. post-disclosure periods. 

 We use two sources of variation in our regression analysis. The first source of variation comes 

from the fact that we often observe transactions in the same apartment-complex for a streak of years 

before all units are sold out. We can therefore use a standard panel fixed effects regression strategy to 

compare transaction prices within the same complex, but across different years with high versus low 

pollution levels. In the first type of specification, we include apartment-complex fixed effects, year fixed 

effects, and “year-on-market” fixed effects (9 indicators, each indicates if year y is the apartment-

complex’s r-th year on market).  

 The second source of variation comes from our ability to observe fine-grained, cross-sectional 

variations in air pollution even within small geographic area. We observe about 1,200 apartment-

complexes scattered in 180 zip codes across 16 districts in Beijing. We compare transaction prices within 

the same district x year, but across apartment-complexes in areas with high versus low pollution levels, 

controlling for time-invariant differences in zip code-level characteristics. Hence in the second type of 

specification, we include district x year fixed effects, zip code fixed effects, and year-on-market fixed 

effects.  

 The two specifications therefore exploit rather different sources of pollution variation, with the 

former focusing more on year-to-year variation within the same location, the latter focusing more on 

cross-sectional variation at a given point in time. To account flexibly for potential autocorrelation in both 

                                                           
14 In the Appendix, we illustrate the oversampling idea using two consecutive days of MODIS AOD data for the city 
of Beijing.  
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housing price and pollution across time and over space, we two-way cluster standard errors at the zip 

code level and the district x year level.   

 We report equation (5) results in Table 3. Begin with column 1. We find that doubling of annual 

pollution corresponds to an insignificant 9% increase in housing prices, or about a 0.09 elasticity. The 

change elasticity for the post-disclosure period is -59 percentage points and significant at the 10% 

confidence level. In column 2, we examine the effect of lagged pollution in addition to current year’s 

pollution exposure. We obtain similar results – a marginally significant -73 percentage points change in 

elasticity – on current pollution, but a noisy effect with lagged pollution. Columns 3 and 4 correspond to 

our cross-sectional specification estimates. These specification yields a similar reduction-in-elasticity 

estimates of -85 percentage points. Estimates from columns 3 and 4 seem larger in magnitude relative to 

estimates from columns 1 and 2. One potential explanation is that the oversampled AOD data does a 

better job capturing idiosyncratic pollution variation in the cross-section, rather than year-to-year 

pollution variation. Looking across all columns, however, the 95% confidence intervals from the two types 

of specifications overlap, and so the elasticity estimates do not differ significantly from each other.  

 Our cross-sectional estimates of housing price-pollution elasticity for the post-disclosure period 

therefore ranges from -0.6 to -0.8. This is somewhat larger than those obtained in U.S. setting. For 

example, Chay and Greenstone (2005) exploits permanent reduction in Total Suspended Particle pollution 

(TSP) due to the 1970s U.S. Clean Air Act. They estimate a price-pollution elasticity of -0.25. Taking into 

account moving costs and variation in air quality across U.S. metro areas, Bayer, Keohane, and Timmins 

(2009) show a price-pollution elasticity of roughly -0.34 to -0.42. Our estimates are similar to those 

obtained in China settings. In a hedonic regression exercise using Beijing’s housing transactions and land 

parcel data, Zheng and Kahn (2008) find a price-PM10 elasticity of -0.41. In a recent residential-sorting 

exercise, Freeman et al. (2017) use moving costs and housing value information from China Population 

Census micro-level data to estimate a price-PM2.5 elasticity of -0.71 to -1.10.  

 

7.3. Proximity to Major Polluters and Housing Prices in Beijing 

 We further take advantage of the geographic richness of our data to estimate a housing price with 

respect to the unit’s distance to the nearest major pollution sources (e.g., Davis, 2011; Currie et al., 2015; 

Muehlenbachs, Spiller, and Timmins, 2015). We then examine how does the distance gradient shifts 

before versus after pollution disclosure. Although residents may not know the variation in pollution across 
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fine geographic areas with a city or a district, the large polluters tend to be visible and well known 

landmarks in the city. The pollution disclosure could raise the salience of the potential health impacts of 

these large polluters in residents’ housing choice decisions. 

 As described in Section 3, our distance-gradient analysis begins with a set of major polluters we 

identify as always-there in Beijing from 2007 – 2018. By using census emission measure from 2007, we 

find 41 top-decile polluters that account for nearly 90% of total emissions. Using geo-locations of these 

major polluters, we construct a time-invariant “distance to major polluter” variable at the apartment-

complex level, and we use this variable to replace the ln Pollution𝑐𝑦 term in equation (5). We use the 

cross-sectional-style specification (district by year fixed effects, zip code fixed effects, and year-on-market 

fixed effects). We cannot perform the time-series specification as the distance measure is time-invariant 

which perfectly colinears with apartment-complex fixed effects. We control additionally for distance to 

non-top-decile polluters in the regression.  

 Figure 8 presents the results. In panel A, we present distance gradients separately for periods 

before and after disclosure. We detect no statistically significant distance gradient curve before disclosure. 

The shape of the curve shifted substantially after disclosure, where a near-monotonic price-distance 

relationship emerges. In panel B, we estimate the difference version of panel A to test the statistical 

precision of the change in distance gradient. Results show a relative reduction of housing value of about 

27% for transactions within 3 km to the nearest major polluter. The effect fades with distance, and no 

effect is detected for regions over 6 km.  

 

8. Pollution Disclosure and Mortality Outcome 

8.1. Pollution and Mortality 

 Our endpoint analysis is to examine if the same amount of pollution exposure is associated with 

fewer deaths after information becomes widely available. Our estimation equation is again similar to 

equation (1), where we regress logged mortality rate in county c x quarter t on the corresponding logged 

pollution level, while allowing the coefficient to vary by event quarter k, i.e., the k-th quarter since 

pollution disclosure: 
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 ln Mortality𝑐𝑡 = ∑ 𝛽𝑘 × ln avg Pollution𝑐𝑡
6
𝑘=−10 × 1(𝑡 = 𝑘)  

      + ∑ 𝛼𝑘 × 1(𝑡 = 𝑘)6
𝑘=−10 + 𝑋𝑐𝑡 ⋅ 𝛾 + 𝜀𝑐𝑡    (6) 

  

 We made several specification choices based on the nature of our data. First, we aggregate weekly 

mortality rate to quarterly to average out noises. However, we have checked that our 𝛽𝑘 estimates are 

similar whether we conduct our analysis at weekly, quarterly, or annual level. Second, we allow the 𝛽𝑘 

coefficients to vary from 10 quarters before to 6 quarters after disclosure to ensure a roughly balanced 

number of underlying counties for each event quarter.  

 Figure 9 plots the 𝛽𝑘 coefficient estimates. We find that mortality-pollution elasticity exhibits a 

roughly flat trend before disclosure, followed by a decline post disclosure. In the graphical analysis, we 

condition the regression on city, quarter-of-year, and year fixed effects. We examine robustness of the 

results in Table 4 where, similar to Tables 1 and 2, we experiment with stringency of our fixed effects 

controls, e.g., by including quarter-of-sample, or region x quarter-of-sample fixed effects dummies. Notice 

in this version, we include pollution main effect in the regression, so that the pre-disclosure mortality-

pollution elasticity is identified by the coefficient on the term “Log(Pollution)”. We find a statistically 

significant 5-7 percentage point reduction in mortality-pollution elasticity post disclosure. The results are 

similar across specifications and consistent with the graphical evidence from Figure 9. 

  In the Appendix, we conduct two additional tests to examine the plausibility of the reduction in 

the mortality-pollution elasticity estimates. First, looking at age-specific mortality rates we construct from 

our DSP extract, we find that the effect is most precisely estimated among people aged over 40 who are 

presumably more vulnerable to pollution exposure than younger age groups. There is no change in the 

mortality-pollution relationship for infant (less than one-year old), which may seem counterintuitive. 

Pollution exposure among infants is low to begin with because they stay mostly indoors. Next, we find 

that changes in the mortality-pollution relationship concentrate in cardio-respiratory causes, such as 

COPD, heart diseases, and cerebrovascular diseases, which are widely considered as most relevant 

consequences of pollution exposure. The impact on mortality-pollution relationship from respiratory 

infection and digestive diseases is both small and insignificant. For traffic fatalities, the relationship post 

disclosure appears to become flatter though the change is not statistically significant.15   

                                                           
15 Air pollution could affect visibility as well as cognitive function (Zhang et al., 2018), both of which could result in 
increased risk from traffic accidents. 
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8.2. The Value of Pollution Information 

 The value of information (VOI) arises from the power of information in changing decisions. Our 

analysis shows that information on pollution disclosure affected a range of behavioral and market 

outcomes that reflect consumers’ effort to mitigate the negative health consequences of air pollution. We 

can measure the VOI as the fraction of pollution-caused deaths that can be avoided by providing 

information access, holding pollution exposure constant.16 In our study context, a proxy for VOI is the ratio 

between the change in mortality-pollution elasticity due to pollution disclosure (i.e., the interaction 

coefficient in Table 4) and the level of mortality-pollution elasticity prior to pollution disclosure. While the 

coefficient estimate on the “Log(Pollution)” main effect term has a level-of-elasticity interpretation, it is 

likely to be endogenous. In fact, the magnitude of the main effect estimate is similar to existing estimates 

on the correlation between PM exposure and mortality in China (e.g., Yin et al., 2017; Ebenstein et al., 

2017). However, studies based on quasi-experimental methods have yielded much larger effect sizes, 

suggesting that correlational estimates might suffer from endogeneity or measurement problems (e.g., 

Chen et al., 2013; He, Fan, and Zhou, 2016; Ebenstein et al., 2017).  

 To alleviate the endogeneity concern, we borrow causal estimates on the mortality-pollution 

relationship from previous studies. We refer to a recent paper by Ebenstein et al. (2017) that examines 

the long-term mortality effects of PM exposure. We favor this study because it is based on well-

established quasi-experimental design, also uses DSP as their mortality measurement, and it is based on 

years 2004-2012, which is before pollution disclosure took place. Similar to our estimate, the paper also 

reports a simple OLS regression between logged cardio-respiratory mortality and logged PM10 exposure 

and yields an elasticity estimate of 0.02. Using a regression discontinuity (RD) design that leverages a free 

coal-based heating policy available only to cities to the north of the Huai River, the authors find that PM10 

just to the north of the river is roughly 41.7 ug/m3 (about 35%) higher, while the corresponding difference 

in all-cause mortality rate is 26%, suggesting a mortality-PM10 elasticity of 0.70. Assuming a linear dosage-

                                                           
16 Mitigation could be in the form of shift the timing of activities, wearing face masks, using air purifiers at home, 
and moving to a clearer neighborhood or city. The cost of mitigation could vary and should be taken into account 
in order to estimate the net value of pollution information. We do not attempt to do it here given the large set of 
possible mitigation choices. 
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response function, our estimate of a 5-7 percentage point reduction in the mortality-pollution elasticity 

therefore indicates a roughly 9% reduction in deaths attributable to the same pollution exposure.17   

 To conceptualize the effect size, we note that under the assumption of linear mortality-pollution 

dose response function, the benefit of a 9% reduction in mortality-pollution elasticity is roughly the same 

with the benefit of a 9% reduction in pollution concentration. This corresponds to roughly 10 ug/m3 

reduction in PM10 or 5 ug/m3 reduction in PM2.5 in China. We perceive the effect size as moderate for 

several reasons. First, the effect size is moderate compared to the average cross-city variation in PM2.5 

post-disclosure (SD = 20.4 ug/m3, IQR = 25.2 ug/m3). Second, the effect size is moderate compared several 

government programs that have been shown to shift pollution levels. For example, the winter heating 

policy implemented to the north of the Huai River is shown to increase PM10 by about 41.7 ug/m3 

(Ebenstein et al., 2017). Large-scale inspection and cleanup efforts across China since 2013 are associated 

with over 50 ug/m3 reduction in PM2.5 for some northern cities (Greenstone and Schwarz, 2008).  

 On the other hand, we believe the disclosure program brings meaningful economic and health 

benefits to the society. For example, using Ito and Zhang (2018)’s WTP estimate based on air purifier 

purchases in China, a 10 ug/m3 reduction in PM10 is about RMB 90 ($13.4) per year, which aggregates to 

RMB 122 billion per year nationwide. In Barwick et al. (2017), an individual saves RMB 38 ($5.7) in out-of-

pocket health spending from a 5 ug/m3 reduction in PM2.5 exposure, aggregating to RMB 52 billion per 

year nationwide.   

 

9. Conclusion 

 In this study, we examine the role of pollution information in shaping how pollution exposure 

affects economic and health outcomes. We study a large-scale policy rollout in China whereby air pollution 

monitoring stations are installed and real-time information is made public by the Ministry of the 

Environment. We document the effect of information by examining a chain of outcomes from information 

                                                           
17 We have also tried to estimate the causal effect of pollution on mortality using our own DSP sample. We exploited 
two different quasi-experimental designs. First, we replicate the Ebenstein et al. (2017) results for periods before 
disclosure, finding a similar mortality gap at the Huai River; we find suggestive evidence that the mortality gap 
attenuates for periods after disclosure. However, with a much shorter study sample (2011-2014) we are not powered 
to precisely estimate the pre- vs. post-disclosure difference in the mortality gap. Second, we follow Barwick et al. 
(2017) to exploit day-to-day variations in wind pattern to trace out changes in a city’s pollution level due to long-
range transport from upwind cities. Again, we find qualitatively similar effect of pollution on mortality. These results 
are reported in the Appendix. 
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access, pollution awareness, daily purchase trips, housing choices, to health outcome. Examination of 

these outcomes yields consistent evidence of increased pollution access, awareness, avoidance, as well 

as decreased pollution-related health damage when people have access to better pollution information.  

 Policies to raise public awareness of pollution exposure could range from “low-frequency” 

community right-to-know programs, such as emission inventory, to “high-frequency” advisory programs, 

such as air quality alerts. China’s experience suggests that providing “background-frequency” real-time 

pollution monitoring data, combined with effective dissemination infrastructures, could effectively 

improve public awareness of pollution issues. In particular, access to real-time pollution data has allowed 

people to respond to exposure both in the short and the long run. Furthermore, the compound effect of 

information access likely led to reduced health damages at the same levels of pollution exposure. 

 Our findings could have important implications for other emerging and developing countries that 

are experience severe pollution challenges. The infrastructure for monitoring environmental quality and 

for information disclosure is often inadequate in those countries.  Results from this study suggest that 

benefit for this type of infrastructure investment could be large.  Beyond the literature on the value of air 

quality, our results also contribute to the growing literature on the information economics. Previous 

studies have focused on small-scale settings in which misperceived product attributes caused distorted 

product choices. Our analysis suggests that misperception even exists in one’s day-to-day exposure to 

environmental pollutants. We hope such evidence may call for further investigations on mismatches 

between perceived vs. actual attributes, and therefore the role of better information, in other large-scale 

environmental settings. 
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Figure 1. Air Pollution Monitoring Rollout Timing

Notes: This map shows prefecture-city by the initiation date of real-time air pollution monitoring. “Not mentioned” are cities where
the timing of monitoring is not mentioned in the MEP’s policy notice. “Housing sample” highlights cities included in the housing price
analysis. “Mortality sample” are centroids of counties included in the DSP mortality data.
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Figure 2. Changes in Pollution Information Exposure

Panel A. People’s Daily pollution-related news (days per month)
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Notes: Panel A plots the number of days in each month when the People’s Daily (official newspaper of the Chinese government) published
articles containing “air/atmospheric pollution” in titles. Dots show monthly day counts. Line shows annual averages. Panel B shows
release-date distribution of Apple App Store apps related to pollution (solid dots and line). Averaged release-time distribution for apps in
other categories (dashed dots and line) includes game, music, video, reading, finance, sports, education, shopping, and navigation. For
each category, sample is restricted to the first 200 apps returned by the Apple API given the search key. Data are accessed on Decembet
27, 2015.
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Figure 3. Changes in Pollution Awareness

Panel A. Baidu search index for “smog”
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Notes: Panel A plots raw monthly trends in Baidu Search Index for the word “smog”. The graph omits two dots with exceptionally high
search index for readability purpose. These dots correspond to December 2013 (index = 20,942) and Decembet 2015 (index = 24,679).
Line shows annual average. Panel B plots mean standardized “smog” search index as a function of months since monitoring initiation,
with index for month -1 normalized to 0. The underlying regression controls for month-of-year and year indicators. Line shows quarterly
average.

33



Figure 4. Changes in Weekly Bank Card Transaction-Pollution Gradient
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Notes: This graph shows the relationship between weekly bank card transcation rate and log satellite-based pollution as a function of
time since monitoring initiation. The regression controls for prefectiry-city FEs, week-of-year FEs, and year FEs. “Avg” shows mean
effect before and after monitoring began. Shaded region shows 95% confidence interval constructed from standard errors clustered at the
prefecture-city level.
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Figure 5. Changes in Monthly Housing Prices-Pollution Dynamics
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Notes: This graph shows coefficients from a regression of log housing prices on log satellite-based pollution in the months after, the
month of (t=0), and the months prior to exposure (i.e., lead, contemporaneous and lagged effects). Estimations are done separately for
time before (dashed line) and after (solid line) monitoring began. All regressions control for prefecture-city×month-of-year FEs and year
FEs. Shaded region shows 95% confidence interval constructed from standard errors clustered at the prefecture-city level.
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Figure 6. Changes in Monthly Housing Prices-Pollution Gradient
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Notes: This graph shows coefficients from a regression of log housing prices on log satellite-based pollution in the prior 4-month window
(i.e., sum of contemporaneous and lagged effects), as a function of time since monitoring initiation. The (-30 to 33) month event window
is chosen so that the underlying sample is a balanced panel of all 100 cities. Coefficients are obtained from a single regression, controlling
for 3-month leads in pollution, prefectiry-city×month-of-year FEs and year FEs. “Avg” shows mean effect before and after monitoring
began. Shaded region shows 95% confidence interval constructed from standard errors clustered at the prefecture-city level.

36



Figure 7. Original (10km) vs. “Oversampled” (1km) Aerosol Optical Depth, Beijing 2006-2014

Notes: This map shows 2006-2014 average aerosol optical depth (AOD) level for the prefecture of Beijing. Left panel shows MODIS
AOD at the original 10×10km resolution. Right panel shows AOD oversampled to 1×1km resolution. Dots show centroid locations of
communities (i.e., “jiedao”) in the housing transaction data.
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Figure 8. Changes in Annual Housing Prices-Distance to Polluter Gradient, Beijing
Panel A. Before vs. after monitoring
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Notes: This graph shows coefficients from a regression of complex×annual log housing prices on distance (in 1-km bins) to nearest major
polluter before and after January 2013 when Beijing initiated ambient pollution monitoring. In panel A, estimations are done separately
for time before (dashed line) and after (solid line) monitoring began, with prices normalized to 0 for the >10-km bin. The histogram (right
axis) plots total number of observations by distance bins. In panel B, the difference estimation pools before/after samples. All regressions
control for district×year FEs, community FEs, and years-on-market FEs. Shaded region shows 95% confidence interval constructed from
standard errors two-way clustered at the zip code level and the district×year level.
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Figure 9. Changes in Quarterly Mortality-Pollution Gradient
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Notes: This graph shows coefficients from a regression of log mortality rate on log satellite-based pollution as a function of quarters
since monitoring initiation. The (-10 to 6) month event window is chosen so that the underlying sample is a balanced panel of cities.
Coefficients are obtained from a single regression, controlling for prefectiry-city FEs, quarter-of-year FEs, and year FEs. Shaded region
shows 95% confidence interval constructed from standard errors clustered at the prefecture-city level.
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Table 1. Changes in Weekly Bank Card Transaction-Pollution Gradient
Dep. var.: Number of transactions per 100 active cards in a city×week

(1) (2) (3) (4)

Log(Pollution) 8.54 6.25 8.17 10.5
(8.25) (8.86) (5.80) (7.28)

Log(Pollution) × 1(after monitoring) -20.1** -23.2** -19.8** -25.6**
(8.71) (10.9) (7.83) (10.2)

FEs: city X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

N 81,544 81,544 81,544 81,544

Notes: “Log(Pollution)” is logged AOD in the city×week. Mean of dependent variable is 870.6 transactions per week per 100 cards.
“region” is a conventional partition of cities by location: North (36 cities), Northeast (38 cities), East (105 cities), Centralsouth (81
cities), Southwest (54 cities), Northwest (52 cities). Standard errors are clustered at the prefecture-city level. *: p < 0.10; **: p < 0.05;
***: p < 0.01.
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Table 2. Changes in Monthly Housing Index-Pollution Gradient
Dep. var.: Log housing price index in a city×month

(1) (2) (3) (4)

Log(Pollution) 0.013 0.011 0.011 0.016
(0.010) (0.010) (0.010) (0.013)

Log(Pollution) × 1(after monitoring) -0.036*** -0.036** -0.026* -0.038**
(0.013) (0.014) (0.014) (0.018)

FEs: city X X X X
FEs: month-of-year X
FEs: year X
FEs: month-of-sample X X
FEs: region×year X
FEs: region×month-of-sample X

N 6,629 6,629 6,629 6,582

Notes: “Log(Pollution)” is logged AOD in the city×week. “region” is a conventional partition of cities by location: North (36 cities),
Northeast (38 cities), East (105 cities), Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities). Standard errors are clustered
at the prefecture-city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 3. Changes in Beijing’s Housing Price-Pollution Gradient
Dep. var.: Log housing price index in a complex×year

(1) (2) (3) (4)

Within complex Within district×year
Identifying variation: across years across communities

Log(pollution) 0.090 0.063 0.009 -0.103
(0.104) (0.121) (0.239) (0.244)

Log(lagged pollution) 0.034 0.335
(0.124) (0.216)

Log(pollution)×1(after 2013) -0.591* -0.730* -0.850* -0.753*
(0.299) (0.434) (0.436) (0.432)

Log(lagged pollution)×1(after 2013) -0.377 -0.216
(0.490) (0.754)

FEs: complex X X
FEs: year X X
FEs: years on-market X X X X
FEs: zip code X X
FEs: district×year X X

N 3,372 2,715 3,827 3,266
N (complex) 988 801 1,224 1,129
N (zip code) 179 167 180 172
N (district) 16 16 16 16

Notes: A complex is a real estate project site that often contains multiple buildings. The dependent variable is logged nominal housing
price adjusted for quadratic floor size, floor indicators, and sale month-of-year indicators. “Log(pollution)” is logged AOD level at the
(oversampled) 1km resolution corresponding to the complex’s geographic coordinates. Standard errors are two-way clustered at the zip
code (i.e., “jiedao”) level and the district×year level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table 4. Changes in Quarterly Mortality-Pollution Gradient
Dep. var.: Log mortality rate in a city×quarter

(1) (2) (3) (4)

Log(Pollution) 0.036* 0.039* 0.043** 0.039**
(0.019) (0.020) (0.020) (0.019)

Log(Pollution) × 1(after monitoring) -0.069*** -0.066*** -0.059** -0.051**
(0.017) (0.019) (0.024) (0.021)

FEs: city X X X X
FEs: quarter-of-year X
FEs: year X
FEs: quarter-of-sample X X
FEs: region×year X
FEs: region×quarter-of-sample X

N 2,096 2,096 2,096 2,096

Notes: “Log(Pollution)” is logged AOD in the city×quarter. “region” is a conventional partition of cities by location: North (36 cities),
Northeast (38 cities), East (105 cities), Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities). Standard errors are clustered
at the prefecture-city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Figure A.1. Consumption Trends: UnionPay vs. National Accounts
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Notes: This figure plots annual GDP (triangles), consumption (squares) reported by the National Bureau of Statistics of China (NBS),
and total bank card spendings ×100 (circles) aggregated from the UnionPay 1% bank card data. UnionPay data excludes transactions
in the business wholesale categories.
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Figure A.2. UnionPay Bank Card Transaction Trends

Panel A. Number of transactions per 1,000 cards
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Panel B. Spending per transaction
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Notes: Each dot represents transaction rate (panel A) and spending per transaction (panel B) on a day. Solid dots show weekdays and
hollow dots show weekends. Lines show quarterly averages.
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Figure A.3. UnionPay Bank Card Transaction by Prefecture-City, 2011-2015 Average

Panel A. Number of active cards

Panel A. Number of transactions per 1,000 cards

Notes: The maps show 2011-2015 average number of active UnionPay bank cards (panel A) and transactions per 1,000 cards (panel B)
at the prefecture-city level. Orange lines show inter-provincial borders.
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Figure A.4. Beijing Housing Price Indexes: Transaction Data vs. CREIS Index
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Notes: Red solid line plots Beijing monthly housing price index from the China Real Estate Index System. Blue solid line shows raw log
average monthly housing price from Beijing’s housing transaction data. Blue dashed line shows the transaction data-based index adjusted
for quadratic floor size, floor indicators, and complex indicators. Price indexes are normalized to 1 for May 2010 when CREIS Index was
first available.
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Figure A.5. An Illustrative Example of Satellite AOD Oversampling

Notes: Left panel shows original MODIS AOD (10×10km) around Beijing on y2008 d243 (i.e., August 30, 2008). Right panel shows an
overlay with data on y2008 d244. In both panels, darker colors indicate higher pollution levels.
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Figure A.6. Total Air Emissions by Emission Deciles, Beijing Polluter Census 2007
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Notes: This graph shows total air emissions (in billion m3) by Beijing polluters in the k-th decile of annual emission distribution according
to the Polluter Census 2007. The sample includes about 440 polluters.
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Figure A.7. Heterogeneous Changes in Quarterly Mortality-Pollution Gradient
Panel A. Heterogeneity by age groups
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Panel B. Heterogeneity by causes-of-death
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Notes: Each range plot item shows the mortality-pollution elasticity change coefficient (i.e., log(Pollution)×1(after monitoring)) from
a separate regression using sub-group log mortality rate as the outcome variable. All regressions control for prefectiry-city FEs and
quarter-of-sample FEs. Range bars show 95% confidence interval constructed from standard errors clustered at the prefecture-city level.
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Figure A.8. Regression Discontinuity at the Huai River Before (Circles, Dashed) and After (Squares, Solid) Monitoring
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Notes: Scatter plot in each panel shows the local means of the corresponding outcome variable for the period before (circles) and after
(squares) monitoring with a bin size of 1 degree (Observations = 99). Residualized AOD is constructed from a regression of DSP’s
y2011-y2014 avg AOD on a linear function of y2013-y2015 avg PM2.5 allowed to vary by the two sides of the Huai River. The horizontal
axis is the distance (in degree) to the north of the Huai River, following Ebenstein et al. (2017). Solid (dashed) lines are from local linear
regressions estimated separately on each side of the river for the period before (after) monitoring.
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Figure A.9. Daily AOD by Leads, Current, and Lags of IV (Distant Cities’ AOD × cosine(wind))
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Notes: This plot shows coefficients from a regression of city’s daily logged AOD on lead, current, and lag terms of the IV. IV is (logged)
inverse-distance weighted average AOD across distant cities. In this case, we use cities locate between 300 to 2000 km to own city. Each
distant city’s pollution is vectorized by local wind direction of the day, and only the component pointing from the distant city to own city
is used in constructing IV. The regression includes prefecture-city FEs and day-of-sample FEs. Standard errors are clustered at the city
level.
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Figure A.10. Binscatter of First Stage (Quarterly AOD vs. IV)
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Notes: This plot shows residualized binscatter of (logged) AOD and IV at the quarterly level. IV is inverse-distance weighted average AOD
across distant cities. Each distant city’s pollution is vectorized by local wind direction of the day, and only the component pointing from
the distant city to own city is used in constructing IV. Both AOD and IV are aggregated to the quarterly level to make the binscatter.
Each set of binscatter corresponds to IV constructed using different samples of distant cities, as shown by the legend. All plots are
residualized by prefecture-city FEs and quater-of-sample FEs.
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Table A.1. Changes in Weekly Bank Card Transaction-Pollution Gradient: “Deferrable” Consumptions
Dep. var.: Number of transactions per 100 active cards in a city×week

(1) (2) (3) (4)

Panel A. Merchant type = supermarkets (mean = 258.5)

Log(Pollution) 4.70 3.70 7.57*** 8.29***
(3.78) (4.12) (2.27) (2.80)

Log(Pollution) × 1(after monitoring) -11.3*** -11.4** -14.5*** -17.7***
(3.86) (4.77) (3.10) (3.84)

Panel B. Merchant type = dining (mean = 46.8)

Log(Pollution) 1.35* 1.63* 1.32** 1.61**
(0.792) (0.894) (0.514) (0.635)

Log(Pollution) × 1(after monitoring) -2.84*** -3.36*** -2.24*** -2.55***
(0.533) (0.625) (0.639) (0.762)

Panel C. Merchant type = entertainment (mean = 9.70)

Log(Pollution) 0.501 0.759** 0.468* 0.533*
(0.328) (0.376) (0.265) (0.305)

Log(Pollution) × 1(after monitoring) -0.720 -1.15** -0.601* -0.736*
(0.440) (0.508) (0.353) (0.415)

FEs: city X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

N 81,544 81,544 81,544 81,544

Notes: “Log(Pollution)” is logged AOD in the city×week. “region” is a conventional partition of cities by location: North (36 cities),
Northeast (38 cities), East (105 cities), Centralsouth (81 cities), Southwest (54 cities), Northwest (52 cities). Standard errors are clustered
at the prefecture-city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.2. Changes in Weekly Bank Card Transaction-Pollution Gradient: “Scheduled” Consumptions (Placebo Tests)
Dep. var.: Number of transactions per 100 active cards in a city×week

(1) (2) (3) (4)

Panel A. Merchant type = billings (mean = 59.5)

Log(Pollution) 0.293 0.772 2.68 3.58
(2.35) (2.73) (1.82) (2.19)

Log(Pollution) × 1(after monitoring) 0.959 -0.473 -3.83 -3.97
(3.94) (4.63) (3.01) (3.22)

Panel B. Merchant type = government services (mean = 12.4)

Log(Pollution) 0.372 0.335 0.218 0.568
(0.680) (0.731) (0.736) (0.859)

Log(Pollution) × 1(after monitoring) -0.572 -0.702 -0.557 -0.601
(1.00) (1.07) (1.04) (1.26)

Panel C. Merchant type = business-to-business wholesales (mean = 4.80)

Log(Pollution) -0.045 0.063 -0.050 -0.009
(0.389) (0.413) (0.341) (0.406)

Log(Pollution) × 1(after monitoring) 0.187 -0.115 0.071 0.065
(0.576) (0.604) (0.479) (0.565)

Panel D. Merchant type = cancer treatment centers (mean = 0.321)

Log(Pollution) 0.010 0.011 0.016 0.014
(0.012) (0.013) (0.011) (0.013)

Log(Pollution) × 1(after monitoring) -0.012 -0.018 -0.022 -0.023
0.016 (0.019) (0.016) (0.019)

FEs: city X X X X
FEs: week-of-year X
FEs: year X
FEs: week-of-sample X X
FEs: region×year X
FEs: region×week-of-sample X

N 81,544 81,544 81,544 81,544

Notes: “Log(Pollution)” is logged AOD in the city×week. “billings” include transactions in utilities, insurance contribution, telecommu-
nications and cable services. “government services” include transactions in political organizations, court costs, fines, taxes, and consulate
charges. “region” is a conventional partition of cities by location: North (36 cities), Northeast (38 cities), East (105 cities), Centralsouth
(81 cities), Southwest (54 cities), Northwest (52 cities). Standard errors are clustered at the prefecture-city level. *: p < 0.10; **: p <
0.05; ***: p < 0.01.
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Table A.3. Regression Discontinuity at the Huai River Before and After Monitoring
Run. var.: Degrees north of the Huai River

(1) (2) (3) (4)
Linear Quadratic Cubic LLR

Panel A. Dep. var. = AOD

Before monitoring 0.075 0.111 0.070 -0.279
(0.070) (0.096) (0.130) (0.278)

After monitoring 0.060 0.078 0.006 -0.080
(0.067) (0.095) (0.143) (0.259)

Panel B. Dep. var. = PM2.5-resid. AOD

Before monitoring 0.185*** 0.187** 0.136 0.115
(0.061) (0.083) (0.115) (0.297)

After monitoring 0.174*** 0.165* 0.073 0.151
(0.064) (0.086) (0.130) (0.165)

Panel C. Dep. var. = All-cause mortality (log)

Before monitoring 0.242 0.781*** 0.728* 0.526*
(0.166) (0.263) (0.421) (0.305)

After monitoring -0.296 -0.099 0.655 0.052
(0.219) (0.229) (0.698) (0.259)

Panel D. Dep. var. = COPD mortality (log)

Before monitoring -0.337 0.928* 2.010** 0.779
(0.389) (0.531) (0.866) (0.850)

After monitoring -0.844** -0.013 1.926** 1.132
(0.352) (0.457) (0.861) (1.416)

Panel E. Dep. var. = Heart diseases mortality (log)

Before monitoring 1.075*** 1.754*** 1.620*** 1.310**
(0.227) (0.343) (0.590) (0.529)

After monitoring 0.474* 0.891*** 1.638** 1.098***
(0.265) (0.310) (0.775) (0.381)

Panel F. Dep. var. = Cerebrovascular mortality (log)

Before monitoring 0.339 1.075*** 1.285** 1.268*
(0.228) (0.352) (0.563) (0.750)

After monitoring -0.299 0.060 1.128 1.151**
(0.268) (0.296) (0.825) (0.546)

Panel G. Dep. var. = Respiratory infection mortality (log)

Before monitoring -0.244 -0.090 0.212 -1.042
(0.336) (0.443) (0.762) (1.155)

After monitoring -0.448 -0.732 0.226 -0.578
(0.484) (0.762) (1.066) (1.640)

Notes: Each cell reports coefficient for a dummy indicating DSPs north of the Huai River in a separate regression (Observations = 99).
Columns 1-3 show parametric RD with linear, quadratic, and cubic control function for the running variable. Column 4 shows local
linear regression with triangular kernel and Imbens and Kalyanaraman (2012) bandwidth selection. In column B, residualized AOD is
constructed from a regression of DSP’s y2011-y2014 avg AOD on a linear function of y2013-y2015 avg PM2.5 allowed to vary by the two
sides of the Huai River. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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Table A.4. 2SLS Estimates of Mortality-Pollution Relationship, Before Monitoring
Dep. var.: Log mortality rate in a city×quarter

(1) (2) (3) (4) (5) (6)
“IV cities” radii (km) (0, 1000] [300, 1000] [300, 1500] [300, 2000] [300, 3000] [300, max]

Panel A. IV = Distant cities’ pollution × cosine(wind), inverse-distance weighted

Log(Pollution) 0.211** 0.257** 0.285** 0.282* 0.228 0.201
(0.103) (0.112) (0.128) (0.149) (0.211) (0.222)

First stage F -stat 60.7 15.9 19.7 16.5 13.9 11.1

Panel B. IV = Distant cities’ pollution, inverse-distance weighted

Log(Pollution) 0.165*** 0.265*** 0.395*** 0.432*** 0.459 0.189
(0.061) (0.074) (0.128) (0.158) (0.287) (0.131)

First stage F -stat 85.2 41.2 13.5 13.6 16.8 14.3

N 1,602 1,602 1,602 1,602 1,602 1,602

Notes: Sample includes 2011q1 - 1 quarter before monitoring began at the city. “Log(Pollution)” is logged AOD in the city×quarter. IV
is a function of distant cities’ AOD. Column names indicate cities included in constructing the IV. In panel A, distant city’s pollution is
vectorized by local wind direction, and only the component pointing from the distant city to own city is used in constructing IV. In panel
B, no vectorization is applied. All regressions include prefecture-city FEs, quarter-of-sample FEs, and region×year FEs. “region” is a
conventional partition of cities by location: North (36 cities), Northeast (38 cities), East (105 cities), Centralsouth (81 cities), Southwest
(54 cities), Northwest (52 cities). Standard errors are clustered at the prefecture-city level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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