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1 Introduction

Electricity is a critical input to firms and households alike. Despite its necessary role in

the economy, electricity generation produces emissions of global and local pollution that

cause hundreds of billions of dollars in damages annually.1 However, during the past decade,

emissions from electricity generation have fallen. Figure 1 shows the emissions of four major

pollutants (sulfur dioxide SO2, nitrogen oxides NOx, fine particulate matter PM2.5, and

carbon dioxide CO2) from electric power plants in the contiguous U.S. during 2010-2017.2

While emissions of each pollutant declined, some of the reductions are precipitous: SO2 fell

75%. Further, an historical perspective suggests changes in emissions after 2009 (especially

those of SO2 and CO2) clearly deviate from past trends.3

The extraordinary decline in emissions from 2010 to 2017 raises three questions. First,

how big was the corresponding decline in damages? Second, how did changes in electricity

generation and pollution valuation interact to bring about this decline? Third, what are the

implications for environmental policy?

Although the changes in emissions shown in Figure 1 are suggestive, how these aggre-

gate patterns affect welfare depends on an assessment of exposure, physical impacts, and,

ultimately, monetized damage. Three factors complicate the translation of emission changes

into damages. First, the importance to total damages of a given pollutant depends not only

on emissions but on damages per unit of emissions as well. Second, damages per unit emis-

sion from local pollutants depend on where they are emitted and their dispersion through

the atmosphere. A large decline in emissions need not imply a large decline in damages

if emissions shift from low damage locations to high damage locations. Third, emissions

produced by a particular facility may be more or less harmful over time because of changes

in the levels and demographic composition of local population, atmospheric conditions that

drive the formation of secondary PM2.5, and the accumulation of CO2 in the atmosphere.

1See National Research Council (2010), Muller, Mendelsohn, and Nordhaus (2011), and Muller (2014).
2These data are from the EPA’s Continuous Emissions Monitoring System (see Section 2 for details).

Numerical values are given in Table i in the Appendix.
3See Figure i in the Appendix. The evidence is less compelling for NOx and PM2.5. As we shall see,

however, SO2 and CO2 lead to the vast majority of the damages.
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Figure 1: Power Plant Emissions of Four Pollutants, 2010-2017

Notes: Normalized such that emissions in 2010 equal 100.

We use the AP3 integrated assessment model (Clay et al 2018) and a time-variant social cost

of carbon to account for these complexities in translating emissions into monetary damages.

We calculate that total annual damages from power plants fell from $245 billion in 2010

to $133 billion in 2017 (damages are reported in real 2014 dollars).4 Most of the decline in

damages is due to SO2 emissions, coal-fired power plants, and the East. The air quality model

in AP3 identifies the locations of the individuals harmed by emissions of local pollutants.

We calculate large reductions in damages ($1232 to $784 per capita) to residents of West

Virginia, Pennsylvania, and Ohio. Furthermore, damages from power plants are regressive

(i.e., higher damages occur to individuals with lower incomes) and the reduction in damages

is progressive.5

4This result contributes to the growing literature that studies changes in the electricity industry over the
last two decades. Some papers analyze changes in how power markets operate (Knittel et al 2015, Holladay
and LaRiviere 2017, Cullen and Mansur 2017, and Fell and Kaffine 2018) and others attribute changes in
emissions to various factors (Feng et al 2015, Kotchen and Mansur 2016, and Krumholz 2018).

5These results contribute to the literature on distributional effects and environmental justice (see for
example Gray et al 2012, Fowlie et al 2012, Muller et al 2018, and Holland et al 2019).
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We decompose the decline in total annual damages of $112 billion into four effects and a

small error.6 Three of these effects decrease damages. The technique effect, which captures

changes in emission rates at a given plant, accounts for $63 billion in decreased damages.

The composition effect, which captures shifts in generation from dirty to cleaner power

plants, accounts for $60 billion. The scale effect, which captures decreasing aggregate fossil

fuel generation, accounts for $25 billion. The fourth effect, valuation, captures changes in

damages from a unit of pollution over time. This effect increased damages by $35 billion.

Dividing these four main effects into component parts provides additional insight. For ex-

ample, the most important contributor to the scale effect is renewable generation and half

of the composition effect is due to exit of coal plants.

What are the ramifications of these considerable changes in damages for environmental

policy? To answer this question we estimate the marginal damages from electricity con-

sumption.7 Marginal damages declined in the East from 8.6¢ per kWh in 2010 to 6.0¢ per

kWh in 2017. In the West and Texas, the marginal damages in 2010 are much lower (2.0¢

in the West and 2.8¢ in Texas) but have a small but statistically significant increase over

this time period. These patterns suggest convergence across regions. We then analyze what

these changes in marginal damages imply for one policy that encourages grid electricity con-

sumption (subsidies for electric vehicles) and another policy that discourages it (subsidies

for solar panels). We calculate that, from 2010 to 2017, electric vehicles switch from being

dirtier on average than their gasoline-powered counterparts to being cleaner, though con-

6Oaxaca (1973) and Blinder (1973) pioneered the use of econometric decomposition to analyze wage
discrimination by decomposing wage differentials into components from different observables (e.g., education)
and from different estimated coefficients (indicating unexplained differences or discrimination). See Fortin
et al (2011) for a summary of decompositions in labor economics. Other papers use decompositions to study
changes in pollution, trade, energy use, and combinations thereof. See Sun (1998), Ang and Zhang (2000),
Antweiler et al (2001), Metcalf (2008), Levinson (2009), Fortin et al (2011), Levinson (2015), Shapiro and
Walker (2018).

7We extend the earlier analyses of Graff Zivin et al (2014) and Holland et al (2016). Our analysis is
distinguished by the more recent time frame, our multi-pollutant approach, and estimation of standard
errors. Siler-Evans et al (2013) and Callaway et al (2017) use an alternative approach to estimate damages
as a function of fossil electricity generation within an electricity grid region. In sensitivity analyses, we offer
comparable estimates and extend this work by instrumenting for endogenous generation. Other alternatives
use generation cost modeling to simulate grid dispatch and calculate marginal emissions factors: Denhom
et al (2013) and McLaren et al (2016); or simply analyze the average emissions factor e.g., within a state:
Samaras & Meisterling (2008), Michalek et al (2011), and Nealer et al (2015).
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siderable cross-sectional heterogeneity remains. The environmental benefit of solar panels

decreases in the East but increases in the West and Texas.

An important caveat is that we do not attempt to assign causal implications to any

one of the myriad public policies and market forces that influence electricity consumption,

generation, and pollution control. On the consumption side, market forces include the rise

in data centers, electrification of transportation, and improvements in heating and cooling

technologies, while public policies encourage energy efficiency and technology adoption.8 On

the generation side, technological improvements in natural gas development and renewable

generation combined with public policies led to a substantial reduction in the relative price of

generating electricity from gas and renewable power plants.9 This in turn decreased wholesale

electricity prices, reduced generation from baseload coal-fired and nuclear generation, led to

plant closings, and increased the need for generation that can quickly respond to intermittent

renewable generation. As for pollution control, between 2010 and 2017, the National Ambient

Air Quality Standards (NAAQS) were tightened for both PM2.5 and tropospheric ozone O3.

States with counties that violate the NAAQS often focus emission reductions on large point

sources such as power plants. There were also a number of active and proposed regulations

during this time that may have influenced adoption of pollution control technology.10 Against

this backdrop of changing market forces and policies we next examine the change in total

damage, before exploring the decomposition, and the implications for environmental policies.

2 What Happened to Damages

2.1 Methods and Data

To determine damages from air pollution, we define the damage valuations vpit as the damage

per unit of pollutant p emitted by source i at time t and epit as the quantity of emissions.

8Example policies include weatherization programs, Energy Star rebates for efficient appliances, and
electric vehicle subsidies.

9Example policies include renewable production tax credits and state level renewable portfolio standards.
10These include Acid Rain Program (ARP), the Clean Air Interstate Rule (CAIR), and the Cross-State

Air Pollution Rule (CSAPR), the Clean Power Plan (CPP), and Mercury and Air Toxics Standards (MATS).
Note these regulations may also effect generation.
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Total damages Dt are given by

Dt = ∑
p
∑
i

vpitepit. (1)

For the global pollutant (CO2), the damage valuations are the same across all plants and

are based on EPA’s social cost of carbon (SCC). The SCC is $35.36 in 2010 and grows at

3% annually.11

For local pollutants (SO2, NOx, and PM2.5), we use the AP3 integrated assessment model

to determine damage valuations. AP3 accounts for chemical and physical processes in the

atmosphere to map emissions of pollutants from a source location (i.e., an electric power

plant) into ambient concentrations of PM2.5 at various receptor locations (i.e., counties in

the contiguous United States). It then maps these ambient concentrations into premature

mortality risk using peer-reviewed concentration-response functions.12 Finally, it monetizes

mortality risk using the value of statistical life (Viscusi and Aldy 2003). Let δpijt be the

damages in county j due to emissions of a unit of pollutant p from plant i as determined by

AP3. The damage valuations for local pollutants given by

vpit = ∑
j

δpijt.

Because atmospheric chemistry, background (non-power plant) pollution, and population

change over time, the damage valuations change over time as well. AP3 produces damage

estimates for the years 2008, 2011, and 2014, which are the data years for the National

Emissions Inventory (NEI), a nationally comprehensive inventory of emissions in the U.S.13

For 2010, 2012, and 2013, we use linear interpolation to infer valuations from the NEI years

and, for 2015 on, we hold valuations at 2014 levels.14 Table ii in the Appendix shows a

summary of damage valuations over time.

11See https://19january2017snapshot.epa.gov/climatechange/social-cost-carbon_.html.
12The prior version of AP3, known as AP2, tracked other consequences of exposure such as morbidity

and visibility. AP3 does not include these endpoints because they contribute a small share of total damage
(<5 percent), and due to concerns about double-counting illness valuations that ultimately culminate in a
premature death. Other differences between AP3 and AP2 are discussed in Online Appendix A.

13NEI are published with a three year lag (USEPA, 2011; 2014; 2017).
14Alternatively, we could use linear extrapolation to extend the trend from 2011 to 2014 forward to 2017.

As shown Table B-16 and Figure B-1 in Online Appendix B, our results are robust to this alternative.
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By calculating total damage as damage valuation times emissions, Eq. (1) assumes that

local damage valuations are independent of the aggregate level of emissions from power

plants. We discuss the validity of this assumption in the Appendix and analyze the impli-

cations for our results if it does not hold in Online Appendix A. Briefly, if local damage

valuations are not independent of aggregate emissions, Eq. (1) understates the decline in

damages. Furthermore, an alternative procedure that holds damage valuations (the $/ton

damages) fixed at their final 2017 values overstates the decline in damages. Either way,

the choice of procedure does not significantly affect our results for the decomposition and

marginal damage ($/kwh) estimates.

The U.S. electricity grid is divided into the Eastern, Western, and Texas Interconnections,

and only trivial amounts of electricity flow across their boundaries. For this reason, we

calculate many of our results at the interconnection level. Throughout the paper we refer to

the quantity demanded of electricity as load, and the quantity supplied as generation.15

Our primary data source is EPA’s Continuous Emissions Monitoring System (CEMS),

which reports hourly electricity generation and emissions of SO2, NOx, and CO2 at approxi-

mately 1500 regulated fossil-fuel fired power plants (generally above 25 MW capacity). Data

from the NEI is used to impute PM2.5 emissions.16 Additional sources, including Federal En-

ergy Regulatory Commission (FERC), EPA’s Emissions & Generation Resource Integrated

Database (eGRID), and Energy Information Administration (EIA), provide data on load,

retail sales, regulations, and plant characteristics and locations. The Appendix gives more

details on our data and the AP3 model.

2.2 Total Damages

Evaluating Eq. (1) for each year gives the damages shown in the rows labelled “Total” in

Table 1. Total damages from emissions of pollutants by CEMS power plants in 2010 were

$245 billion, or about $800 per capita. By 2017, damages had fallen 46% to $133 billion.

15In theory these should be equal, but in practice they may differ due to reporting practices, line losses,
and net imports from Mexico and Canada.

16For power plants not identified in the NEI, we assign an average PM2.5 emissions rate.
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This is a decline of $112 billion or about $369 per capita, which is a substantial benefit to

human health and the environment.

To analyze the sources of the decline in damages, we break up the sums in Eq.(1) in

several ways. Panel A in Table 1 shows the damages by pollutant. In 2010, SO2 emissions

account for the majority of damages ($137 billion) followed by CO2 emissions ($87 billion)

and NOx and PM2.5 emissions ($18 and $10 billion). By 2017, this order had changed with

CO2 emissions accounting for the majority of the damages followed by SO2, NOx, and PM2.5.

About 88% of the decline in damages is due to reduction in damages from SO2 emissions.

The large decline in SO2 caused it to become a less important source of harm. Panel B shows

the damages by fuel type. Damages from coal-fired power plants decline dramatically over

time. They account for more than 100% of the decline from 2010 to 2017 because damages

from gas-fired power plants actually increased. Panel C shows the damages by electricity

grid interconnection. The vast majority of damages come from power plants in the East and

almost all of the decline in damages from 2010 to 2017 can be attributed to the East. In

fact, damages from power plants in Texas increased slightly. Taken together, the results in

Table 1 show that the dominant sources of the decline in damages are from SO2 emissions,

from coal plants, and from plants in the East.

To analyze who benefited from the decline in damages, we shift our focus to damages

received by a location. When calculating damages received, we include only local pollution.17

Due to the dispersal of pollutants in the atmosphere, a given location may receive damages

from many power plants. Using the δpijt from AP3, we can write the damages received by

county j as

∑
p
∑
i

δpijtepit.

Aggregating these damages and accounting for population gives damages received per capita

by state. Figure 2 shows the decline in damages received over the period 2010-2017. The

declines are substantial throughout the Northeast and Mid-Atlantic states. The average

individual in West Virginia received damages of $1746 in 2010 and $492 in 2017, for a decline

of $1253. Pennsylvania and Ohio also received large per capita reductions in damages ($988

17The social cost of carbon measures global damages from carbon over hundreds of years. It is difficult to
attribute this damages to specific places in the US.
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Table 1: Damages by Pollutant, Fuel, and Interconnection

2010 2011 2012 2013 2014 2015 2016 2017

Panel A: Pollutant
Local Pollution

SO2 137.6 122.0 92.5 94.8 98.7 68.5 44.1 38.6
NOx 18.2 17.4 15.9 16.9 17.1 14.1 12.3 10.7
PM2.5 10.4 9.6 9.3 9.5 9.5 8.9 8.6 8.0

Total Local 166.1 149.0 117.7 121.1 125.4 91.6 65.1 57.3
Global Pollution

CO2 78.8 77.6 75.1 78.2 80.7 77.9 76.3 75.4
Total 244.9 226.7 192.8 199.3 206.0 169.4 141.4 132.7

Panel B: Fuel
Coal 224.6 202.8 167.1 175.1 181.8 141.3 111.2 105.0
Gas 19.3 22.5 24.8 22.1 21.9 25.9 28.1 25.9
Oil 0.7 1.0 0.5 1.2 1.3 1.2 0.7 0.5
Other 0.2 0.4 0.4 1.0 1.1 1.1 1.3 1.4
Total 244.9 226.7 192.8 199.3 206.0 169.4 141.4 132.7

Panel C: Interconnection
Eastern 213.7 196.5 163.8 166.9 173.6 139.2 113.5 103.5
Western 17.0 15.7 16.1 17.7 17.2 16.7 14.9 14.7
Texas 14.2 14.5 12.9 14.7 15.3 13.5 13.1 14.5
Total 244.9 226.7 192.8 199.3 206.0 169.4 141.4 132.7

Notes: Damages created in billions of 2014$ aggregated across all CEMS power plants using AP3 damage
estimates.
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and $775). Damages and declines are both much smaller in the West. The average individual

in California received damages of $33 in 2010 and $22 in 2017.18

Figure 2: Reduction in Local Damages Received Per Capita (2014$)

Using data on census block groups’ median income and demographics, we can calculate

the local pollution received by income and demographic groups within each county.19 Dam-

ages received from power plant emissions are regressive in 2010 and in 2017 both overall and

within racial groups. For example, in 2010 an individual in the lowest income decile received

damages of $610 while an individual in the highest income decile received damages of $462.

By 2017 these damages had fallen to $212 and $152 respectively. Because the decline is

larger for lower income deciles, the decline is progressive.

18Online Appendix A contains maps of damages received by county for each year in 2010-2017 (see Fig-
ures A-3 to A-10), the decline in damages over 2010-2017 by county (see Figure A-11) and the data used to
generate Figure 2 (see Table A-1).

19For details see Online Appendix A and supporting Tables A-2 to A-4.
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3 How Damages Declined

We use a decomposition technique to analyze the ways in which total damages declined. As

a preliminary step, we modify Eq. (1) to account for fossil electricity generation. Letting qit

be electricity generation at fossil plant i at time t and Qt = ∑i qit be total fossil generation,

Eq. (1) becomes

Dt = ∑
i

∑
p

vipteipt = ∑
i

∑
p

vipt
eipt
qit

qit
Qt

Qt = ∑
i

∑
p

viptriptθitQt, (2)

where ript = eipt
qit

is the emissions rate for pollutant p and θit = qit
Qt

is the share of fossil electricity

generated.20

Next we define the ∆ operator as the difference across year t and year 0 (for example

∆Q = Qt −Q0). Differencing both sides of Eq. 2 gives our decomposition:

∆D = ∑
i

∑
p

vipripθi∆Q

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scale

+∑
i

∑
p

viprip∆θiQ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Composition

+∑
i

∑
p

vip∆ripθiQ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Technique

+∑
i

∑
p

∆vipripθiQ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Valuation

+Error, (3)

where the bar operator indicates our choice of base, which we define to be the average of

values in the initial and final years (for example Q = 1
2(Qt +Q0)). This is analogous to a

Marshall-Edgeworth price index.21 The structure of Eq. (3) resembles the product rule from

differential calculus: we isolate the change in one variable while holding the other variables

constant at the base value. However, it has a non-zero error due to the discrete change in

time. We give a formula for the error in the Appendix. Our decomposition breaks up the

decline in damages into four effects: scale, composition, technique, and valuation.

Table 2 shows these effects over 2010 to 2017. First consider the U.S. total column, which

aggregates damages over all three interconnections. The scale effect (totaling -$25 billion)

20For plants that enter or exit, we construct a panel across the two years by setting eipt = 0 and qit = 0
for years in which the plant is not generating. When rip0 or ript is undefined, we set it equal to its value
when it is observed. For example, with a plant that enters we set rip0 equal to ript, which is well-defined.
We follow a similar procedure for vipt. This ensures that entry and exit do not contribute to the technique
effect (since emissions rates are constant) or the valuation effect (since valuations are constant).

21If the base corresponds to values in the initial time period, then the decomposition is analogous to a
Laspeyres price index, and if the base corresponds to values in the final time period, then the decomposition
is analogous to a Paasche price index.
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is the decrease in damages that can be attributed to changes in overall fossil generation,

holding valuations, emissions rates, and generation shares constant at their average levels.

Similarly, holding the other variables constant, the composition effect (totaling -$60 billion)

is the decrease in damages from changes in fossil generation shares across power plants. The

technique effect (totaling -$63 billion) is the decrease in damages from changes in power

plant emissions rates. The valuation effect (totaling $35 billion) is the increase in damages

from changes in AP3 valuations and the social cost of carbon. The error is trivial.22 The

table also shows the results for the Eastern Interconnection, which accounts for the bulk of

the decline in damages.23

To better understand each of the effects, we further divide them into component parts

and provide additional context. We begin with the scale effect. Here we consider changes in

load and generation from wind, solar, nuclear, and hydropower.24 To do this, we note that

the change in fossil generation, ∆Q, in Eq. (3) can be written:

∆Q = ∆L −∆R −∆N −∆H −∆Other,

where ∆L is the difference in load, ∆R is the difference in renewable generation, ∆N is

the difference in nuclear generation, ∆H is the difference in hydroelectric generation, and

∆Other is the residual. We use data on load from FERC form 714 and data on renewable,

nuclear, and hydroelectric generation from EIA form 923 (see Table iii in the Appendix).

Substituting for ∆Q in Eq. (3) gives the results under the Scale heading in Table 2. The

increase in renewable generation is by far the biggest contributor to the scale effect as it

reduced damages by $16 billion.

Anything that changes the generation shares (e.g., market forces or regulations that

shift generation from a coal-fired to a gas-fired plant or cause entry/exit) contributes to the

composition effect. The results under the Composition heading in Table 2 show the effect for

22Tables B-8 to B-10 present results using the Laspeyres base, the Paasche base and an yet another base
we call the average base. These bases yield much larger errors.

23See Tables B-4 to B-7 in Online Appendix B for decompositions for each interconnection.
24There could also be a contribution from efficiency policy, but we cannot observe counterfactual electricity

consumption. Efficiency policy may have offset increases in damages that would have occurred due to
population growth and economic growth induced increases in electricity consumption.
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Table 2: Decomposition of Change in Damages from 2010-2017 (billions of 2014$)

U.S. Eastern Fixed
Total Interconnection Valuations

Scale (Total Fossil Generation)
Load −3.6 −10.0 −3.9
Renewables −15.9 −9.1 −17.6
Nuclear 0.2 −1.2 0.2
Hydroelectric −3.0 −0.5 −3.3
Other −2.9 −3.3 −3.2

Total Scale −25.2 −24.1 −27.9
Composition (Generation Shares)

Coal −32.0 −28.8 −35.2
Switch from Coal −5.3 −5.0 −5.8
Gas 4.5 4.3 4.9
Entry of Coal 2.4 1.9 2.4
Entry of Gas 2.7 2.1 2.7
Exit of Coal −31.1 −30.5 −37.8
Exit of Gas −0.4 −0.2 −0.5
Other −0.7 −0.7 −0.8

Total Composition −60.0 −56.9 −70.1
Technique (Emissions Rate)

Coal - New SO2 Control Tech. −35.7 −33.8 −39.3
Coal - No New Tech. −8.9 −6.9 −9.9
Switch from Coal −15.9 −16.0 −17.6
Gas −2.5 −2.3 −2.7
Other 0.4 0.4 0.5

Total Technique −62.6 −58.6 −69.0
Valuation

SO2 15.7 13.8 0.0
NOx 2.4 1.8 0.0
PM2.5 1.2 1.0 0.0
CO2 16.0 12.4 0.0

Total Valuation 35.3 28.9 0.0
Error 0.3 0.4 0.5

Total −112.1 −110.2 −166.6

Notes: Total changes do not exactly match the aggregate decline in damages in Table 1 because the decom-
position requires that we drop plants reporting zero generation. Fuel types are from eGRID. “Coal” and
“Gas” denote plants whose primary fuel type did not change. “Switch from Coal” denotes plants whose
primary fuel type is coal in 2010 but switches to gas or other fuels in 2017. “Entry” denotes plants that were
not in the 2010 sample and “Exit” denotes plants that were not in the 2017 sample. “Other” denotes the
residual category. “New SO2 Control Tech” denotes plants that installed SO2 emissions control technology
between 2010 and 2017.
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subsets of the power plants. The decline in generation share from coal plants that operated

throughout the time period reduced damages by $32 billion. This is consistent with Table iii,

which shows that coal’s share of fossil generation fell from 64% to 38%. The exit of coal

plants reduced damages by an additional $31 billion.25 The increase in generation share

from existing gas plants and the entry of new coal and gas plants only increased damages

modestly.

The technique effect captures anything that changes a plants emissions rate including:

installing emissions control equipment, such as scrubbers or low-NOx burners; switching

to low-sulfur coal; replacing a coal-fired boiler with a new gas-fired boiler; or switching

generation at the plant from existing coal generating unit to an existing gas unit. The

results under the Technique heading in Table 2 show the effect for different subsets of the

power plants. The bulk of the technique effect ($36 billion) comes from coal plants that

installed new emissions control technologies. Figure 3 shows a histogram of installation

year for technologies to control SO2 emissions and the price of SO2 allowances in EPA’s

ARP auction. There were a substantial number of installations since 2010.26 Figure 3 also

shows the regulations that are binding on the plants.27 Before 2010, most pollution control

equipment was installed at plants under the ARP or New Source Performance Standard

(NSPS). In 2010 the ARP SO2 price fell to $40 per ton from over $1000 per ton in 2006

but emissions control continued to be installed to comply with other regulations. Additional

installations in 2015-17 were installed at plants under MATS, which was announced in 2011.

Because our emissions rates are measured at the plant level, switching to cleaner fuels

within a power plant also contributes to the technique effect. About $16 billion of the

technique effect is from plants that have coal as their primary fuel source in 2010 but not in

2017. These plants could have replaced coal-fired boilers with gas-fired boilers or switched

generation from existing coal-fired to gas-fired unit. Table B-27 in Online Appendix B shows

25See Tables B-21 to B-26 in Online Appendix B for additional information on plant entry and exit.
26Flue gas desulfurization, or scrubbers, are one type of post-combustion pollution control equipment that

primarily removes particulates such as SO2. Scrubbers are also one compliance strategy for plants governed
by MATS. Once a scrubber is installed it likely remains active through the life of the plant. Dry sorbent
injection is another type of pollution control technology for SO2. Figure B-7 in Online Appendix B shows
similar data for NOx pollution control equipment (selective catalytic reduction).

27The EPA Air Markets Program reports which regulations apply to each plant in CEMS.
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Figure 3: Power Plant SO2 Emissions Control Installations

Notes: The year is the first year a pollution control technology is active as
indicated by EIA 860. “ARP” means Acid Rain Program; “CAIR” is the
Clean Air Interstate Rule; “MATS” is the Mercury and Air Toxic Standard;
and “NSPS” is the New Source Performance Standard.
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that the within-plant share of generation by coal decreased while the gas share increased from

2010 to 2017.

Finally, the valuation effect shows that changes in valuations increased damages by $35

billion. The valuation of damages from a unit of local pollution emitted at a power plant

may change over time due to changes in factors such as population, atmospheric chemistry

and ambient pollution concentrations. The SCC also increases over this time period. The

results under the Valuation heading in Table 2 show the effect by pollutant. The bulk of the

valuation effect comes from SO2 and CO2.

The final column of Table 2 exhibits the decomposition holding all damage valuations

fixed at their values in the final year. As discussed in Online Appendix A, this procedure

overstates the reduction in damages even if our assumption that emissions are independent

of damage valuations does not hold. So we expect that the actual reduction in damages is no

greater than $167 billion. By definition, the valuation effect is equal to zero in this column.

But the relative importance of the other effects do not change significantly: the scale effect

is 17%; the composition effect is 42%; and the technique effect is 41%.28

Although Table 2 has the decomposition of the overall change in damages from 2010 to

2017, we can also do the decomposition by year (e.g., decompose the change in damages

from 2010 to each year). The results are shown in Figure 4.29 Damages generally decline

throughout the sample, and the relative importance of the different effects is consistent in

most years. However early in the sample the composition effect dominates. This effect,

which is sensitive to natural gas prices, is relatively large in 2012 and 2016 when gas prices

were low. The technique effect is particularly strong toward the end of the sample. The

valuation effect, which increases until 2014 and then is roughly constant, illuminates our

assumptions about damage valuations.

28In Table iv in the Appendix, we decompose emissions rather than damages. The technique effect is more
prominent for SO2.

29The data for this figure are given in Table B-2 in Online Appendix B. Table B-3 reports small standard
errors for these effects. Standard errors are unnecessary since we have a census of CEMS power plants.
However they inform whether the reductions are similar across plants or are driven primarily by outliers.
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Figure 4: Decomposition of Change in Damages by Year

Notes: All changes relative to 2010.
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4 Marginal Damages and Policy Analysis

Optimal environmental policies for electricity use depend on marginal damages. Although

electricity generation has become considerably cleaner from 2010 to 2017, this does not

necessarily imply that marginal damages have decreased as well. In this section, we estimate

damage functions and marginal damages and then use the latter to analyze policies for

electric vehicle and solar panel adoption.

4.1 Damage Functions

Consider a damage function that relates air pollution damages to electricity use. Figure 5

illustrates two possible ways in which a damage function may change. In case A on the left,

the damage function rotates down, so that marginal damages do indeed decrease as electricity

generation becomes cleaner. For example, if dirty coal plants retire and are replaced by

cleaner natural gas plants, this leads to lower total damages and lower marginal damages. In

case B on the right, however, the damage function shifts to the right but the slope does not

change. For example, if renewable generation increases, this leads to lower total damages,

but no change in marginal damages.

Figure 5: Shifts in the Damage Function: Two Possibilities

Electricity Load (MW)Electricity Load (MW)

Damages Damages

Case A Case B
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Empirically assessing changes in damage functions requires several choices. First, the

geographic scope must be determined. Our main analysis focuses on the electricity inter-

connections: East, West, and Texas.30 Second, the measure of electricity use must be de-

termined. We use load as our primary measure of electricity use but revisit this assumption

below.

We first use non-parametric regressions to estimate the damage function using flexible

functional forms. Figure 6 shows local polynomial regressions for each of the three intercon-

nections in the early (2010-12) and late (2015-17) years of our sample. For the East, the

damage function shifts down between the early and late years indicating that electricity is

cleaner at all load levels. The marginal damage (slope) is positive, and the function appears

to be flatter for 2015-17. The West and Texas are different. There is no clear downward

shift in the damage function. In fact, for these regions the more recent estimated damage

function is lower for low load levels, but higher for high load levels. This suggests that

marginal damages are increasing over time in these regions.31

The univariate non-parametric regressions do not show evidence of substantial non-

linearities. To examine the effect of adding control variables, we regress damage and load on

hour of day by month of sample fixed effects, and then repeat the non-parametric regressions

on the residuals. The results are shown in Figure C-4 in Online Appendix C. Once again we

see no substantial non-linearities, so we turn to linear regression.

4.2 Estimating Marginal Damages

Parametric regression analysis allows us to estimate marginal damages precisely and to

statistically test whether marginal damages changed. Our main estimating equation is

Dt = βLoadt + γLoadtY eart + αmh + εt, (4)

30We explore other definitions of geographic scope in Appendix Table C-4.
31Figures C-1to C-3 in Online Appendix C also present the damage functions as functions of fossil gener-

ation, which shows that the general relationship between load and damages is similar whether we measure
electricity usage by load or by fossil generation.
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Figure 6: Local polynomial estimates of damage functions

Notes: Graphs are local polynomial regressions of hourly damages on
hourly load for the three interconnections: Eastern, Western, and Texas.
Load measured in thousands of MWhs, and damages measured in millions
of 2014$. In East, mean load is 339 and mean damages is 21. In Texas,
mean load is 39, and mean damage is 1.8. In West, mean load is 85, and
mean damage is 2.2.
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where Dt is damages from emissions in hour t, Loadt is load in hour t, αmh are month of

sample times hour fixed effects (8 years * 12 months * 24 hours fixed effects), and Y eart

is the annual trend since 2010. The coefficients of interest are β, which is the marginal

damage, and γ, which is the annual change in the marginal damage. We specify units such

that marginal damages are in $ per kWh and estimate Newey-West standard errors using 24

hour lags.

The results of estimating Eq. (4) are given in Table 3. For the East, the marginal damage

estimate over the sample is $0.073 per kWh with a tight standard error. This is a substantial

cost relative to the average retail price of electricity($0.13 per kWh in 2017).32 The year

trend shows a statistically significant decrease in marginal damages over this time frame

starting at about $0.086 per kWh in 2010 and decreasing by about $0.0038 per kWh per

year to about $0.06 per kWh in 2017. Figure 7 illustrates this trend line and shows that the

annual point estimates are tightly clustered around the trend line.33 In the West and Texas,

the marginal damages estimated over the sample are much lower: $0.025 per kWh in the

West and $0.032 per kWh in Texas. However, the trends show increasing marginal damages

of $0.001 per kWh per year. This increase is small but is statistically significant. Annual

estimates with confidence intervals, shown in Figure 7, are again tightly clustered around

the increasing trend lines.

Marginal damages are appropriate for policy, but total damages and average damages

(damages divided by load) are frequently used measures of grid cleanliness.34 To compare

these measures, we calculate compound annual growth rates. The results are shown in Ta-

ble 4. The compound annual growth rates for total and average damages are similar to each

other, but they substantially overstate the decline in marginal damages in all three regions.

These differences suggest that focusing on total or average damages gives a misleading impli-

cation for the degree to which policies may need to be adjusted due to the cleaner electricity

generation.

32From the EIA: https://www.eia.gov/energyexplained/index.php?page=electricity_factors_

affecting_prices.
33The annual point estimates and standard errors are reported in Table C-1 in Online Appendix C.
34For example, see the electric vehicle webpage for the Union of Concerned Scientists. https://www.

ucsusa.org/clean-vehicles/electric-vehicles/life-cycle-ev-emissions#.W8y2TVJRcdU. See Ta-
ble C-5 in Online Appendix C for average damages.
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Table 3: Marginal Damage Estimates: Main

Variables (1) (2)
East

Load (β) 0.07321∗∗∗ 0.08644∗∗∗

(0.00056) (0.00077)
Load Trend (γ) −0.00377∗∗∗

(0.00019)

West
Load (β) 0.02492∗∗∗ 0.02032∗∗∗

(0.00025) (0.00039)
Load Trend (γ) 0.00122∗∗∗

(0.00010)

Texas
Load (β) 0.03227∗∗∗ 0.02825∗∗∗

(0.00044) (0.00072)
Load Trend (γ) 0.00110∗∗∗

(0.00019)

Observations 70,128 70,128
*** p<0.01, ** p<0.05, * p<0.1

Newey-West Standard errors (24 hour lag)

Notes: Dependent variable is hourly damages in the interconnection. Coefficient estimates in $ per kWh.
Regressions are unweighted and include month of sample by hour fixed effects, i.e., 2,304 (=8*12*24) fixed
effects.

Table 4: Compound Annual Growth Rates 2010-2017

Interconnection Total Damages Average Damages Marginal Damages
East -9.84% -9.32% -5.07%
West -2.08% -2.70% 5.14%
Texas 0.38% -1.29% 3.51%

Notes: Compound annual growth rate is defined as (end value/begining value)1/7 − 1.
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Figure 7: Marginal Damages by Interconnection

Notes: Estimates in $ per kWh. Predicted trends are from regressions
reported in Table 3. Annual point estimates with 95% confidence intervals
are from regressions reported in Table C-1.

Our main results weight all hours equally. These results can be used to evaluate a

use of electricity that is distributed uniformly across hours and seasons, e.g., refrigeration.

However, other electricity uses may have different profiles. For example, electric vehicle

charging occurs primarily in the nighttime with some charging at midday but very little

charging during peak commuting hours. Electric lighting is primarily at night, whereas

industrial applications may use electricity primarily during the day. Air conditioning, one

of the heaviest uses, occurs primarily during the day in the summer months. Table 5 shows

results for a variety of profiles. For the East, relative to the main results, the electric vehicle

charging profile shows increased marginal damages and a steeper decline. Conversely, the

Day Time Hours profile shows lower marginal damages and a shallower decline. Overall, the

differences are larger across regions than across profiles within a region.

We apply the results in Table 5 to assess two prominent environmental policies. First is

the subsidy for electric vehicle purchases. Electric vehicles cause air pollution damages due

to the emissions from power plants that charge them. Gasoline vehicles cause damages due to
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Table 5: Heterogeneous Marginal Damage Estimates

East West Texas
Level Trend Level Trend Level Trend N

Main Results
0.0864*** -0.0038*** 0.0203*** 0.0012*** 0.0283*** 0.0011*** 70,128
(0.0008) (0.0002) (0.0004) (0.0001) (0.0007) (0.0002)

Electric Vehicle Charging
0.0918*** -0.0042*** 0.0213*** 0.0013*** 0.0309*** 0.0006*** 70,128
(0.0009) (0.0002) (0.0005) (0.0001) (0.0009) (0.0002)

Day Time Hours (8:01am to 6:00pm)
0.0827*** -0.0034*** 0.0196*** 0.0012*** 0.0245*** 0.0017*** 29,220
(0.0005) (0.0001) (0.0002) (0.0001) (0.0005) (0.0001)

Night Time Hours (6:01pm to 8:00am)
0.0903*** -0.0042*** 0.0213*** 0.0012*** 0.0317*** 0.0006*** 40,908
(0.0005) (0.0001) (0.0003) (0.0001) (0.0005) (0.0001)

Summer (May-October)
0.0868*** -0.0046*** 0.0206*** 0.0012*** 0.0267*** 0.0009*** 35,328
(0.0009) (0.0002) (0.0005) (0.0001) (0.0010) (0.0003)

Winter (November-April)
0.0863*** -0.0028*** 0.0198*** 0.0012*** 0.0293*** 0.0015*** 34,800
(0.0013) (0.0003) (0.0007) (0.0002) (0.0011) (0.0003)

Summer Day Time
0.0812*** -0.0039*** 0.0199*** 0.0012*** 0.0241*** 0.0015*** 14,720
(0.0006) (0.0001) (0.0003) (0.0001) (0.0006) (0.0002)

Notes: *** p<0.01, ** p<0.05, * p<0.1, Newey-West Standard errors (24 hour lag). “Electric Vehicle Charging
Profile” weights all hours according to a charging profile from EPRI. Other profiles restrict the sample to
the indicated hours. “Level” refers to β and “Trend” refers to γ in Eq.(4).
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emissions from their tailpipes. Holland et al (2016) show that the environmental benefit of an

electric vehicle is equal to the damages from the forgone gasoline vehicle minus damages from

the electric vehicle. We use estimates of marginal damages in the electric vehicle charging

profile row in Table 5 to determine the damages from the electric vehicle. For the gasoline

vehicle, we use emissions from Holland et al (2016) and damage valuations from AP3 to

determine damages. Table 6 shows the summary statistics for the distribution of the annual

environmental benefit across all counties in the contiguous U.S. For 2010, the average value

of the environmental benefit (assuming 15,000 miles per year) is slightly negative (-$81 per

year) with a substantial range across counties from -$390 to $781. In 2017, the environmental

benefit increases by about $150 so the average is now positive. The increase is largest in the

East: about $200 across the distribution. Even though marginal damages from electricity

use increased in both the West and Texas, the environmental benefit of electric vehicles has

increased in these regions because damages from gasoline vehicles grew faster. Overall, the

environmental benefit increases over time, but considerable heterogeneity across counties

remains. Holland et at (2016) show that the optimal purchase subsidy for an electric vehicle

is equal to the lifetime environmental benefit. For comparison, all electric vehicles in the

U.S. are eligible for a federal tax credit of $7,500 and many states offer additional incentives.

Using the 2017 environmental benefits and assuming a 10 year lifetime and a 3% discount

rate, the federal subsidy is much greater than the NPV of the average lifetime environmental

benefit ($630), but smaller than the NPV of the maximum lifetime environmental benefit

($8250).

The second policy is the subsidy for household solar adoption. The electricity from solar

panels reduces the demand for grid electricity and thus reduces air pollution damages. In

this case the environmental benefit is simply the product of the electricity created by the

panel and the marginal damages from electricity generation in the interconnection in which

the panel is located. Following the methodology in Siler-Evans et al (2013), Vaishnav et al

(2017), and Sexton et al (2018), we combine information on solar insolation with marginal

damage estimates from the Day Time Hours row in Table 5.35 Table 7 shows the summary

statistics for the distribution of environmental benefit per year for a 6 kW system across

35See details on solar insolation in Online Appendix C.
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approximately 83,000 unit areas in the contiguous U.S. Overall the mean benefit is $418 in

2010 with a range across locations from $94 to $830. In 2017, the mean benefit fell to $356 and

the range narrowed. Across regions, the environmental benefit is largest in the East because

the grid is dirtiest. The environmental benefit decreased in the East (because marginal

damages fell) but increased in the West and Texas (because marginal damages increased).

Overall, these changes caused the range of the environmental benefit to become smaller in

2017. Solar panels are eligible for a tax credit of 30%, which implies a subsidy $5652 for the

average system.36 Using the 2017 environmental benefits and assuming a 20 year lifetime

and a 3% discount rate, the average environmental benefit ($5455) is approximately equal

to the subsidy.

4.3 Robustness

The regression in Eq. (4) estimates the damage function as the relationship between elec-

tricity load and damages. This may underestimate marginal damages if load is correlated

with omitted non-fossil generation. An alternative specification that estimates damages as

a function of fossil generation may have endogeneity bias. This bias can be large if in-

terregional trading is not modeled.37 Table C-3 in Online Appendix C explores potential

endogeneity bias in our estimates. In particular, we use two alternative specifications: one

with fossil generation as the independent variable and another that instruments for fossil

generation with electricity load. Table C-3, which shows the three specifications for levels

and annual trend models, finds that the bias is not extreme, likely due to our aggregation

to the interconnection level.

Our modeling requires assumptions about key parameters. Table 8 explores the ro-

bustness of our marginal damage estimates to other reasonable assumptions about these

parameters. Our main results use AP3 damage valuations for NEI years (2008, 2011 and

2014) and interpolate valuations for non-NEI years. Column (2) presents estimates in which

all damage valuations are held fixed at the final year values.38 Under the fixed valuations,

36https://www.energystar.gov/about/federal_tax_credits/2017_renewable_energy_tax_

credits. The average cost of a 6 kW system is $18840.
37Marginal distributional losses are another possible source of bias (Borenstein and Bushnell 2018).
38Table C-2 in Online Appendix C shows the results for both levels and trends.
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Table 6: Environmental Benefit of an Electric Vehicle ($ per year)

Interconnection Year Min Mean Max
East 2010 -390 -192 657

2017 -186 13 939

West 2010 20 233 781
2017 0 258 910

Texas 2010 -24 75 183
2017 -14 107 246

National 2010 -390 -81 781
2017 -186 72 939

Notes: VMT weighted average across all counties in contiguous US. Comparison of 2014 gasoline and
electric powered Ford Focus.

Table 7: Environmental Benefit of an Solar Panel System ($ per year)

Interconnection Year Min Mean Max
East 2010 488 622 830

2017 348 443 591

West 2010 94 170 213
2017 134 242 305

Texas 2010 184 213 252
2017 274 316 375

National 2010 94 418 830
2017 134 356 591

Notes: We assume a 32 square meter system (approximately 6 kW) with 13% efficiency. Each observation
is the environmental benefit in a 0.1 degree by 0.1 degree unit area in the contiguous US.
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the 2010 point estimates are higher and marginal damages fall more or increase less. In

particular, the Texas trend is statistically insignificant instead of positive. Another impor-

tant assumption is the social cost of carbon. Columns (3) & (4) use high and low values for

the SCC. The high SCC values increase the marginal damages (and low values decrease the

marginal damages). The trends are more positive for the higher SCC values reflecting the

higher growth of the SCC. Column (5) uses a smaller VSL than our baseline calculation.39

This change has the greatest effects on the results, particularly in the East where damages

are higher. Overall, the results are largely robust to these different modeling assumptions.

39Baseline VSL is $8.8 million and the smaller value is $3.3 million.
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Table 8: Marginal Damage Estimates: Sensitivity

(1) (2) (3) (4) (5)
Variables Base Fixed Value SCC=51 SCC=31 Low VSL

East
Load (β) 0.0864∗∗∗ 0.1029∗∗∗ 0.0917∗∗∗ 0.0812∗∗∗ 0.0459∗∗∗

(0.0008) (0.0009) (0.0008) (0.0008) (0.0004)
Load Trend (γ) −0.0038∗∗∗ −0.0065∗∗∗ −0.0036∗∗∗ −0.0040∗∗∗ −0.0010∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002) (0.0001)

West
Load (β) 0.0203∗∗∗ 0.0248∗∗∗ 0.0236∗∗∗ 0.0170∗∗∗ 0.0161∗∗∗

(0.0004) (0.0005) (0.0005) (0.0003) (0.0003)
Load Trend (γ) 0.0012∗∗∗ 0.0006∗∗∗ 0.0015∗∗∗ 0.0010∗∗∗ 0.0011∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Texas
Load (β) 0.0283∗∗∗ 0.0349∗∗∗ 0.0323∗∗∗ 0.0242∗∗∗ 0.0210∗∗∗

(0.0007) (0.0008) (0.0008) (0.0007) (0.0004)
Load Trend (γ) 0.0011∗∗∗ 0.0001 0.0013∗∗∗ 0.0009∗∗∗ 0.0008∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002) (0.0001)

Observations 70,128 70,128 70,128 70,128 70,128
*** p<0.01, ** p<0.05, * p<0.1

Newey-West Standard errors (24 hour lag)

Notes: Dependent variable is hourly damages in the interconnection. Coefficient estimates in $ per kWh.
Regressions are unweighted and include month of sample by hour fixed effects, i.e., 2,304 (=8*12*24) fixed
effects. The alternative SCC of $31 and $51 (relative to the main model of $41) are for year 2015 and grow
at 3% annually.
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5 Conclusion

Since 2010, the U.S. population grew by over five percent and real gross domestic product

expanded by more than 15 percent. Despite these trends, electric power consumption re-

mains effectively unchanged. Concurrently, emissions of several important pollutants have

fallen. This paper translates emissions into monetary damage, finding that the total annual

damages from emissions fell by $112 billion, or 46 percent, over eight years. The benefits of

these reduced emissions were particularly concentrated among low-income households and

households in the Mid-Atlantic and Northeastern states.

This paper decomposes the change in damages into four effects. The technique effect

measures within plant changes in emission rates. This contributed $62 billion in decreased

damages. The composition effect, which captures changes in generation shares across plants,

contributed a similar amount ($60 billion). By comparison, the entry of renewables and

reduction in load produced a fall in damages that was considerably smaller (the scale effect

is about $25 billion). Running counter to these three effects, the valuation of damage per

unit of emissions increased damages by $35 billion. This phenomenon was driven by changes

in the composition of the atmosphere, population growth and demographic change, and

increases in the social cost of carbon.

The paper also examines the ramifications of changes to the electricity sector for envi-

ronmental policy. Our econometric analysis of the relationship between load and damages

reveals that marginal damages did fall in the Eastern Interconnection but at a much slower

rate than total damages or average damages. Despite lower overall emissions in the West-

ern and Texas Interconnections, marginal damages have increased in these markets. We find

that grid-powered electric vehicles are now cleaner than gasoline vehicles, on average, though

substantial heterogeneity remains.

Although the paper demonstrates an extraordinary reduction in both damages and emis-

sions from the U.S. power generation sector, we offer the following caveats. First, this is not a

causal analysis of which policies and market forces drove these changes. We explore plausible

explanations, but do not disentangle them completely. The installation of scrubbers was the

result of several state and federal policies including the Mercury and Air Toxics Standards.
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The fuel switching and coal plant retirements were likely affected by the decreased prices for

natural gas due to hydraulic fracturing. Renewable investment was likely affected by poli-

cies like the federal Production Tax Credit and Investment Tax Credit, states’ Renewable

Portfolio Standards, and technological improvements that have lowered costs and improved

operations. Second, the application of AP3 to estimate air pollution damage imparts con-

siderable uncertainty on our results. This arises through parameter uncertainty (especially

the VSL and the functional linkage between exposure to PM2.5 and adult mortality), and

through the representation of air quality modeling in AP3. Third, we also note that the so-

cial cost of carbon is a necessarily uncertain parameter, both in its level and rates of change

through time.

The results presented in this paper provide useful benchmarks for future research on

the causes behind the reported changes in emissions and damages. For example, low gas

prices could cause the composition effect and parts of the technique effect, but are unlikely

to cause increases in renewable generation or lead to installation of pollution control equip-

ment on coal plants. The paper also effectively demonstrates the importance of tracking

emissions through to their final monetary damage. Simply reporting emission reductions,

while an important step, masks crucial heterogeneity in the toxicity of different pollutants,

changes in the exposed populations, and trends in valuation due to changes in environmental

conditions.
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Appendix

Details on Emissions Data

The CEMS (Continuous Emissions Monitoring System) database is part of EPA’s Air Mar-

kets Program.40 CEMS power plants do not include non-fossil power plants, small fossil

plants (capacity < 25 MW), and plants in Hawaii or Alaska. The CEMS database provides

hourly emissions of SO2, NOx, CO2, and gross generation, which includes electricity use

within the plant. We measure a plant’s annual PM2.5 emissions through the following steps.

First, we calculate its emissions rate as the ratio of PM2.5 emissions from the National Emis-

sions Inventory over the annual gross generation from CEMS. The NEI is only available every

third year (2008, 2011, and 2014) and only for some plants. For years not in the NEI, we use

linear interpolation. Average emissions rates are assigned to plants not in the NEI. Second,

we calculate PM2.5 emissions at a plant as the product of these rates and the plant’s gross

generation from CEMS. Table i shows annual emissions of the pollutants from the CEMS

data. Figure 1 illustrates this same data normalized to 2010 emissions.

Table i: Aggregate Emissions of Four Pollutants

Pollutant 2010 2011 2012 2013 2014 2015 2016 2017
SO2 10.33 9.09 6.64 6.48 6.31 4.43 2.98 2.68
NOx 4.28 4.02 3.49 3.51 3.39 2.81 2.46 2.16
PM2.5 0.45 0.41 0.38 0.37 0.37 0.34 0.32 0.30
CO2 2.46 2.35 2.21 2.23 2.23 2.09 1.99 1.91

Notes: Total emissions from all CEMS power plants. SO2, NOx, and PM2.5 emissions in billion pounds.
CO2 emissions in billion tons.

For a historical perspective, we illustrate emissions from 1990-2016 in Figure i.41 For each

pollutant, the solid line shows power plant emissions normalized to 1 in 1990. The dashed

line shows the trend line from a regression based on data from 1990 to 2009, and the dotted

line shows the rolling five-year percentage change in emissions. For SO2 and CO2, emissions

from 2010 to 2017 clearly deviate below trend.

40The database is accessed through the public ftp site ftp://newftp.epa.gov/DMDnLoad/.
41The data source for this figure is the Energy Information Administration (see EIA-767, EIA-906, EIA-

920, and EIA-923). The data are posted at https://www.eia.gov/electricity/data/state/emission_

annual.xls.
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Figure i: Power Plant Emissions from 1990 to 2016

Notes: Data are from EIA’s US Electric Power Industry Estimated Emissions by State.
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Table ii: Damage Valuations

Year SO2 NOx PM2.5 CO2

2010 14.8 5.3 34.8 35.4
2011 15.1 5.3 35.6 36.4
2012 16.1 5.6 36.8 37.5
2013 17.1 6.0 37.9 38.6
2014 18.1 6.3 39.0 39.8
2015 18.0 6.3 38.9 41.0
2016 18.0 6.3 39.0 42.2
2017 18.0 6.3 38.9 43.5

Notes: SO2, NOx, and PM2.5 damages in 2014$ per pound are the unweighted average of the damage per
pound from the AP3 model across the unbalanced panel of all power plants reporting CEMS emissions in
that year. CO2 damages in 2014$ per metric ton.

Details on AP3

Table ii summarizes the AP3 damage valuations across the pollutants. Although AP3 re-

ports damage valuations for all counties and for different stack heights, we focus on damage

valuations at reporting CEMS power plants. The table shows the mean damage valuations

across the unbalanced panel of power plants. Reflecting our interpolation assumptions, local

pollutant damages are flat after 2014. Also included in Table ii are CO2 damage valuations,

which increase throughout the sample period.

As discussed in the main text, we assume that damage valuations are independent of

aggregate power plant emissions. This assumption may not hold because atmospheric con-

ditions affect the efficiency with which emissions of NOx and SO2 form secondary PM2.5.

In particular, damage valuations in AP3 are generally increasing over time from 2008-2014.

This is due, at least in part, to lower total emission levels of NOx and SO2 over time,

which leaves considerably more free ammonia (NH3) in the atmosphere. This implies that

marginal emissions of NOx and SO2 are more likely to interact with the free ammonia to

form ammonium sulfate and ammonium nitrate, both of which are important constituents

of ambient PM2.5. And at least part of the decreased total NOx and SO2 emissions may be

due to reduction in power plant emissions. In Online Appendix A, we discuss an alternative

procedure to determining the decline in damages and show how our main procedure and the
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alternative procedure can be used to put bounds on the decline in damages when damage

valuations and power plant emissions are not independent.

Details on Electricity Generation

Table iii shows electricity generation by fuel type over time from EIA Form 923. Gas, solar,

and wind generation are increasing over time, coal is decreasing over time, and nuclear and

hydro vary but show no dominant pattern.

Table iii: Total Electricity Generation by Fuel Type

Fuel 2010 2011 2012 2013 2014 2015 2016 2017
Fossil

Coal 1,845.1 1,730.6 1,511.1 1,579.1 1,578.9 1,344.8 1,237.1 1,202.4
Gas 994.5 1,020.1 1,233.8 1,132.4 1,131.8 1,329.7 1,387.2 1,304.5
Oil 28.0 20.7 14.6 19.1 22.7 20.3 16.7 13.8

Total Fossil 2,867.7 2,771.4 2,759.6 2,730.6 2,733.4 2,694.9 2,641.0 2,520.8
Renewable

Wind 94.1 119.1 139.1 167.0 180.5 189.9 226.1 253.5
Solar 1.2 1.8 4.2 8.9 17.5 24.7 35.9 53.0

Total Renew 95.3 120.9 143.3 176.0 198.0 214.6 262.0 306.5
Other

Nuclear 807.0 790.2 769.3 789.0 797.2 797.2 805.7 804.9
Hydro 258.7 317.7 274.4 267.0 257.7 247.3 266.1 298.6
OtherGen 77.7 78.5 81.0 84.4 85.9 86.8 84.6 84.1

Total Other 1,143.4 1,186.3 1,124.8 1,140.5 1,140.8 1,131.3 1,156.3 1,187.7
Grand Total 4,106.3 4,078.6 4,027.6 4,047.0 4,072.2 4,040.7 4,059.2 4,015.0

Notes: Annual net generation from all power plants in EIA 923 in millions of MWh’s. Fuel type as reported
in EIA 923.

Details on Decompositions

Deriving a decomposition formula involves specifying the base; writing the main terms of

the decomposition formula in terms of the base and changes in the variables, and then

determining the error. Here we derive the error for our Marshall-Edgeworth base. First note

that the LHS of Eq. 3 can be written ∆D = ∑i∑p ∆(vipripθiQ). Ignoring the summations
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Table iv: Decomposition of Change in Emissions from 2010-2017 (percent of 2010 total
emissions)

SO2 NOx CO2 PM2.5

Effect
Scale −7.7 −9.7 −11.5 −10.7
Composition −24.4 −23.3 −10.1 −14.8
Technique −41.9 −16.8 −0.7 −8.2
Error −0.1 0.2 0.1 0.1

Total −74.0 −49.6 −22.2 −33.5

and subscripts we can write the decomposition as42

∆(vrθQ) = v̄r̄θ̄∆Q + v̄r̄∆̄θQ + v̄∆rθ̄θQ +∆vr̄θ̄θQ +Error

where

Error = (v̄∆r∆θ∆Q +∆vr̄∆θ∆Q +∆v∆rθ̄∆Q +∆v∆r∆θQ̄)/4

The Error for Eq. 3 simply sums this equation over all i and p.

In the main paper, we present decompositions of damages. We can also decompose

emissions. We set vipt = 1 for every i, p, and t in Eq. (3) and calculate the decomposition for

each pollutant separately (rather than summing over p). The results are given in Table iv

(expressed in percentage of total emissions in 2010).

42To derive the decomposition, note that the difference of a product can be written ∆(xy) = ∆xȳ + x̄∆y
and the mean of a product can be written xy = x ⋅ y +∆x∆y/4. Repeatedly applying these formulas to the
product vrθQ yields the decomposition and error.
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