

Nonrivalry and the Economics of Data

Chad Jones and Chris Tonetti

NBER Economics of Digitization March 22, 2019

Examples of Data

- Google, Facebook
- Amazon
- Tesla, Uber, Waymo
- Medical and genetic data
- Location history
- Speech records
- Physical action data

Canonical example: data as input into machine learning algorithm. E.g. self-driving car.

Data is Nonrival

- Data is infinitely usable
 - Contrast with rival goods: coffee, computer, doctor
 - Multiple engineers/algorithms can use same data at same time (within and across firms)
- Key ways that data enters the economy:
 - Nonrivalry ⇒ social gain from sharing data
 - Privacy
 - Firm: competitive advantage ("moat")
- Social planner and consumers only care about the first two. But firms care a lot about the last one ⇒ inefficiency

Policies on Data Are Being Written Now

What policies governing data use maximize welfare?

- European General Data Protection Regulation (GDPR)
 - Privacy vs. social gain from sharing
 - "The protection of natural persons in relation to the processing of personal data is a fundamental right"
 - "The right ... must be considered in relation to its function in society and be balanced against other fundamental rights..."
- The California Consumer Privacy Act of 2018
 - Allows consumers to opt out of having their data sold

Nonrivalry of Data \Rightarrow Increasing Returns

- Nonrivalry implies increasing returns to scale: Y = F(D, X)
 - Constant returns to rival inputs: $F(D, \lambda X) = \lambda F(D, X)$
 - Increasing returns to data and rival inputs:

$$F(\lambda D, \lambda X) > \lambda F(D, X)$$

- When firms hoard data, a firm learns only from its own consumers
- But when firms share data, all firms learn from all consumers
 - Firms, fearing creative destruction, will not do this
 - But if consumers own the data, they appropriately balance data sharing and privacy

Outline

- Economic environment
- Allocations:
 - Optimal allocation
 - Firms own data
 - Consumers own data
 - Extreme privacy protection: outlaw data sharing
- Theory results and a numerical example

Basic Setup

Overview

- Representative consumer with a love for variety
- Innovation ⇒ endogenous measure of varieties
- Nonrivalry of data ⇒ increasing returns to scale
- How is data produced?
 - \circ Learning by doing: each unit consumed \rightarrow 1 unit of data
 - Alternative: separate PF (Tesla vs Google self-driving car)
- Any data equally useful in all firms ⇒ one sector of economy
- Data depreciates fully each period

The Economic Environment

Utility
$$\int_0^\infty e^{-\rho t} L_t u(c_t, x_{it}, \tilde{x}_{it}) dt$$

Flow Utility
$$u(c_t,x_{it},\tilde{x}_{it}) = \log c_t - \tfrac{\kappa}{2} \tfrac{1}{N_t^2} \int_0^{N_t} x_{it}^2 \, di - \tfrac{\tilde{\kappa}}{2} \tfrac{1}{N_t} \int_0^{N_t} \tilde{x}_{it}^2 \, di$$

Consumption per person
$$c_t = \left(\int_0^{N_t} c_{it}^{\frac{\sigma-1}{\sigma}} di \right)^{\frac{\sigma}{\sigma-1}}$$
 with $\sigma>1$

Data production
$$J_{it} = c_{it}L_t$$

Variety resource constraint
$$c_{it} = Y_{it}/L_t$$

Firm production
$$Y_{it} = D_{it}^{\eta} L_{it}, \ \eta \in (0,1)$$

Data used by firm
$$i$$
 $D_{it} \leq \alpha x_{it} J_{it} + (1-\alpha) B_t$ (nonrivalry)

Data of firm
$$i$$
 used by others $D_{sit} \leq \tilde{\chi}_{it} J_{it}$

Data bundle
$$B_t = \left(N_t^{-\frac{1}{\epsilon}} \int_0^{N_t} D_{sit}^{\frac{\epsilon-1}{\epsilon}} \ di \right)^{\frac{\epsilon}{\epsilon-1}} = N_t D_{sit} \text{ in eqm}$$

Innovation (new varieties)
$$\dot{N}_t = rac{1}{\chi} \cdot L_{et}$$

Labor resource constraint
$$L_{et} + \int_0^{N_t} L_{it} \; di = L_t$$

Population growth (exogenous) $L_t = L_0 e^{g_L t}$

Creative destruction
$$\delta(ilde{x}_{it}) = rac{\delta_0}{2} ilde{x}_{it}^2$$
 (equilibrium)

The Planner Problem (using symmetry of firms)

$$\max_{\{L_{pt},x_{it},\tilde{x}_{it}\}} \int_{0}^{\infty} e^{-\tilde{\rho}t} L_{0}u(c_{t},x_{it},\tilde{x}_{it}) \ dt, \quad \tilde{\rho} := \rho - g_{L}$$
subject to
$$c_{t} = Y_{t}/L_{t}$$

$$Y_{t} = N_{t}^{\frac{1}{\sigma-1}} D_{it}^{\eta} L_{pt}$$

$$D_{it} = \alpha x_{it} Y_{it} + (1-\alpha) N_{t} \tilde{x}_{it} Y_{it}$$

$$Y_{it} = D_{it}^{\eta} \cdot \frac{L_{pt}}{N_{t}}$$

$$\dot{N}_{t} = \frac{1}{\chi} (L_{t} - L_{pt})$$

$$L_{t} = L_{0} e^{g_{L}t}$$

- More sharing ⇒ negative utility cost but more consumption
- Balance labor across production and entry/innovation

Scale Effect from Sharing Data

$$D_{it} = \alpha x_{it} J_{it} + (1 - \alpha) \left(N_t^{-\frac{1}{\epsilon}} \int_0^{N_t} (\tilde{x}_{it} J_{it})^{\frac{\epsilon - 1}{\epsilon}} di \right)^{\frac{\epsilon}{\epsilon - 1}}$$

$$D_{it} = \alpha x_{it} Y_{it} + (1 - \alpha) N_t \tilde{x}_{it} Y_{it}$$

$$= [\alpha x_{it} + (1 - \alpha) \tilde{x}_{it} N_t] Y_{it}$$

- No sharing versus sharing:
 - No sharing: Only the αx_t term = no scale effect
 - Sharing: The $(1 \alpha)\tilde{x}_t N_t$ term = extra scale effect

Source of Scale Effect: N_t scales with L_t

• Plugging into production function:

$$Y_{it} = ([\alpha x_t + (1 - \alpha)\tilde{x}_t N_t]^{\eta} L_{it})^{\frac{1}{1 - \eta}}$$

Firms Own Data

Firms Own Data: Consumer Problem

- Firms own data and choose one data policy (x_{it}, \tilde{x}_{it}) applied to all consumers
- · Consumers just choose consumption:

$$\begin{aligned} U_0 &= \max_{\{c_{it}\}} \int_0^\infty e^{-\tilde{\rho}t} L_0 u(c_t, x_{it}, \tilde{x}_{it}) dt \\ \text{s.t.} \quad c_t &= \left(\int_0^{N_t} c_{it}^{\frac{\sigma-1}{\sigma}} di \right)^{\frac{\sigma}{\sigma-1}} \\ \dot{a}_t &= (r_t - g_L) a_t + w_t - \int_0^{N_t} p_{it} c_{it} di \end{aligned}$$

Firms own Data: Data Decisions

- Firms buy D_{bit} data from intermediary at given price p_b
- Firms sell D_{sit} data to intermediary at chosen price p_{si}
 - Perfect competition inconsistent with nonrival data!
 - Monopolistically competitive with own data
 - See the intermediary's downward-sloping demand curve and set price
- How much data to use / sell?
 - x_{it} : Use all of own data $\Rightarrow x_{it} = 1$
 - \tilde{x}_{it} : Trade off = selling data versus creative destruction $\delta(\tilde{x}_{it})$ = Poisson rate transferring ownership of variety

Firms own the Data: Incumbent Firm Problem

• Monopolistically competitive firm takes demand for variety as given (from FOC of consumer problem): $p_{it} = \left(\frac{c_i}{c_{it}}\right)^{\frac{1}{\sigma}} = \left(\frac{Y_t}{Y_{it}}\right)^{\frac{1}{\sigma}}$

$$\begin{split} r_t V_{it} &= \max_{L_{it}, D_{bit}, x_{it}, \tilde{x}_{it}} \left(\frac{Y_t}{Y_{it}} \right)^{\frac{1}{\sigma}} Y_{it} - w_t L_{it} - p_{bt} D_{bit} + p_{st} \tilde{x}_{it} Y_{it} + \dot{V}_{it} - \delta(\tilde{x}_{it}) V_{it} \\ \text{s.t.} \quad Y_{it} &= D_{it}^{\eta} L_{it} \\ D_{it} &= \alpha x_{it} Y_{it} + (1 - \alpha) D_{bit} \\ x_{it} &\in [0, 1], \tilde{x}_{it} \in [0, 1] \\ p_{sit} &= \lambda_{DI} N_t^{-\frac{1}{\epsilon}} \left(\frac{B_t}{\tilde{x}_{it} Y_{it}} \right)^{\frac{1}{\epsilon}} \end{split}$$

• Data Intermediary $(p_{bt}, p_{st}, D_{bit})$ and Free Entry complete eqm.

Firms Own Data: A "No Trade" Law

- What if the government, in an attempt to protect consumers privacy, makes data sharing illegal?
- Government chooses
 - $x_{it} \in (0,1]$
 - $\circ \ \tilde{x}_{it} = 0$
- We call this the "Outlaw Sharing" allocation

Consumers Own Data

Consumers own Data: Consumer Problem

• Consumers own data, so now choose how much to share (x_{it}, \tilde{x}_{it}) :

$$\begin{split} U_0 &= \max_{\{c_{it}, x_{it}, \tilde{x}_{it}\}} \int_0^\infty e^{-\tilde{\rho}t} L_0 u(c_t, x_{it}, \tilde{x}_{it}) dt \\ \text{s.t.} \quad c_t &= \left(\int_0^{N_t} c_{it}^{\frac{\sigma-1}{\sigma}} di \right)^{\frac{\sigma}{\sigma-1}} \\ \dot{a}_t &= (r_t - g_L) a_t + w_t - \int_0^{N_t} p_{it} c_{it} di + \int_0^{N_t} x_{it} p_{st}^a c_{it} di + \int_0^{N_t} \tilde{x}_{it} p_{st}^b c_{it} di \end{split}$$

• Firm problem similar to before, but now takes x, \tilde{x} as given, can't sell data, and has to buy "own" data

Key Forces: Consumers vs. Firms vs. Outlaw Sharing

Firms

- use all data on own variety, ignoring consumer privacy
- restrict data sharing because of creative destruction

Consumers

- respect their own privacy concerns
- sell data broadly, ignoring creative destruction

Outlaw sharing

- maximizes privacy gains
- missing scale effect reduces consumption

Results: Comparing Allocations

- 1. Planner Problem
- 2. Firms Own Data
- 3. Outlaw Data Sharing
- 4. Consumers Own Data

Key Allocations: $alloc \in \{sp, f, c, ns\}$

• Firm size: $L_i^{alloc} = L_{pt}/N_t =
u_{alloc}$

$$\nu_{sp} := \chi \rho \cdot \frac{\sigma - 1}{1 - \eta}
\nu_{os} := \chi \rho \cdot \frac{\sigma - 1}{1 - \sigma \eta}
\nu_{c} := \chi g_{L} \cdot \frac{\rho + \delta(\tilde{x}_{c})}{g_{L} + \delta(\tilde{x}_{c})} \cdot \frac{\sigma - 1}{1 - \sigma \eta}
\nu_{f} := \chi g_{L} \cdot \frac{\rho + \delta(\tilde{x}_{f})}{g_{L} + \delta(\tilde{x}_{f})} \cdot \frac{\sigma - 1}{1 - \sigma \eta \frac{\epsilon - 1}{\epsilon}}$$

• Number of firms: $N_t^{alloc} = \psi_{alloc} L_t$

$$\psi_{alloc} := rac{1}{\chi g_L +
u_{alloc}}$$

Data Sharing

Own Firm Data	Sharing with Other Firms
$x_{sp} = \frac{\alpha}{1-\alpha} \frac{\tilde{\kappa}}{\kappa} \left(\frac{1}{\tilde{\kappa}} \cdot \frac{\eta}{1-\eta} \right)^{1/2}$	$ ilde{ ilde{\chi}}_{\mathit{sp}} = \left(rac{1}{ ilde{\kappa}} \cdot rac{\eta}{1-\eta} ight)^{1/2}$
$x_f = 1$	$ ilde{x}_f = \left(rac{\Gamma ho}{(2-\Gamma)\delta_0} ight)^{1/2}, \Gamma := rac{\eta(\sigma-1)}{rac{\epsilon}{\epsilon-1}-\sigma\eta}$
$x_{os} \in (0,1]$	$\tilde{x}_{os}=0$
$x_c = \frac{\alpha}{1-\alpha} \frac{\tilde{\kappa}}{\kappa} \left(\frac{1}{\tilde{\kappa}} \cdot \frac{\eta}{1-\eta} \cdot \frac{\sigma-1}{\sigma} \right)^{1/2}$	$\tilde{x}_c = \left(\frac{1}{\tilde{\kappa}} \cdot \frac{\eta}{1-\eta} \cdot \frac{\sigma-1}{\sigma}\right)^{1/2}$

- Firms fear creative destruction and share less than planner (δ_0)
- Consumers share less than planner because of mark up
- No sharing law restricts data even more
- Firms use more own-variety data compared to consumer/planner

Output

• For alloc $\in \{sp, c, f\}$:

$$Y_t^{alloc} = \left[\nu_{alloc}(1-\alpha)^{\eta} \tilde{x}_{alloc}^{\eta}\right]^{\frac{1}{1-\eta}} \left(\psi_{alloc} L_t\right)^{1+\frac{1}{\sigma-1}+\frac{\eta}{1-\eta}}$$

· For Outlaw Sharing:

$$Y_t^{os} = \left[\nu_{os}\alpha^{\eta}x_{os}^{\alpha}\right]^{\frac{1}{1-\eta}}\left(\psi_{os}L_t\right)^{1+\frac{1}{\sigma-1}}$$

- Two source of increasing returns to scale:
 - $\circ~$ Standard variety effect: $\frac{\sigma}{\sigma-1}$
 - Data sharing: $\frac{\eta}{1-\eta}$
- Recall $\tilde{x}_t > 0$ from data sharing \Rightarrow scale effect

Consumption per person and Growth

Consumption per person:

For
$$alloc \in \{sp,c,f\}$$
: $c_t^{alloc} = Const_{alloc} \cdot L_t^{\frac{1}{\sigma-1} + \frac{\eta}{1-\eta}}$
For outlaw sharing: $c_t^{os} = Const_{os} \cdot L_t^{\frac{1}{\sigma-1}}$

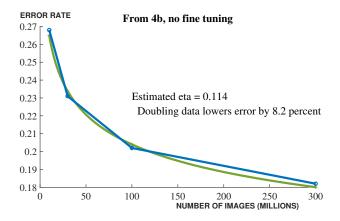
Per capita growth:

$$g_c^{sp} = g_c^f = g_c^c = \left(\frac{1}{\sigma - 1} + \frac{\eta}{1 - \eta}\right) g_L$$
$$g_c^{os} = \left(\frac{1}{\sigma - 1}\right) g_L$$

Intuition: No sharing means you learn from 10 workers (constant firm size), sharing means you learn from the entire population

Numerical Example: How large is η ?

• Error rate is proportional to $M^{-\eta}$. Productivity = 1/(error rate)



• Average $\eta = 0.08$. Double data \Rightarrow 6% reduction in error rate

Numerical Example: Other Parameters

Description	Parameter	Value
Importance of data	η	0.08
Elasticity of substitution	σ	5
Weight on privacy	$\kappa = \tilde{\kappa}$	0.20
Population level	L_0	100
Population growth rate	g_L	0.02
Rate of time preference	ho	0.03
Labor cost of entry	χ	0.01
Creative destruction	δ_0	0.4
Weight on own data	α	1/2
Use of own data in NS	\bar{x}	1

Allocations

	Data Sharing "own" "others"		Firm size Variety		Consu- mption Growth		Creative Destruct.
Allocation	x	\tilde{x}	ν	$N/L = \psi$	С	8	δ
Social Planner	0.66	0.66	1304	665	18.6	0.67%	0.0870
Consumers Own Data	0.59	0.59	1482	594	18.3	0.67%	0.0696
Firms Own Data	1	0.16	1838	491	16.0	0.67%	0.0052
Outlaw Sharing	1	0	2000	455	7.3	0.50%	0

- Firms overuse their own data and undershare with others
- Consumers share less data than planner, but not by much
- Growth rate scale effect is modest, level differences are large

Consumption Equivalent Welfare

Allocation	Welfare λ	$\log \lambda$	Level term	Privacy term	Growth term
Optimal Allocation	1	0			
Consumers Own Data	0.9886	-0.0115	-0.0202	0.0087	0.0000
Firms Own Data	0.8917	-0.1146	-0.1555	0.0409	0.0000
Outlaw Sharing	0.3429	-1.0703	-0.9399	0.0435	-0.1739

- Outlaw sharing: particularly harmful law (66 percent worse!)
- Firms own data: substantially lower welfare (11 percent worse)
- Consumers own data: nearly optimal (1 or 2 percent worse)

Conclusion

- Nonrival data ⇒ large social gain from sharing data
- If firms own data, they may:
 - privately use more data than consumers/planner would
 - share less data across firms than consumers/planner would
- Nonrivalry ⇒ Laws that outlaw sharing could be very harmful
- Consumers owning data good at balancing privacy and sharing