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Abstract

Data is nonrival: a person’s location history, medical records, and driving data

can be used by any number of firms simultaneously without being depleted. Nonri-

valry leads to increasing returns and implies an important role for market structure

and property rights. Who should own data? What restrictions should apply to

the use of data? We show that in equilibrium, firms may not adequately respect

the privacy of consumers. But nonrivalry leads to other consequences that are

less obvious. Because of nonrivalry, there may be large social gains to sharing

data across firms, even in the presence of privacy considerations. Fearing creative

destruction, firms may choose to hoard data they own, leading to the inefficient

use of nonrival data. Instead, giving the data property rights to consumers can

generate allocations that are close to optimal. Consumers appropriately balance

their concerns for privacy against the economic gains that come from selling data

to all interested parties.

∗We are grateful to V.V. Chari, Ben Hebert, Pete Klenow, Hannes Malmberg, Laura Veldkamp, and
especially Sebastian Di Tella for helpful comments.
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1. Introduction

In recent years, the importance of data in the economy has become increasingly appar-

ent. More powerful computers, the growth of networks, and advances such as machine

learning have led to an explosion in the usefulness of data. Examples include self-

driving cars, real-time language translation, medical diagnoses, product recommen-

dations, and social networks.

This paper develops a simple theoretical framework to study the economics of data.

We are particularly interested in how different property rights for data determine its use

in the economy, and thus affect output, privacy, and consumer welfare. The starting

point for our analysis is the observation that data is nonrival. That is, at a technological

level, data is infinitely usable. Most goods in economics are rival: if a person consumes

a kilogram of rice or an hour of an accountant’s time, some resource with a positive

opportunity cost is used up. In contrast, existing data can be used by any number of

firms or people simultaneously, without being diminished. Consider a collection of

a million labeled images, the human genome, the U.S. Census, or the data generated

by 10,000 cars driving 10,000 miles. Any number of firms, people, or machine learn-

ing algorithms can use this data simultaneously without reducing the amount of data

available to anyone else.

The key finding in our paper is that policies related to data have important eco-

nomic consequences. When firms own data, they may not adequately respect the pri-

vacy of consumers. But nonrivalry leads to other consequences that are less obvious.

Because data is nonrival, there are potentially large gains to sharing data. Markets for

data provide financial incentives that promote sharing, but if selling data increases the

rate of creative destruction, firms may hoard data in ways that are socially inefficient.

Data that could be productively used at low social cost by many others is not made

available.

An analogy may be helpful. Because capital is rival, each firm must have its own

building, each worker needs her own desk and computer, and each warehouse needs

its own collection of forklifts. But if capital were nonrival, it would be as if every worker

in the economy could use the entire aggregate stock of capital at the same time. Clearly

this would produce tremendous economic gains. This is what is possible with data.

Because data is nonrival, it is technologically feasible for all medical data to be used by
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each health researcher and for all driving data to be used by every machine learning

algorithm. Obviously there may be incentive reasons why it is inefficient to have all

data shared with all firms. But the equilibrium in which firms own data and sharply

limit its use by other firms may also be inefficient. Our numerical examples suggest

that these costs can be large.

Another allocation we consider is one in which a government — perhaps out of

concern for privacy — sharply limits the use of consumer data by firms. While this

policy succeeds in generating privacy gains, it has an even larger cost because of the

inefficiency that arises from a nonrival input not being used at the appropriate scale.

Not only is an economy without data sharing poorer in the long run, but this policy

actually reduces long-run growth in income per person. This is true even though our

learning-by-doing setting is one of semi-endogenous growth in which most policies

leave the long-run growth rate unchanged.

Finally, we consider an institutional arrangement in which consumers own the data

associated with their behavior. Consumers then balance their concerns for privacy

against the economic gains that come from selling data to all interested parties. This

equilibrium results in substantial data sharing across firms, taking advantage of the

nonrivalry of data and generating consumption and welfare that are close to optimal.

The remainder of the paper is structured as follows. The introduction continues

by discussing the similarities and differences between data and ideas — another non-

rival good — and provides a literature review. Section 2 presents the economic envi-

ronment. Section 3 examines the allocation chosen by the social planner. Section 4

turns to a decentralized equilibrium in which firms own data and shows that it may be

privately optimal for a firm to both overuse its own data within the firm and sharply

limit sharing data with other firms. Section 5 instead considers an allocation in which

consumers own data and, weighing privacy considerations, sell some of it to multiple

firms. Section 6 shows what happens if the government outlaws data sharing. Section 7

collects and discusses our main theoretical results while Section 8 presents a numerical

simulation of our model to illustrate the various forces at work. Section 9 discusses the

broader implications of our results in the context of industrial organization and cross-

country patterns of growth, with a focus on the boundaries of data sharing across firms

and countries. Section 10 concludes.
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Figure 1: Taxonomy of Economic Goods

Rival Nonrival

Most economic goods

Information

DataIdeas

1.1 Data versus Ideas

Romer (1990) emphasized that ideas are nonrival. We add data to this taxonomy, as

summarized in Figure 1. We find it helpful to define information as the set of all eco-

nomic goods that are nonrival. That is, information consists of economic goods that

can be entirely represented as bit strings, i.e., as sequences of ones and zeros. Ideas

and data are types of information. An idea is a piece of information that is a set of

instructions for making an economic good, which may include other ideas. Data de-

notes the remaining forms of information. It includes things like driving data, medical

records, location data, and consumption history that are not themselves instructions

for making a good but that may still be useful in the production process. An idea is a

production function whereas data is a factor of production.1

Some examples distinguishing data from ideas might be helpful. First, consider a

million images of cats, rainbows, kids, buildings, etc., labeled with their main subject.

Data like this is extremely useful for training machine learning algorithms, but these

labeled images are clearly not themselves ideas, i.e., not blueprints. The same is true of

the hourly heart-rate history of a thousand people or the speech samples of a popula-

tion. It seems obvious at this level that data and ideas are distinct.

Second, consider the efforts to build a self-driving car. The essence is a machine

learning algorithm, which can be thought of as a collection of nonlinear regressions at-

tempting to forecast what actions an expert driver will take given the data from various

sensors including cameras, lidar, GPS, and so on. Data in this example includes both

1Perhaps confusingly, ideas can also be an input into the production function of new ideas: researchers
use existing ideas (and data and other things) to make new ideas. Another example illustrating the
fuzziness of our dichotomy is DNA. Clearly this is a set of instructions and so might be classified as an idea.
However, for many medical applications, genome sequences can be thought of as data. Furthermore, data
is obviously useful in producing ideas.
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the collection of sensor readings and the actions taken by expert drivers. The nonlinear

regression estimates a large number of parameters to produce the best possible fore-

casts. A successful self-driving car algorithm — a computer program, and hence an

idea — is essentially just the forecasting rules that come from using data to estimate

the parameters of the nonlinear model. The data and the idea are distinct: the software

algorithm is the idea that is embedded in the self-driving cars of the future; data is an

input used to produce this idea. Once the model is estimated, the data can be thrown

away.

Another dimension along which ideas and data can differ is the extent to which they

are excludable. On the one hand, it seems technologically easier to transmit data than

to transmit ideas. Data can be sent at the press of button over the internet, whereas

we invest many resources in education to learn ideas. On the other hand, data can be

encrypted. Engineers change jobs and bring knowledge with them; people move and

communicate causing ideas to diffuse, at least eventually. Data, in contrast, especially

when it is “big,” may be more easily monitored and made to be highly excludable.

The “idea” of machine learning is public, whereas the driving data that is fed into the

machine learning algorithm is kept private; each firm is gathering its own data.

1.2 Relation to the Literature

The “economics of data” is a new but rapidly-growing field. In this paper we take a

more macroeconomic view of the importance of data, remaining silent on many of

the interesting related topics in industrial organization. A surely-incomplete list of

papers is mentioned here; please send us more references. Varian (2018) provides a

general discussion of the economics of data and machine learning. He emphasizes

that data is nonrival and refers to a common notion that “data is the new oil.” Varian

notes that this nonrivalry means that “data access” may be more important than “data

ownership” and suggests that while markets for data are relatively limited at this point,

some types of data (like maps) are currently licensed by data providers to other firms.

Our paper explores these and other insights in a formal model. Our results suggest

that data ownership is likely to influence data access. Arrieta Ibarra, Goff, Jimenez

Hernandez, Lanier and Weyl (2018) and Posner and Weyl (2018) emphasize a “data as

labor” perspective: data is a key input to many technology firms, and people may not be
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adequately compensated for the data they provide, perhaps because of market power

considerations.

Acquisti, Taylor and Wagman (2016) discuss the economics of privacy and how con-

sumers value the privacy of their data. Agrawal, Gans and Goldfarb (2018) provide an

overview of the economics of machine learning. Farboodi and Veldkamp (2017) study

the implications of expanding access to data for financial markets. Begenau, Farboodi

and Veldkamp (2017) suggest that access to big data has lowered the cost of capital

for large firms relative to small ones, leading to a rise in firm-size inequality. Akcigit

and Liu (2016) show in a growth context how the information that certain research

paths lead to dead ends is socially valuable and how an economy may suffer from an

inefficient duplication of research if this information is not shared across firms. Chiou

and Tucker (2017) study how the length of time that search engines keep their server

logs affects the accuracy of their subsequent searches and find little evidence of a large

impact. Gentzkow, Kelly and Taddy (2017) provide an overview of how text can be used

as data, illustrating both statistical techniques and summarizing various interesting

applications including forecasting stock prices, measuring central bank sentiment, and

measuring economic policy uncertainty. Bajari, Chernozhukov, Hortasu and Suzuki

(2018) examine how the amount of data impacts weekly retail sales forecasts for prod-

uct categories at Amazon. They find that forecasts for a given product improve with the

square-root of the number of weeks of data on that product. However, forecasts of sales

for a given category do not seem to improve much as the number of products within

the category grows.

2. Economic Environment

The economic environment that we work with throughout the paper is summarized in

Table 1. There is a representative consumer with log utility over per capita consump-

tion, ct. There are Nt varieties of consumer goods that combine to enter utility with a

constant elasticity of substitution (CES) aggregator. There areLt people in the economy

and population grows exogenously at rate gL.

Privacy considerations also enter flow utility in two ways, as seen in equation (2).

The first is via xit, which denotes the fraction of an individual’s data on consumption of
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Table 1: The Economic Environment

Utility

∫ ∞

0
e−ρtLtu(ct, xit, x̃it)dt (1)

Flow Utility u(ct, xit, x̃it) = log ct −
κ

2

1

N2
t

∫ Nt

0
x2it di−

κ̃

2

1

Nt

∫ Nt

0
x̃2it di

(2)

Consumption per person ct =

(∫ Nt

0
c
σ−1

σ

it di

) σ
σ−1

with σ > 1 (3)

Data creation Jit = citLt (4)

Variety resource constraint cit = Yit/Lt (5)

Firm production Yit = Dη
itLit with η ∈ (0, 1) (6)

Data used by firm i Dit ≤ αxitJit + (1− α)Bt (7)

Data on variety i shared with others Dsit = x̃itJit (8)

Data bundle Bt =

(

N
− 1

ǫ
t

∫ Nt

0
D

ǫ−1

ǫ

sit di

) ǫ
ǫ−1

with ǫ > 1 (9)

Innovation (new varieties) Ṅt =
1

χ
· Let (10)

Labor resource constraint Let + Lpt = Lt where Lpt :=

∫ Nt

0
Lit di (11)

Population growth (exogenous) Lt = L0e
gLt (12)

Aggregate output Yt := ctLt (13)

Creative destruction δ(x̃it) =
δ0
2
x̃2it (14)
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variety i that is used by the firm producing that variety. The second is through x̃it, which

denotes the fraction of an individual’s data on variety i that is shared with other firms

in the economy. For example, xit could denote the fraction of data generated by Tesla

drivers that is used by Tesla, while x̃it is the fraction of that Tesla driving data that is

used by Waymo and GM. Privacy costs enter via a quadratic loss function, where κ and

κ̃ capture the weight on privacy versus consumption. Because there areN varieties, we

add up the privacy costs across all varieties and then assume the utility cost of privacy

depends on the average. There is an additional 1/N scaling of the xit privacy cost.

Because x̃it reflects costs associated with sharing data with all other (N ) firms in the

economy, it is natural that there is a factor of N difference between these costs, and

this formulation generates interior solutions along the balanced growth path.

A simplifying assumption is that it is the unweighted average of xit and x̃it that

enter utility. A more natural alternative would be to weight by the share of good i in

the consumption bundle. In the more natural case, consumers would be tempted to

buy more of a variety from a firm that better respects privacy. Our unweighted average

shuts down this force, which simplifies the algebra without changing the spirit of the

model.

Where does data come from? Each unit of consumption is assumed to generate one

unit of data as a byproduct. This is our “learning by doing” formulation and is captured

in equation (4): Jit = citLt = Yit, where Jit is data created about variety i.

Firm i produces variety i according to equation (6) in the table:

Yit = Dη
itLit, with η ∈ (0, 1)

where Dit is the amount of data used in producing variety i and Lit is labor. This is

one of the places where the nonrivalry of data shows up in the environment: there are

constant returns to scale in the rivalrous inputs — here just labor — and increasing

returns to both labor and data taken together. Imagine that each worker sets up her

own factory for making variety i. Because data is nonrival, each worker gets to use all

the data: data can be used at any scale of production without being depleted. The

parameter η captures the importance of data. We will show some evidence in Section 8

suggesting that η might take a value of 0.03 to 0.14; we think of it as a small positive

number.



8 JONES AND TONETTI

Data used by firm i is the sum of two terms:

Dit ≤ αxitJit + (1− α)Bt.

The first term captures the amount of variety i data that is used to help firm i produce.

In some of our allocations, firm iwill be able to use all the variety i data — for example if

firms own data. However, if consumers own data, they may restrict the amount of data

that firms are able to use (xit < 1). The second part of the equation incorporates data

from other varieties that is used by firm i. Shared data on other varieties is aggregated

into a bundle, Bt. For example, xitJit is the data from Tesla drivers that Tesla gets to

use while Bt is the bundle of data from other self-driving car companies like Waymo,

GM, and Uber that is also available to Tesla. The weights α and 1 − α govern the

importance of own versus others’ data. Importantly, this expression incorporates a

second role for the nonrivalry of data: the bundle Bt can be used by any number of

firms simultaneously without being depleted; hence it does not have an i subscript.

How is the bundle of data created? Let Dsit denote the data about variety i that is

“shared” (hence the “s” subscript) and available for use by other firms to produce their

varieties. Then, Dsit = x̃itJit. Shared data is bundled together via a CES production

function with elasticity of substitution ǫ:

Bt =

(

N
− 1

ǫ
t

∫ Nt

0
D

ǫ−1

ǫ

sit di

) ǫ
ǫ−1

.

We divorce the returns to variety from the elasticity of substitution in this CES function

using the method suggested by Benassy (1996). In particular, this formulation implies

that B will scale in direct proportion to N , which simplifies the analysis.

For tractability, we set up the model so that data produced today is used to produce

output today, i.e., roundabout production. We think of this as a within-period timing

assumption. We also assume that data depreciates fully every period. These two as-

sumptions imply that data is not a state variable, simplifying the analysis.

The creation of new varieties is straightforward: χunits of labor are needed to create

a new variety. Total labor used for entry, Let, plus total labor used in production, Lpt,

equals total labor available in the economy, Lt.

Equation (13) in Table 1 is simply a definition. Aggregate output in the economy, Yt,
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equals aggregate consumption; there is no capital or investment.

Notice that in our environment, ideas and data are well-defined and distinct. An

idea is a blueprint for producing a distinct variety, and each new blueprint is created

by χ units of labor. Data is a byproduct of consumption, and each time a good is

consumed, one unit of data is created that is in turn useful for improving productivity.

A new idea is a new production function for producing a variety while data is a factor

of production.

For allocations to be well-defined, we require that η < 1/σ, which has its bite in

the monopolistic competition of the decentralized equilibrium. As the firm expands in

size, its monopoly price falls at rate 1/σ. This rate of decline must be sufficiently large

relative to the increasing returns associated with data (via Dη
it) so that individual firms

remain finite in size.

Finally, equation (14) is not actually part of the economic environment, but it is

an important feature of the economy. We’ve already mentioned one downside to data

sharing — the privacy cost to individuals. Data sharing also increases the rate of cre-

ative destruction: ownership of variety i changes according to a Poisson process with

an arrival rate δ(x̃it). The more that competitors know about an incumbent firm, the

greater the chance that the incumbent firm is displaced by an entrant.

A question that comes up immediately in this paper is why the Coase (1960) theo-

rem does not apply: why does it matter whether firms or consumers own data initially?

With trade and monetary transfers, why isn’t the allocation the same in either case?

One could certainly set up the model so that this would be true. However, to illustrate

the importance of data sharing, we assume that the Coase theorem fails. In particular,

we assume that neither firms nor consumers can commit to not selling or using the

data they own. When firms own data, they cannot charge consumers a higher price in

exchange for the firm limiting its use of data. Similarly, if consumers own data, they

cannot commit to sell the data to only a single firm. This lack of commitment serves to

illustrate various properties of an economy with data. How it plays out in the real world

is a distinct and interesting question, but we simply note that there are many recent

episodes in the news in which firms display a remarkable inability to avoid selling or

using data that they have access to, often at odds with public statements on data-use

policy, so this assumption — in addition to its pedagogical role — may actually have
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real-world relevance.2

3. The Optimal Allocation

The optimal allocation in our environment is easy to define and characterize. Using

symmetry, the production structure of the economy can be simplified considerably.

Consumption per person is

ct = N
σ

σ−1

t cit = N
σ

σ−1

t

Yit
Lt
. (15)

Moreover, the production of a variety is

Yit = Dη
itLit = Dη

it ·
Lpt

Nt
. (16)

Combining these two expressions, aggregate output in the symmetric economy is

Yt = N
1

σ−1

t Dη
itLpt. (17)

Next, symmetry allows us to further simplify the data component:

Dit = αxitYit + (1− α)Ntx̃itYit

= [αxit + (1− α)x̃itNt]Yit (18)

This expression can be substituted into the production function for variety i in (16) to

yield

Yit = [(αxit + (1− α)x̃itNt)
ηLit]

1

1−η . (19)

The increasing returns associated with data shows up in the 1/(1 − η) exponent. Also,

the term αxit+(1−α)x̃itNt will appear frequently whenever data is shared. This deriva-

tion shows that the αxit piece reflects firms using data from their own variety while the

(1−α)x̃itNt piece reflects firms using data from other varieties. Moreover, when data is

shared, this data term scales with the measure of varieties,Nt. This ultimately provides

2See Chari and Jones (2000) for some of the problems in implementing the Coase theorem in
economies with public goods.
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an extra scale effect associated with data nonrivalry.

Finally, substituting the expression for Dit into the aggregate production function

in (17) and using Lit = Lpt/Nt yields

Yt = N
1

σ−1

t

(
αxit
Nt

+ (1− α)x̃it

) η
1−η

L
1

1−η

pt . (20)

This equation captures the two sources of increasing returns in our model. The N
1

σ−1

t

is the standard increasing returns from love-of-variety associated with the nonrivalry

of ideas. The L
1

1−η

pt captures the increasing returns associated with data. In the optimal

allocation, both play important roles.

We can now state the social planner problem concisely. The key allocations that

need to be determined are how to allocate labor between production and entry and

how much data to share. The optimal allocation solves

max
{Lpt,xit,x̃it}

∫ ∞

0
e−ρ̃tL0u(ct, xit, x̃it) dt, ρ̃ := ρ− gL (21)

s.t.

ct = Yt/Lt

Yt = N
1

σ−1

t

(
αxit
Nt

+ (1− α)x̃it

) η
1−η

L
1

1−η

pt

Ṅt =
1

χ
(Lt − Lpt)

Lt = L0e
gLt

The planner wants to share variety i data with firm i because that increases produc-

tivity and output. Similarly, the planner wants to share variety i data with other firms

to take advantage of the nonrivalry of data, increasing the productivity and output of

all firms. Tempering the planner’s desire for sharing are consumers’ privacy concerns.

Finally, the planner weighs the gains from new varieties against the gains from produc-

ing more of the existing varieties when allocating labor to production and entry. The

optimal allocation is given in Proposition 1.

Proposition 1 (The Optimal Allocation): Along a balanced growth path, as Nt grows
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large, the optimal allocation converges to

x̃it = x̃sp :=

(
1

κ̃
·

η

1− η

)1/2

(22)

xit = xsp :=
α

1− α
·
κ̃

κ

(
1

κ̃
·

η

1− η

)1/2

(23)

Lsp
i = χρ ·

σ − 1

1− η
:= νsp (24)

N sp
t =

Lt

χgL + νsp
:= ψspLt (25)

Lsp
pt = νspψspLt (26)

Y sp
t =

[
νsp(1− α)ηx̃ηsp

] 1

1−η (ψspLt)
1

σ−1
+ 1

1−η (27)

cspt =
Yt
Lt

=
[
νsp(1− α)ηx̃ηsp

] 1

1−η ψ
1

σ−1
+ 1

1−η
sp L

1

σ−1
+ η

1−η

t (28)

gspc =

(
1

σ − 1
+

η

1− η

)

gL (29)

Dsp
i = [(1− α)x̃spνspψspLt]

1

1−η (30)

Dsp = NDi = [(1− α)x̃spνsp]
1

1−η (ψspLt)
1+ 1

1−η (31)

Y sp
i =

[
νsp(1− α)ηx̃ηsp

] 1

1−η (ψspLt)
η

1−η (32)

U0 =
1

ρ̃

(

log c0 −
κ̃

2
x̃2sp +

gc
ρ̃

)

(33)

Proof See Appendix ??.

The most important result in the proposition is the solution for aggregate output

per person in equation (28). In particular, that solution shows that output per person is

proportional to the size of the economy raised to some power. The exponent, 1
σ−1+

η
1−η ,

captures the degree of increasing returns to scale in the economy and is the sum of

two terms. First is the standard “love of variety” effect that is smaller when varieties

are more substitutable. The second term is new and reflects the increasing returns

associated with the nonrivalry of data. It is increasing in η, the importance of data

to the economy. A larger economy is richer because it produces more data which then

feeds back and makes all firms more productive. This equation also makes clear why
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we require η < 1; if η ≥ 1, then the degree of increasing returns to scale is so large that

the economy becomes infinitely rich: more output leads to more data, which leads to

more output, and the virtuous circle explodes.

The next equation, (29), expresses the implications for growth: the growth rate of

consumption per person, in the long run, is proportional to the growth rate of popula-

tion, where the factor of proportionality is the degree of increasing returns to scale.

The remaining results in the optimal allocation break down in an elegant way. First,

optimal data sharing x̃sp and xsp are decreasing in the privacy costs (κ̃ and κ) and

increasing in the importance of data in the economy (η), as shown in equations (22)

and (23).

Next, equation (25) shows that optimal variety N sp
t is proportional to the popula-

tion in the economy, and the factor of proportionality is defined to be the parameter

ψsp. Higher entry costs, a higher rate of time preference, and faster population growth

all reduce variety along the balanced growth path. A higher elasticity of substitution

between varieties makes new varieties less valuable and reduces N sp
t . Finally, if data

is more important (↑ η) the economy devotes less resources to entry (which does not

create data) and more resources to production (which does).

This is even more apparent in equation (24), which shows employment per firm,

Lsp
it , which equals a combination of parameters that we define to be νsp. The compar-

ative statics for firm size are essentially the opposite of those for variety. Optimal firm

size is constant along a balanced growth path and invariant to the overall population of

the economy. This reflects the assumption that the entry cost is a fixed amount of labor

that does not change as the economy grows. The fact that the size distribution of firms

seems stationary in the U.S. suggests this may be a reasonable assumption; Bollard,

Klenow and Li (2016) provide further support. We show later that the key findings of

our paper are robust to variations of this assumption.

We will return to these results after discussing other ways to allocate resources in

this environment. The ν and ψ parameters for the different allocations will be an im-

portant part of that comparison.
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4. Firms Own Data

We now explore one possible way to use markets to allocate resources. In this equi-

librium, we assume that firms own data and decide whether or not to sell it. Data is

bought and sold via a data intermediary that bundles together data from all varieties

and resells it to each individual firm. When firms buy bundles of data, they take the

price as given, but when they sell, the market structure is monopolistic competition

because they are the unique providers of their particular type of data.

4.1 Decision Problems

Household Problem. Households have one unit of labor that they supply inelastically

in exchange for the wage wt. They hold assets that pay a return rt (these assets in

equilibrium are claims on the value of the monopolistically competitive firms). The

representative household solves

U0 = max
{cit}

∫ ∞

0
e−ρ̃tL0u(ct, xit, x̃it)dt (34)

s.t. ct =

(∫ Nt

0
c
σ−1

σ

it di

) σ
σ−1

(35)

ȧt = (rt − gL)at + wt −

∫ Nt

0
pitcit di (36)

Notice that households do not choose how data is used and shared (xit and x̃it) since

firms are the ones who own data in this allocation. The price of ct is normalized to one

so that all prices are expressed in units of ct.

Firm Problem. Each incumbent firm chooses how much data to buy and sell and how

much labor to hire. Each sale generates data: Jit = Yit. The firm uses the fraction xit of

this data itself and sells a fraction x̃it to the data intermediary at a price psit that it sets

via monopolistic competition. Because of nonrivalry, the firm can both use and sell the

same data simultaneously. In addition, the firm buys bundles of data Dbit at price pbt,

which it takes as given. Finally, each firm takes demand for its variety (aggregating the
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FOC from the Household Problem) as given:

pit =

(
ct
cit

) 1

σ

=

(
Yt
Yit

) 1

σ

. (37)

Letting Vit denote the market value of firm i, the incumbent firm problem is:

rtVit = max
{Lit,Dbit,xit,x̃it}

(
Yt
Yit

) 1

σ

Yit − wtLit − pbtDbit + psitx̃itYit + V̇it − δ(x̃it)Vit (38)

s.t. Yit = Dη
itLit (39)

Dit = αxitYit + (1− α)Dbit (40)

xit ∈ [0, 1], x̃it ∈ [0, 1] (41)

psit = λDIN
− 1

ǫ
t

(
Bt

x̃itYit

) 1

ǫ

(42)

where the last equation is the downward-sloping demand curve for firm i’s data from

the data intermediary, which is described next. Firm i takes the aggregates λDI , Bt, Nt,

and Yt as given in solving this problem.

Each firm wants to use all the data on its own variety: it owns the data already

and does not consider consumers’ privacy concerns. The firm may also want to sell

some of the data on its variety to other firms, but this desire is limited by the threat

of creative destruction. When more information about the firm’s variety is available

to competitors, the firm is more likely to be replaced by a competitor. The firm may

want to buy some of the bundle of other firms’ data, weighing the cost of purchase

against the gains from increased productivity and sales. Finally, the firm hires labor to

reach its desired scale, recognizing the downward sloping demand curve for its variety

as governed by the elasticity of substitution across varieties, σ, and that more sales

generates more data.

Data Intermediary Problem. The “b” and “s” notation for buying and selling becomes

tricky with the data intermediary: Dbit is the amount that firm i buys from the data

intermediary, so it is the amount the data intermediary sells to firm i. Similarly, psit is

the price at which firm i sells data to the data intermediary, so it is the price at which

the data intermediary purchases data.
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We originally hoped to model the data intermediary sector as perfectly competitive.

However, the nonrival nature of data makes this impossible: if agents could buy non-

rival data at a given price and then sell data at a given price, they would want to buy

one unit and sell it an infinite number of times. Nonrivalry poses problems for perfect

competition, as in Romer (1990).

Our alternative seeks to minimize frictions in data intermediation. We assume that

the data intermediary is a monopolist subject to free entry at a vanishingly small cost,

so that the data intermediary earns zero profits. Moreover, we assume the actual and

potential data intermediaries take the price at which they buy data from firms, psit, as

given. This setup delivers a limit pricing condition with zero profits even though data

is nonrival.

The data intermediary takes its purchase price of data psit as given and maximizes

profits by choosing the quantity of data to purchase from each firm and the price at

which it sells bundles of data to firms:

max
{pbt,Dsit}

pbt

∫ Nt

0
Dbit di−

∫ Nt

0
psitDsit di (43)

s.t.

Dbit ≤ Bt =

(

N
− 1

ǫ
t

∫ Nt

0
(Dsit)

ǫ−1

ǫ di

) ǫ
ǫ−1

∀i (44)

pbt ≤ p∗bt (45)

subject to the demand curve pbt(Dbit) from the Firm Problem above, where p∗bt is the

limit price associated with the zero profit condition that comes from free entry.

This expression for profits combined with the resource constraint on data in (44)

incorporates the fact that the data intermediary can “buy data once and sell it multiple

times,” i.e., the nonrivalry of data. This is shown in the first term of profits, where

revenue essentially equalsNtpbtBt — the firm is able to sell the same bundleBt multiple

times. For example, location data from consumers can, technologically, be sold to every

firm in the economy, not just to the store in which consumers happen to be shopping

at the moment.
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Firm Entry and the Creation of New Varieties. A new variety can be designed and

created at a fixed cost of χ units of labor. In addition, new entrants are the beneficiaries

of business stealing: they obtain the property rights to the varieties that suffer from

creative destruction.3 The free entry condition is then

χwt = Vit +

∫ Nt

0 δ(x̃it)Vit di

Ṅt

. (46)

The left side χwt is the cost of the χ units of labor needed to create a new variety. The

right side has two terms. The first is the value of the new variety that is created. The

second, is the per-entrant portion of the rents from creative destruction.

4.2 The Equilibrium when Firms Own Data

The equilibrium in which firms own data consists of quantities {ct, Yt, cit, xit, x̃it, at,

Yit, Lit, Dit, Dbit, Bt, Dsit, Nt, Lpt, Let, Lt} and prices {pit, pbt, psit, wt, rt, Vit} such that

1. {ct, cit, at} solve the Household Problem

2. {Lit, Yit, pit, psit, Dbit, Dit, xit, x̃it, Vit} solve the Firm Problem

3. (Dsit, Bt) Data markets clear: Dbit = Bt and Dsit = x̃itYit

4. (pbt) Free entry into data intermediation gives zero profits there (constrains pb as

a function of ps)

5. (Let) Free entry into producing a new variety leads to zero profits, as in equa-

tion (46)

6. Definition of Lpt: Lpt =
∫ Nt

0 Litdi

7. wt clears the labor market: Lpt + Let = Lt

8. rt clears the asset market: at =
∫ Nt

0 Vitdi/Lt

9. Nt follows its law of motion: Ṅt =
1
χ(Lt − Lpt)

10. Yt := ctLt denotes aggregate output

3We could alternatively assume that existing firms get these benefits or that they are split in some
proportion. How the rents from business stealing are assigned is not the main focus of our paper, and
this assumption simplifies the analysis in some ways.
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11. Exogenous population growth: Lt = L0e
gLt

In Section 7, we compare the allocation that results from this equilibrium with the

optimal allocation as well as with alternative allocations. Before that, we define the

alternative allocations, allowing us to efficiently make the comparisons all at once. For

this reason, we turn next to an equilibrium in which consumers own data.

5. Consumers Own Data

We now consider an allocation in which consumers own data associated with their

purchases. They can sell data to a data intermediary in a competitive market and

choose how much data to sell to balance the gains in income versus the costs to privacy.

Firms own zero data as it is created but can purchase data from the data intermediary.

As we discussed earlier, consumers cannot commit to sell their data to only a single

firm. Thus, it is not possible for firm i to charge consumers a lower price in exchange

for the consumers agreeing not to sell their data to others.

Why is this departure from the Coase theorem helpful? Motivated by concerns

about creative destruction, firm iwould like to strike a deal with consumers: we will pay

you for exclusive access to your data. At the right price, individual consumers would

accept, and firms would be better off. But this would reproduce the “firms own data”

allocation that shuts off data sharing. Instead, we assume here that such deals cannot

be struck (for example, either because of a law that prohibits exclusive contracts or

because of a commitment problem). This allows us to study an equilibrium in which

data is shared more widely across firms.

We do not delve into the technological details of how consumers could own data,

but this is an active area of practical research and development (e.g., Solid: Social

Linked Data, The Data Transfer Project,. . . ).

5.1 Decision Problems

We now lay out the decision problems of households and firms when consumers own

data.
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Household Problem. The household problem is similar to when firms own data, ex-

cept now the household chooses how much data to share. Consumers license the same

data in two ways when selling it: they sell data on variety i with a license that allows

firm i to use it and, separately, they sell data on variety i with a license that allows it to

be bundled and sold to all other firms. Because data can be sold in two ways, there are

two different prices: data on variety i that will be used only by firm i sells at price past,

while data on variety i that can be bundled and sold to any firm sells at price pbst. The

representative household solves

U0 = max
{cit,xit,x̃it}

∫ ∞

0
e−ρ̃tL0u(ct, xit, x̃it)dt (47)

s.t. ct =

(∫ Nt

0
c
σ−1

σ

it di

) σ
σ−1

(48)

ȧt = (rt − gL)at + wt −

∫ Nt

0
pitcitdi+

∫ Nt

0
xitp

a
stcitdi+

∫ Nt

0
x̃itp

b
stcitdi

= (rt − gL)at + wt −

∫ Nt

0
qitcitdt (49)

where qit := pit − xitp
a
st − x̃itp

b
st is the effective price of consumption, taking into ac-

count that the fractions xit and x̃it of each good consumed generate income when the

associated data is sold.

Firm Problem. Each incumbent firm chooses how much data to buy. Two types of

data are available for purchase: data from the firm’s own variety (Dait) and data from

other varieties (Dbit). Each firm sees the downward-sloping demand for its variety

(aggregating the FOC from the Household Problem):

qit =

(
ct
cit

) 1

σ

=

(
Yt
Yit

) 1

σ

= pit − xitp
a
st − x̃itp

b
st (50)

so that

pit =

(
Yt
Yit

) 1

σ

+ xitp
a
st + x̃itp

b
st. (51)
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Letting Vit denote the market value of firm i, the incumbent firm problem is:

rtVit = max
Lit,Dait,Dbit

[(
Yt
Yit

) 1

σ

+ xitp
a
st + x̃itp

b
st

]

Yit − wtLit − patDait − pbDbit

+ V̇it − δ(x̃it)Vit (52)

s.t. Yit = Dη
itLit

Dit = αDait + (1− α)Dbit (53)

Dait ≥ 0, Dbit ≥ 0

Firms no longer face a simple constant elasticity demand curve because the effec-

tive price that consumers pay is different from the price that firms receive (because

consumers sell data). From the perspective of the firm,Dait andDbit are perfect substi-

tutes: the firm is indifferent between using its own data versus an appropriately-sized

bundle of other firms’ data. This fact will help pin down the relative price of the two

kinds of data.

Data Intermediary Problem. Because we have two types of data, we now introduce

two different data intermediaries: one handles the sale of “own” data and the other

handles the bundle. Each is modeled as earlier, i.e., as a monopolist who is constrained

by free entry into data intermediation.

Taking the price past of data purchased from consumers as given, the data interme-

diary for own data solves the following problem at each date t:

max
{pait,Da

cit}

∫ Nt

0
paitDaitdi−

∫ Nt

0
pastD

a
citdi (54)

s.t.

Dait ≤ Da
cit ∀i (55)

pait ≤ p∗ait (56)

subject to the demand curve pait(Dait) from the Firm Problem above, where p∗ait is the

limit price associated with the zero profit condition that comes from free entry.

Similarly, taking the price pbst of data purchased from consumers as given, the data
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intermediary for bundled data solves

max
{pbit,D

b
cit}

∫ Nt

0
pbitDbitdi−

∫ Nt

0
pbstD

b
citdi (57)

s.t.

Dbit ≤ Bt =

(

N
− 1

ǫ
t

∫ Nt

0
(Db

cit)
ǫ−1

ǫ di

) ǫ
ǫ−1

∀i (58)

pbit ≤ p∗bit (59)

subject to the demand curve pbit (Dbit) from the Firm Problem above, where p∗bit is the

limit price associated with the zero profit condition that comes from free entry.

The two data intermediaries are monopolists who choose the prices pait and pbit

of data as well as how much data to buy from consumers of each variety and type,

taking the prices past and pbst as given. From the standpoint of the consumer, one unit

of consumption generates one unit of data and data from all varieties sell at the same

price, while each type of license may sell at a different price.

The constraints on the data intermediary problems are critical. Equation (55) says

that the largest amount of own data the intermediary can sell to firm i is the amount

of variety i data that the data intermediary has purchased. In contrast, equation (58)

recognizes that data from all varieties can be bundled together and resold to each indi-

vidual firm.

We assume free entry into the data intermediary sector at zero cost. This constrains

the prices pa and pb that the data intermediaries can charge and implies that the mo-

nopolist earns zero profits. This condition together with the fact that the two types of

data are perfect substitutes in the firm production function pin down the prices.

5.2 Equilibrium when Consumers Own Data

An equilibrium in which consumers own data consists of quantities {ct, Yt, cit, xit, x̃it, at,

Yit, Lit, Dit, Dait, Dbit, D
a
cit, D

b
cit, Bt, Nt, Lpt, Let, Lt} and prices {qit, pit, pait, pbit, p

a
st, p

b
st, wt,

rt, Vit} such that

1. {ct, cit, xit, x̃it, at} solve the Household Problem

2. {Lit, Yit, pit, Dait, Dbit, Dit, Vit} solve the Firm Problem
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3. (qit) The effective consumer price is qit = pit − xitp
a
st − x̃itp

b
st

4. Da
cit, D

b
cit, Bt, pait, and pbit solve the Data Intermediary Problem subject to the

constraint that there is free entry into this sector, so it makes zero profits

5. past clears the data market so that supply equals demand: Da
cit = xitcitLt

6. pbst clears the data market so that supply equals demand: Db
cit = x̃itcitLt

7. (Let) Free entry into producing a new variety leads to zero profits (including the

entrant’s share of the rents from creative destruction): χwt = Vit +
∫Nt
0

δ(x̃it)Vit di

Ṅt

8. Definition of Lpt: Lpt =
∫ Nt

0 Litdi

9. wt clears the labor market: Lpt + Let = Lt

10. rt clears the asset market: at =
∫ Nt

0 Vitdi/Lt

11. Nt follows its law of motion: Ṅt =
1
χ(Lt − Lpt)

12. Yt := ctLt denotes aggregate output

13. Exogenous population growth: Lt = L0e
gLt

5.3 Understanding the Equilibrium when Consumers Own Data

While Section 7 will discuss the key features of this allocation, it is worth pausing here

to highlight some smaller results.

First, because own data and the bundle of other-variety data are perfect substitutes

(see equation (53)), in equilibrium

pat =
α

1− α
pbt (60)

where we’ve dropped the i subscript because of symmetry. At any other price ratio,

firms would buy only one type of data and not the other. Similarly, the consumer prices

for each type of data satisfy

past = pat and pbst = Ntpbt. (61)
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Second, consider the inequality constraints in the Data Intermediary problems. In

equilibrium, the data intermediary will sell any data that it buys. Moreover, because

of nonrivalry, data can be bought once and sold multiple times. This means that both

inequality constraints will bind. First, Dait = Da
cit = xitYit; that is, all data on variety

i that the data intermediary purchases will be sold to firm i. Second, Dbit = Bt =

NDb
cit = Nx̃itYit (using symmetry); that is, all data that is licensed for sharing that the

data intermediary buys will be sold to all firms as bundled data.

Notice what this implies about the data the firm uses in making variety i. From

equation (53),

Dit = αDait + (1− α)Dbit

= [αxit + (1− α)x̃itNt]Yit. (62)

Finally, this expression can be substituted into the production function for a variety

and manipulated to yield

Yit = [(αxit + (1− α)x̃itNt)
ηLit]

1

1−η . (63)

The now-familiar increasing returns associated with data shows up in the 1/(1 − η)

exponent. Additionally, the termαxit+(1−α)x̃itNt reminds us that when data is shared,

this overall data term scales with the measure of varieties, Nt, which will ultimately

generate the scale effect associated with data nonrivalry.

6. Outlaw Data Sharing

The final allocation that we consider is motivated by recent concerns over data privacy.

In the world in which firms own data, suppose the government, in an effort to protect

privacy, limits the use of data. In particular, it mandates that

x̃it = 0

xit ≤ x̄ ∈ (0, 1].



24 JONES AND TONETTI

That is, firms are not allowed to sell their data to any third parties: x̃it = 0. Moreover,

the government may restrict firms to use less than 100 percent of their own-variety

data, parameterized by xit = x̄. We require x̄ > 0 in our setting — otherwise output of

each firm would be zero because data is an essential input to production.

With this determination of x̃it and xit, the rest of the equilibrium looks exactly like

the firms-own-data case, so we will not repeat that setup here. Instead, we turn next to

comparing the equilibrium outcomes across these different allocations.

7. Key Insights from Comparing the Different Allocations

This section delivers the payoff from the preparation we’ve made in the previous sec-

tions: we see how the different allocation mechanisms we’ve studied lead to different

outcomes. We compare the allocations on the balanced growth path for the social

planner (sp), when consumers own data (c), when firms own data (f ), and when the

government outlaws sharing data (os). When firms restrict the sale of data to limit their

exposure to creative destruction, what are the consequences? When consumers own

data and can sell it, is the allocation optimal? What if data sharing is banned out of a

concern for privacy?

Privacy and Data Sharing. The steady-state fraction of data that is shared with other

firms is given by4

x̃sp =

(
1

κ̃
·

η

1− η

)1/2

(64)

x̃c =

(
1

κ̃
·

η

1− η
·
σ − 1

σ

)1/2

(65)

x̃f =

(
Γρ

(2− Γ)δ0

)1/2

where Γ :=
η(σ − 1)
ǫ

ǫ−1 − ση
(66)

x̃os = 0. (67)

Interestingly, even when consumers own and sell their data, the equilibrium allocation

features inefficiently low data sharing because of the σ−1
σ < 1 term in equation (65). The

equilibrium price of data that consumers receive in exchange for selling is influenced

4We assume ǫ
ǫ−1

> ση and ǫ
ǫ−1

> 3

2
ση −

1

2
η so that Γ ∈ (0, 2) holds in equation (66).
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by this same factor:

pbst =
η

1− η
·
σ − 1

σ
·
1

x̃c
(ψcLt)

1

σ−1 .

Recall that σ
σ−1 is the standard monopoly markup in the goods market, so the intuition

is that the monopoly markup distortion leads data to sell for a price that is inefficiently

low, causing consumers to share too little data.

These equations can be contrasted with data sharing when firms own data, given

in equation (66). First, the utility cost associated with privacy κ̃ does not enter the

firm solution, as firms do not inherently care about privacy. Second, x̃f depends on δ0,

capturing the crucial role of creative destruction — which does not enter the planner or

consumer solutions for x̃. As we will see in our numerical examples, reasonable values

for δ0 mean that creative destruction concerns are first-order for firms, so they share

little data with other firms and x̃f is small. They therefore inadvertently deliver privacy

benefits to consumers. But as we will see, this aversion to sharing has other conse-

quences. An extreme version of this allocation is the one that outlaws data sharing

entirely, so that x̃os = 0.

The privacy considerations that involve only firm i and consumption of variety i are

similar. In particular,

xsp =
α

1− α

κ̃

κ
· x̃sp (68)

xc =
α

1− α

κ̃

κ
· x̃c (69)

xf = 1 (70)

xos = x̄ ∈ (0, 1]. (71)

These equations show that when firms own data, they overuse it. That is, firms set

xf = 1, while the social planner and consumers take into account the privacy costs

associated with κ and generally choose less direct sharing of data, xc < xsp < 1.

Firm Size. Because of symmetry, firm size Lit equals the ratio of production employ-

ment to varieties, Lpt/Nt. This quantity plays an important role in all of the allocations
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and is denoted by the parameter ν:

Lalloc
it =

(
Lpt

Nt

)alloc

= νalloc, for alloc ∈ {sp, c, f, os} (72)

where

νsp := χρ ·
σ − 1

1− η
(73)

νc := χgL ·
ρ+ δ(x̃c)

gL + δ(x̃c)
·
σ − 1

1− ση
(74)

νf := χgL ·
ρ+ δ(x̃f )

gL + δ(x̃f )
·

σ − 1

1− ση ǫ−1
ǫ

(75)

νos := χρ ·
σ − 1

1− ση
. (76)

For all allocations, firm size as measured by employees is constant. This is because

the entry cost technology is such that a fixed number of workers can create a new

variety. Several economic forces determine firm size. First, notice how similar νsp and

νos are. That is, steady-state firm size in the allocation with no data sharing features a

firm size that looks superficially similar to the optimal firm size. Both are increasing in

χ (the entry cost) and ρ (the rate of time preference). Higher values of these parameters

deter entry, and since the two uses for labor are entry and production, this increases

labor used in production.

The only difference between the two expressions is that the optimal firm size de-

pends on 1 − η where the equilibrium firm size depends on 1 − ση. This difference is

subtle and important to understand, as this same difference plays an important role

throughout the allocations. To understand this difference, we rewrite the optimal allo-

cation as

(
Lpt

Nt

)sp

= νsp = Const ·
1/(1− η)

1/(σ − 1)
. (77)

The left-hand side of this expression is the ratio of production labor to the amount

of varieties, and variety is closely related to entry. The right-hand side is the ratio of

two elasticities. The numerator, 1/(1− η), is the degree of increasing returns to scale at

the firm level that results from the nonrivalry of data. The denominator, 1/(σ − 1), is

the degree of increasing returns to scale associated with the love of variety. Perhaps not
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surprisingly, the planner makes the ratio of production labor to the amount of varieties

proportional to the ratio of these two elasticities, which capture the social value of

production labor and entry.

In contrast, consider the equilibrium allocation when data sharing is outlawed. Flip-

ping the numerator and denominator, equation (76) can be expressed as

(
Nt

Lpt

)os

=
1

νos
= Const ·

1− ση

σ − 1
. (78)

As shown in Appendix equation (??), this expression derives from the free entry con-

dition for firms, i.e., χwt = Vit (since there is no creative destruction in the outlaw-

sharing equilibrium). The value of a firm is the present discounted value of future

profits. The number of firms in the economy, Nt, depends on profits relative to entry

costs. Aggregate profits as a share of aggregate output equals (1−ση)/σ ·1/(1−η), while

aggregate payments to production labor as a share of output equals (σ−1)/σ ·1/(1−η).

Equation (78) says that equilibrium variety is proportional to this ratio. And the inverse

of this expression gives νos.

Equations (73) and (76) imply that firm employment is larger in the equilibrium

with no data sharing than in the optimal allocation since σ > 1. This occurs because

of the profit share term. Intuitively, the equilibrium allocation creates varieties based

on profits, while the social planner creates varieties based on the full social surplus.

Because profits are less than social surplus — the standard appropriability problem

— the outlaw-sharing equilibrium features too few firms. The flip side is that firms in

equilibrium are inefficiently large.

We will discuss the equations for νc and νf after considering the number of firms

and varieties, next.

Number of Firms and Varieties. The effect of the appropriability problem on the

measure of varieties can be seen more directly in our next set of equations. The number

of firms (varieties) in an allocation is proportional to the labor force:

Nalloc
t = ψallocLt where ψalloc :=

1

χgL + νalloc
. (79)
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Notice that the last half of the denominator of the ψ expression is just the ν term itself.

For gL small, variety is basically inversely proportional to firm size, verifying intuition

provided above about firm size and variety.

Next, it is now worth comparing firm size and variety between the equilibrium in

which consumers own data and the outlaw-sharing equilibrium in which firms own

data. Equations (74) and (76) show that firm sizes differ in these two allocations only

because of creative destruction, which enters in two ways. In the numerator of (74),

there is a ρ + δ(x̃c) term. This captures the extent to which creative destruction raises

the effective rate at which firms discount future profits. In the denominator, however,

there is an additional term involving δ(x̃c). This term captures the rents from destroyed

firms as they flow to new entrants — business stealing — essentially raising the return

to entry. If ρ = gL, then these two terms cancel and creative destruction does not

influence firm size and variety creation.

A similar effect impacts firm size and the number of firms in the equilibrium when

firms own data and can legally buy and sell it, as seen in equation (75). However, in that

allocation, data sharing is typically lower than when consumers own data, implying

that creative destruction is also lower, reducing the role of this term.

Aggregate Output and Economic Growth. The key finding of the paper is how data

sharing influences living standards and economic growth. The next set of equations

shows aggregate output in the various allocations. For the allocations that feature some

data sharing, the equation for aggregate output is

Y alloc
t =

[
νalloc(1− α)ηx̃ηalloc

] 1

1−η (ψallocLt)
1+ 1

σ−1
+ η

1−η for alloc ∈ {sp, c, f}. (80)

There are essentially three key terms in this expression, and all have a clear interpre-

tation. First, νalloc captures the size of each individual firm, and it is raised to the

power 1/(1 − η) because of the increasing returns to scale at the firm level associated

with data. Second, the term (1 − α)xalloc captures data. In particular, recall (e.g., from

equation (31)) that

Dit = [αxit + (1− α)x̃itNt]Yit = Nt

[
αxit
Nt

+ (1− α)x̃it

]

Yit. (81)
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As Nt grows large, the own sharing term αxit/Nt disappears, and data is ultimately

proportional to (1−α)x̃alloc. This is raised to the power η because of the usual Dη
it term

in the production function for output, and it is further raised to the power 1/(1 − η)

because of the feedback effect through Yit. Finally, the last term in equation (80) is

Nt = ψallocLt raised to the power 1 + 1
σ−1 + η

1−η . This exponent captures the overall

degree of increasing returns to scale in the economy: 1/(σ−1) comes from the standard

variety effect associated with the nonrivalry of ideas while η/(1 − η) comes from the

extra degree of increasing returns associated with the nonrivalry of data. This last effect

enters directly because of the Nt term associated with data sharing in (81) that we just

discussed.

Aggregate output when there is some data sharing can be contrasted with output

when data sharing is outlawed:

Y os
t = [νosα

ηxαos]
1

1−η (ψosLt)
1+ 1

σ−1 . (82)

Two main differences stand out. The first is related to the ν and ψ terms and the differ-

ences in the allocations in these two economies. But the second is perhaps surprising

and potentially even more important: there is a fundamental difference in the role of

scale between the allocations that involve data sharing and the outlaw-sharing equilib-

rium. In the allocations that involve data sharing, the exponent on Lt is 1 + 1
σ−1 +

η
1−η ,

while in the outlaw-sharing equilibrium, the additional returns associated with data

sharing η
1−η are absent. The reason for this can be seen directly in equation (81) above:

when x̃ = 0, the additional scale term associated with (1 − α)x̃Nt disappears and

the amount of data just depends on αxos. That is, firms learn only from their own

production and not from the Nt other firms in the economy.

The results for per capita income illustrate this even more clearly. In this econ-

omy, consumption per person equals output per person, Yt/Lt. Dividing the equations

above by Lt gives

calloct ∝ L
1

σ−1
+ η

1−η

t for alloc ∈ {sp, c, f} (83)

cost ∝ L
1

σ−1

t . (84)

The exponents in these equations denote the degree of increasing returns to scale
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in the economies. When data is not shared, the degree of increasing returns equals the

familiar 1
σ−1 , which is the standard increasing returns associated with the nonrivalry

of ideas and the love of variety in a Romer / Dixit-Stiglitz environment. Without data

sharing, that is the end of the story. However, when data is shared across firms, there is

the additional scale effect of η
1−η .

The importance of this effect can be seen by taking logs and derivatives of these

equations to obtain the growth rate of income and consumption per person along a

balanced growth path:

gallocc =

(
1

σ − 1
+

η

1− η

)

gL for alloc ∈ {sp, c, f} (85)

gosc =

(
1

σ − 1

)

gL. (86)

Even though this is a semi-endogenous growth setup in which standard policies have

level effects but not growth effects, we see that data sharing is different. The allocations

that involve data sharing feature faster long-run rates of economic growth.

Notice that the nature of data sharing matters for this result. If every firm shares

with 10 others, then this looks like the “outlaw sharing” equilibrium because the num-

ber of firms benefiting from the data does not grow with the economy. Conversely, if

all firms share their data with one quarter of the other firms, then this looks like the

sharing economy: the number of firms benefiting from data increases as the economy

grows larger.

In an economy in which firms do not share data, firms learn only from their own

production. Because the entry cost is a fixed number of units of labor, the number of

firms is directly proportional to the amount of labor in the economy. But this is just an-

other way of saying that firm size is invariant to the overall population of the economy:

a bigger economy has more firms but not larger firms. This means that in the outlaw-

sharing economy, there is no additional data benefit to having a larger economy, so the

growth rate does not incorporate a boost from the increasing returns associated with

the nonrivalry of data. Contrast this with an economy in which data is shared. In that

case, the amount of data that each firm can learn from is an increasing function of the

size of the economy. Therefore, the scale of the economy and the increasing returns
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associated with the nonrivalry of data interact.5

Data and Firm Production. This difference in the returns to scale shows up through-

out the allocations. This can be seen, for example, in the comparisons of data used by

each firm and aggregate data use:

Dalloc
it = [νalloc(1− α)x̃allocψallocLt]

1

1−η for alloc ∈ {sp, c, f} (87)

Dos
it = [νosαxos]

1

1−η (88)

and

Dalloc
t = NDi = [νalloc(1− α)x̃alloc]

1

1−η (ψallocLt)
1+ 1

1−η for alloc ∈ {sp, c, f} (89)

Dos
t = [νosαxos]

1

1−η ψosLt. (90)

The scale difference also shows up in firm production. While firm size measured by

employment is invariant to the size of the economy, firm production is not invariant

when data is shared. In that case, firm production grows with the overall size of the

economy because of the nonrivalry of data:

Y alloc
it =

[
νalloc(1− α)ηx̃ηalloc

] 1

1−η (ψallocLt)
η

1−η for alloc ∈ {sp, c, f} (91)

Y os
it = [νosα

ηxηos]
1

1−η . (92)

Wages, Profits, and Pricing. In the equilibrium allocations, i.e., alloc ∈ {c, f, os}, the

factor income share of production labor and profits in aggregate output add to one and

are given by

(
wtLpt

Yt

)c

=

(
wtLpt

Yt

)os

=
σ − 1

σ(1− η)
,

(
wtLpt

Yt

)f

=
σ − 1

σ(1− η ǫ−1
ǫ )

(93)

(
Ntπt
Yt

)c

=

(
Ntπt
Yt

)os

=
1− ση

σ(1− η)
,

(
Ntπt
Yt

)f

=
1− ση

σ(1− η ǫ−1
ǫ )

. (94)

5Notice that this finding is robust to specifying the entry cost differently. For example, if the entry cost
is such that the number of firms is N = Lβ , then firm size will be L

N
= L1−β and firm data will grow

in proportion. Notice that β could be less than one or greater than one: it is possible that firm size is
decreasing in the overall scale of the economy if varieties are easy to create. Contrast that with the data
sharing case, in which each firm benefits from all data in the economy: Di = NYi = N ·

L
N

= L. That is,
regardless of β, the full scale effect is passed through.
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By comparison, recall from equation (17) that the aggregate production function for

the economy is

Yt = N
1

σ−1

t Dη
itLpt. (95)

Therefore, the marginal product of production labor multiplied by Lpt as a share of

aggregate output from the social planner’s perspective is equal to one. That is, as is

standard in models with varieties, labor is underpaid relative to its social marginal

product so that the economy can provide some profits to incentivize the creation of

new varieties.

It is also interesting to compare the monopoly markup and pricing in the different

equilibrium allocations. The price of a variety is

qcit = N
1

σ−1

t = (ψcLt)
1

σ−1 (96)

pcit =

(

1 + η ·
σ − 1

σ(1− η)

)

N
1

σ−1

t =

(

1 + η ·
σ − 1

σ(1− η)

)

(ψcLt)
1

σ−1 (97)

pfit = N
1

σ−1

t = (ψfLt)
1

σ−1 (98)

posit = N
1

σ−1

t = (ψosLt)
1

σ−1 . (99)

Two points are worth noting. First, the effective price paid by consumers (i.e., incorpo-

rating the fact that they can sell their data) in the consumers-own-data allocation — qcit

— and the actual price paid by consumers in the other allocations — pfit, p
os
it — are both

equal toN
1

σ−1

t . Of course,Nt will differ across these allocations, but the point is that the

consumer prices are both the same function of the number of firms. Moreover, there is

no “markup” term that shows up in this expression. This is a feature of the exogenous

labor supply in our environment. One way or the other, labor can only be used to

produce goods and so the monopoly markup does not result in a misallocation of labor.

This is true even though firms internalize that they have increasing returns because of

the learning-by-doing associated with data. This is something we will explore more

fully in a future version on the paper.

Second, notice that the price that firms receive for their sales in the consumers-

own-data equilibrium, pcit, does involve a markup term given by 1 + η · σ−1
σ(1−η) . If η = 0,

this term would drop out. Instead, it captures the fact that firms know that consumers
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can sell their data. Therefore, firms charge an additional markup over marginal cost to

capture this revenue.

8. Numerical Example

We now provide a numerical example to illustrate the forces in the model. This should

not be viewed as a formal calibration that can be compared quantitatively to facts

about the U.S. economy. For example, our model assumes that all firms benefit from

data equally and that data shared by each firm is equally useful. In this sense, the

model might more naturally be compared to a particular industry, such as radiology or

autonomous cars. Nevertheless, we find it useful to think about how large the various

forces in the model might possibly be. To answer this question we need to specify

parameter values, with the value of η being especially important.

How Large is η? Sun, Shrivastava, Singh and Gupta (2017) study how the error rate

in image recognition applications of machine learning changes with the number of

images in the learning sample. They examine four different approaches with a num-

ber of images that ranges from 10 million to 300 million. While their paper does not

report estimates of an elasticity that corresponds to η, it is relatively straightforward to

compute such an estimate from their results. In particular, if we assume that the error

rate is proportional to M−η where M is the number of images and that productivity

equals the inverse of the error rate, then we can compute an estimate of η. Using their

data together with a related exercise from Facebook from Joulin, van der Maaten, Jabri

and Vasilache (2015) we obtain 5 different estimates of η, ranging from 0.033 to 0.143,

with a mean of 0.082, as shown in Figure 2.6 At this mean value, a doubling of the

amount of data leads the error rate to fall by 5.9 percent. Notably, the power function

fits well and there is no tendency (at least in the Google study) for the error rate to

flatten at a high number of images. Furthermore, as data proliferates, firms will develop

new algorithms and applications that make even better use of more data. Posner and

Weyl (2018) suggest that this can delay or even offset sharp diminishing returns to data.

Obviously, it would be valuable to use a broader set of applications in order to estimate

6We are grateful to Abhinav Shrivastava and Chen Sun for providing the data points from their paper
and the Facebook paper that we used to estimate η and for help interpreting the “mAP” metric.
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Figure 2: Estimating η from Image Recognition Algorithms
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Note: The parameter η is estimated from regressing the log of the error rate 1−mAP on the log number
of images using data from Sun, Shrivastava, Singh and Gupta (2017) in the first three panels and from
Joulin, van der Maaten, Jabri and Vasilache (2015) in the last panel. A fifth estimate from Figure 4a
of Sun, Shrivastava, Singh and Gupta (2017) with fine tuning is omitted but yields an estimate of η =
0.040. The data are plotted in blue while the fitted log-linear curve is shown in green.

η in different contexts.

Nevertheless, taking the midpoint of η = 0.08 as our baseline implies η/(1 − η) =

0.087. Multiplying by a value of gL = 2% implies that the steady state growth rate with

data sharing would be around 0.17 percentage points higher than without data sharing.

Other parameters. Other parameter values used in our example are reported in Ta-

ble 2. We consider an elasticity of substitution of 5 implying that the degree of in-

creasing returns in the economy is 1
σ−1 = 0.25 when there is no data sharing, rising

to 1
σ−1 + η

1−η = 0.34 in the presence of data sharing. Population growth in advanced

economies is around 1 percent per year, but the growth rate of R&D labor is closer

to 4 percent; as a compromise, we choose gL = 0.02. Combined with the returns to

scale, this implies steady-state growth rates of consumption per person of 0.5 percent

when data is not shared and 0.67 percent when data is shared across firms. Of course
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Table 2: Parameter Values

Description Parameter Value

Importance of data η 0.08

Elasticity of substitution σ 5

Weight on privacy κ = κ̃ 0.20

Population level L0 100

Population growth rate gL 0.02

Rate of time preference ρ 0.03

Labor cost of entry χ 0.01

Creative destruction δ0 0.4

Weight on own data α 1/2

Use of own data in NS x̄ 1

Note: Baseline parameter values for the numerical example.

these are lower than what we see in advanced economies, but our model omits quality

improvements within firms/varieties, so we probably should not match a higher growth

rate.

Regarding the privacy cost parameters, κ and κ̃, Athey, Catalini and Tucker (2017)

show that people express concerns about privacy but are willing to share once incen-

tivized, even by a relatively small reward: a majority of MIT students in their survey

were willing to share the email addresses of three close friends in exchange for a free

pizza. Nevertheless, we give an important role to privacy; an individual’s privacy con-

cerns regarding all their economic activity may be different than that exhibited in the

lab. We set κ̃ = 0.20, implying that having all of one’s data shared with all firms is

equivalent to a reduction in consumption of 10 percent.

We set L0 = 100, corresponding to a workforce of around 100 million people; labor

units are therefore millions of people. We set the rate of time preference to 3 percent

(it must be larger than gL). Entry requires χ = 0.01 workers; because labor units are

in millions of people, this corresponds to 10,000 people, and with an R&D share of

the population of around 1 percent, this would mean 100 researchers. Sharing all of

a variety’s data increases the rate of creative destruction by δ0/2, which we calibrate to
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20 percent; absent any other death, this corresponds to an expected lifetime of 5 years.

Finally, we set the weight on own data to α = 0.5; this parameter plays very little role in

our results.

8.1 Consumption-Equivalent Welfare

Growth rates are only one of the differences in our allocations. Consumers also care

about the level of consumption and about privacy considerations. We use a consumption-

equivalent welfare measure to summarize these differences.

Along a balanced growth path, welfare is given by

Ualloc
ss =

1

ρ̃

(

log calloc0 −
κ̃

2
x̃2alloc +

gallocc

ρ̃

)

.

Notice that the xit “own privacy” term drops out because it is scaled by 1/N ; recall

equation (2). Let Ualloc
ss (λ) denote steady-state welfare when we perturb the allocation

of consumption by some proportion λ:

Ualloc
ss (λ) =

1

ρ̃

(

log(λcalloc0 )−
κ

2
x2alloc +

gallocc

ρ̃

)

.

Then consumption equivalent welfare λalloc is the fraction by which consumption

must be decreased in the optimal allocation to deliver the same welfare as in some

other allocation:

U sp
ss (λ

alloc) = Ualloc
ss (1).

Moreover, it is straightforward to see that this consumption equivalent welfare measure

is given by

log λalloc = log calloc0 − log csp0
︸ ︷︷ ︸

Level term

−
κ̃

2

(
x̃2alloc − x̃2sp

)

︸ ︷︷ ︸

Privacy term

+
gallocc − gspc

ρ̃
︸ ︷︷ ︸

Growth term

. (100)

That is, there is an additive decomposition of consumption-equivalent welfare into

terms reflecting differences in the level of consumption, the extent of privacy, and the

growth rate.
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Table 3: Numerical Example

Summary Statistics:

Data Sharing Firm Consu- Creative
“own” “others” size Variety mption Growth Destruct.

Allocation x x̃ ν N/L = ψ c g δ

Social Planner 0.66 0.66 1304 665 18.6 0.67% 0.0870

Consumers Own Data 0.59 0.59 1482 594 18.3 0.67% 0.0696

Firms Own Data 1 0.16 1838 491 16.0 0.67% 0.0052

Outlaw Sharing 1 0 2000 455 7.3 0.50% 0

Consumption-Equivalent Welfare:

—— Decomposition ——
Welfare Level Privacy Growth

Allocation λ log λ term term term

Optimal Allocation 1 0 .. .. ..

Consumers Own Data 0.9886 -0.0115 -0.0202 0.0087 0.0000

Firms Own Data 0.8917 -0.1146 -0.1555 0.0409 0.0000

Outlaw Sharing 0.3429 -1.0703 -0.9399 0.0435 -0.1739

Note: The table reports statistics from our numerical example for the different allocations using the
parameter values in Table 2. The top panel shows baseline statistics along a balanced growth path. Firm
size is multiplied by 106 and therefore is measured in people. The bottom panel reports consumption
equivalent welfare calculated according to equation (100). In particular, λ is the fraction by which
consumption must be decreased in the optimal allocation to deliver the same welfare as in some
alternative allocation.

8.2 Results from the Numerical Example

The top panel of Table 3 shows summary statistics for the numerical example. The

fraction of data that is shared differs dramatically across the allocations. The social

planner chooses to share 66 percent of data, even taking privacy considerations into

account. When consumers own data, they share less at 59 percent.7 As discussed

earlier, the reason for this difference is the monopoly markup σ
σ−1 = 1.2 that leads

7In the planner and consumers-own-data allocations x = x̃ because we’ve set κ = κ̃ and α = 1/2.
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the price at which consumers sell their data to be too low relative to what the planner

would want. These “high sharing” allocations can be contrasted with the bottom two

allocations. When firms own data, they distort the use of data in two ways. First, they

use 100 percent of their own data, more than what consumers or the planner would

desire. In this sense, firms do not satisfy the privacy concerns of consumers. Second,

there is too little sharing with other firms relative to the planner: firms share only

16 percent of their data with other firms. The key factor in this decision is creative

destruction. And of course, when data sharing is outlawed, the allocation features no

data sharing.

The next two columns of the top panel show that firm size and the number of vari-

eties differ across the allocations. When firms own data or when sharing is outlawed,

the rate of creative destruction is low (see the last column). Less creative destruction

has two countervailing effects. On the one hand, it raises the present value of profits,

which tends to promote entry. On the other hand, it reduces the boost to entry as-

sociated with business stealing. When ρ > gL the business stealing effect dominates

and higher rates of creative destruction lead to more entry and smaller firms. This

can be seen in the top panel of Table 3, where the number of varieties is higher when

consumers own data than in the two limited-sharing allocations. Similarly, firm size is

smaller when consumers own data.

The outlaw-sharing equilibrium features a smaller scale effect, which shows up

both in economic growth being slower and in the overall level of consumption being

substantially lower.

The bottom panel of Table 3 shows the welfare decomposition using the baseline

parameter values. The allocation in which data sharing is outlawed is stunningly in-

ferior: consumption-equivalent welfare is only 1/3 that of the social planner. A small

part of this is the growth rate differential, but the bulk comes from distortions to the

level of consumption, most importantly the missing scale effect associated with data

sharing. Laws that prohibit such sharing can have dramatic effects, reducing incomes

by a factor of three or more.

One institution that appropriately balances these concerns is assigning ownership

of data to consumers. Data sharing is close to that of the social planner and consumption-

equivalent welfare falls short of optimal by just a percentage point or two. Consumers
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take their own privacy considerations into account but are incentivized by markets to

sell their data broadly to a range of firms, leading them to nearly-optimal allocations.

In contrast, when firms own data, concerns about creative destruction sharply limit

the amount of data they sell to other firms. While this generates some privacy benefits,

equal to about 4 percent of consumption, the social loss from nonrival data not being

used by other firms is much larger. Equilibrium welfare is just 89% of optimal when

firms own data, compared to 99% of optimal when consumers own data. Failing to

appropriately take advantage of the nonrivalry of data leads consumption to be lower

by more than 15 percent along the balanced growth path, even in this example in which

there are sharply diminishing returns to additional data.

9. Discussion

Implications for IO. Several issues related to antitrust and IO are raised by this frame-

work. First, because firms see increasing returns to scale associated with data and,

perhaps more importantly, because of the nonrivalry of data, firms in this economy

would like to merge into a single economy-wide firm. Our paper provides a concept

of a firm as the boundary of data sharing and the nonrivalry of data may create strong

pressures to increase scale.

Second, data may serve as a barrier to entry. A natural concern about the limited-

sharing allocations is that as a firm accumulates data, this may make it harder for other

firms to enter. In our framework, this force appears somewhat mechanically through

the dependence of the rate of creative destruction δ(x̃) on the amount of data sharing.

It would be interesting in future research to consider this force more explicitly, say, in a

quality ladder model.

The Boundaries of Data Diffusion: Firms and Countries. At the beginning of the

paper, we noted that both ideas and data are nonrival. Both can be expressed as bit

strings, and it is natural to wonder about the differences between them. For example,

while ideas give rise to increasing returns and people create ideas, growth theory does

not typically suggest that Luxembourg and Hong Kong should be much poorer than

Germany and China because of their relatively small size. Instead, the view is that ideas

diffuse across countries, at least eventually and in general, so that the relevant scale is
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the scale of the global market of connected countries rather than that of any individual

economy.

Data may be different. For example, it seems much easier to monitor and limit the

spread of data than to limit the spread of ideas. Perhaps this is because ideas, in order

to be useful, need to be embodied inside people in the form of human capital (which

makes it inherently hard to keep it from spreading). In contrast, data can be encrypted

and tightly controlled.

This raises an interesting question about whether the quantity of data that an or-

ganization has access to can serve as an important productivity advantage. This could

apply to firms or even to countries. For example, the Chinese economy is large. Could

access to the inherently larger quantities of data associated with a large population

provide an advantage. Lee (2018) suggests “China has more data than the US — way

more. Data is what makes AI go. A very good scientist with a ton of data will beat a

super scientist with a modest amount of data.” Similarly, a government that places a

lower weight on consumer privacy might induce more data sharing, leading to a higher

level of aggregate output (but perhaps lower welfare). Or, in an industry context with

trade, could this difference lead to firms (e.g., in China) having a distinct productivity

advantage in data-intensive products?

10. Conclusion

The economics of data raises many important questions. Privacy concerns have appro-

priately received a great deal of attention recently. Our framework supports this: when

firms own data, they may overuse it and not adequately respect consumer privacy.

But another important consideration arises from the nonrivalry of data. Because

data does not get depleted, there are large social gains to allocations in which the same

data is used by multiple firms simultaneously. Consider our own profession. There

are clearly substantial benefits in having data from the PSID, the CPS, and the National

Income and Product Accounts available for all to use. At the heart of these gains is

the fact that data is nonrival and does not get depleted when used by any researcher.

Similarly, it is technologically feasible for medical data to be widely used by health

researchers and for all driving data to be used by every machine learning algorithm.
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Yet when firms own such data, they may be reluctant to sell it because of concerns over

creative destruction. Our numerical examples suggest that the welfare costs arising

from limits to using nonrival data can be large.

Government restrictions that, out of a concern for privacy, outlaw data sharing en-

tirely may be particularly harmful. Instead, our analysis indicates that giving data prop-

erty rights to consumers can lead to allocations that are close to optimal. Consumers

appropriately balance their concerns for privacy against the economic gains that come

from selling data to all interested parties.
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