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1 Introduction

A pressing empirical agenda seeks to estimate the economic costs of climate change. Ig-
norance of these costs has severely hampered economists’ ability to give concrete policy
recommendations (Pindyck, 2013). However, while climate primarily varies over space, so
too do many unobserved variables that are potentially correlated with climate.1 Seeking
credible identification, an explosively growing empirical literature instead uses variation in a
location’s weather over time to estimate the consequences of transient weather shocks.2 The
hope is that transient weather shocks identify—or at worst bound—the effects of a change
in climate.

Identifying the consequences of climate change from responses to transient weather shocks
combines two challenges: (i) empirical researchers must credibly identify the consequences
of transient weather shocks, and (ii) the consequences of transient weather shocks must
be informative about the consequences of climate change. Challenge (i) is the challenge
central to empirical work throughout economics, seeking as-good-as-random assignment of
the weather treatment. Empirical researchers have addressed challenge (i) by including time
and unit fixed effects, usually taking for granted that the remaining idiosyncratic variation
in weather is exogenous.3 Challenge (ii) is less standard. The recent empirical literature
seeks to approximate the effect of one treatment (a change in climate) that is never observed
from the estimated effect of a different treatment (a transient change in weather). Whether
this mapping between treatments succeeds has been the subject of much discussion but little
formal analysis.4

I here undertake the first formal analysis that precisely delineates what and how we can
learn about the climate from the weather. A change in climate differs from a weather shock
in being repeated period after period and in affecting expectations of weather far out into
the future. Linking weather to climate therefore requires analyzing a dynamic model that
can capture the distinction between transient and permanent changes in weather. I study an
agent (equivalently, firm) who is exposed to stochastic weather outcomes. The agent chooses
actions (equivalently, investments) that suit the weather. The actions chosen in different

1For many years, empirical analyses did rely on cross-sectional variation in climate to identify the economic
consequences of climate change (e.g., Mendelsohn et al., 1994; Schlenker et al., 2005; Nordhaus, 2006).
However, cross-sectional analyses fell out of favor due to concerns about omitted variables bias. See Dell
et al. (2014) and Auffhammer (2018b) for expositions and Massetti and Mendelsohn (2018) for a review.

2For recent reviews, see Dell et al. (2014), Carleton and Hsiang (2016), and Heal and Park (2016). Blanc
and Schlenker (2017) discuss the strengths and weaknesses of relying on panel variation in weather.

3For instance, Dell et al. (2014, 741) write that “the primary advantage of the new literature is identifica-
tion”, and Blanc and Schlenker (2017, 262) describe “weather anomalies” as “ideal right-hand side variables”
because “they are random and exogenous”. We will see that the existence of forecasts and the likelihood of
serial correlation in weather in fact complicate identification.

4For instance, Dell et al. (2014, 771–772) emphasize that “short-run changes over annual or other relatively
brief periods are not necessarily analogous to the long-run changes in average weather patterns that may
occur with climate change.”
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periods may be complements or substitutes: when actions are intertemporal complements,
choosing a high action in the previous period reduces the cost of choosing a high action today,
but when actions are intertemporal substitutes, choosing a high action in the previous period
increases the cost of choosing a high action today. The first case is one of adjustment costs,
and the second case describes actions that draw from a finite reservoir of resources or time.5

When choosing actions, the agent knows the current weather, has access to forecasts of future
weather, and relies on knowledge of the climate to generate forecasts of weather at longer
horizons. A change in the climate alters both the distribution of potential weather outcomes
and the agent’s expectation of future weather outcomes.

I show several novel results. First, I describe when fixed effects estimators of the effects
of weather on actions understate or overstate the long-run effect of climate on actions.
Much empirical research has sought to estimate the consequences of climate change for
decision variables or functions of decision variables, including productivity (Heal and Park,
2013; Zhang et al., 2018), health (Deschenes, 2014), crime (Ranson, 2014), time allocation
(Graff Zivin and Neidell, 2014), and energy use (Auffhammer and Aroonruengsawat, 2011;
Deschênes and Greenstone, 2011; Auffhammer, 2018a). I show that if actions are neither
intertemporal complements nor substitutes, then empirical researchers can approximate the
effects of climate by combining the effects of current weather, lagged weather, and forecasts.
However, the standard practice fails to control for forecasts. I show that failing to control for
forecasts can recover the effects of climate change in only a narrower range of cases. Further,
standard approaches use only the coefficient on contemporary weather when estimating the
effects of climate change, but I show that this calculation can recover the effects of climate
change in only the most special of cases.

Under more general relationships between current and past actions, I show that re-
searchers can only bound the effects of climate change. Many economists have intuited that
short-run adaptation responses to weather are likely to be smaller than long-run adaptation
responses to climate (e.g., Deschênes and Greenstone, 2007). I show that two forces can
favor this result. First, when actions are durable, a forward-looking agent will undertake
more actions in response to a climate shock that also changes the next period’s weather than
in response to a transient weather shock. I show that estimating responses to forecasts can
capture this channel. Second, when actions are intertemporal complements (as in adjust-
ment cost models), the actions an agent takes in response to a transient weather shock are
constrained by the agent’s desire to not change actions too much from period to period, but
when the same weather shock is repeated period after period, even a myopic agent even-
tually achieves a larger change in activity through a sequence of incremental adjustments.

5Both types of stories exist in the literature. For instance, in studies of the agricultural impacts of climate
change, Deschênes and Greenstone (2007) conjecture that long-run adjustments to changes in climate should
be greater than short-run adjustments to weather shocks because there may be costs to adjusting crops,
whereas Fisher et al. (2012) and Blanc and Schlenker (2017) emphasize that constraints on storage and
groundwater pumping, respectively, could reverse that conclusion.
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The latter effect reverses if actions are intertemporal substitutes because agents will then
undertake actions in response to transient weather shocks that they would not sustain in the
face of a permanent change in climate. In that case, responses to transient weather shocks
can overstate responses to permanent changes in climate. This last result is consistent with
conjectures in the literature (e.g., Fisher et al., 2012; Auffhammer and Schlenker, 2014; Blanc
and Schlenker, 2017; Auffhammer, 2018b). I show that controlling for lagged actions can
indicate whether actions are intertemporal complements or substitutes and thus whether
researchers obtain an upper or a lower bound on the effect of climate.

I also describe the conditions under which fixed effects estimators can recover the marginal
effect of climate on payoffs. Much empirical research has sought to estimate the consequences
of climate change for profits (e.g., Deschênes and Greenstone, 2007) and for variables such as
gross output or income that are potentially related to aggregate payoffs (e.g., Dell et al., 2012;
Burke et al., 2015; Deryugina and Hsiang, 2017). I show that the effect of climate change
is in general hard to estimate because it depends on how actions change with the climate,
which we have seen is often imperfectly represented by responses to transient weather shocks.
However, I also identify several cases in which a combination of fixed effects estimators can
exactly recover the effects of marginal climate change from time series variation in weather.
These cases include the benchmark quadratic adjustment cost model, a model with linear
interactions between current and past actions, a simple model of resource-dependent costs,
and a model in which current and past actions are neither intertemporal substitutes nor
complements. In all cases, it is important to control for forecasts: some special cases hold
only if the coefficient on forecasts is small, and other special cases require this coefficient in
order to recover the effect of climate change.

Figure 1 depicts the intuition underlying one special case in which time series variation
in weather can identify the marginal effect of climate. Consider estimating the effect of
temperature on agricultural profits, as in Deschênes and Greenstone (2007). Each solid curve
in the left panel plots profits as a function of current inputs (such as labor and irrigation),
conditional on growing season temperature. As we move to the right, the solid curves
condition on increasingly warm growing seasons. In static environments, agents maximize
profits by choosing inputs at the peaks of these curves, such as points a and b. The dotted
line gives the effect on time t profits of time t temperature. Small changes in temperature
do not have first-order effects on profits through input choices. This is the content of the
envelope theorem, as applied by Deschênes and Greenstone (2007) and subsequent literature.
One prominent argument extrapolates this envelope theorem reasoning to conclude that the
effects of climate on profits are exactly identified by transient weather shocks (Hsiang, 2016;
Deryugina and Hsiang, 2017): if climate differs from weather only through beliefs that affect
input choices, then the first-order effects of climate are equivalent to the first-order effects
of weather because these input choices do not have first-order consequences for profits.

However, this envelope theorem argument misses the dynamics that distinguish climate
from weather. A change in climate affects past and future weather, not just current weather.
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First consider the consequences of affecting past weather. Imagine that changing inputs
imposes adjustment costs, so that time t profits also depend on time t − 1 inputs. If last
year was hot, then last year’s input choices reflect that outcome and it becomes less costly to
choose high inputs this year. The dashed curve in the left panel of Figure 1 plots profits in a
current hot year conditional on having already adjusted last year’s input choices in response
to last year’s being hot. Profits increase at input levels around point b because adjustment
costs are reduced. Profits also increase because the optimal input level increases to point
c, reflecting that current choices are less constrained by previous choices. Last year’s input
decisions can therefore have first-order effects on time t profits by changing the adjustment
costs faced at time t. Because a transient weather shock will not capture how climate affects
the trajectory of previous input decisions, we may expect a transient change in weather to
fail to identify the effects of climate.6

Now consider the implications of climate affecting future weather. A change in climate
leads agents to expect the subsequent year t + 1 to once again be hot and thus to expect
to choose a high input level in year t + 1. Applying more inputs at time t now carries
the dynamic benefit of reducing time t + 1 adjustment costs. As a result, the dynamically
optimal input choice is point d, where the marginal effect on this year’s profit is negative
but the marginal effect on expected intertemporal profits is zero (see equation (1) below).7

Envelope theorem arguments assume that profit-maximizing inputs always occur where the
marginal effect on time t profit is zero. These arguments fail when agents choose inputs
with an eye to their implications for future years, whether because current inputs affect
future years’ adjustment costs, because current inputs affect the availability of resources in
future years, or because current inputs are forward-looking adaptation decisions that directly
protect against future weather.8

How can we estimate the difference between points a and d? The right panel of Figure 1
again plots profits as a function of current inputs, but it now holds current weather fixed
between curves and instead varies only the previous year’s input choices. The curve labeled
“ss” depicts profits when the typical temperature has occurred many years in a row, so that
previous inputs reached a steady state. The other two curves depict this year’s profits under
the typical temperature outcome but with higher (“H”) and lower (“L”) choices of inputs in
the previous year. The adjustment costs imposed by these past choices constrain this year’s
choice of inputs and thereby reduce profits.

The dotted curve gives the effect on myopically optimized profits of changing last year’s
input choices. For any given previous input choice, the myopically profit-maximizing input

6Time t− 1 actions can have first-order consequences on payoffs because those actions are predetermined
at time t. The envelope theorem rules out first-order effects only via choices made at time t.

7As will be discussed, the dynamically optimal input level could be to the left or the right of point c, but
in either case, expecting the subsequent year to be hot would shift the dynamically optimal input level to
the right in order to reduce the adjustment costs faced in that subsequent year.

8Of course, the envelope theorem does hold in a dynamic setting: the envelope theorem now applies to
the intertemporal value function, not to the flow payoffs typically studied by empirical researchers.
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Figure 1: Left: Profits against inputs, conditional on temperature. Temperature is higher
for curves farther to the right. The dotted curve through points a and b gives the effect on
profits of increasing temperature in the absence of long-run adaptation. Point c accounts
for adaptation to previous hot years, and point d accounts for expecting next year to again
be hot. Right: Profits against inputs, conditional on past input choices. The curve labeled
“ss” sets previous inputs to the steady state that would result if the current temperature
had been repeated indefinitely.

choice finds the peak of the curve. The dotted curve has a peak at the myopically optimal
labor input implied by curve “ss” because adjustment costs vanish in that case. Around
this point (labeled 1), a change in past weather does not have first-order effects through
input choices. So the left panel’s point c converges to point b. Now imagine that the agent
expects the typical temperature to also occur next year. Because this year’s input choices
do not have first-order effects on next year’s profits around point 1, the myopically optimal
input choice is also dynamically optimal. So the left panel’s point d converges to point c.
Combining these results, the left panel’s point d converges to point b around point 1, so that
the treatment effect of a transient weather shock indeed recovers the effect of permanently
changing the weather. The key assumptions are, first, that agents tend to be near their
steady-state actions and, second, that small changes in past actions do not have first-order
effects on payoffs around a steady state (i.e., that point 1 occurs at a flat point of the dotted
line in the right panel). The formal analysis identifies the class of profit functions for which
this second assumption holds. Consistent with the intuition given here, it shows that a
benchmark adjustment cost model is indeed a member of that class.

Despite the importance of empirically estimating the costs of climate change and the
sharpness of informal debates around the relevance of the recent empirical literature to
climate change, there has been remarkably little formal analysis of the economic link between
weather and climate. Previous analysis has consisted in heuristic appeals to the envelope
theorem in static environments (Hsiang, 2016; Deryugina and Hsiang, 2017), but as described
above, a static environment misses the distinction between transient and permanent weather
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shocks that is critical to distinguishing weather and climate. A few other papers are also
related. First, in an initial expositional analysis, I showed how envelope theorem arguments
can fail in a three-period model (Lemoine, 2017). The present work precisely analyzes the
consequences of climate change in an infinite-horizon model and constructively shows which
types of empirical estimates can be informative about the climate. Second, Kelly et al.
(2005) and Kala (2017) study learning about the climate from observed weather. I here
abstract from learning in order to focus on mechanisms more relevant to the recent empirical
literature.9 Third, calibrated simulations have shown that dynamic responses are critical to
the effects of climate on timber markets (Sohngen and Mendelsohn, 1998; Guo and Costello,
2013) and to the cost of increased cyclone risk (Bakkensen and Barrage, 2018). I develop a
general analytic setting that precisely disentangles several types of dynamic responses and
relates them to widely used fixed effects estimators. Finally, some empirical papers have
demonstrated that actions do respond to forecasts of future weather (e.g., Neidell, 2009;
Rosenzweig and Udry, 2013, 2014; Wood et al., 2014).10 In particular, Shrader (2017) and
Taraz (2017) use variation in forecasts and past weather outcomes, respectively, to estimate
ex-ante adaptation to weather events. I will formally demonstrate that it is critical to
estimate responses both to forecasts and to lagged weather when seeking to learn about the
consequences of climate change.

The next section describes the setting. Sections 3 and 4 analyze the effects of climate on
agents’ chosen actions and payoffs, respectively, and connect these consequences to conven-
tional fixed effects estimators. Section 5 examines recent long difference estimators, showing
that they capture the same variation in transient weather shocks as standard fixed effects
estimators. Section 6 discusses the implications for empirical work of the treatment effect of
climate change varying with locations’ current climates. The final section describes caveats
and potential extensions. The appendix contains proofs.

9Kelly et al. (2005) frame the cost of learning as an adjustment cost. Quiggin and Horowitz (1999, 2003)
discuss broader costs of adjusting to a change in climate. These papers’ adjustment costs are conceptually
distinct from the adjustment costs studied here. I follow the empirical literature in studying the long-run
cost of changing the climate without modeling the transition from one climate to another. The present use
of “adjustment costs” follows much other economics literature in referring to the cost of changing decisions
from their previous level, where decisions here respond to variations in weather. The present paper studies
how these adjustment costs hinder estimation of the consequences of climate change from weather, not how
they affect the cost of transitioning from one climate to another. I return to this point in the conclusion.

10Severen et al. (2016) show that land markets capitalize expectations of future climate change and correct
cross-sectional analyses in the tradition of Mendelsohn et al. (1994) for this effect. In contrast, I here study
responses to widely available, shorter-run forecasts in a time series context and show how to use them to
improve panel analyses in the tradition of Deschênes and Greenstone (2007).
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2 General Setting

An agent is repeatedly exposed to stochastic weather outcomes and takes actions based on
realized weather and on information about future weather. The realized weather in period
t is wt and the agent’s chosen action is At.

11 This action may be interpreted as a level of
activity (e.g., time spent outdoors, energy used for heating or cooling, irrigation applied to
a field) or as a stock of capital (e.g., outdoor gear, size or efficiency of furnace, number or
efficiency of irrigation lines). The agent’s time t payoffs are π(At, At−1, wt, wt−1). Letting
subscripts indicate partial derivatives with respect to the indicated argument, I assume
declining marginal benefits of current and past actions (π11 < 0, π22 ≤ 0).

I interpret actions as adaptations that become more valuable with high weather outcomes
(π13, π23 ≥ 0). Relating to the literature on climate adaptation (e.g., Fankhauser et al., 1999;
Mendelsohn, 2000), a case with π13 > 0 reflects adaptation that can occur after weather is
realized (“reactive” or “ex-post” adaptation), whereas a case with π23 > 0 reflects adaptation
that can occur before weather is realized (“anticipatory” or “ex-ante” adaptation). I allow for
adaptation to play both roles at once. The possibility that π4 6= 0 reflects potential delayed
impacts from the previous period’s weather, with π14 and π24 capturing the potential for ex-
post adaptation to alter these delayed impacts. Consistent with the normalizations above, I
assume π14, π24 ≥ 0

I allow π12 to be positive or negative, with (π12)2 < π11π22. When π12 < 0, actions are
“intertemporal substitutes”, so that choosing a higher level of past actions increases the cost
of choosing higher actions today. I identify this case with resource constraint stories.12 For
instance, pumping groundwater today raises the cost of pumping groundwater tomorrow, or
calling in sick today increases the cost of calling in sick tomorrow. When π12 > 0, actions
are “intertemporal complements”, so that choosing a higher level of past actions increases
the benefit from choosing higher actions today. I identify this case with adjustment cost
stories.13 For instance, small changes to cropping practices or work schedules may be easier
to implement than large changes. The magnitude of π12 affects the agent’s preferred timing
of adaptation. As |π12| becomes large, the agent prefers to begin adapting before the weather
event arrives, but when |π12| is small, the agent may wait to undertake most adaptation only
once the weather event has arrived.14

11For expositional purposes, I treat actions and the weather index as being one-dimensional. Generalizing
to vector-valued actions and weather is straightforward but increases notation without further insight.

12Relating to the literature on resource extraction, the case with π12 < 0 can be seen as reflecting stock-
dependent extraction costs (Heal, 1976).

13The benchmark quadratic adjustment cost model has π12 = k for some k > 0.
14The magnitude of π12 is related to the distinction between ex-post and ex-ante adaptation insofar as it

affects the agent’s preferred timing of adaptation actions. However, π12 incentivizes early adaptation only to
reduce the costs of later adaptation, not because early adaptation provides protection from weather events.
I reserve the terms ex-ante and ex-post adaptation to refer to the effects of actions on the marginal benefit
of weather captured by π13, π23, π14, and π24.
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The agent observes time t weather before selecting her time t action. The agent also
knows the background climate C, which controls long-run average weather. We can interpret
climate and weather as temperature. At all times before t− 1, the agent’s only information
about time t weather consists in knowledge of the climate. However, at time t− 1 the agent
receives a signal about time t weather, which generates an updated forecast ft−1. We have
ft−1 = C + ζνt−1, where νt−1 is a mean-zero, serially uncorrelated random variable with
variance τ 2 > 0. The forecast is an unbiased predictor of time t weather: wt = ft−1 + ζεt,
where εt is a mean-zero, serially uncorrelated random variable with variance σ2 > 0.15 The
parameter ζ ≥ 0 is a perturbation parameter useful for analysis (see Judd, 1996). The
covariance between εt and νt is ρ, which implies that the covariance between wt and wt−1 is
ζ2ρ.

The agent maximizes the present value of payoffs over an infinite horizon:

max
{At}∞t=0

∞∑
t=0

βtE0 [π(At, At−1, wt, wt−1)] ,

where β ∈ [0, 1) is the per-period discount factor, A−1 is given, and E0 denotes expectations
at the time 0 information set. The solution satisfies the following Bellman equation:

V (Zt, wt, ft, yt; ζ) = max
At

{
π(At, Zt, wt, yt) + βEt [V (Zt+1, wt+1, ft+1, yt+1; ζ)]

}
s.t. Zt+1 =At

wt+1 =ft + ζεt+1

ft+1 =C + ζνt+1

yt+1 =wt.

The state variables Zt and yt capture the previous period’s actions and weather, respectively.
The setting is sufficiently general to describe many applications of interest. For instance,

much empirical literature has studied the effects of weather on energy use. The agent could
then be choosing indoor temperature in each period, where payoffs depend on current actions
through energy use and depend on weather through thermal comfort. Empirical literature
has also studied the effect of weather on agricultural profits. The decision variable could
then be irrigation, labor, fertilizer, or crop varieties, the dependence of payoffs on these
choices reflects the cost of purchasing these in each year, adjustment costs reflect the cost of

15Consistent with much previous literature, climate here controls average weather. One might wonder
about the dependence of higher moments of the weather distribution on climate. In fact, the effects of
climate change on the variance of the weather are poorly understood and spatially heterogeneous (e.g.,
Huntingford et al., 2013; Lemoine and Kapnick, 2016). Further, we need to know not just how climate
change affects the variance of realized weather but how it affects the forecastability of weather: the variance
of the weather more than one period ahead is ζ2(σ2 + τ2), so we need to apportion any change in variance
between σ2 and τ2. I leave such an extension to future work.
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changing equipment and plans from year to year, and weather costs reflect the deviation in
crop yields from their maximum possible value. Finally, much empirical work has studied the
effect of weather on labor productivity. The decision variable could be effort, the dependence
of payoffs on weather can reflect current thermal stress as well as the effects of the previous
day’s weather via sleep and physiological functioning, the resource constraint is one of tasks
needing to be done, and forecasts allow the agent to plan tasks and vacation time around
weather outcomes.

I will often impose one of the following two assumptions:

Assumption 1. ζ2 is small.

Assumption 2. π is quadratic.

Either assumption will limit the consequences of stochasticity for optimal policy, whether by
limiting the variance of weather outcomes (Assumption 1) or by making the policy function
independent of that variance (Assumption 2).16

3 Estimating the Effect of Climate on Actions

I now consider how to estimate the effect of climate on actions from time series variation
in weather. Much empirical research has sought to estimate the consequences of climate
change for decision variables or functions of decision variables, including productivity (Heal
and Park, 2013; Zhang et al., 2018), health (Deschenes, 2014), crime (Ranson, 2014), time
allocation (Graff Zivin and Neidell, 2014), and energy use (Auffhammer and Aroonrueng-
sawat, 2011; Deschênes and Greenstone, 2011; Auffhammer, 2018a). Further, we will see that
the effects of climate on payoffs are closely related to its effects on actions. I first analyze the
evolution of actions over time, then derive the effect of climate change, and finally compare
that effect to the estimates from fixed effects regressions of actions on weather.

Consider a deterministic system, with ζ = 0. The first-order condition is:

0 = π1(At, Zt, C, C) + βV1(Zt+1, C, C, C; 0).

The envelope theorem yields:

V1(Zt, C, C, C; 0) = π2(At, Zt, C, C).

Advancing this forward by one timestep and substituting into the first-order condition, we
have the Euler equation:

0 = π1(At, At−1, C, C) + βπ2(At+1, At, C, C). (1)

16Applying Assumption 2 will make the policy function independent of the variance of weather, but the
chosen policy will still be affected by the variance of weather because that chosen policy depends on the
realized weather.
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If π2 = 0, then we have a static optimization problem and the agent maximizes payoffs by
setting the marginal time t benefit of time t actions to zero. In Figure 1, points a, b, and c
would in fact be optimal. However, matters are different if π2 is nonzero. A case with π2 > 0
is a case of deferred benefits: actions taken in period t provide benefits in the future, as with
capital investments. In the presence of these benefits, the optimal time t action must have
a negative marginal flow benefit in time t, as with point d in Figure 1. A case with π2 < 0
is a case of deferred costs: actions taken in period t impose costs in the future, as with the
use of scarce resources or as when taking out a loan. In the presence of deferred costs, the
optimal time t action must have a positive marginal flow benefit in time t.17

A steady state Ā of the deterministic system is implicitly defined by

0 = π1(Ā, Ā, C, C) + βπ2(Ā, Ā, C, C). (2)

Define π̄ , π(Ā, Ā, C, C). The following lemma describes the uniqueness and stability of the
steady state.

Lemma 1. Ā is locally saddle-path stable if and only if (1 +β)|π̄12| < −π̄11−βπ̄22, in which
case Ā is unique.

Proof. See appendix.

I henceforth assume that (1 + β)|π̄12| < −π̄11 − βπ̄22, so that the deterministic steady state
is unique and saddle-path stable.

Now consider optimal policy in the stochastic system. The first-order condition is:

0 = π1(At, Zt, wt, yt) + βEt[V1(Zt+1, wt+1, ft+1, yt+1; ζ)].

The envelope theorem yields:

V1(Zt, wt, ft, yt; ζ) = π2(At, Zt, wt, yt).

Advancing this forward by one timestep and substituting into the first-order condition, we
have the stochastic Euler equation:

0 = π1(At, At−1, wt, wt−1) + βEt[π2(At+1, At, wt+1, wt)].

I analyze the stochastic system by approximating around the steady state and ζ = 0 (Judd,
1996).

The following lemma expresses At in terms of deviations in predetermined variables from
their means.

17In Figure 1, the dynamically optimal actions would now be to the left of points a, b, and c. The effect
of expecting the subsequent year to be hot would still shift that action to the right, so point d would still
be to the right of the corrected point c.
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Lemma 2. Let either Assumption 1 or 2 hold, and let (At−1 − Ā)2 be small. Then:

At =Ā+

effects of past weather︷ ︸︸ ︷
π̄14

χ
(wt−1 − C) +

π̄12

χ
(At−1 − Ā) +

effects of current weather︷ ︸︸ ︷
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ
(wt − C)

+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
(ft − C)︸ ︷︷ ︸

effects of future weather

, (3)

where

χ , −π̄11 − βπ̄22 − βπ̄12
π̄12

−π̄11 − βπ̄22 − βπ̄12λ
> |π̄12|

and |λ| < 1.

Proof. See appendix.

We see time t actions determined by past, current, and future weather. Actions depend
on past weather in two ways. First, past weather affects the marginal payoffs from current
actions directly when π̄14 6= 0. This is a form of ex-post adaptation. Second, past weather
affects past actions, and these past actions affect current actions when π̄12 6= 0.18 When
actions are intertemporal complements (π̄12 > 0), high values of past actions justify higher
actions today, but when actions are intertemporal substitutes (π̄12 < 0), high values of past
actions justify lower actions today. In the former case, maintaining the high action over time
reduces adjustment costs, but in the latter case, the past high action depletes the resources
needed to maintain a high action today.

Actions also depend on current weather, in three ways. First, actions respond to current
weather as a means of mitigating its immediate harm or amplifying its immediate benefits.
This channel is controlled by π̄13. Second, actions respond to current weather when current
actions can mitigate the harm or amplify the benefits incurred by current weather in future
periods. This channel is controlled by π̄24 and arises only for forward-looking agents. As an
example of the distinction between the two channels, an agent may avoid going outside on
a cold day both to minimize discomfort from the current temperature and to avoid getting
sick in the near future. Both of these channels are forms of ex-post adaptation. Third,
when π̄14 6= 0, the current weather will directly affect the agent’s chosen action in the next
period. A forward-looking agent anticipates this incentive and adjusts her current action in
preparation for that choice. This channel vanishes when π̄12 = 0 because today’s actions
then do not directly interact with subsequent actions.

Finally, actions also depend on future weather, both directly and indirectly. The direct
channel reflects the possibility of ex-ante adaptation, controlled by π̄23. When today’s actions

18Because past actions are also affected by expectations of current weather, it is more precise to say that
current actions depend on past weather and past forecasts, not just past weather.
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are durable investments that can control the effects of future weather, the agent chooses
today’s actions based on expectations of that future weather. The indirect channel reflects
how the agent begins adjusting actions today in anticipation of the actions she will want to
take in the subsequent period. When the agent receives a higher forecast, she expects to
take a higher action in the subsequent period, controlled by π̄13 and βπ̄24. When π̄12 > 0,
the indirect channel leads the agent to choose high actions today as a means of reducing
adjustment costs, but when π̄12 < 0, the indirect channel leads the agent to choose low
actions today as a means of conserving resources.

We want to know how actions change, on average, with the climate index C. If either
Assumption 1 or 2 holds and E0[(A1 − Ā)2] is small, then

E0[A2] =Ā+
π̄12

χ
(E0[A1]− Ā).

E0[(A2 − Ā)2] must be small because |π̄12|/χ < 1. Iterating forward, we find, for t > 1,

E0[At] =Ā+

(
π̄12

χ

)t−1

(E0[A1]− Ā).

As t→∞, we have:

E0[At]→Ā.

Differentiating equation (2) via the implicit function theorem, we have established the fol-
lowing lemma.

Lemma 3. Let either Assumption 1 or 2 hold, and let E0[(A1 − Ā)2] be small. Then, as
t→∞,

dE0[At]

dC
→ dĀ

dC
=

ex-post︷ ︸︸ ︷
π̄13 + π̄14 + βπ̄24 +

ex-ante︷︸︸︷
βπ̄23

−π̄11 − (1 + β)π̄12 − βπ̄22

≥ 0. (4)

Expected future actions increase in the climate index because I normalized high actions to be
more beneficial when the weather index is large. Equation (4) captures how climate change
alters weather in all periods: the past, the present, and the future. We see the various forms
of ex-post adaptation captured by π̄13, π̄14, and βπ̄24. We also see the possibility of ex-ante
adaptation, controlled by π̄23 and arising because the agent understands that the altered
climate affects weather in subsequent periods. Finally, observe that π̄12 enters through the
denominator in (4). When actions are intertemporal substitutes (π̄12 < 0), this term reduces
the magnitude of the response to climate change, as when resource constraints make long-
run responses smaller than short-run responses. However, when actions are intertemporal
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complements (π̄12 > 0), this term increases the magnitude of the response to climate change,
as when adjustment costs allow long-run responses to exceed short-run responses.

Now consider attempting to estimate (4) from time series variation in weather. Label
agents by j and imagine that they are in the same climate C with the same payoff function π
and the same stochastic process driving forecasts and weather, though each agent may draw
a different sequence of weather and forecasts. dĀ/ dC is therefore identical for all agents.
Consider the following fixed effects regression:

Ajt =αj + ψt + Γ1wjt + Γ2wj(t−1) + Γ3fjt + Γ4Aj(t−1) + ηjt, (5)

where wjt and fjt are the weather and forecasts relevant to agent j, αj is a fixed effect for
agent j, ψt is a time fixed effect, and ηjt is an error term, which I assume to be uncorrelated
with the covariates.19 I use a hat to denote the probability limit of each estimator.

The following lemma relates the estimated coefficients to the effect of climate change.

Lemma 4. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small for all obser-
vations. Then:

Γ̂1 + Γ̂2 + Γ̂3 = ω

(
dĀ

dC
+ β

π̄14 + π̄13 + βπ̄24

−π̄11 − (1 + β)π̄12 − βπ̄22

Ω

)
, (6)

where π̄12 > 0 implies ω ∈ (0, 1) and Ω > 0 and π̄12 < 0 implies ω > 1 and Ω < 0.

Proof. See appendix.

The three coefficients capture the three temporal relationships altered by climate change:
Γ̂1 recovers consequences of altering current weather, Γ̂2 recovers consequences of altering
past weather, and Γ̂3 recovers consequences of altering expectations of future weather. How-
ever, we cannot in general recover the response to a permanent change in climate from the
estimated response to transient weather shocks. The reason for this failure is the possibility
that π̄12 6= 0.

Relationships of intertemporal substitutability or complementarity drive two types of
wedges between the estimator in (6) and the effect of climate change in (4). First consider
adjustment cost stories, which have π̄12 > 0. The second term in parentheses in (6) reflects
how the agent adjusts today’s actions in expectation of today’s weather changing tomorrow’s
desired actions. In the presence of adjustment costs, the agent shifts today’s actions towards
the level that will be chosen tomorrow (Ω > 0). This effect vanishes as actions become more
similar between today and tomorrow, so it tends to make today’s actions more responsive

19I do not explicitly model the unobservable characteristics that motivate the fixed effects specification
because they are not central to the question of interest. These unobservables relate to challenge (i) described
in the introduction. See Dell et al. (2014) and Auffhammer (2018b), among others, for standard expositions
of identification in the climate-economy literature.

13 of 33



Lemoine Estimating Climate from Weather February 28, 2019

(a) Adjustment costs (b) Resource constraints

Figure 2: The effects of climate and of transient weather shocks on actions, for cases with
adjustment costs (left) and resource constraints (right). Points a, b, c, and d are as in
Figure 1. Point e depicts a case in which expected changes in weather are transient, and
point f depicts a case in which previous changes in weather were only transient. The difference
between points d and f reflects the difference between responses to climate and estimates
from transient weather shocks, from equation (6).

to weather variation than to changes in climate. The ω ∈ (0, 1) captures how adjustment
costs tend to diminish the magnitude of any change in actions. This effect also vanishes over
time as the agent completes all of the desired adjustments, so it tends to make actions less
responsive to weather variation than to changes in climate.20 These two biases conflict, and
it is difficult to sign their net effect in general.

Now consider resource constraint stories, which have π̄12 < 0. The second term in
parentheses now reflects how the agent conserves resources for tomorrow by shifting today’s
actions away from the level that will be chosen tomorrow (Ω < 0). This effect again vanishes
as time passes and actions become more similar between today and tomorrow, so it tends
to make actions less responsive to weather variation than to changes in climate. The ω > 1
captures how resource constraints tend to allow for more extreme actions when the actions
will be maintained for only a short period of time. As a result, actions are more responsive
to weather variation than to changes in climate. Once again, the two biases conflict and it
is difficult in general to sign their net effect.

Figure 2 illustrates the intuition. Begin with the left panel, which is a case of adjustment
costs. For exposition, ignore the possibility of ex-ante adaptation or delayed effects. As in
the left panel of Figure 1, the solid curves depict time t payoffs conditional on time t actions,
with point a indicating an action chosen in a typical period and point b indicating an action
chosen in a hotter period. The difference between points a and b is controlled by π̄13 and

20This effect has the flavor of Le Châtelier’s principle.
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reflects the effects of current weather in equation (3). Also as in the left panel of Figure 1,
the dashed line reflects payoffs conditional on both the current period being hot and the
past period having been hot. When the previous period was hot, the agent chose higher
actions than otherwise. Those past choices of high actions reduce the cost of choosing high
actions in the current period. The current period’s choice of action therefore increases to
point c. The difference between points b and c is controlled by π̄12 and reflects the effects
of past weather in equation (3). Finally, point d reflects the implications of expecting the
subsequent period to again be hot and thus of expecting to choose a high action in the
subsequent period.21 The marginal benefit of choosing a high action in the current period
increases because high current actions reduce future adjustment costs. The agent’s optimal
action therefore increases to point d, where the marginal effect on current-year profits is
negative. The difference between points c and d is controlled by βπ̄23 and βπ̄13π̄12, with π̄23

controlling how current actions interact with the subsequent period’s weather, π̄13 controlling
how the subsequent period’s action responds to its weather, π̄12 controlling the adjustment
costs that would be incurred, and β controlling the current agent’s concern for future costs.
The difference between points c and d reflects the effects of future weather in equation (3).

Now consider how a transient increase in expected weather differs from a change in
climate. The action that will be desired in a subsequent period is more different from the
current period’s action when the high forecast reflects a transient shock. In that case, the
adjustment will be larger and the current period’s action increases to an even larger point,
represented by point e. The change to point e reflects Ω > 0 and illustrates how agents
may respond more strongly to transient weather shocks. In addition, past actions are lower
following a transient shock to past weather than they would be if a longer history of weather
had changed as a result of a shift in climate. The resulting adjustment costs bring payoffs
closer to the rightmost solid curve than to the dashed curve. Those adjustment costs reduce
actions to a point such as f. The change to point f reflects ω ∈ (0, 1) and illustrates how
agents may respond less strongly to transient weather shocks. It is difficult in general to
determine whether point f is to the left or to the right of point d because point f results from
the combination of a rightward shift from point d to point e and a leftward shift from point
e to point f.

The right panel of Figure 2 depicts a resource constraint story. The solid curves and points
a and b are as before, and the dashed curve again depicts a case in which the previous period
was also hot and thus saw the agent choose high actions. However, that dashed curve has
now shifted down because the previous period’s high actions increase the cost of the current
period’s actions by having used scarce resources such as groundwater or time. Point c is
therefore now to the left of point b. Point d again reflects the expectation of the subsequent
period being hot, but it is now shifted to the left of point c because the expectation of high

21For exposition, I have plotted points a, b, and c as occurring at the myopically optimal actions, where
π1 = 0. However, as described around equation (1), these points could in general have π1 6= 0. In either
case, point d would be to the right of point c under the given story.
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actions in the subsequent period increases the benefit of freeing up resources by choosing
low actions in the current period.22 If the forecasted event is transient, then the subsequent
period’s action will be especially different from the current period’s action and the benefit
of freeing up resources that much larger. Point e is therefore now to the left of point d,
reflecting Ω < 0 and illustrating how agents may respond less to transient weather shocks.
However, past actions are also lower following transient weather shocks than following a shift
in climate, so resources are not as scarce in the current period if climate change has not yet
occurred. Point f therefore is now to the right of point e, reflecting ω > 1 and illustrating how
agents may respond more to transient weather shocks. It is difficult in general to determine
whether point f is to the left or to the right of point d because point f results from the
combination of a leftward shift from point d to point e and a rightward shift from point e to
point f.

Nonetheless, the following proposition shows that we can make progress in special cases.

Proposition 1. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small for all
observations.

1. Testing Intertemporal Substitutes/Complements: π̄12 < 0 if and only if Γ̂4 < 0.

2. Independence From Past Actions: If π̄12 = 0, then (i) Γ̂1 + Γ̂2 + Γ̂3 = dĀ/ dC and (ii)
Γ̂4 = 0.

3. No Ex-Ante Adaptation or Delayed Effects: If π̄23 = 0, then π̄12 < 0 if and only if
Γ̂3 < 0. If, in addition, π̄14, π̄24 = 0 and π̄13 > 0, then Γ̂1 > dĀ/ dC if and only if
π̄12 < 0.

4. No Ex-Post Adaptation: If π̄13, π̄14, π̄24 = 0 and βπ̄23 > 0, then (i) Γ̂3 > dĀ/ dC if
and only if π̄12 < 0 and (ii) Γ̂1 = Γ̂2 = 0.

5. Myopic Agents: If β = 0, then Γ̂3 = 0. If, in addition, either π̄13 > 0 or π̄14 > 0, then
Γ̂1 + Γ̂2 > dĀ/ dC if and only if π̄12 < 0.

Proof. See appendix.

The first result says that we can learn whether actions are intertemporal substitutes or
complements by considering the coefficient on previous actions. When this coefficient is
small, we may not need to worry about the biases introduced by these relationships. Further,
the second result in Proposition 1 confirms that we can exactly recover the effect of climate
from transient weather shocks when that coefficient is zero. The intuition should be clear

22In general, point d could be to the right or the left of point c because the effects of βπ̄23 conflict with
the channel discussed here, but I temporarily ignore the effect of βπ̄23 because it is not relevant to the point
of interest here.
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from the foregoing discussion: both sources of bias vanish when π̄12 = 0 because ω = 1 and
Ω = 0.

The remaining results describe cases in which we cannot exactly recover the response to
a long-run change in climate but can bound it. The third result describes a case without
either ex-ante adaptation or delayed effects, so that only current weather matters and people
respond to that weather only as it happens. This case may adequately describe household
decisions about how to set a thermostat. If there is no ex-ante adaptation, then forecasts
matter only because they shape expectations of future actions, not because they allow actions
that can directly interact with future weather. And if there are no delayed effects, then we
do not need to concern ourselves with the direct consequences of past weather. Γ̂1 then
captures all the channels of interest and is distorted only via the ω in equation (6).

In contrast, the fourth result considers a case without ex-post adaptation. Here adapta-
tion actions require a lead time, as with the decision to buy an air conditioning unit or the
decision about which crop to plant. In this case, current weather should have no effect on
observed actions and the effects of climate change arise only through altered expectations,
not through effects on either current or past weather. Γ̂3 then captures all the channels of
interest and is distorted only via the ω in equation (6).

Some previous literature has highlighted expectations as being the sole difference between
weather and climate (e.g., Hsiang, 2016; Deryugina and Hsiang, 2017), but the final result
shows that differences remain even for myopic agents, for whom expectations are irrelevant.
Even though forecasts do not matter to myopic agents (Γ̂3 = 0), their responses to weather
still fail to recover the effect of climate change. The reason is that their current actions do
depend on past actions, even though they fail to anticipate this dependence. This dependence
constrains short-run responses when actions are intertemporal complements and constrains
long-run responses when actions are intertemporal substitutes. Formally, setting β = 0 in
equation (6) eliminates the bias introduced by Ω but does not affect the bias introduced by
ω.

We have developed intuition and results for a regression like (5), but the empirical litera-
ture has, almost without exception, not estimated that type of equation. Instead, researchers
have often estimated equations of the form

Ajt =αj + ψt + γ1wjt + γ2wj(t−1) + δjt. (7)

Note that the error term δjt is now correlated with the covariates because it includes fjt and
Aj(t−1).

23 We then have:

23One could in principle include Aj(t−1) as a control on the right-hand side of‘(7), but standard advice
(e.g., Angrist and Pischke, 2009, Chapter 5) recommends against controlling for both fixed effects and lagged
dependent variables because of the likelihood of introducing Nickell (1981) omitted variables bias. Standard
practice in the empirical climate-economy literature has emphasized fixed effects instead of lagged dependent
variables, as seen in the appendix to Dell et al. (2014). Controlling for Aj(t−1) would not change the primary
results in Proposition 2.
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Proposition 2. Let either Assumption 1 or 2 hold, and let (Aj(t−1) − Ā)2 be small for all
observations.

1. Fix π̄12 = 0 and consider γ̂1:

(a) γ̂1 = dĀ/ dC if π̄14 = 0 and βπ̄23 = 0.

(b) γ̂1 ∈ (Γ̂1, dĀ/ dC) if ρβπ̄23 > 0.

(c) γ̂1 = Γ̂1 if ρβπ̄23 = 0.

2. Fix π̄12 = 0 and consider γ̂1 + γ̂2:

(a) γ̂1 + γ̂2 = dĀ/ dC if βπ̄23 = 0.

(b) γ̂1 + γ̂2 ∈ (Γ̂1 + Γ̂2, dĀ/ dC) if ρβπ̄23 > 0.

(c) γ̂1 + γ̂2 = Γ̂1 + Γ̂2 if ρβπ̄23 = 0.

3. If β = 0, then γ̂1 < dĀ/ dC if π̄12 > 0. If, in addition, π̄14 = 0, then γ̂1 > dĀ/ dC if
π̄12 < 0.

Proof. See appendix.

Regression (7) does not control for forecasts or for past actions, so these affect the estimators
γ̂1 and γ̂2 as omitted variables. The first set of results establishes what we can learn from γ̂1,
which is the coefficient of interest in much previous empirical literature. Assume that the
marginal benefit of current actions is independent of past actions (π̄12 = 0). γ̂1 captures part
of the effect of time t forecasts through their covariance ρ with εt; however, the proof shows
that γ̂1 can never capture the total effect of forecasts. Omitted variables bias helps, but
it cannot replace explicitly controlling for forecasts. Further, γ̂1 also misses the interaction
between time t actions and past weather. Putting these pieces together, γ̂1 can fully recover
climate impacts only if there is no ex-ante adaptation that would use forecasts (βπ̄23 = 0)
and past weather shocks do not matter directly (π̄14 = 0). In other cases, γ̂1 underestimates
the effect of climate change by only partially capturing these channels. The performance
of γ̂1 improves as weather becomes more serially correlated (i.e., as ρ increases) because
omitted variables bias becomes stronger, but one could do better by estimating equation (5)
and combining Γ̂1 with Γ̂2 and Γ̂3.

The second set of results shows that combining γ̂1 and γ̂2 captures the interaction between
time t actions and past weather but still fails to capture the total effect of forecasts. Omitted
variables bias allows γ̂1 + γ̂2 to potentially perform better than Γ̂1 + Γ̂2, but if weather is
serially uncorrelated (ρ = 0), then omitted variables bias from forecasts vanishes and these
two estimators are equivalent. Further, one could do better by estimating equation (5) and
combining Γ̂1 + Γ̂2 with Γ̂3.

The final result again shows that expectations are not the only factor driving a wedge
between weather and climate. When actors are myopic (β = 0) and current actions are
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independent of previous weather (π̄14 = 0), climate directly matters for decision-making
only by affecting present weather. However, the effect of climate on past weather matters
indirectly even in this case by shaping past actions. When actions are intertemporal sub-
stitutes (π̄12 < 0), these past actions constrain the long-run response to climate more than
the response to transient weather events, but when actions are intertemporal complements
(π̄12 > 0), these past actions constrain the response to transient weather events more than
the long-run response to climate.

4 Estimating the Effect of Climate on Payoffs

Beyond the effects of climate on decision variables, much empirical research has sought to
estimate the consequences of climate change for profits (e.g., Deschênes and Greenstone,
2007) and for variables such as gross output or income that are potentially related to aggre-
gate payoffs (e.g., Dell et al., 2012; Burke et al., 2015; Deryugina and Hsiang, 2017). I now
consider how to estimate the effect of climate on long-run payoffs from time series variation
in weather.

Using either Assumption 1 or Assumption 2, we have:

E0[π(At, At−1, wt, wt−1)] =π̄ + π̄1(E0[At]− Ā) + π̄2(E0[At−1]− Ā)

+
1

2
π̄11E0[(At − Ā)2] +

1

2
π̄22E0[(At−1 − Ā)2] +

1

2
(π̄33 + π̄44)ζ2(σ2 + τ 2)

+ π̄12E0[(At − Ā)(At−1 − Ā)] + π̄13Cov0[At, wt] + π̄23Cov0[At−1, wt]

+ π̄14Cov0[At, wt−1] + π̄24Cov0[At−1, wt−1] + π̄34ζ
2ρ,

for t > 1. Differentiating with respect to C, applying either assumption again, and using
our earlier result that E0[At]→ Ā for t sufficiently large, we find that, as t becomes large,

dE0[π(At, At−1, wt, wt−1)]

dC
→π̄3 + π̄4 + [π̄1 + π̄2]

dĀ

dC
. (8)

The marginal effect of climate on long-run payoffs is composed of the direct effect of a
larger weather index, in both the present (π̄3) and the past (π̄4), and the effects of changing
long-run actions, including both present actions (π̄1) and past actions (π̄2). From the Euler
equation (1), we have π̄1 = −βπ̄2, so as t becomes large,

dE0[π(At, At−1, wt, wt−1)]

dC
→π̄3 + π̄4 + (1− β)π̄2

dĀ

dC
. (9)

Whether economic responses increase or decrease payoffs depends on the sign of π̄2. As
described in Section 3, a case with π̄2 > 0 is a case in which higher actions impose costs
today but provide benefits tomorrow, as when undertaking adaptation investments that take
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time to build. A case with π̄2 < 0 is a case in which higher actions provide benefits today
but impose costs tomorrow, as when borrowing money or selling from storage. Undertaking
more actions because of climate change increases payoffs if and only if actions are of the
former type.

I will assess the importance of the following assumption for our ability to estimate the
effect of climate on payoffs from within-unit weather variation:

Assumption 3. π2(At, At−1, wt, wt−1) = Kπ1(At, At−1, wt, wt−1) if At−1 = At, for K 6= −β.

This assumption makes the marginal benefit of past actions around a steady state propor-
tional to the marginal benefit of current actions around a steady state. Consider a few
special cases. First, a quadratic adjustment cost model yields K = 0: π2 is proportional to
At − At−1, which is equal to 0 when At = At−1. Second, a linear interaction model yields
K = 1: if π = g(AtAt−1), then π1 = At−1g

′(AtAt−1) and π2 = Atg
′(AtAt−1). Third, a model

in which the returns to resource extraction decline in previous extraction can yield K = −1:
if π = g(At/At−1), then π1 = g′(At/At−1)/At−1 and π2 = −Atg′(At/At−1)/(A2

t−1). Finally, a
model without dynamic linkages has π2(·, ·, ·, ·) = 0 and thus K = 0.

Most empirical researchers will not observe the full set of actions available to agents or
firms. As a result, empirical researchers may estimate the following regression:

πjt =αj + ψt +Xjtθ + ηjt, (10)

where we again label firms by j and ηjt is again an error term. The vector of covariates Xjt

is [
wjt fjt wj(t−1) fj(t−1) ... wj(t−K) fj(t−K)

]
.

As before, I assume that ηjt would be uncorrelated with the covariates if they included
lags of actions.24 However, because actions are unobserved by the econometrician, they can
introduce omitted variables bias. We are interested in the vector of coefficients θ. I denote
each element with a subscript corresponding to the covariate it multiplies, and I again use a
hat to denote the probability limit of each element.

Proposition 3. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν normally
distributed. Also let (Aj(t−1) − Ā)2 and (Ajt − Ā)2 be small for all observations and let each
agent’s average actions be Ā. Then, for t large and K > 2,

1. The Estimators: θ̂wt = π̄3 + π̄1Γ̂1 and θ̂ft = π̄1Γ̂3. If π̄12 = 0, then θ̂wt−1 = π̄4 + π̄2Γ̂1 +

π̄1Γ̂2, θ̂ft−1 = π̄2Γ̂3, and θ̂wt−2 = π̄2Γ̂2.

24I do not explicitly model the unobservable characteristics that motivate the fixed effects specification
because they are not central to the question of interest. See footnote 19 above.
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2. When Actions Vanish: If Assumption 3 holds, then dE0[πt]/ dC = π̄3+π̄4 = θ̂wt+ θ̂wt−1

and θ̂ft = θ̂ft−1 = θ̂wt−2 = 0.

3. Independence From Past Actions: If π̄12 = 0, then dE0[πt]/ dC = θ̂wt + θ̂wt−1 + θ̂wt−2 +

θ̂ft + θ̂ft−1.

4. No Ex-Ante Adaptation or Delayed Effects: Let π̄23, π̄14, π̄24 = 0 and π̄13 > 0. Then
θ̂wt + θ̂wt−1 < dE0[πt]/ dC if and only if π̄2π̄12 > 0.

5. No Ex-Post Adaptation: Let π̄13, π̄14, π̄24 = 0 and βπ̄23 > 0. Then θ̂wt + θ̂wt−1 + θ̂ft +

θ̂ft−1 < dE0[πt]/ dC if and only if π̄2π̄12 > 0.

6. Myopic Agents: If β = 0, then θ̂ft = θ̂ft−1 = 0. If, in addition, either π̄13 > 0 or

π̄14 > 0, then θ̂wt + θ̂wt−1 + θ̂wt−2 < dE0[πt]/ dC if and only if π̄2π̄12 > 0.

Proof. See appendix.

From equation (8), estimating the effects of climate on payoffs requires estimating four
terms: π̄3, π̄4, π̄1[ dĀ/ dC], and π̄2[ dĀ/ dC]. The first result of the proposition shows that
the coefficients from (10) are closely related to these terms. In particular, the direct effects of
weather (π̄3 and π̄4) are captured by θ̂wt and θ̂wt−1 . The second part of the proposition shows
that when Assumption 3 holds, these direct effects on weather suffice to describe the effect
of climate on payoffs. Assumption 3 and the Euler equation (1) imply that π̄2 = π̄1 = 0:
an optimizing agent sets the marginal benefit of actions to zero around a steady state,
as with point 1 in Figure 1. In this case, the consequences of marginal climate change
are independent of changes in actions.25 Therefore, summing θ̂wt and θ̂wt−1 fully captures
the effects of climate on payoffs. Further, we can test whether Assumption 3 holds by
examining the magnitudes of the coefficients on forecasts and on sufficiently long lags of
weather: because these variables matter for payoffs only through their effects on actions,
they cannot affect payoffs if Assumption 3 indeed holds.

The third part of the proposition describes an additional special case in which we can
recover the effect of climate on payoffs from (10). From Proposition 1, we know that Γ̂1 +
Γ̂2 +Γ̂3 recovers the effect of climate on actions when π̄12 = 0. The first part of Proposition 3
showed that θ̂wt and θ̂wt−1 recover Γ̂1 (the consequences of altering current weather), θ̂wt−1

and θ̂wt−2 recover Γ̂2 (the consequences of altering past weather), and θ̂ft and θ̂ft−1 recover

25As described earlier, one of the special cases of Assumption 3 is a model with no dynamic linkages
(π2(·, ·, ·, ·) = 0), in which case the agent solves a series of independent, static decision problems. We have
therefore recovered the result obtained by previous appeals to the envelope theorem in static settings (Hsiang,
2016; Deryugina and Hsiang, 2017), but we now see that those settings were a rather special case: envelope
theorem arguments do not suffice to make actions irrelevant in a model with dynamic linkages. See also
footnote 27.
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Γ̂3 (the consequences of altering expectations of future weather). The coefficient in each pair
with the larger time index captures the effect on payoffs via current actions and the other
coefficient captures the effect on payoffs via past actions. Therefore, summing θ̂wt , θ̂wt−1 ,

θ̂wt−2 , θ̂ft , and θ̂ft−1 recovers (π̄1 + π̄2)[ dĀ/ dC] when π̄12 = 0. When neither adjustment cost
nor resource constraint stories apply, we can recover the effect of climate on payoffs from a
regression with sufficiently long lags of weather and forecasts.26

The fourth part of the proposition signs the bias in our estimate of the effect of climate
on payoffs when π̄12 6= 0 but there is no ex-ante adaptation or delayed effects. In this case,
only current weather matters for actions. This channel is captured by θ̂wt + θ̂wt−1 . From
Proposition 1, we know that adjustment costs and resource constraints lead us to misestimate
effects on actions: Γ̂1 > dĀ/ dC if and only if π̄12 < 0. Equation (9) showed that undertaking
more actions because of climate change provides benefits if and only if π̄2 > 0. Therefore,
θ̂wt + θ̂wt−1 is an overly pessimistic estimate of the effects of climate on payoffs in two cases:
when actions are beneficial and variation in weather underestimates how actions respond
to climate change (π̄2, π̄12 > 0), and when actions impose costs and actions respond less
to climate change than to short-lived changes in weather (π̄2, π̄12 < 0). Intuitively, a case
with π̄2, π̄12 > 0 is one in which actions are costly to adjust and are undertaken for future
benefits, as with diverting crops to storage, and a case with π̄2, π̄12 < 0 is one in which actions
impose long-run costs but will not be maintained for long, as may be true of groundwater
withdrawals. In either case, extrapolating from responses to weather overstates the cost of
climate change; in other cases, the estimator θ̂wt + θ̂wt−1 is an overly optimistic estimate of
the effect of climate change.

The fifth part of the proposition signs the bias in our estimate of the effect of climate
on payoffs when π̄12 6= 0 but there is no ex-post adaptation. In this case, only expectations
of future weather matter for actions. This channel is is captured by θ̂ft + θ̂ft−1 . From
Proposition 1, we know that adjustment costs and resource constraints lead us to misestimate
effects on actions: Γ̂3 > dĀ/ dC if and only if π̄12 < 0. From here, the intuition for the
result follows the case without ex-ante adaptation or delayed effects.

The final result considers a case with myopic agents. When agents are myopic, the
Euler equation (1) implies that π̄1 = 0. The effects of climate on current actions no longer
matter for payoffs, but the effects of climate on past actions can still matter for payoffs.27

26The requirement that K > 2 ensures that omitted variables bias does not affect the needed coefficients.
If we allowed for longer lags in the consequences of weather and/or in the consequences of forward-looking
investments, then the estimator of climate consequences would include longer lags of forecasts and weather
than the estimator described in part 3 of Proposition 3. We would then require that K be strictly larger
than the longest lag.

27Because myopic agents solve a static decision problem, the envelope theorem now makes current actions
independent of payoffs. But a static decision problem is not equivalent to a static decision-making environ-
ment: because past actions are predetermined variables, the envelope theorem has no bearing on how the
decision problems are linked through the history of weather. In Figures 1 and 2, even myopic agents find
point c instead of remaining at point b following a weather shock.
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Proposition 1 already established that we tend to underestimate changes in actions when
π̄12 > 0. In this case, we estimate an overly pessimistic effect of climate on payoffs if and only
if past actions provide current benefits (π̄2 > 0). On the other hand, we tend to overestimate
the changes in actions when π̄12 < 0. In this case, we estimate an overly optimistic effect of
climate on payoffs if and only if past actions impose current costs (π̄2 < 0). In sum, stripping
away expectations eliminates several channels through which climate affects payoffs, but
stripping away expectations does not eliminate all of the dynamic linkages that differentiate
climate from weather.

Proposition 3 assumed that each agent’s average actions are Ā. The following corollary
establishes how relaxing this assumption changes the results.

Corollary 4. Let the conditions given in Proposition 3 hold, except let each agent’s average
actions be strictly greater than Ā. Then, for t large and K > 2,

1. θ̂ft = π̄1Γ̂3 and, if either π̄13 > 0 or π̄23 > 0, θ̂wt > π̄3 + π̄1Γ̂1. If π̄12 = 0, then

θ̂ft−1 = π̄2Γ̂3, θ̂wt−2 = π̄2Γ̂2, and, if either π̄14 > 0 or π̄24 > 0, θ̂wt−1 > π̄4 + π̄2Γ̂1 + π̄1Γ̂2.

2. If Assumption 3 holds and at least one of π̄13, π̄23, π̄14, or π̄24 is strictly positive, then
dE0[πt]/ dC = π̄3 + π̄4 < θ̂wt + θ̂wt−1.

3. If π̄12 = 0 and at least one of π̄13, π̄23, π̄14, or π̄24 is strictly positive, then dE0[πt]/ dC <
θ̂wt + θ̂wt−1 + θ̂wt−2 + θ̂ft + θ̂ft−1.

The inequalities reverse if, instead, each agent’s average actions are strictly less than Ā.

Proof. See appendix.

The first part of the corollary establishes that the bias from average actions not yet having
reached the steady state enters through θ̂wt and θ̂wt−1 . The remaining parts of the corollary
establish that the special cases that formerly sufficed to identify climate impacts from weather
impacts now merely bound the effect of climate on payoffs. In particular, we obtain an upper
bound if agents are approaching their steady-state actions from above and a lower bound
otherwise. Intuitively, if climate shifts the steady-state action farther from the agent’s current
action, then any weather shocks incorporate transition costs that vanish from the effect of
climate on long-run payoffs.

In practice, empirical researchers have not estimated equations like (10). Instead, empir-
ical researchers have very rarely controlled for forecasts, and many also do not control for
lagged weather outcomes when payoffs are the dependent variable.28 Conventional regres-
sions are closer to

πjt =αj + ψt +XjtΦ + δjt, (11)

28Distributed lag models are instead estimated when mortality is the dependent variable (e.g., Deschênes
and Moretti, 2009).
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where the vector of covariates Xjt is now[
wjt wj(t−1) ... wj(t−K)

]
.

The error term δjt now includes not only actions but also current and past forecasts. We
are interested in the vector of coefficients Φ. I denote each element with a subscript corre-
sponding to the covariate it multiplies, and I again use a hat to denote the probability limit
of each element. A superscript on each Φ̂ now denotes the value of K.

The following proposition relates these estimates to the desired effect of climate on pay-
offs.

Proposition 5. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν normally
distributed. Also let (Aj(t−1) − Ā)2 and (Ajt − Ā)2 be small for all observations, let each
agent’s average actions be Ā, and let t be large.

1. Let Assumption 3 hold. Then:

(a) Φ̂K
wt + Φ̂K

wt−1
= dE0[πt]/ dC if K = 1 or K = 2.

(b) Φ̂0
wt < dE0[πt]/ dC if and only if π̄4 > 0.

2. Let π̄12 = 0 and βπ̄23 = 0. Then:

(a) Φ̂2
wt + Φ̂2

wt−1
+ Φ̂2

wt−2
= dE0[πt]/ dC.

(b) If π̄14 = 0, then Φ̂1
wt + Φ̂1

wt−1
= dE0[πt]/ dC.

(c) If π̄14 = 0, π̄4 = 0, and π̄13 > 0, then Φ̂0
wt < dE0[πt]/ dC if and only if π̄2 > 0.

Proof. See appendix.

The first result establishes that we can still recover the full effect of climate on payoffs if
Assumption 3 holds and K > 0. Responses to forecasts generally identify ex-ante adaptation,
but small changes in adaptation are irrelevant for payoffs when Assumption 3 holds. And
Assumption 3 further implies that responses to forecasts do not induce omitted variables
bias in (11). We can therefore recover the effect of climate from Φ̂K

wt + Φ̂K
wt−1

.
However, the second result establishes that we can no longer recover the effects of climate

on payoffs merely by assuming π̄12 = 0. The reason is that by failing to control for forecasts,
our estimates no longer fully capture the possibility of ex-ante adaptation based on expec-
tations of future weather.29 We must therefore introduce a further assumption—that there
is no ex-ante adaptation (βπ̄23 = 0)—in order to recover the original result. If we estimate

29Some of this ex-ante adaptation is captured through omitted variables bias in the plausible case where
weather and forecasts are positively correlated (i.e., where ρ > 0), but the proof shows that it can never be
captured completely.
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a model with only a single lag of weather, then we must also limit the interaction between
actions and past weather by assuming that π̄14 = 0. And if we follow much of the empirical
literature in estimating a model without any lags of weather, then recovering the effects
of climate change further requires the absence of adaptation to current weather (π̄13 = 0)
and the absence of lagged direct effects of weather (π̄4 = 0). These strong assumptions are
unlikely to hold in many applications of interest.30

5 Long Differences

Rather than estimating either a cross-sectional or a panel model, some literature has instead
estimated “long difference” specifications (e.g., Dell et al., 2012; Burke and Emerick, 2016).
This approach averages weather and outcomes over two non-overlapping periods, differences
the averages, and estimates how the differenced dependent variable changes with differenced
temperature. To many, this approach’s appeal rests in providing “plausibly credible causal
estimates of climate impacts that account for adaptation” (Auffhammer, 2018b, 45): differ-
encing removes the unobserved fixed factors that may covary with climate in a cross-sectional
regression, and the variation induced by differential long-run changes in weather may iden-
tify the types of adaptations missing from standard panel regressions. I here derive the long
difference estimator and show that it in fact relies on exactly the same variation in transient
weather shocks as do the estimators already considered. Further, I show that the long dif-
ference estimator recovers the effects of climate change only in a subset of the cases in which
previously described estimators can recover the effects of climate change.

Formally, assume, as before, that all agents are in the same climate and that this climate
is stationary. The literature has claimed that the long difference estimator is identified by
differential rates of climate change, but we will see that the estimator in fact has a clear
interpretation even in the absence of climate change over the period of interest.31 The
econometric researcher averages outcomes over ∆ periods, with the first averaging interval

30Rather than focusing on the Φ̂, Deryugina and Hsiang (2017) undertake a different calcula-
tion. Let p(wt;C) represent the probability density function for weather in climate C. They esti-
mate π(At(wt), At−1(wt), wt, wt−1(wt)) − π(At(w

0), At−1(w0), w0, wt−1(w0)) for each wt, where w0 in-
dicates the omitted category and where we write At−1(wt) and wt−1(wt) in order to focus on
questions besides the evaluation point. They calculate the marginal effect of climate from the

following expression:
∫∞
−∞

[
π(At, At−1, wt, wt−1)− π(At, At−1, w

0, wt−1)
] dp(wt;C)

dC dwt , Ψ. Analyz-

ing, we find Ψ = Cov

[
π(At, At−1, wt, wt−1),

dp(wt;C)
dC

p(wt;C)

]
. If wt is normally distributed, then Ψ =

Cov [π(At, At−1, wt, wt−1), wt] /V ar[wt], which, following the proof of Proposition 5, is equal to Φ̂0
wt

. Propo-
sition 5 shows that this estimator recovers the effects of climate change in only the most special of cases.

31The present setting can also be interpreted as one in which agents did not realize that the climate was
changing, which is plausible when applying long differences to twentieth century data. See Dell et al. (2014)
and Burke and Emerick (2016) for discussion.
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starting at time 0 and the second averaging interval starting at some time T , where T > ∆.
Denote the averages with a tilde and use the time subscript to indicate the beginning of the
averaging interval, so that, for instance, π̃j0 ,

∑∆−1
t=0 πjt/∆. A typical regression would have

the form
π̃jT − π̃j0 = Λ[w̃jT − w̃j0] + ũjT − ũj0,

where the ũj0 and ũjT are error terms. I assume that ũjT−ũj0 is uncorrelated with w̃jT−w̃j0.

The following proposition establishes properties of the estimator Λ̂.

Proposition 6. Let Assumption 1 hold, or let Assumption 2 hold with the ε and ν normally
distributed. Also let (Aj(t−1) − Ā)2 and (Ajt − Ā)2 be small for all observations and let each
agent’s average actions be Ā. Further, assume that π̄12 = 0 and ρ = 0. Then, for t large and
∆ large, the following conditions are individually sufficient for dE0[πt]/ dC → Λ̂:

1. Assumption 3 holds.

2. π̄14 = 0 and βπ̄23 = 0.

3. π̄14 = 0 and τ 2/σ2 is large.

Proof. See appendix.

The proposition considers an especially simple case, in which weather shocks are serially
uncorrelated (ρ = 0) and actions are independent over time (π̄12 = 0). The proof shows that
the estimator is

Λ̂ = Φ̂0
wt +

∆− 1

∆
Υ.

As ∆ becomes small, the long difference estimator converges to Φ̂0
wt , which Proposition 5

showed can approximate the effect of climate change in only the most special of cases. As ∆
becomes large, the coefficient on Υ goes to 1. This is the case considered by Proposition 6.
The proposition shows that the long difference estimator can approximate the effect of cli-
mate change in a broader set of cases as ∆ becomes large: the estimator Λ̂ performs better
than Φ̂0

wt because the process of averaging picks up correlations between current payoffs and
lags and leads of weather. Further, the proposition shows that the long difference estimator
Λ̂ does recover the desired effect of climate change if Assumption 3 holds: Λ̂ can, like the
other estimators, recover π̄3 + π̄4.

However, Proposition 6 also shows that the estimator Λ̂ underperforms estimators ana-
lyzed in Section 4. In particular, if Assumption 3 does not hold, then the conditions under
which Λ̂ recovers the effect of climate change are more restrictive than in other cases. The
proof shows that Λ̂ fails to estimate dĀ/ dC because it misses part of the delayed effect of
past weather on actions and because it only imperfectly captures ex-ante adaptation. When
π̄14 = 0, the delayed effects vanish; when βπ̄23 = 0, ex-ante adaptation does not occur; and
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when τ 2/σ2 is large, the estimator fully captures ex-ante adaptation because the variation in
realized weather reflects only variance in forecasts. The estimator θ̂wt+θ̂wt−1+θ̂wt−2+θ̂ft+θ̂ft−1

required none of these assumptions, and the estimator Φ̂2
wt + Φ̂2

wt−1
+ Φ̂2

wt−2
required only

that βπ̄23 = 0.
The upshot of Proposition 6 is that long difference estimators may not bring us closer

to estimating the consequences of climate change. Some have claimed that this estimator
is identified by differential rates of climate change across locations, but we have seen that
this estimator is in fact is also identified by random differences in sequences of transient
weather shocks. At best, the estimator Λ̂ conflates this variation with differential rates
of climate change, and at worst, the estimator Λ̂ instead captures nothing but the same
transient weather shocks as more conventional estimators because the climate actually did
not change differentially or because agents were not aware of such changes. Intuitively,
averaging over several periods does not eliminate the old sources of variation and need
not introduce new sources of variation. It therefore is unsurprising that Burke and Emerick
(2016) obtain similar estimates in their panel and long difference approaches. They interpret
this similarity as indicating the absence of long-run adaptation, but the similarity may in
fact be mechanical.

6 Treatment Effects that Vary by Climate Zone

We have heretofore considered cases in which all agents exist in the same climate. However,
much empirical work pools observations across broad geographic areas that include many
climate zones. For instance, the base specifications in Deschênes and Greenstone (2007)
pool counties over the whole United States.32 Equation (4) implies that the effect of climate
on actions is generically independent of the initial climate only if π is quadratic. And
equation (8) implies that the effect of climate on payoffs is generically independent of the
initial climate only if Assumption 3 holds and weather enters π linearly. Beyond these special
cases, the treatment effect of climate is likely to be heterogeneous and pooling data across
climate zones will, at best, recover a weighted treatment effect.

Recovering a weighted treatment effect changes not just the interpretation of the estima-
tor but also its use. Following Deschênes and Greenstone (2007), many studies combine the
estimated effects of weather shocks with spatially heterogeneous predictions from physical
climate models in order to project how climate change will affect different regions. This
approach aims to account for heterogeneity in the future climate treatment, but it does not
make sense if researchers are in fact estimating a weighted treatment effect from weather
shocks. Instead, empirical researchers should consider pooling observations only within cli-
mate zones in order to estimate the effect of marginal climate change within each region.
These estimates may then be combined with physical climate models’ predicted regional

32They explore state-by-state regressions in a supplemental analysis.
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changes in climate in order to recover an effect of climate change that accounts for hetero-
geneity in the treatment effect as well as in the future treatment.33

7 Caveats and Potential Extensions

I have demonstrated how to estimate the effects of climate change from time series variation
in weather. The setting is fairly general. Nonetheless, the results are subject to several
caveats.

First, the present setting successfully captures the distinction between transient and
permanent changes in weather, but global climate change also differs from most weather
shocks in its spatial structure. A change in global climate affects weather in every location
and thus will have general equilibrium consequences. The present setting has followed most
empirical work in abstracting from such effects, but some recent empirical work has begun
exploring the implications of changing the weather in many locations simultaneously (e.g.,
Costinot et al., 2016; Gouel and Laborde, 2018; Dingel et al., 2019). Future work should
extend the present setting to account for general equilibrium effects.

Second, the present analysis has held the payoff function fixed over time. However,
climate change should induce innovations that alter how weather affects payoffs, and many
such innovations will arise even in the absence of climate change. Some historical studies have
begun exploring the interaction between climate and agricultural innovation (e.g., Olmstead
and Rhode, 2008, 2011; Roberts and Schlenker, 2011), but the potential for future innovation
may be inherently unobservable. Future work should consider approaches to bounding the
scope for innovation.

Third, the present analysis has considered only marginal changes in climate, but cli-
mate change over the next century is likely to be nonmarginal. One could approximate the
consequences of nonmarginal changes in climate by summing the estimates from fixed ef-
fects regressions undertaken in different climate zones. Time series variation then identifies
the consequences of marginal changes in climate and cross-sectional variation identifies the
consequences of nonmarginal changes in climate. Similar approaches to combining panel
and cross-sectional variation have recently been summarized by Auffhammer (2018b). How-
ever, two considerations call for caution when extrapolating reduced-form estimates to large

33Recently, researchers have begun estimating the consequences of weather in a semiparametric fashion
that allows treatment effects to vary with the level of weather (see Carleton and Hsiang, 2016). For instance,
the method used in footnote 30 requires estimating payoffs as a function of any realized wt. This approach
poses a further identification problem when data are pooled across climate zones: the effect of a given level of
weather is identified from locations for which that weather shock is typical as well as from locations in which
that weather shock is atypical. In the latter case, actions are likely to be farther from a relevant steady state,
so the types of problems discussed in Corollary 4 now arise inside the weighted treatment effect. Further,
omitted forecasts are likely to call for reversion to the mean in that same case, so the estimators are likely to
capture even less ex-ante adaptation than did the estimators in (11) if weather is positively correlated over
time.
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changes in climate: the use of cross-sectional variation raises the usual concerns about iden-
tification, which becomes more severe as that cross-sectional variation is asked to do more
work, and higher-order effects are likely to become relevant to nonmarginal climate change,
even though absent from a summation of estimated marginal effects. Future work should
explore whether nonlinear responses to weather shocks can inform nonmarginal consequences
of climate change.

Finally, the present analysis has focused on identifying the long-run consequences of
climate change, abstracting from the transition costs induced by climate change. In this
regard, the present analysis matches the calculations undertaken by nearly all empirical
work but omits a potentially critical aspect of climate change (see Quiggin and Horowitz,
1999, 2003; Kelly et al., 2005). Future work should consider whether imposing stronger
assumptions on the decision-making environment can identify the costs of full-information
transitions. Future work should also consider the potential to estimate structural models
that could credibly simulate outcomes along counterfactual climate trajectories.
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A Proof of Lemma 1

Begin by considering the uniqueness of the steady state. The right-hand side of equation (2)
monotonically decreases in Ā if and only if (1 +β)π12 < −π11−βπ22. Thus, the steady state
is unique if (1 + β)π12 < −π11 − βπ22, which is satisfied for all π12 < 0.

Now consider the stability of the steady state. Define A∗t+1(At, Zt) from the Euler equa-
tion. Linearizing around Ā gives a first-order difference equation:

At+1 − Ā ≈
−π̄11 − βπ̄22

βπ̄12

(At − Ā)− 1

β
(Zt − Ā).

And we have Zt+1 = At. The product of the linearized-system’s eigenvalues is 1
β
> 1, and

the sum of the linearized system’s eigenvalues is −π̄11−βπ̄22
βπ̄12

, which is positive if and only if
π̄12 > 0.

First, assume that π̄12 > 0. Both eigenvalues are positive and at least one is greater than
1. The characteristic equation is

λ2 − −π̄11 − βπ̄22

βπ̄12

λ+
1

β
,

where λ defines the eigenvalues. The smaller eigenvalue is less than 1 if and only if the
characteristic equation is negative at λ = 1, and therefore if and only if

−π̄11 − βπ̄22 >(1 + β)π̄12.

In this case, the linearized system is saddle-path stable.
Now assume that π̄12 < 0. Both eigenvalues are negative and at least one is less than

−1. The characteristic equation is as before. The larger eigenvalue is greater than −1 if and
only if the characteristic equation is negative at λ = −1, and therefore if and only if

−π̄11 − βπ̄22

π̄12

+ 1 + β <0

⇔ −π̄11 − βπ̄22 >− (1 + β)π̄12.

In this case, the linearized system is saddle-path stable.
The proposition follows from a standard application of the Hartman-Grobman theo-

rem and from noticing that the conditions for saddle-path stability imply the condition for
uniqueness.

B Proof of Lemma 2

Write At+1 as A(At, wt+1, ft+1, wt; ζ). Expanding the stochastic Euler equation around ζ = 0
and noting that all terms of order ζ2 or larger depend on at least the third derivative of π,
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either Assumption 1 or 2 ensures that we can drop all terms of order ζ2 or larger. We
therefore have:

0 =π1(At, At−1, wt, wt−1) + βEt

[
π2(Ãt+1, At, ft, wt) + π23(Ãt+1, At, ft, wt)εt+1ζ

]
+ βEt

[
π12(Ãt+1, At, ft, wt)

(
∂At+1

∂ζ

∣∣∣∣
ζ=0

+
∂At+1

∂wt+1

∣∣∣∣
ζ=0

εt+1 +
N∑
i=1

∂At+1

∂fi(t+1)

∣∣∣∣
ζ=0

εi(t+1)

)
ζ

]

=π1(At, At−1, wt, wt−1) + βπ2(Ãt+1, At, ft, wt) + βπ12(Ãt+1, At, ft, wt)
∂At+1

∂ζ

∣∣∣∣
ζ=0

ζ, (B-1)

where Ãt+1 , A(At, ft, C, wt; 0).
We next establish two lemmas. The first one establishes that uncertainty does not have

a first-order effect on policy:

Lemma 5. ∂At+1

∂ζ

∣∣∣
(Ā,C,C,C;0)

= 0.

Proof. Equation (B-1) defines At as a function of At−1, wt, ft, and ζ. Note that

∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

=

βπ̄12

(
∂At+1

∂ζ

∣∣∣
(Ā,C,C,C;0)

+ ∂2At+1

∂ζ2

∣∣∣
(Ā,C,C,C;0)

ζ

)
−π̄11 − βπ̄22 − βπ̄122

∂At+1

∂ζ

∣∣∣
ζ=0

ζ − βπ̄12
∂2At+1

∂ζ∂At

∣∣∣
ζ=0

ζ

=
βπ̄12

−π̄11 − βπ̄22

∂At+1

∂ζ

∣∣∣∣
(Ā,C,C,C;0)

,

where the second equality applies ζ = 0. Forward-substituting, we have:

∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

=

(
βπ̄12

−π̄11 − βπ̄22

)j
∂At+j
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

for j ∈ Z+. The term in parentheses is < 1 by the condition imposed following Lemma 1.
Because At+j evaluated around At+j−1 = Ā, wt = C, ft = C, and ζ = 0 must be Ā, we know
that At+j is not infinite. The derivative on the right-hand side must also be finite, in which
case the right-hand side goes to 0 as j becomes large. Therefore:

∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

= 0.

Because the choice of t was arbitrary, we have established the lemma.

The second lemma solves for Ãt+1:
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Lemma 6. If either Assumption 1 or 2 holds and (At − Ā)2 is small, then there exists λ
such that |λ| < 1 and

Ãt+1 =Ā+
π̄12

−π̄11 − βπ̄22 − βπ̄12λ
(At − Ā) +

π̄14

−π̄11 − βπ̄22 − βπ̄12λ
(wt − C)

+
π̄13 + βπ̄24

−π̄11 − βπ̄22 − βπ̄12λ
(ft − C).

Proof. For ζ = 0, the weather in period t+ 1 matches the forecast in ft, and the weather is
always C after period t+ 1. Begin by solving for policy after period t+ 1. The characteristic
equation given in the proof of Lemma 1 implies the following two eigenvalues:

λ, µ =
−π̄11 − βπ̄22

2βπ̄12

±

√(
−π̄11 − βπ̄22

2βπ̄12

)2

− 1

β
.

The proof of Lemma 1 showed that the two eigenvalues have the same sign. Let λ be the
eigenvalue that is smallest in absolute value. We seek the eigenvector corresponding to λ,
which is the stable manifold. The eigenvector is defined by (At+2 − Ā) − λ(At+1 − Ā) = 0,
and thus

Ãt+2 = λAt+1 + (1− λ)Ā,

for some At+1.
Now consider policy at time t+ 1. The relevant Euler equation is:

0 = π1(Ãt+1, At, ft, wt) + βπ2(Ãt+2, Ãt+1, C, ft),

where we recognize that wt+1 = ft. A first-order approximation to Ãt+1 around Ā and the
solution for Ãt+2 is exact when either Assumption 1 or 2 holds and (At − Ā)2 is small. We
then have the expression in the lemma.

Applying Lemmas 5 and 6 to equation (B-1), we have:

0 =π1(At, At−1, wt, wt−1) + βπ2(Ãt+1(At, ft, wt), At, ft, wt). (B-2)

We now have At implicitly defined as A(At−1, wt, ft, wt−1; 0). If (At−1 − Ā)2 is small and
either Assumption 1 or 2 holds, then we have:

At =Ā+
∂At
∂At−1

∣∣∣∣
(Ā,C,C,C;0)

(At−1 − Ā) +
∂At
∂wt

∣∣∣∣
(Ā,C,C,C;0)

(wt − C) +
∂At
∂ft

∣∣∣∣
(Ā,C,C,C;0)

(ft − C)

+
∂At
∂wt−1

∣∣∣∣
(Ā,C,C,C;0)

(wt−1 − C) +
∂At
∂ζ

∣∣∣∣
(Ā,C,C,C;0)

ζ

=Ā+
π̄12

χ
(At−1 − Ā) +

π̄13 + βπ̄24 + βπ̄14
π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
(wt − C)

+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
(ft − C) +

π̄14

χ
(wt−1 − C),
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where we use Lemma 5 in the first equality and where

χ , −π̄11 − βπ̄22 − βπ̄12
π̄12

−π̄11 − βπ̄22 − βπ̄12λ
.

The condition imposed following Lemma 1 and the fact that |λ| < 1 together ensure that
χ > |π̄12|.

C Proof of Lemma 4

Using Lemma 2 and standard regression properties, we have:

Γ̂1 =ω
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

,

Γ̂2 =ω
π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

,

Γ̂3 =ω
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

,

Γ̂4 =ω
π̄12

−π̄11 − (1 + β)π̄12 − βπ̄22

,

where

ω ,
−π̄11 − (1 + β)π̄12 − βπ̄22

χ
> 0.

Note that ω > 1 if π̄12 < 0, ω = 1 if π̄12 = 0, and ω < 1 if π̄12 > 0. The lemma follows from
defining

Ω ,
π̄12

−π̄11 − βπ̄22 − βπ̄12λ
.

The sign of Ω matches the sign of π̄12.

D Proof of Proposition 1

The proof of Lemma 4 provides expressions for Γ̂1, Γ̂2, Γ̂3, and Γ̂4. Now consider the parts
of the proposition:

1. Follows directly from the expressions in the proof of Lemma 4.

2. If π̄12 = 0, then ω = 1. The result follows from Lemma 4.

3. If π̄23, π̄14, π̄24 = 0 and π̄13 6= 0, then Γ̂1/[ dĀ/ dC] = ω. The result follows.
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4. If π̄13, π̄14, π̄24 = 0 and βπ̄23 6= 0, then Γ̂3/[ dĀ/ dC] = ω. The result follows.

5. If β = 0 and either π̄13 6= 0 or π̄14 6= 0, then [Γ̂1 + Γ̂2]/[ dĀ/ dC] = ω. The result
follows.

E Proof of Proposition 2

Begin by considering γ̂1. We apply the Frisch-Waugh theorem. The residuals from regressing
wjt on wj(t−1) are:

w̃jt , wjt − C −
ρ

τ 2 + σ2
(wj(t−1) − C) = ζεjt + ζνj(t−1) − ζ

ρ

τ 2 + σ2
[εj(t−1) + νj(t−2)].

We then have:

γ̂1 =
Cov[w̃jt, Ajt]

V ar[w̃jt]

=ω

{
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

ρ+ π̄12
χ

(
τ 2 − ρ2

τ2+σ2

)
σ2 + τ 2 − ρ2

τ2+σ2

− π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

π̄12

χ

ρ2

τ2+σ2

σ2 + τ 2 − ρ2

τ2+σ2

}
.

Now consider γ̂2. The residuals from regressing wj(t−1) on wjt are:

w̃j(t−1) , wj(t−1) − C −
ρ

τ 2 + σ2
(wjt − C) = ζεj(t−1) + ζνj(t−2) − ζ

ρ

τ 2 + σ2
[εjt + νj(t−1)].

We then have:

γ̂2 =ω

{
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

π̄12

χ

+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

π̄12
χ

σ2

τ2+σ2ρ− ρ2

τ2+σ2

σ2 + τ 2 − ρ2

τ2+σ2

+
π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

(
1 +

π̄12

χ

ρ

σ2 + τ 2 − ρ2

τ2+σ2

)}
.

Now consider the parts of the proposition:
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1. If π̄12 = 0, then

γ̂1 =

π̄13 + βπ̄24 + βπ̄23
ρ

σ2+τ2− ρ2

τ2+σ2

−π̄11 − βπ̄22

.

Because correlation coefficients are bounded above by 1,

ρ ≤ στ ≤ max{σ2, τ 2}

and

σ2 +τ 2− ρ2

τ 2 + σ2
≥ σ2 +τ 2− τ 2σ2

τ 2 + σ2
= max{σ2, τ 2}+min{σ2, τ 2}

[
1− max{σ2, τ 2}

τ 2 + σ2

]
.

Therefore

ρ

σ2 + τ 2 − ρ2

τ2+σ2

≤ max{σ2, τ 2}

max{σ2, τ 2}+ min{σ2, τ 2}
[
1− max{σ2,τ2}

τ2+σ2

] < 1. (E-3)

The results follow.

2. If π̄12 = 0, then

γ̂2 =

π̄14 − βπ̄23

ρ2

τ2+σ2

σ2+τ2− ρ2

τ2+σ2

−π̄11 − (1 + β)π̄12 − βπ̄22

and

γ̂1 + γ̂2 =

π̄13 + βπ̄24 + π̄14 + βπ̄23

ρ
(

1− ρ

τ2+σ2

)
σ2+τ2− ρ2

τ2+σ2

−π̄11 − (1 + β)π̄12 − βπ̄22

.

From equation (E-3),

γ̂1 + γ̂2 ≤
π̄13 + βπ̄24 + π̄14 + βπ̄23

−π̄11 − (1 + β)π̄12 − βπ̄22

,

with strict inequality if βπ̄23 > 0 and equality if βπ̄23 = 0. Because

1− ρ

τ 2 + σ2
≥ 1− στ

τ 2 + σ2
> 0,

we have

γ̂1 + γ̂2 >
π̄13 + βπ̄24 + π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

if ρβπ̄23 > 0. Finally, note that, for π̄12 = 0,

Γ̂1 + Γ̂2 =
π̄13 + βπ̄24 + π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

.

The results follow.

A-6



Lemoine Estimating Climate from Weather February 28, 2019

3. If β = 0, then

γ̂1 =ω

{
π̄13

−π̄11 − π̄12

− π̄14

−π̄11 − π̄12

π̄12

χ

ρ2

τ2+σ2

σ2 + τ 2 − ρ2

τ2+σ2

}
.

ω > 1 if and only if π̄12 < 0. If π̄12 > 0 then

γ̂1 <
π̄13

−π̄11 − π̄12

≤ dĀ

dC
.

If π̄12 < 0 and π̄14 = 0, then

γ̂1 >
π̄13

−π̄11 − π̄12

=
dĀ

dC
.

We have established the result.

F Proof of Proposition 3

The estimated coefficients are θ̂ = E[X̃T
KX̃K ]−1E[X̃Kπt], where each row of X̃k is[

wjt − C fjt − C wj(t−1) − C fj(t−1) − C ... wj(t−K) − C fj(t−K) − C
]

and the rows correspond to the J observations. Subtracting C demeans each covariate, as
implied by the fixed effects. The following lemma establishes that we need only analyze a
case with K = 3 in order to derive the coefficients on each wj(t−n) and fj(t−n) for n ∈ {0, 1, 2}:

Lemma 7. It K ≥ 3, then the first six elements of E[X̃T
KX̃K ]−1E[X̃Kπt] are identical to the

first six elements of E[X̃T
3 X̃3]−1E[X̃3πt].

Proof. The goal is to show that the first six rows of E[X̃T
KX̃K ]−1 are equal to the first six

rows of E[X̃T
3 X̃3]−1 extended to have zeros in columns 9 through 2(K + 1).

The case with K = 3 holds trivially, so assume that K > 3. First, note that

E[X̃T
KX̃K ] =

[
E[X̃T

K−1X̃K−1] CK−1

CT
K−1 D

]
,

where CK−1 is a 2K × 2 matrix with the only nonzero entries being in row 2K − 1, which is
[Jζ2ρ Jζ2τ 2], and where

D = Jζ2

[
σ2 + τ 2 ρ

ρ τ 2

]
.
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Define

BK ,

[
E[X̃T

K−1X̃K−1] CK−1

CT
K−1 D̂

]
,

where

D̂ = Jζ2

[
σ2 ρ
ρ τ 2

]
.

Note that34

BK−1 = E[X̃T
K−1X̃K−1]− CK−1D

−1CT
K−1.

Then, using standard results for block matrix inversion,

E[X̃T
KX̃K ]−1 =

[
B−1
K−1 −B−1

K−1CK−1D
−1

−D−1CT
K−1B

−1
K−1 D−1 +D−1CT

K−1B
−1
K−1CK−1D

−1

]
.

We are concerned with the top row. Note that CK−1D
−1 has zeros up to row 2K − 1, so

it has zeros in its first six rows. It remains to consider B−1
K−1. We prove by induction that

B−1
K−1 has the desired form. The basis step considers B−1

3 . This is

B−1
3 =

1

Jζ2[σ2τ 2 − ρ2]



τ 2 −ρ 0 −τ 2 0 0 0 0
−ρ σ2 0 ρ 0 0 0 0
0 0 τ 2 −ρ 0 −τ 2 0 0
−τ 2 ρ −ρ σ2 + τ 2 0 ρ 0 0

0 0 0 0 τ 2 −ρ 0 −τ 2

0 0 −τ 2 ρ −ρ σ2 + τ 2 0 ρ
0 0 0 0 0 0 τ 2 −ρ
0 0 0 0 −τ 2 ρ −ρ σ2 + τ 2


.

The first six rows are identical to E[X̃T
3 X̃3]−1. Our desired result therefore holds for the

basis step. We now turn to the induction step. The induction hypothesis is that the first six
rows of B−1

N are equal to the first six rows of E[X̃T
3 X̃3]−1 extended to have zeros in columns

9 through 2(N + 1), for some N ≥ 3. We want to establish this result for B−1
N+1. We have35

BN = E[X̃T
NX̃N ]− CK−1D̂

−1CT
K−1

and thus

B−1
N+1 =

[
B−1
N −B−1

N CND̂
−1

−D̂−1CT
NB

−1
N D̂−1 + D̂−1CT

NB
−1
N CND̂

−1

]
.

34The only nonzero entries in the 2K × 2 matrix CK−1D
−1 are in row 2K − 1, which is [0 1], and thus

the only nonzero entry in the 2K × 2K matrix CK−1D
−1CT

K−1 is entry (2K − 1, 2K − 1), which is ζ2τ2.

Subtracting this entry from E[X̃T
K−1X̃K−1] yields the result.

35The only nonzero entries in the 2K × 2 matrix CK−1D̂
−1 are in row 2K − 1, which is [0 1], and thus

the only nonzero entry in the 2K × 2K matrix CK−1D̂
−1CT

K−1 is entry (2K − 1, 2K − 1), which is ζ2τ2.

Subtracting this entry from E[X̃T
N X̃N ] yields the result.
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Note that CND̂
−1 has zeros up to row 2(N + 1) − 1, so it has zeros in its first six rows.

Applying the induction hypothesis, the first six rows of B−1
N+1 are equal to the first six rows

of E[X̃T
3 X̃3]−1 extended to have zeros in columns 9 through 2(N + 2). As a result, the first

six rows of E[X̃T
KX̃K ]−1 are equal to the first six rows of E[X̃T

3 X̃3]−1 extended to have zeros
in columns 9 through 2(K + 1). We have proved the desired result.

We therefore focus on K = 3 when deriving coefficients on lags of up to two periods.
Note that:

E[X̃T
3 X̃3] = Jζ2



σ2 + τ 2 ρ ρ τ 2 0 0 0 0
ρ τ 2 0 0 0 0 0 0
ρ 0 σ2 + τ 2 ρ ρ τ 2 0 0
τ 2 0 ρ τ 2 0 0 0 0
0 0 ρ 0 σ2 + τ 2 ρ ρ τ 2

0 0 τ 2 0 ρ τ 2 0 0
0 0 0 0 ρ 0 σ2 + τ 2 ρ
0 0 0 0 τ 2 0 ρ τ 2


and

E[X̃T
3 X̃3]−1

=
1

Jζ2



τ2

σ2τ2−ρ2
−ρ

σ2τ2−ρ2 0 −τ2
σ2τ2−ρ2 0 0 0 0

−ρ
σ2τ2−ρ2

σ2

σ2τ2−ρ2 0 ρ
σ2τ2−ρ2 0 0 0 0

0 0 τ2

σ2τ2−ρ2
−ρ

σ2τ2−ρ2 0 −τ2
σ2τ2−ρ2 0 0

−τ2
σ2τ2−ρ2

ρ
σ2τ2−ρ2

−ρ
σ2τ2−ρ2

σ2+τ2

σ2τ2−ρ2 0 ρ
σ2τ2−ρ2 0 0

0 0 0 0 τ2

σ2τ2−ρ2
−ρ

σ2τ2−ρ2 0 −τ2
σ2τ2−ρ2

0 0 −τ2
σ2τ2−ρ2

ρ
σ2τ2−ρ2

−ρ
σ2τ2−ρ2

σ2+τ2

σ2τ2−ρ2 0 ρ
σ2τ2−ρ2

0 0 0 0 0 0 τ2

τ2(σ2+τ2)−ρ2
−ρ

τ2(σ2+τ2)−ρ2

0 0 0 0 −τ2
σ2τ2−ρ2

ρ
σ2τ2−ρ2

−ρ
τ2(σ2+τ2)−ρ2

τ2(σ2+τ2)2−ρ2(σ2+2τ2)
ρ4+σ2τ4(σ2+τ2)−ρ2τ2(2σ2+τ2)


.

We also have:

E[X̃T
3 πjt] =J



Cov[wjt − C, πjt]
Cov[fjt − C, πjt]

Cov[wj(t−1) − C, πjt]
Cov[fj(t−1) − C, πjt]
Cov[wj(t−2) − C, πjt]
Cov[fj(t−2) − C, πjt]
Cov[wj(t−3) − C, πjt]
Cov[fj(t−3) − C, πjt]


.
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From here, drop the j subscript to save on unnecessary notation. Consider Cov[wt − C, πt].
Expanding π around At = Ā, At−1 = Ā, wt = C, and wt−1 = C, applying either Assump-
tion 1 or 2, and assuming that (At − Ā)2 and (At−1 − Ā)2 are small, we have:

π(At, At−1, wt, wt−1) =π̄ + π̄1(At − Ā) + π̄2(At−1 − Ā) + π̄3(wt − C) + π̄4(wt−1 − C)

+
1

2
π̄33(wt − C)2 + π̄13(At − Ā)(wt − C) + π̄23(At−1 − Ā)(wt − C)

+
1

2
π̄44(wt−1 − C)2 + π̄14(At − Ā)(wt−1 − C) + π̄24(At−1 − Ā)(wt−1 − C)

+ π̄34(wt − C)(wt−1 − C).

As a result,

Cov[wt − C, πt] =π̄1Cov[At, wt] + π̄2Cov[At−1, wt] + π̄3V ar[wt] + π̄4Cov[wt, wt−1]

+
1

2
π̄33Cov[wt − C, (wt − C)2] +

1

2
π̄44Cov[wt − C, (wt−1 − C)2]

− Cπ̄13Cov[At, wt]− Āπ̄13V ar[wt] + π̄13Cov[wt, Atwt]

− Cπ̄23Cov[At−1, wt]− Āπ̄23V ar[wt] + π̄23Cov[wt, At−1wt]

− Cπ̄14Cov[wt, At]− Āπ̄14Cov[wt, wt−1] + π̄14Cov[wt, Atwt−1]

− Cπ̄24Cov[wt, At−1]− Āπ̄24Cov[wt, wt−1] + π̄24Cov[wt, At−1wt−1]

− Cπ̄34V ar[wt]− Cπ̄34Cov[wt, wt−1] + π̄34Cov[wt, wtwt−1].

If the ε and ν are normally distributed, then Cov[wt−C, (wt−C)2] = 0, or if Assumption 1
holds, then Cov[wt − C, (wt − C)2] ≈ 0. Using results from Bohrnstedt and Goldberger
(1969), we have:

Cov[wt − C, (wt−1 − C)2] =E[(wt − C)(wt−1 − C)2],

which is zero if either the ε and ν are normally distributed or Assumption 1 holds. Again
using results from Bohrnstedt and Goldberger (1969), we also have:

Cov[wt, Atwt] = E[At]V ar[wt] + C Cov[At, wt] + E[(wt − C)2(At − E[At])].

If either the ε and ν are normally distributed or Assumption 1 holds, then this becomes :

Cov[wt, Atwt] = E[At]V ar[wt] + C Cov[At, wt].

Analogous derivations yield:

Cov[wt, At−1wt] =E[At−1]V ar[wt] + C Cov[wt, At−1],

Cov[wt, Atwt−1] =E[At]Cov[wt, wt−1] + C Cov[wt, At],

Cov[wt, At−1wt−1] =E[At−1]Cov[wt, wt−1] + C Cov[wt, At−1]
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if either the ε and ν are normally distributed or Assumption 1 holds. Substituting these
results in, we find:

Cov[wt − C, πt] =π̄1Cov[At, wt] + π̄2Cov[At−1, wt] + π̄3V ar[wt] + π̄4Cov[wt, wt−1]

+
(
E[At]− Ā

)
(π̄13V ar[wt] + π̄14Cov[wt, wt−1])

+
(
E[At−1]− Ā

)
(π̄23V ar[wt] + π̄24Cov[wt, wt−1]) .

The assumption that actions are on average around Ā implies E[At] = Ā and E[At−1] = Ā.
Using that and Lemma 2, we obtain:

1

ζ2
Cov[wt − C, πt] =(σ2 + τ 2)π̄3 +

π̄13 + βπ̄24 + βπ̄14
π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
(σ2 + τ 2)π̄1 + π̄2ρ+ π̄1

π̄12

χ
ρ

)
+ π̄4ρ+

π̄14

χ
π̄1ρ+

βπ̄23 + β(π̄13 + βπ̄24) π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄1ρ+ π̄2τ

2 + π̄1
π̄12

χ
τ 2

)
.

Analogous derivations yield:

1

ζ2
Cov[ft − C, πt] =

1

ζ2

(
π̄1Cov[At, ft] + π̄3Cov[wt, ft]

)
=π̄3ρ+

π̄13 + βπ̄24 + βπ̄14
π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
π̄1ρ

+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
π̄1τ

2,

1

ζ2
Cov[wt−1 − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−1] + π̄2Cov[At−1, wt−1] + π̄3Cov[wt, wt−1] + π̄4V ar[wt−1]

)
=π̄3ρ+ π̄4(σ2 + τ 2) + π̄1

π̄14

χ
(σ2 + τ 2) +

(
π̄2 + π̄1

π̄12

χ

)
π̄14

χ
ρ

+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

[
π̄1ρ+

(
π̄2 + π̄1

π̄12

χ

)(
σ2 + τ 2 +

π̄12

χ
ρ

)]
+

(
π̄2 + π̄1

π̄12

χ

)(
ρ+

π̄12

χ
τ 2

)
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ
,
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1

ζ2
Cov[ft−1 − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−1] + π̄2Cov[At−1, ft−1] + π̄3Cov[wt, ft−1] + π̄4Cov[wt−1, ft−1]

)
=π̄3τ

2 + π̄4ρ+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄1τ

2 + π̄2ρ+ π̄1
π̄12

χ
ρ

)
+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2τ

2 + π̄1
π̄12

χ
τ 2

)
+ π̄1

π̄14

χ
ρ,

1

ζ2
Cov[wt−2 − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−2] + π̄2Cov[At−1, wt−2] + π̄3Cov[wt, wt−2] + π̄4Cov[wt−1, wt−2]

)
=π̄4ρ+ π̄1

π̄14

χ
ρ+

π̄14

χ

(
π̄2 + π̄1

π̄12

χ

)[
(σ2 + τ 2) + ρ

π̄12

χ

]
+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)[
ρ+

π̄12

χ
(σ2 + τ 2) +

(
π̄12

χ

)2

ρ

]
+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

π̄12

χ

(
π̄2 + π̄1

π̄12

χ

)[
ρ+

π̄12

χ
τ 2

]
,

1

ζ2
Cov[ft−2 − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−2] + π̄2Cov[At−1, ft−2] + π̄3Cov[wt, ft−2] + π̄4Cov[wt−1, ft−2]

)
=π̄4τ

2 + π̄1
π̄14

χ
τ 2 +

π̄14

χ

(
π̄2 + π̄1

π̄12

χ

)
ρ

+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)[
τ 2 +

π̄12

χ
ρ

]
+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ
τ 2,
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1

ζ2
Cov[wt−3 − C, πt] =

1

ζ2

(
π̄1Cov[At, wt−3] + π̄2Cov[At−1, wt−3] + π̄3Cov[wt, wt−3] + π̄4Cov[wt−1, wt−3]

)
=
π̄14

χ

(
π̄2 + π̄1

π̄12

χ

){
ρ+

π̄12

χ

[
(σ2 + τ 2) + ρ

π̄12

χ

]}
+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ[
ρ+

π̄12

χ
(σ2 + τ 2) +

(
π̄12

χ

)2

ρ

]
+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄12

χ

)2(
π̄2 + π̄1

π̄12

χ

)[
ρ+

π̄12

χ
τ 2

]
,

1

ζ2
Cov[ft−3 − C, πt] =

1

ζ2

(
π̄1Cov[At, ft−3] + π̄2Cov[At−1, ft−3] + π̄3Cov[wt, ft−3] + π̄4Cov[wt−1, ft−3]

)
=
π̄14

χ

(
π̄2 + π̄1

π̄12

χ

){
τ 2 +

π̄12

χ
ρ

}
+
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ

[
τ 2 +

π̄12

χ
ρ

]
+
βπ̄23 + β(π̄13 + βπ̄24) π̄12

−π̄11−βπ̄22−βπ̄12λ

χ

(
π̄2 + π̄1

π̄12

χ

)(
π̄12

χ

)2

τ 2.

Now consider the regression coefficients, from E[X̃T
3 X̃3]−1E[X̃T

3 πt]. The coefficient on
wjt is:

θ̂wt =
1

ζ2

(
τ 2

σ2τ 2 − ρ2
Cov[wt − C, πt] +

−ρ
σ2τ 2 − ρ2

Cov[ft − C, πt] +
−τ 2

σ2τ 2 − ρ2
Cov[ft−1 − C, πt]

)
=π̄3 + Γ̂1π̄1.

The coefficient on fjt is:

θ̂ft =
1

ζ2

(
−ρ

σ2τ 2 − ρ2
Cov[wt − C, πt] +

σ2

σ2τ 2 − ρ2
Cov[ft − C, πt] +

ρ

σ2τ 2 − ρ2
Cov[ft−1 − C, πt]

)
=Γ̂3π̄1.

The coefficient on wj(t−1) is:

θ̂wt−1 =
1

ζ2

(
τ 2

σ2τ 2 − ρ2
Cov[wt−1 − C, πt]−

ρ

σ2τ 2 − ρ2
Cov[ft−1 − C, πt]−

τ 2

σ2τ 2 − ρ2
Cov[ft−2 − C, πt]

)
=π̄4 + Γ̂1

(
1− β π̄12

χ

)
π̄2 + Γ̂2π̄1.
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The coefficient on fj(t−1) is:

θ̂ft−1 =
1

ζ2

(
− τ 2

σ2τ 2 − ρ2
Cov[wt − C, πt]−

ρ

σ2τ 2 − ρ2
Cov[wt−1 − C, πt] +

ρ

σ2τ 2 − ρ2
Cov[ft − C, πt]

+
σ2 + τ 2

σ2τ 2 − ρ2
Cov[ft−1 − C, πt] +

ρ

σ2τ 2 − ρ2
Cov[ft−2 − C, πt]

)
=Γ̂3

(
1− β π̄12

χ

)
π̄2.

And the coefficient on wj(t−2) is:

θ̂wt−2 =
1

ζ2

(
τ 2

σ2τ 2 − ρ2
Cov[wt−2 − C, πt]−

ρ

σ2τ 2 − ρ2
Cov[ft−2 − C, πt]−

τ 2

σ2τ 2 − ρ2
Cov[ft−3 − C, πt]

)
=Γ̂1

(
1− β π̄12

χ

)
π̄12

χ
π̄2 + Γ̂2

(
1− β π̄12

χ

)
π̄2.

We now prove the parts of the proposition.

1. Directly follows from the foregoing.

2. If Assumption 3 holds, then the Euler equation requires π̄2 = π̄1 = 0. The result
follows by inspection.

3. By Proposition 1, π̄12 = 0 implies dĀ/ dC = Γ̂1 + Γ̂2 + Γ̂3. The result follows from the
foregoing and equation (8).

4. Under the given assumptions, we have:

θ̂wt + θ̂wt−1 =π̄3 + π̄4 + Γ̂1π̄1 + Γ̂1

(
1− β π̄12

χ

)
π̄2,

so

θ̂wt + θ̂wt−1 ≤π̄3 + π̄4 + Γ̂1π̄1 + Γ̂1π̄2 ⇔ π̄2π̄12 > 0.

Using Proposition 1 and equations (2) and (8),

dE0[πt]

dC
>π̄3 + π̄4 + Γ̂1π̄1 + Γ̂1π̄2 ⇔ π̄2π̄12 > 0,

using π̄13 > 0. Therefore

θ̂wt + θ̂wt−1 <
dE0[πt]

dC
⇔ π̄2π̄12 > 0.

We have established the result.
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5. Under the given assumptions, we have:

θ̂wt + θ̂wt−1 + θ̂ft + θ̂ft−1 =π̄3 + π̄4 + Γ̂3π̄1 + Γ̂3

(
1− β π̄12

χ

)
π̄2,

so

θ̂wt + θ̂wt−1 + θ̂ft + θ̂ft−1 <π̄3 + π̄4 + Γ̂3π̄1 + Γ̂3π̄2 ⇔ π̄2π̄12 > 0,

using βπ̄23 > 0. Using Proposition 1 and equations (2) and (8),

dE0[πt]

dC
>π̄3 + π̄4 + Γ̂3π̄1 + Γ̂3π̄2 ⇔ π̄2π̄12 > 0,

using βπ̄23 > 0. Therefore

θ̂wt + θ̂wt−1 + θ̂ft + θ̂ft−1 <
dE0[πt]

dC
⇔ π̄2π̄12 > 0.

We have established the result.

6. It is clear that β = 0 implies θ̂ft = 0 and θ̂ft−1 = 0. Further, the Euler equation implies
π̄1 = 0. We then have:

θ̂wt =π̄3,

θ̂wt−1 =π̄4 + Γ̂1π̄2,

θ̂wt−2 =Γ̂2π̄2 + Γ̂1
π̄12

−π̄11

π̄2.

Therefore:

θ̂wt + θ̂wt−1 + θ̂wt−2 =π̄3 + π̄4 + Γ̂1

(
1 +

π̄12

−π̄11

)
π̄2 + Γ̂2π̄2.

We then have:

θ̂wt + θ̂wt−1 + θ̂wt−2 ≤π̄3 + π̄4 + Γ̂1π̄2 + Γ̂2π̄2 ⇔ π̄2π̄12 > 0.

Using Proposition 1 and equations (2) and (8),

dE0[πt]

dC
>π̄3 + π̄4 + Γ̂1π̄2 + Γ̂2π̄2 ⇔ π̄2π̄12 > 0,

using either π̄13 > 0 or π̄14 > 0. Therefore

θ̂wt + θ̂wt−1 + θ̂wt−2 <
dE0[πt]

dC
⇔ π̄2π̄12 > 0.

We have established the result.
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G Proof of Corollary 4

We follow the proof of Proposition 1 but now do not impose the assumption that E[At] = Ā
and E[At−1] = Ā. We now have:

Cov[wt − C, πt] =π̄1Cov[At, wt] + π̄2Cov[At−1, wt]

+

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
V ar[wt]

+

(
π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

)
Cov[wt, wt−1],

Cov[ft − C, πt] =π̄1Cov[At, ft] +

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
Cov[wt, ft],

Cov[wt−1 − C, πt] =π̄1Cov[At, wt−1] + π̄2Cov[At−1, wt−1]

+

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
Cov[wt, wt−1]

+

(
π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

)
V ar[wt−1],

Cov[ft−1 − C, πt] =π̄1Cov[At, ft−1] + π̄2Cov[At−1, ft−1]

+

(
π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā)

)
Cov[wt, ft−1]

+

(
π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

)
Cov[wt−1, ft−1],

and so on. Following that analysis, we obtain the regression coefficients:

θ̂wt =π̄3 + π̄13(E[At]− Ā) + π̄23(E[At−1]− Ā) + ω
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

π̄1,

θ̂wt−1 =π̄4 + π̄14(E[At]− Ā) + π̄24(E[At−1]− Ā)

+ ω
π̄13 + βπ̄24 + βπ̄14

π̄12
−π̄11−βπ̄22−βπ̄12λ

−π̄11 − (1 + β)π̄12 − βπ̄22

(
1− β π̄12

χ

)
π̄2 + ω

π̄14

−π̄11 − (1 + β)π̄12 − βπ̄22

π̄1.

The other coefficients are unchanged. Under the assumption that at least one of π̄13, π̄14, π̄23, π̄24

is strictly positive, we have increased θ̂wt and θ̂wt−1 if average actions are above Ā and have

decreased θ̂wt and θ̂wt−1 if average actions are below Ā. The results follow.
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H Proof of Proposition 5

We derive estimators in the case of K = 0, K = 1, and K = 2. The superscript on the
estimators will indicate K.

Begin with K = 0. Demeaned to account for fixed effects, each row of the matrix X̃
of covariates is now simply wjt − C, with the rows corresponding to the J observations.
Therefore

E[X̃T X̃] = Jζ2(σ2 + τ 2)

and

E[X̃T X̃]−1 =
1

Jζ2(σ2 + τ 2)
.

We also have:

E[X̃Tπjt] =J Cov[wjt − C, πjt].

We analyzed this covariance in the proof of Proposition 3 under the same assumptions. Using
those results, we find that

Φ̂0
wt =π̄3 + π̄4

ρ

σ2 + τ 2
+ Γ̂1

[
π̄1 +

(
1− β π̄12

χ

)
ρ

σ2 + τ 2
π̄2

]
+ Γ̂2π̄1

ρ

σ2 + τ 2
+ Γ̂3

[
π̄1

ρ

σ2 + τ 2
+

(
1− β π̄12

χ

)
τ 2

σ2 + τ 2
π̄2

]
.

Now consider K = 1. Demeaned to account for fixed effects, each row of the matrix X̃
of covariates is [

wjt − C wj(t−1) − C
]
,

with the rows corresponding to the J observations. Thus,

E[X̃T X̃] = Jζ2

[
σ2 + τ 2 ρ

ρ σ2 + τ 2

]
and

E[X̃T X̃]−1 =
1

Jζ2[(σ2 + τ 2)2 − ρ2]

[
σ2 + τ 2 −ρ
−ρ σ2 + τ 2

]
.

We also have:

E[X̃Tπjt] =J

[
Cov[wjt − C, πjt]

Cov[wj(t−1) − C, πjt]

]
.
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We analyzed these covariances in the proof of Proposition 3 under the same assumptions.
Using those results, we find that

Φ̂1
wt =π̄3 + Γ̂1

{
π̄1 −

ρ2

(σ2 + τ 2)2 − ρ2

π̄12

χ

(
1− β π̄12

χ

)
π̄2

}
− Γ̂2

ρ2

(σ2 + τ 2)2 − ρ2

(
1− β π̄12

χ

)
π̄2

+ Γ̂3

{
ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2
π̄1 +

(
τ 2(σ2 + τ 2)− ρ2

(σ2 + τ 2)2 − ρ2
− ρτ 2

(σ2 + τ 2)2 − ρ2

π̄12

χ

)(
1− β π̄12

χ

)
π̄2

}
,

Φ̂1
wt−1

=π̄4 + Γ̂1

(
1 +

ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2

π̄12

χ

)(
1− β π̄12

χ

)
π̄2 + Γ̂2

[
π̄1 +

ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2

(
1− β π̄12

χ

)
π̄2

]
+ Γ̂3

{
−ρ2

(σ2 + τ 2)2 − ρ2
π̄1 +

(
ρσ2

(σ2 + τ 2)2 − ρ2
+

τ 2(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2

π̄12

χ

)(
1− β π̄12

χ

)
π̄2

}
.

Finally, consider K = 2. Demeaned to account for fixed effects, each row of the matrix
X̃ of covariates is [

wjt − C wj(t−1) − C wj(t−2) − C
]
,

with the rows corresponding to the J observations. Thus,

E[X̃T X̃] = Jζ2

σ2 + τ 2 ρ 0
ρ σ2 + τ 2 ρ
0 ρ σ2 + τ 2


and

E[X̃T X̃]−1 =
1

Jζ2[(σ2 + τ 2)2 − 2ρ2]

σ2 + τ 2 − ρ2

σ2+τ2
−ρ ρ2

σ2+τ2

−ρ σ2 + τ 2 −ρ
ρ2

σ2+τ2
−ρ σ2 + τ 2 − ρ2

σ2+τ2

 .
We also have:

E[X̃Tπjt] =J

 Cov[wjt − C, πjt]
Cov[wj(t−1) − C, πjt]
Cov[wj(t−2) − C, πjt]

 .
We analyzed these covariances in the proof of Proposition 3 under the same assumptions.
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Using those results, we find that

Φ̂2
wt =π̄3 + Γ̂1

{
π̄1 +

ρ

σ2 + τ 2

ρ2

(σ2 + τ 2)2 − 2ρ2

(
π̄12

χ

)2(
π̄2 + π̄1

π̄12

χ

)}
+ Γ̂3

1

(σ2 + τ 2)2 − 2ρ2

{(
σ2 + τ 2 − ρ2

σ2 + τ 2

)(
π̄1ρ+ π̄2τ

2 + π̄1
π̄12

χ
τ 2

)
+

(
ρ2

σ2 + τ 2

π̄12

χ
− ρ
)(

π̄2 + π̄1
π̄12

χ

)(
ρ+

π̄12

χ
τ 2

)}
+ Γ̂2

ρ2

(σ2 + τ 2)2 − 2ρ2

ρ

σ2 + τ 2

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ
,

Φ̂2
wt−1

=π̄4 + Γ̂1

{
1− ρ2

(σ2 + τ 2)2 − 2ρ2

(
π̄12

χ

)2}(
π̄2 + π̄1

π̄12

χ

)
+ Γ̂3

1

(σ2 + τ 2)2 − 2ρ2

{
− ρ2π̄1 + σ2

(
π̄2 + π̄1

π̄12

χ

)
ρ+ [τ 2(σ2 + τ 2)− ρ2]

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ

− ρτ 2

(
π̄12

χ

)2(
π̄2 + π̄1

π̄12

χ

)}
+ Γ̂2

{
π̄1 −

ρ2

(σ2 + τ 2)2 − 2ρ2

(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ

}
,

Φ̂2
wt−2

=Γ̂1

{(
π̄2 + π̄1

π̄12

χ

)
π̄12

χ
+

ρ (σ2 + τ 2)

(σ2 + τ 2)2 − 2ρ2

(
π̄2 + π̄1

π̄12

χ

)(
π̄12

χ

)2}
+ Γ̂3

1

(σ2 + τ 2)2 − 2ρ2{
ρ2

σ2 + τ 2
π̄1ρ−

(
π̄2 + π̄1

π̄12

χ

)
σ2ρ2

σ2 + τ 2
+ ρ

(
σ2 − ρ2

σ2 + τ 2

)
π̄12

χ

(
π̄2 + π̄1

π̄12

χ

)
+ τ 2

(
σ2 + τ 2 − ρ2

σ2 + τ 2

)(
π̄12

χ

)2(
π̄2 + π̄1

π̄12

χ

)}
+ Γ̂2

{
1 +

(σ2 + τ 2)2 − ρ2

(σ2 + τ 2)2 − 2ρ2

ρ

σ2 + τ 2

π̄12

χ

}(
π̄2 + π̄1

π̄12

χ

)
.

We now prove the parts of the proposition:

1. If Assumption 3 holds, then the Euler equation requires π̄2 = π̄1 = 0. The result
follows by inspection and by recognizing that ρ ≤ στ (because correlation coefficients
are bounded above by 1).

A-19



Lemoine Estimating Climate from Weather February 28, 2019

2. If π̄12 = 0, then

Φ̂0
wt =π̄3 + π̄4

ρ

σ2 + τ 2
+ Γ̂1

[
π̄1 +

ρ

σ2 + τ 2
π̄2

]
+ Γ̂2π̄1

ρ

σ2 + τ 2
+ Γ̂3

[
π̄1

ρ

σ2 + τ 2
+

τ 2

σ2 + τ 2
π̄2

]
,

Φ̂1
wt =π̄3 + Γ̂1π̄1 − Γ̂2

ρ2

(σ2 + τ 2)2 − ρ2
π̄2 + Γ̂3

{
ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2
π̄1 +

τ 2(σ2 + τ 2)− ρ2

(σ2 + τ 2)2 − ρ2
π̄2

}
,

Φ̂1
wt−1

=π̄4 + Γ̂1π̄2 + Γ̂2

[
π̄1 +

ρ(σ2 + τ 2)

(σ2 + τ 2)2 − ρ2
π̄2

]
+ Γ̂3

{
−ρ2

(σ2 + τ 2)2 − ρ2
π̄1 +

ρσ2

(σ2 + τ 2)2 − ρ2
π̄2

}
,

Φ̂2
wt =π̄3 + Γ̂1π̄1 + Γ̂3

1

(σ2 + τ 2)2 − 2ρ2

{
(σ2 + τ 2)2 − ρ2

σ2 + τ 2

(
π̄1ρ+ π̄2τ

2
)
− ρ2π̄2

}
,

Φ̂2
wt−1

=π̄4 + Γ̂1π̄2 + Γ̂2π̄1 + Γ̂3
ρ

(σ2 + τ 2)2 − 2ρ2

{
− ρπ̄1 + σ2π̄2

}
,

Φ̂2
wt−2

=Γ̂2π̄2 + Γ̂3
ρ

σ2 + τ 2

ρ

(σ2 + τ 2)2 − 2ρ2

{
π̄1ρ− π̄2σ

2

}
.

By Proposition 1, π̄12 = 0 implies dĀ/ dC = Γ̂1 + Γ̂2 + Γ̂3. If, in addition, βπ̄23 = 0,
then Γ̂3 = 0. Result (a) follows from equation (8). π̄14 = 0 implies Γ̂2 = 0. Result (b)
follows from equation (8).

If π̄12 = 0, βπ̄23 = 0, π̄14 = 0, and π̄4 = 0, then

Φ̂0
wt =π̄3 + Γ̂1

[
π̄1 +

ρ

σ2 + τ 2
π̄2

]
and

dE0[πt]

dC
=π̄3 + Γ̂1 [π̄1 + π̄2] .

We then have:

dE0[πt]

dC
> Φ̂0

wt ⇔ Γ̂1π̄2 > Γ̂1
ρ

σ2 + τ 2
π̄2.
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If π̄13 > 0, then Γ̂1 > 0 and

dE0[πt]

dC
> Φ̂0

wt ⇔ π̄2 >
ρ

σ2 + τ 2
π̄2.

Because correlation coefficients are bounded above by 1, ρ ≤ στ . Therefore

π̄2 >
ρ

σ2 + τ 2
π̄2 ⇔ π̄2 > 0.

We have established result (c).

I Proof of Proposition 6

Observe that

Λ̂ =
Cov[π̃jT , w̃jT − w̃j0]

V ar[w̃jT − w̃j0]
+
Cov[π̃j0, w̃j0 − w̃jT ]

V ar[w̃jT − w̃j0]
.

Under the assumptions that actions are independent of past actions (π̄12 = 0) and that
weather is not serially correlated (ρ = 0), time t actions are independent of weather before
time t− 1 and after t+ 1. We then have:

Cov[π̃jT , w̃jT − w̃j0] =
1

∆2

{ T+∆−2∑
t=T+1

(
Cov[πjt, wjt] + Cov[πjt, wj(t−1)] + Cov[πjt, fjt]

)
+ Cov[πjT , wjT ] + Cov[πjT , fjT ]

+ Cov[πj(T+∆−1), wj(T+∆−1)] + Cov[πj(T+∆−1), wj(T+∆−2)]

}
,

Cov[π̃j0, w̃j0 − w̃jT ] =
1

∆2

{∆−2∑
t=1

(
Cov[πjt, wjt] + Cov[πjt, wj(t−1)] + Cov[πjt, fjt]

)
+ Cov[πj0, wj0] + Cov[πj0, fj0]

+ Cov[πj(∆−1), wj(∆−1)] + Cov[πj(∆−1), wj(∆−2)]

}
.

Using previous results with π̄12 = 0 and ρ = 0, those covariances are

1

ζ2
Cov[wjt, πjt] =(σ2 + τ 2)π̄3 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

(σ2 + τ 2)π̄1 +
βπ̄23

−π̄11 − βπ̄22

π̄2τ
2,

1

ζ2
Cov[fjt, πjt] =

βπ̄23

−π̄11 − βπ̄22

π̄1τ
2,
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1

ζ2
Cov[wj(t−1), πjt] =π̄4(σ2 + τ 2) + π̄1

π̄14

−π̄11 − βπ̄22

(σ2 + τ 2) +
π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄2

(
σ2 + τ 2

)
.

Summing these, we have:

Cov[wjt, πjt] + Cov[fjt, πjt] + Cov[wj(t−1), πjt]

=(σ2 + τ 2)

{
π̄3 + π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

[π̄1 + π̄2] + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

}
.

In addition,

Cov[wjt, πjt] + Cov[fjt, πjt] =(σ2 + τ 2)

{
π̄3 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄1 +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

}
and

Cov[wjt, πjt] + Cov[wj(t−1), πjt] =(σ2 + τ 2)

{
π̄3 + π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

[π̄1 + π̄2] + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄2

}
.

The estimator is then:

Λ̂ =
∆− 2

∆

{
π̄3 + π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

[π̄1 + π̄2] + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

}
+

1

∆

{
π̄3 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄1 +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2]

}
+

1

∆

{
π̄3 + π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

[π̄1 + π̄2] + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄2

}
=π̄3 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄1 +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄2

+
∆− 1

∆

{
π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄2 + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄1

}
=Φ̂0

wt +
∆− 1

∆

{
π̄4 +

π̄13 + βπ̄24

−π̄11 − βπ̄22

π̄2 + π̄1
π̄14

−π̄11 − βπ̄22

+
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
π̄1

}
.

As ∆ becomes large, this goes to

π̄3 + π̄4 +
π̄13 + βπ̄24

−π̄11 − βπ̄22

[π̄1 + π̄2] +
βπ̄23

−π̄11 − βπ̄22

τ 2

σ2 + τ 2
[π̄1 + π̄2] +

π̄14

−π̄11 − βπ̄22

π̄1.

The results follow by inspection, proceeding as in previous proofs to show that Assumption 3
implies π̄1 = π̄2 = 0.
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