The Great Disconnect: The Decoupling of Wage and Price Inflation in Japan

Takeo Hoshi and Anil K Kashyap

Outline

1. Motivation

- 2. Breaks (over time) in the inflation process
- 3. Breaks (over time and across different jobs) in the linkage between labor market and wage
- 4. Changes in the links between wage inflation and price inflation

1. Motivation

Main Question

- Why is inflation rate in Japan still low?
 Despite
 - Super-expansionary monetary policy
 - Output gap near zero (or positive)
 - Tight labor market

especially since 2013 under Abenomics

Our story

- Wage and Price inflation was pretty "normal" prior to 1998: wage inflation Granger causes price inflation
- Massive labor market shock following the 1997 banking crisis
 - Excess full time workers, for most of the time since
- Wage inflation mostly disconnects from the unemployment rate post 1998
 - Helpful to separate regular, overtime and bonus pay
- **■** Wage and Price inflation also disconnect after 1998

Related literature

- **♯** Phillips Curve approaches
 - E.g. Bernanke (2017), BoJ (2017), Gagnon (2017)

- **■** Wage Phillips curves
 - Emphasis on the dual labor market
 - Genda ed (2017) essays
- We argue that the labor market developments matter and have altered price inflation dynamics – <u>importantly this</u> started in the late 1990s.

2. Breaks in the Inflation Process

Japanese Price and Wage Levels: 1981-2018 (2012=100)

ARMA Models for Core Core Inflation

	Sample	Sample: 1981 - 1997			Sample: 1998 - 2018		
Variable	Coefficient	Standard Error	T-stat	Coefficient	Standard Error	T-stat	
Constant	0.0291	0.0135	2.1482	-0.0014	0.0023	-0.6033	
AR(1)	0.9802	0.0333	29.4294	0.8968	0.0483	18.5498	
MA(2)	0.3842	0.1019	3.7694	0.2015	0.1070	1.8827	
\mathbb{R}^2		0.93			0.84		
Approximate P-		0.9483			0.5818		
value Q statistic	(8	at lag 17)		(at lag 19)			

ARMA Models for Regular Wages

	Sample: 1981 - 1997			Sample: 1998 - 2018		
Variable	Coefficient	Standard Error	T-stat	Coefficient	Standard Error	T-stat
Constant	0.0371	0.0062	5.9556	0.0023	0.0022	1.0329
AR(1)	0.5457	0.1257	4.3396	0.2065	0.1146	1.8025
AR(2)	0.3165	0.1278	2.4768	0.3116	0.1154	2.6995
\mathbb{R}^2		0.6584		0.1748		
Approximate	0.09			0.00		
P-value Q statistic		(at lag 17)		(at lag 19)		

Wages Granger Cause Prices Prior to 1998

Dependent variable: Core-core inflation

Sample Period: **1981q1-1997q4**

Excluded	Chi-sq	df	Prob.
Regular wage inflation	10.139	4	0.038
Overtime wage inflation	2.292	4	0.682
Bonus wage inflation	17.529	4	0.002
All	32.725	12	0.001

Impulse responses are sensible too (95 percent confidence intervals shown)

Wages Account for a lot of Price Variation Prior to 1998 (Choleski decomposition)

Variance Decomposition of Core-Core Inflation Rate (%): 1981q1-1997q4

	Core-core	Regular wage	Overtime wage	Bonus wage
Quarter	inflation	inflation	inflation	inflation
1	100.000	0.000	0.000	0.000
2	97.293	0.072	0.685	1.950
3	88.002	5.745	0.699	5.554
4	74.613	5.977	1.564	17.846
5	60.427	13.516	2.199	23.858
6	51.556	19.056	2.977	26.412
7	46.362	22.224	2.955	28.459
8	42.410	26.210	2.933	28.447
9	40.540	27.234	2.981	29.245
10	39.328	27.486	2.965	30.220

Summary

- **■** Prior to 1998
 - Prices and Wages were growing
 - Wage inflation Granger caused Price inflation
 - Wages shocks accounted for a lot of Price variation

- **■** After 1998
 - Prices and Wages stop growing
 - Statistical representations for prices and wages shift and become less persistent

3. Breaks in the linkage between labor market conditions and wages

Changing composition of employment (Full-time vs. Part-time) (Unit: Million)

Excess supply of Full-Time workers

Wages for all workers shift post 1998

Regular Wages	Sample: 1981 - 1997			Sample 1998- 2018		
Variable	Coefficient	Standard	T statistic	Coefficient	Standard	T statistic
		Error			Error	
Constant	0.1060	0.0131	8.12	0.0290	0.0084	3.44
AR(1)	0.2880	0.1071	2.69	0.0428	0.1041	0.41
AR(2)	0.1916	0.1434	1.34	0.1844	0.1078	1.71
Lagged UNEMP	-0.0267	0.0049	-5.48	-0.0064	0.0019	-3.40
\mathbb{R}^2	0.71			0.28		
Overtime Wages	Sam	ple: 1981 - 19	997	Sample 1998- 2018		
Variable	Coefficient	Standard	T statistic	Coefficient	Standard	T statistic
		Error			Error	
Constant	0.1338	0.0260	5.14	0.0189	0.0206	0.92
AR(1)	0.7125	0.1173	6.07	0.4308	0.1673	2.58
AR(2)	-0.2469	0.1701	-1.45	0.0734	0.1322	0.55
Lagged UNEMP	-0.0398	0.0099	-4.03	-0.0042	0.0048	-0.87
\mathbb{R}^2		0.62		0.23		

Remarkable stagnation in wage levels

Regular Wages and Slack 1998Q1 -2018:Q4

	Full time workers			Part time workers		
Variable	Coefficient	Standard Error	T-stat	Coefficient	Standard Error	T-stat
Constant	0.0221	0.0083	2.66	0.0471	0.0093	5.08
AR(1)	-0.0151	0.1076	-0.14	0.3802	0.1071	3.55
AR(2)	0.2189	0.1084	2.02	0.1253	0.1664	0.75
Lagged						
UNEMP	-0.0046	0.0019	-2.45	-0.0087	0.0022	-3.93
\mathbb{R}^2	0.17			0.54		

Overtime Wages and Slack 1998Q1 -2018:Q4

	Full time workers			Part time workers		
Variable	Coefficient	Standard	T-stat	Coefficient	Standard	T-stat
		Error			Error	
Constant	0.0131	0.0203	0.65	0.0778	0.0725	1.07
AR(1)	0.6005	0.1229	4.89	0.6860	0.1136	6.04
AR(2)	0.0378	0.1182	0.32	-0.1282	0.1181	-1.09
Lagged						
UNEMP	-0.0027	0.0047	-0.56	-0.0142	0.0158	-0.90
\mathbb{R}^2	0.40			0.42		

Bonus Wages and Slack 1998:1-2018:4

	Full time workers			Part time workers		
Variable	Coefficient	Standard Error	T-stat	Coefficient	Standard Error	T-stat
Constant	0.1252	0.0376	3.32	0.1170	0.0633	1.85
AR(1)	0.7734	0.0714	10.84	0.7005	0.0913	7.68
Lagged UNEMP	-0.0313	0.0080	-3.90	-0.0354	0.0139	-2.55
\mathbb{R}^2	0.75				0.62	

Summary on wage and labor market linkage

- - Main channel is through bonuses
- - For most of this period, suggestive evidence that there are excess full-time workers

4. Wage inflation (or lack of) and price inflation

Wage and Price Co-Movements

Post 1998: Wages don't Granger cause Prices

Dependent variable: Core-core inflation					
Excluded	Chi-sq	df	Prob.		
Regular wage inflation	2.771	4	0.597		
Overtime wage inflation	1.377	4	0.848		
Bonus wage inflation	2.200	4	0.699		
All	6.272	12	0.902		

Post 1998: Wage shocks don't matter for Prices

Variance Decomposition of Core-Core Inflation Rate (%): 1998q1-2018q4

		Regular	Overtime	Bonus
	Core-core	wage	wage	wage
Quarter	inflation	inflation	inflation	inflation
/_1,	100.000	0.000	0.000	0.000
2	98.957	0.899	0.016	0.128
3	98.494	1.145	0.111	0.249
4	97.651	1.311	0.840	0.198
5	97.212	1.194	1.304	0.290
6	95.712	1.090	2.518	0.680
7	94.517	1.025	3.222	1.236
8	93.279	0.978	3.762	1.981
9	92.176	0.948	4.157	2.720
10	91.529	0.936	4.274	3.261

Impulse responses also weak

25 quarter centered rolling correlations between the unobserved trends for Core-Core inflation and Regular wage inflation

$$y_t = \mu_t + \sigma^y \varepsilon_t$$
$$\mu_t = \mu_{t-1} + \sigma^\mu \nu_t$$

Bottom line

- Lots of macroeconomic relationships in Japan shifted around 1998
- **■** Labor market conditions become less connected to slack
- ★ The labor market shifts seems to be tied up with differences in the markets for full-time and part-time workers
- Wage developments no longer seem critical price developments

Extra Slides

Price Inflation

Wage Inflation

Reasons to suspect an inflation break around 1998

- **■** Banking crisis breaks out in late 1997
- **■** BoJ independence comes in 1998
- **■** Various other macro relations are disrupted around then:
 - Labor market relationships
 - Connections between monetary policy and the economy
 - Consumption dynamics
 - Corporate restructuring
 - Net foreign asset dynamics