How can inclusive agricultural health policy intervention promote shared agricultural productivity in Nigeria? Evidence from randomized control trial

OLOWOGBON, Toyin Samuel, BABATUNDE, Raphael Olanrewaju and **ASIEDU Edward¹** (University of Ghana & Affiliate Research Fellow, Chair of Development Economics University of Passau, Germany)

NBER/AFDB Transforming Rural Africa Conference, 2019.
ROYAL SONESTA HOTEL, 40 EDWIN H. LAND
BLVD., CAMBRIDGE MA

28th February and 1st March, 2019

Outline of Presentation

- Motivation
- Research Question

- Motivation
- Research Question
- The Intervention

- Motivation
- Research Question
- The Intervention
- Methodology

- Motivation
- Research Question
- The Intervention
- Methodology
- Key Findings

- Motivation
- Research Question
- The Intervention
- Methodology
- Key Findings
- Conclusion and Recommendations

Outline

- Outline of Presentation
 - Motivation
 - Research Question
 - The Intervention
 - Methodology
 - Key Findings
 - Conclusions and Recommendations

Motivation

 World food poverty is on the rise. Almost one in seven people around the world are chronically hungry, lacking enough food to be healthy and lead active lives (World Bank, 2007a).

- World food poverty is on the rise. Almost one in seven people around the world are chronically hungry, lacking enough food to be healthy and lead active lives (World Bank, 2007a).
- This food poverty is prominent in Africa, and the region has the lowest agricultural productivity in the world and the highest percentage of people living in poverty (World Bank 2007b).

- World food poverty is on the rise. Almost one in seven people around the world are chronically hungry, lacking enough food to be healthy and lead active lives (World Bank, 2007a).
- This food poverty is prominent in Africa, and the region has the lowest agricultural productivity in the world and the highest percentage of people living in poverty (World Bank 2007b).
- The race is on to produce enough food by engaging labour saving technologies including pesticides.

Motivation

 However, increased and persistent use of pesticides, herbicides and other chemical can have long-term negative consequences for farmers health (such as respiratory disease, cancers, and poisoning from agrochemicals etc.)

- However, increased and persistent use of pesticides, herbicides and other chemical can have long-term negative consequences for farmers health (such as respiratory disease, cancers, and poisoning from agrochemicals etc.)
- Which can in turn exacerbate the low productivity of farmers in Africa.

- However, increased and persistent use of pesticides, herbicides and other chemical can have long-term negative consequences for farmers health (such as respiratory disease, cancers, and poisoning from agrochemicals etc.)
- Which can in turn exacerbate the low productivity of farmers in Africa.
- Health is viewed as a tangible asset in production process (capital good) (Asenso-Okyere et al.,2011).

- However, increased and persistent use of pesticides, herbicides and other chemical can have long-term negative consequences for farmers health (such as respiratory disease, cancers, and poisoning from agrochemicals etc.)
- Which can in turn exacerbate the low productivity of farmers in Africa.
- Health is viewed as a tangible asset in production process (capital good) (Asenso-Okyere et al.,2011).
- It is not just a pivot for labour supply but a critical factor for agricultural labour productivity and quality.

Motivation

• Therefore, the success of agricultural livelihoods depends on the health of its workforce.

- Therefore, the success of agricultural livelihoods depends on the health of its workforce.
- Worldwide, agriculture-related health losses are massive, accounting for up to 25 percent of all disability-adjusted life years lost (DALYs) and 10 percent of deaths in low-income countries (Gilbert, Lapar, Unger, & Grace 2010).

- Therefore, the success of agricultural livelihoods depends on the health of its workforce.
- Worldwide, agriculture-related health losses are massive, accounting for up to 25 percent of all disability-adjusted life years lost (DALYs) and 10 percent of deaths in low-income countries (Gilbert, Lapar, Unger, & Grace 2010).
- Furthermore, ILO reported the agricultural sector as one of the most hazardous to health worldwide (as cited in Loureiro, 2009).

Motivation

 Occupational hazards in agriculture range from simple conditions like heat exhaustion to complex diseases like respiratory disease, zoonotic disease, and poisoning from agrochemicals (International Food Policy Research Institute [IFPRI], 2011).

- Occupational hazards in agriculture range from simple conditions like heat exhaustion to complex diseases like respiratory disease, zoonotic disease, and poisoning from agrochemicals (International Food Policy Research Institute [IFPRI], 2011).
- It is estimated that 2 to 5 million people suffer acute poisonings related to pesticides annually, of whom 40,000 die every year; and there are 170,000 recorded fatal injuries in agriculture annually (Cole, 2006).

- Occupational hazards in agriculture range from simple conditions like heat exhaustion to complex diseases like respiratory disease, zoonotic disease, and poisoning from agrochemicals (International Food Policy Research Institute [IFPRI], 2011).
- It is estimated that 2 to 5 million people suffer acute poisonings related to pesticides annually, of whom 40,000 die every year; and there are 170,000 recorded fatal injuries in agriculture annually (Cole, 2006).
- World Bank estimated about 355,000 people yearly die from unintentional chemical poisoning from exposure to pesticides and other chemicals. Two-thirds of these victims are found in developing countries (World Bank, 2007)

Motivation

 Further estimates by the WHO showed that globally, 30 million people suffer severe chemical poisoning cases annually and 25 million of these occur among agricultural workers in developing countries (Duffy, 2007; Kuye, et al., 2008).

- Further estimates by the WHO showed that globally, 30 million people suffer severe chemical poisoning cases annually and 25 million of these occur among agricultural workers in developing countries (Duffy, 2007; Kuye, et al., 2008).
- Effects of unsafe agrochemicals use have been linked to some non-communicable diseases (NCDs) such as cancers and respiratory diseases.

- Further estimates by the WHO showed that globally, 30 million people suffer severe chemical poisoning cases annually and 25 million of these occur among agricultural workers in developing countries (Duffy, 2007; Kuye, et al., 2008).
- Effects of unsafe agrochemicals use have been linked to some non-communicable diseases (NCDs) such as cancers and respiratory diseases.
- In spite of these numbers, occupational health in general, and in agriculture in particular, remains neglected in most developing countries (as cited in IFPRI, 2011).

Motivation

 In many developing economies like Nigeria with large endowments of labour, enhancing the labour productivity is an important way boosts the nations' economy (National Bureau of Statistics [NBS], 2017).

Motivation
The Intervention
Wethodology
Key Findings
Conclusions and Recommendations

- In many developing economies like Nigeria with large endowments of labour, enhancing the labour productivity is an important way boosts the nations' economy (National Bureau of Statistics [NBS], 2017).
- Health is a major factor for labour supply, agricultural labour productivity and quality

- Access to agricultural health training is generally low among farmers and this has been linked to increase in health risks exposure among farmers.
 - Systematic studies on agricultural related risks that are work related are rare in Nigeria.

Motivation
The Intervention
Wethodology
Key Findings
Conclusions and Recommendations

- Access to agricultural health training is generally low among farmers and this has been linked to increase in health risks exposure among farmers.
 - Systematic studies on agricultural related risks that are work related are rare in Nigeria.
 - The dearth of agricultural data in Nigeria on agricultural related health risks has provided no impetus for policy formulation in this regard

- Access to agricultural health training is generally low among farmers and this has been linked to increase in health risks exposure among farmers.
 - Systematic studies on agricultural related risks that are work related are rare in Nigeria.
 - The dearth of agricultural data in Nigeria on agricultural related health risks has provided no impetus for policy formulation in this regard
 - This research is an attempt to bridge this research gap

Outline

- Outline of Presentation
 - Motivation
 - Research Question
 - The Intervention
 - Methodology
 - Key Findings
 - Conclusions and Recommendations

Research Question

 Using a simple-unique RCT that combines mobile technology, we examine the impact of agricultural health training on sickness loss time, safety knowledge and safety attitudes among cassava farmers in Nigeria

Preview

 90% of cassava farmers reported exposure to chemical health risks and at least 40% reported exposure to musculoskeletal disorders at other stages of cassava production;

Preview

- 90% of cassava farmers reported exposure to chemical health risks and at least 40% reported exposure to musculoskeletal disorders at other stages of cassava production;
- Farmers' sickness absence is influenced by age, educational level, daily duration of chemical spray, care time and number of ergonomic exposure (p<0.05);

Preview

- 90% of cassava farmers reported exposure to chemical health risks and at least 40% reported exposure to musculoskeletal disorders at other stages of cassava production;
- Farmers' sickness absence is influenced by age, educational level, daily duration of chemical spray, care time and number of ergonomic exposure (p<0.05);
- Every one day increase in sickness absence decreases labour productivity of cassava farmers' by 3% (p<0.01); the agricultural health intervention reduced sickness absence in the season by 1.9 out of 6.5 days (29%).

Preview

- 90% of cassava farmers reported exposure to chemical health risks and at least 40% reported exposure to musculoskeletal disorders at other stages of cassava production;
- Farmers' sickness absence is influenced by age, educational level, daily duration of chemical spray, care time and number of ergonomic exposure (p<0.05);
- Every one day increase in sickness absence decreases labour productivity of cassava farmers' by 3% (p<0.01); the agricultural health intervention reduced sickness absence in the season by 1.9 out of 6.5 days (29%).
- Significant improvement in farmers' agricultural health knowledge and attitude (p<0.01).

Motivation
The Intervention
Weth odology
Key Findings
Conclusions and Recommendations

Outline

- Outline of Presentation
 - Motivation
 - Research Question
 - The Intervention
 - Methodology
 - Key Findings
 - Conclusions and Recommendations

The Intervention

Intervention Programme elements

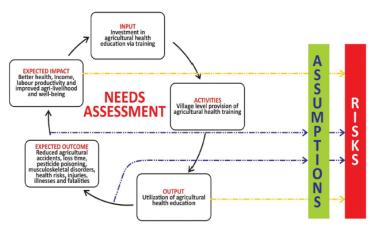
One-time village
Health Training

follow up mobile phone Safety Text
Messaging

Motivation
The Intervention
Weth odology
Key Findings
Conclusions and Recommendations

The Training Component

One of the Training Sessions


- Peer developed training modules
- Focused on safe agrochemical use and ergonomics
- One time training engaging a blended training approach

The SMS Component

- Follow up mobile phone safety text messaging
- For 3months (twice a month) a total of 6 safety messages

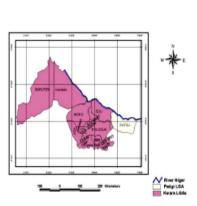
Intervention Framework

Outline

- Outline of Presentation
 - Motivation
 - Research Question
 - The Intervention
 - Methodology
 - Key Findings
 - Conclusions and Recommendations

Methodology

• Study Area: Kogi and Kwara States, Nigeria


Methodology

• Study Area: Kogi and Kwara States, Nigeria

Motivation
The Intervention
Weth odology
Key Findings
Conclusions and Recommendations

Study Area: KOGI and KWARA STATES, NIGERIA

KOGI STATE

Study design and setting

 This study is a longitudinal study of a randomized control trial approach focused on agricultural health intervention for cassava farmers in Nigeria

Study design and setting

- This study is a longitudinal study of a randomized control trial approach focused on agricultural health intervention for cassava farmers in Nigeria
- The baseline data collection was carried out between February 2017 and April 2017 from Kogi and Kwara States, Nigeria

Study design and setting

- This study is a longitudinal study of a randomized control trial approach focused on agricultural health intervention for cassava farmers in Nigeria
- The baseline data collection was carried out between February 2017 and April 2017 from Kogi and Kwara States, Nigeria
- Post intervention data were collected between August and November, 2017

Study Participants

• 24 cassava cropping communities were randomly selected across the 2 states.

- 24 cassava cropping communities were randomly selected across the 2 states.
- 10 villages received the intervention with 14 being in control.

- 24 cassava cropping communities were randomly selected across the 2 states.
- 10 villages received the intervention with 14 being in control.
- Using lottery design 20 respondents each were randomly assigned to the study in each of 24 cassava cropping communities with a power of 80%.

- 24 cassava cropping communities were randomly selected across the 2 states.
- 10 villages received the intervention with 14 being in control.
- Using lottery design 20 respondents each were randomly assigned to the study in each of 24 cassava cropping communities with a power of 80%.
- Randomization of the intervention was at the community level.

- 24 cassava cropping communities were randomly selected across the 2 states.
- 10 villages received the intervention with 14 being in control.
- Using lottery design 20 respondents each were randomly assigned to the study in each of 24 cassava cropping communities with a power of 80%.
- Randomization of the intervention was at the community level.
- Thus, the sample included a total of 480 participants, with 200 receiving the intervention and 280 in control.

Standardized Interviews

 All participants were interviewed individually using a standardized structured questionnaire

Standardized Interviews

- All participants were interviewed individually using a standardized structured questionnaire
- Augmented with focus group discussion and random farm visit at both baseline and post intervention data collection.

Standardized Interviews

- All participants were interviewed individually using a standardized structured questionnaire
- Augmented with focus group discussion and random farm visit at both baseline and post intervention data collection.
- The post intervention data collection was collected 6months after the completion of the treated.

Statistical methods

• Descriptive statistics,

Statistical methods

- Descriptive statistics,
- Ordinary least square regression

Statistical methods

- Descriptive statistics,
- Ordinary least square regression
- Difference-in-difference estimator

OLS in estimating effects of health risks on labour productivity

- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_6 X_6 + e_t$ (2)
- Where Y is the average labour productivity of farmer derived from the formula
- Cassava Output (tons)/Labour (man days).
- X_1 = Age of farmers (years)
- $X_2 = \text{Farmers' Production loss time (days)/sickness absence}$
- X_3 = Estimated duration of self-reported chemical symptoms exposure (hours)

OLS in estimating effects of health risks on labour productivity

- X_4 = Farming Experience (Years)
- X_5 = Number of ergonomic exposure
- X_6 = Educational level (years of schooling)
- \bullet e = Error term
- ullet eta_0 , eta_1 ... eta_6 regression coefficients

Difference-in-Difference

 Difference-in-Difference estimator: In estimating the effects of the trainning intervention on farmers' production loss days/sickness absence, farm safety knowledge and attitude; the Difference-in-Difference (DID) was adopted with the form:

Difference-in-Difference

- Difference-in-Difference estimator: In estimating the effects of the trainning intervention on farmers' production loss days/sickness absence, farm safety knowledge and attitude; the Difference-in-Difference (DID) was adopted with the form:
- $Y_{it} = \alpha + \beta_1 \operatorname{Treat}_i + \beta_2 \operatorname{Post}_t + \beta_3 (\operatorname{Treat} * \operatorname{Post})_{it} + \varepsilon_{it}$

Difference-in-Difference

- Difference-in-Difference estimator: In estimating the effects of the trainning intervention on farmers' production loss days/sickness absence, farm safety knowledge and attitude; the Difference-in-Difference (DID) was adopted with the form:
- $Y_{it} = \alpha + \beta_1 \operatorname{Treat}_i + \beta_2 \operatorname{Post}_t + \beta_3 (\operatorname{Treat} * \operatorname{Post})_{it} + \varepsilon_{it}$
- Y_{it} is the outcome variable for an individual i at time t, α is the constant, *Treat*; is the dummy equals 1 if treated, and Post; is a dummy equals 1 if data is collected at post intervention and 0 if at baseline. β_1 , β_2 and β_3 are coefficients.

Attrition rate

• Attrition rate for the study was 14% (28) for the treated group and 16% (45) for the control.

Attrition rate

- Attrition rate for the study was 14% (28) for the treated group and 16% (45) for the control.
- Reason
 - Treated: inability to receive the follow up text messages leading to uncompleted treatment

Attrition rate

- Attrition rate for the study was 14% (28) for the treated group and 16% (45) for the control.
- Reason
 - Treated: inability to receive the follow up text messages leading to uncompleted treatment
 - Control: largely due to unavailability of respondents during post intervention data collection.

Outline

- Outline of Presentation
 - Motivation
 - Research Question
 - The Intervention
 - Methodology
 - Key Findings
 - Conclusions and Recommendations

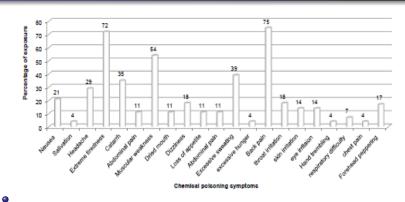
Results

	Item	Frequency	%
	Mostly used WHO chemical Class		
	WHO class II only	96	20
	WHO class III only	144	30
	WHO class II and III	240	50
2	Hand washing after spraying		
	Yes	256	53
	No	224	47
3	Cloth changing after spraying		
	Yes	336	70
	No	144	30
4	Other use of agrochemicals		
	Home surrounding spray	384	80
	Pest spray	48	10
5	Hand washing before eating in the field		
	Yes	64	13
	No	416	87
6a	Sprayer washing		
	Yes	304	63
	No	176	37
6b	Sprayer washing place		
	In the field	261	86
	Near the stream	21	7
	At home	21	7
7	Container management		
	Throw in the field	312	65
	Bury in the soil	48	10
	Burn in the field	48	10
	Washed and re-used as household container	72	1.5
8	Chemical measurement into sprayer		
	The use of chemical lid cap	288	60
	Measured by experience	192	40
9	Reading of chemical label		
	Yes (occasionally)	336	70
	Yes (always)	29	6
	No.	114	2.4
10	Adherence to advice on chemical label		
	Yes (Sometimes)	254	53
	No	226	47
11	Information read on chemical label	220	
	Expiration date	480	100
	Safety instructions e.g Protective gear use	96	20
	Re-entry time	24	3
	General Instruction of use e.g mixing volumes	400	83
12	Understanding of safety instructions on label		
~~	Yes	144	30
	No	336	70

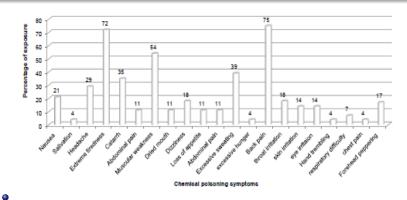
Source: Baseline Survey, 2017

Results

Table 2: Baseline Characteristics of randomly assigned treated farmers and control


	Treatment (N=200) Mean (Sd)	Control (N=280) Mean(Sd)	t-value for test of	
			difference in means(p-	
			value)	
Socio economics				
Age	38.0(8.0)	39.0(8.4)	0.1(0.91)	
Household Size	5.0(2.7)	5.3(2.3)	0.8(0.43)	
Years of Schooling	13.6 (2.5)	13.3(3.6)	1.3(0.10)	
Farming Experience	13.7(7.6)	14.4(7.4)	0.3(0.76)	
rammigexperience	13.7(7.0)	14.4(7.4)	0.5(0.70)	
Farm Size	2.1(2.9)	2.4(2.4)	0.4(0.68)	
Monthly Health	1193(1187)	1135(1028)	0.1(0.92)	
Expenditure				

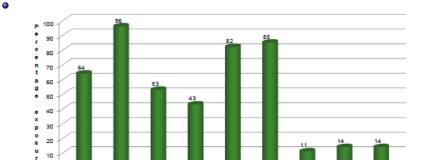
Results


Table 3: Baseline Characteristics of randomly assigned treated farmers and control

	Treatment (N=200) Mean (Sd)	Control (N=280) Mean(Sd)	t-value for test of difference in means(p-value)
Chemical and ergonomics			
Frequency of chemical spray/3months	12.5(3.5)	13.4(4.2)	0.4(0.7)
Daily duration of spray (hours)	5.9(2.4)	6.2(2.5)	0.04(0.9)
Years of chemical usage	9.0(2.6)	10.0(3.8)	0.5(0.6)
Re-entry time (hours)	15.0(7.4)	17.0(7.5)	0.2(0.8)
Spray times till harvest	3.0(2.5)	3.0(2.4)	0.6(0.4)
Number of symptoms	5.0(6.3)	4.0(5.2)	0.7(0.6)
Length of symptoms (hours)	13.0(2.5)	11.0(3.7)	0.8(1.2)
Ergonomic discomfort per week	2.0(3.3)	3.0(3.6)	0.4(0.6)
Production Lost time (days)/season	5.0(3.5)	6.0(4.4)	0.7(0.6)
Care time (days)/season	3.0(4.2)	2.0(3.6)	0.2(0.8)

Self Reported Chemical Poisoning Symptoms

Self Reported Chemical Poisoning Symptoms


 The average number of self-reported pesticide poisoning symptoms per farmer was found to be 4.

Self Reported Ergonomic Symptoms

•

Self Reported Ergonomic Symptoms

Affected body parts

• 96% reported shoulder pain, 85% lower back pain, and 82% upper back pain.

Shoulder

Neck

Knees

thigh

Ankle/feet

Results

Table 4: Sickness absence determinants

OLS estimates		
Y Sickness absence (days)	Co-efficient	t-value
Age in (years)	0.837	3.68***
Educational qualification (years)	-0.352	-2.37**
Daily duration of chemical spray	0.146	2.45**
Care time	0.296	7.49***
Number of ergonomic exposure	-0.053	1.63
Constant	3.97	6.89
R-square	0.16	

Note: *** and ** represent significance at 1%, and 5% respectively

Source: Data analysis 2018

Results

Table 5: Effect of health risks exposure on farmers' productivity

OLS estimates		
Y average labour productivity	Co-efficient	t-value
Age (years)	0.00	0.19
Estimated duration of self-reported	-0.00	-0.76
chemical symptoms exposure (hours)		
Farming experience (years)	0.00	0.46
number of ergonomic exposure	-0.00	-0.82
Educational qualification (years)	0.00	1.36
Production loss time	-0.03***	-4.06
Constant	1.37	8.95
R-square	0.14	

represent significance at 1% level

Source: Data analysis, 2018

Results

Table 6: Average program effect on sickness absence/days

Difference in difference estimates			
Y production loss time/sick	ness Co-efficient	t-value	
absence			
Treatment	0.11	0.28	
Time trend	-0.95	-2.39	
DID(Interaction)	-1.88***	-3.34	
Constant	6.50	23.16	

represent significance at 1% level

Results

Table 7: Estimating Average program effect on farmers' safety knowledge

Difference in difference estimates		
Y Farmers' safety knowledge	Co-efficient	t-value
Treatment	0.43	1.60
Time trend	-0.23	-0.64
DID (Interaction)	2.45***	4.97
Constant	2.86	15.08

^{**}represent significance at 1% level

Results

Table 8: Estimating average program effect on farmers' safety attitude

Difference in difference estimates		
Y Farmers' safety attitude	Co-efficient	t-value
Treatment	0.48	1.50
Time trend	-0.29	-0.67
DID (Interaction)	2.65***	4.39
Constant	3.29	14.66

represent significance at 1% level

Outline

- Outline of Presentation
 - Motivation
 - Research Question
 - The Intervention
 - Methodology
 - Key Findings
 - Conclusions and Recommendations

Conclusions

 The study concluded that crop farmers were engaged in unsafe farm practices exposing them to some health risks which negatively affect their well-being.

Conclusions

- The study concluded that crop farmers were engaged in unsafe farm practices exposing them to some health risks which negatively affect their well-being.
- Farmers' exposures to health risks affect their labour productivity.

Conclusions

- The study concluded that crop farmers were engaged in unsafe farm practices exposing them to some health risks which negatively affect their well-being.
- Farmers' exposures to health risks affect their labour productivity.
- Farm safety education was found to have the potential of reducing farmer's exposure to health risks.

Conclusions

- The study concluded that crop farmers were engaged in unsafe farm practices exposing them to some health risks which negatively affect their well-being.
- Farmers' exposures to health risks affect their labour productivity.
- Farm safety education was found to have the potential of reducing farmer's exposure to health risks.
- The blended training model with farm safety text messaging engaged in this study was found to be effective reducing farmers' production loss time in short term.

Recommendations

- Based on the findings from the study there is a need for inclusive agricultural health policy in Nigeria addressing:
 - Agricultural health information provision,

Recommendations

- Based on the findings from the study there is a need for inclusive agricultural health policy in Nigeria addressing:
 - Agricultural health information provision,
 - Agricultural health surveillance, and

Recommendations

- Based on the findings from the study there is a need for inclusive agricultural health policy in Nigeria addressing:
 - Agricultural health information provision,
 - Agricultural health surveillance, and
 - Agricultural health services for the teeming Nigerian farming population.

- We seek collaboration to:
 - Execute future research focused on the long-term intervention effects and cost effectiveness of the intervention

- We seek collaboration to:
 - Execute future research focused on the long-term intervention effects and cost effectiveness of the intervention
 - We are interested in isolating the effects of the safety mobile text messaging both in a short-term and long term.

- We seek collaboration to:
 - Execute future research focused on the long-term intervention effects and cost effectiveness of the intervention
 - We are interested in isolating the effects of the safety mobile text messaging both in a short-term and long term.
 - Test out the impact of voicemails in local languages.

- We seek collaboration to:
 - Execute future research focused on the long-term intervention effects and cost effectiveness of the intervention
 - We are interested in isolating the effects of the safety mobile text messaging both in a short-term and long term.
 - Test out the impact of voicemails in local languages.
 - Importantly, for external validity reasons, scale-up the intervention to cover cocoa farmers in both in Ghana and Nigeria

Outline of Presentation

Motivation
Research Question
The Intervention
Methodology
Key Findings
Conclusions and Recommendations

AGRICULTURAL HEALTH TRAINING IN PROGRESS

Outline of Presentation

Motivation
Research Question
The Intervention
Methodology
Key Findings
Conclusions and Recommendations

AGRICULTURAL HEALTH TRAINING IN PROGRESS

Our Team

 OLOWOGBON, Toyin Samuel, Department of Agricultural Economics, University of Ilorin, Nigeria: olowogbonsamuel@gmail.com/+234(0)8063116647

Our Team

- OLOWOGBON, Toyin Samuel, Department of Agricultural Economics, University of Ilorin, Nigeria: olowogbonsamuel@gmail.com/+234(0)8063116647
- BABATUNDE, Olanrewaju Raphael, Ph.D. Department of Agricultural Economics, University of Ilorin, Nigeria: ralphag20@yahoo.com/+234(0)8032889769

Our Team

- OLOWOGBON, Toyin Samuel, Department of Agricultural Economics, University of Ilorin, Nigeria: olowogbonsamuel@gmail.com/+234(0)8063116647
- BABATUNDE, Olanrewaju Raphael, Ph.D. Department of Agricultural Economics, University of Ilorin, Nigeria: ralphag20@yahoo.com/+234(0)8032889769
- ASIEDU, Edward, Ph.D. Department of Finance, University of Ghana Business School, Legon, Ghana: easiedu1@gmail.com /+233(0)507033275

Outline of Presentation

Motivation
Research Question
The Intervention
Methodology
Key Findings
Conclusions and Recommendations

THANK YOU