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I. Introduction. 

Among the fundamental advances in the field of economics during the 20th century was the 

invention and deployment of the National Income and Product Accounts (NIPAs). Importantly, 

for nearly as long as the NIPAs have existed, economists have known that the accounts are 

incomplete. Excluded are phenomena beyond the market boundary. Principal among these are 

leisure time, home production, and the environment (Nordhaus and Tobin, 1972).  

This paper zeros in on the last category of omissions: environmental services. Efforts to 

encompass this dimension, often referred to as environmental accounting, augment the NIPAs by 

encompassing the value of natural resources in situ and the monetary costs due to environmental 

damage (NAS NRC, 1999; Abraham and Mackie, 2006; Nordhaus, 2006; Muller, Mendelsohn, 

Nordhaus, 2011). When appropriately coupled with the NIPAs, environmental accounts provide 

a more comprehensive measure of the condition of an economic system.  

Within the broad environmental accounting context, this analysis focuses on air pollution 

damage. Prior research demonstrates that, in the cross-section, or over short time periods, 

accounting for pollution damage appreciably affects estimates of the level of output and growth 

(Bartelmus, 2009; Muller, Mendelsohn, Nordhaus, 2011; Muller, 2014). In contrast to extant 

research, this analysis reports pollution damage from the middle of the 20th century to the present 

day. This long run perspective enables an assessment of the implications of relying on market 

indices for inferences about the growth and development of the U.S. economy.  Further, both 

neoclassical economic growth models and macro-environmental impact models implicitly make 

the case for long-run analyses. Neoclassical models argue that long run growth depends critically 

on the capital stock, population growth, and technological change (Solow, 1956; Baumol, 1986; 

Romer, 1990). Macro characterizations of environmental impact tend to emphasize the 
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importance of population size, income (because this influences the energy intensity of production 

and consumption) and technology (Ehrlich and Holdren, 1971; Chertow, 2001). These two 

classes of models motivate studying environmental accounts over a long time period in the 

following sense. Both income and population in an economic system tend not to change 

drastically over short time periods: say, less than five years. Growth in the capital stock (either 

widening or deepening) does not occur rapidly. Further, fundamental technological advances 

occur in fits and starts. The penetration of fundamental innovations into various economic 

sectors and household often takes years (Gordon, 2016). Hence, long time horizons are often 

required to study changes in environmental impact and growth. In addition, the data used herein 

show that fine particulate matter concentrations fell from an average of over 50 ug/m3 in 1957 to 

under 10 ug/m3 in 2016. 

Historical data is used herein to develop a 61-year series of Gross External Damage (GED), 

(Muller, Mendelsohn, and Nordhaus, 2011; Muller, 2014), a macroeconomic environmental 

indicator, encompassing air pollution emissions from all sectors in the United States (U.S.) 

economy. This dimension of environmental accounting (as opposed to, say, water pollution) 

features excellent data availability and the potential to appreciably affect estimates of 

comprehensive consumption (NAS NRC, 1999; Muller, 2013; 2014).  

To estimate air pollution damage over this 61-year time horizon, several sources of pollution 

data are used. From 1980 to 2016, annual average fine particulate matter (PM2.5) estimates 

provided by Meng et al., (2019) are used. These data are resolved at 1o latitude-longitude grid-

cells and they provide universal coverage of the contiguous U.S. In contrast, United States 

Environmental Protection Agency (USEPA) monitors for PM2.5 have only been operational since 

1999. The monitors provide only sparse spatial coverage. The agreement between the satellite 
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data and monitor readings between 1999 and 2016 is quite strong (see figure A.1). From 1979 

back to 1957, the data are drawn from historical monitoring sites (Clay et al., 2019). Specifically, 

the early network of monitors measured total suspended particulates (TSP). The analysis uses 

regression models to calculate PM2.5 (which is a subset of TSP) levels from the TSP readings. 

The spatial extent of this network was quite thin. As such from 1957 to 1980, the paper only 

reports national results. When spliced together with the satellite data the analysis obtains a 

continuous time series from 1957 to 2016 consisting of national scale, annual average PM2.5. 

The prior environmental accounting literature suggests that the total, or gross, damage is the 

product of emissions and marginal damage (Nordhaus, 2006; Muller, Mendelsohn, Nordhaus, 

2011). This is conceptually consistent with how GDP is measured: prices of products are 

multiplied times the quantity produced to compute total value. Because of data and modeling 

limitations, this analysis computes damages in a slightly different fashion. Consider ambient 

pollution estimates in a given location, say, Pennsylvania, and year, perhaps 1992. The paper 

computes consequences from exposure to pollution levels in Pennsylvania in 1992 using 

population counts, mortality rates, and estimated PM2.5. Intuitively, PM2.5 levels are the sum of 

contributions from a multitude of sources distributed across space, upwind from said locality. 

Note that this approach attributes damages to the location of exposure, not the location of 

emissions. The parallel with the NIPAs is the following: while GDP values production and 

allocates value to the location of output, measures such as personal consumption expenditure 

(PCE) ascribe value to where consumption of goods and services occurs. The former tracks with 

valuation of pollution emissions. The latter is analogous to valuing damage from exposure. 

At an aggregate, national scale, the difference between valuing emissions and valuing 

concentrations should be negligible. However, for sub-national accounting (which this analysis 
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executes for 1980 to 2016) the appropriate treatment of monetary damages computed from 

exposure in this way is a deduction from (market) consumption within the jurisdiction where 

exposure occurs (Muller, Matthews, Wiltshire-Gordon, 2017; Jha, Matthews, Muller, 2019). 

That is, without the ability to attribute concentrations, exposures, and damages spatially to 

specific sources, industries, or sectors, the integration with the NIPAs occurs through 

consumption expenditures. It would be an inappropriate conflation to deduct exposure-based 

GED in a particular jurisdiction from emitting sources in that jurisdiction because of the natural 

flows of pollution in the natural environment. Emissions cross geo-political lines.  

Given these considerations, pollution costs are deducted from the market accounts (Abraham and 

Mackie, 2006; Nordhaus, 2006; Muller, Mendelsohn, Nordhaus, 2011; Muller, 2014). 

Nationally, the GED are deducted from GDP for the full 61-year time series. For the state level 

analysis (from 1980 to 2016), the GED are subtracted from PCE. Year-over-year growth is 

calculated in the GDP-GED measure and this is compared to GDP growth. For the state level 

analysis, growth is estimated in PCE-GED and this is benchmarked against PCE growth on an 

annual basis. 

Prior research has shown that air pollution damage is primarily composed of premature mortality 

risk (USEPA, 1999; 2011; Muller and Mendelsohn, 2007; Muller, Mendelsohn, Nordhaus, 

2011). Hence, human exposure is a key determinant of damage. Because of this, and recognizing 

data limitations due to the historical context1, the present paper focuses only on mortality risks 

due to exposure to PM2.5. Equipped with ambient concentration estimates, the analysis uses 

standard damage-function techniques to translate PM2.5 exposure into monetary damage. Peer-

                                                           
1 For example, obtaining incidence rates for illnesses may not be possible for early years in the sample. 



6 
 

reviewed adult mortality concentration-response functions (Krewski et al., 2009) link exposure 

to mortality risk. The Value of a Statistical Life (VSL) approach then translates mortality risk 

into monetary units (Viscusi and Aldy, 2003).  

The application of standard damage function techniques to historic data generates concerns in 

two areas. First, utilizing results from epidemiological studies conducted in the modern era to 

exposures in the middle of the 20th century introduces considerable uncertainty into the empirical 

damage estimates reported herein. However, the earliest cohort from the Harvard Six Cities 

study included exposures as early as 1974 (Laden et. al., 2006). Hence, any issues associated 

with inappropriate extrapolation of the epidemiological results likely manifests in the earliest 

years of the 61-year timeframe explored here; exposure levels were apparently starkly higher 

than in the modern era. 

Second, most estimates of the VSL are derived from labor market data or contingent valuation 

surveys results from the last, say, 40 years. This motivates a search of the literature for VSL 

estimates from the middle of the 20th century. Costa and Kahn (2004) provide such estimates. 

Specifically, Costa and Kahn (2004) report decadal VSLs derived from labor market data from 

1940 to 1980. From 1980 forward to 2016, the paper couples the US Bureau of Economic 

Analysis’ real personal income series, with VSL-income elasticities reported in the literature, and 

the USEPA’s default VSL (Costa, Kahn, 2004; Hammitt, Robinson, 2011; USEPA, 2011). 

Figure A.3 in the appendix displays the VSLs from 1957 to 2016. 

Results are organized into three areas: national scale findings spanning the full 1957 to 2016 

time series, state results from 1980 to 2016, and output from a series of regression analyses 

conducted on the 1980 to 2016 state-level series that explores determinants of growth. The 
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national analysis indicates that during the late 1950s and early 1960s, pollution damages 

comprised a staggering share of national output. The GED amount to between roughly 30 and 40 

percent of GDP. The GED-to-GDP ratio falls to just under 10 percent of GDP in 2016. From 

1957 to 2016, the GDP-GED metric grew roughly one-half of a percentage point more rapidly 

than GDP. Prior to passage of the Clean Air Act and other landmark environmental policies in 

the early 1970’s, growth in GDP exceeded that of the augmented measure. From 1970 onward, 

the augmented measure outpaced GDP. A series of descriptive regressions argue that the 

business cycle is a critical factor in determining the difference in pollution-adjusted versus GDP 

growth. Finally, Title I of the Clean Air Act significantly attenuated GED and boosted pollution-

adjusted growth. 

The remainder of the paper is structured as follows. Section II presents a conceptual framework 

based on the NIPAs for the deduction of environmental pollution damage from the market 

accounts. Section III focuses on methods and data sources. Section IV. reports the results and V. 

concludes. 

II. Conceptual Model. 

This section uses a national income accounting framework to explore differences in growth 

characterized by the market accounts and accounts augmented with environmental pollution 

damage and expenditures on pollution removal. The modeling begins with a pre-policy economy 

with zero abatement to reflect the historical focus of the paper. The model then incorporates 

investment in pollution control. The key results from the conceptual modeling section are as 

follows. First, in the pre-policy economy, mismeasurement of growth depends only on the 

trajectory of damage. Falling damages boosts growth, while rising damages dampens growth in 
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the augmented index. There is no mismeasurement of growth when damages change at the same 

rate as market consumption. Second, with pollution policy, the intertemporal changes in 

abatement and damage together determine the difference in market and augmented growth. Both 

damages and investments in abatement place a drag on consumption growth. As such, the 

sensitivity of pollution damage to abatement is the key in determining whether augmented 

consumption grows more or less rapidly than the market accounts.  

Market output, or GDP, denoted (𝑌௧
௠) is expressed in terms of the standard accounting identity 

as shown in (1). 

𝑌௧
௠ = 𝐶௧ + 𝐼௧ + 𝐺௧ + 𝑋௧         (1) 

where:  
Ct = consumption of market goods during time (t).  
𝐼௧ = 𝐾௧ − 𝜆𝐾௧ିଵ : net investment in physical capital, where λ is the depreciation of                               
physical capital.  
Gt = government expenditure. 
Xt = net exports. 
 

Abatement and damage in time period (t) are modeled as a deduction from consumption in 

period (t). Let At represent expenditure on abatement of pollution: 𝐴௧ = 𝛾௧𝐶௧ , where 

(0 ≤ 𝛾௧ ≤ 1). Further, let (𝐷௧) reflect pollution damage, or degradation of natural capital: 𝐷௧ =

𝛼௧𝐶௧ − 𝛽௧൫𝛾௧𝐶௧ ൯. The autonomous2 pollution-intensity of output is given by (𝛼), while (𝛽) 

reflects the sensitivity of environmental damage to investment in abatement. As such, damage 

falls with increasing abatement effort (𝛾௧), with greater responsiveness of damage to abatement 

(𝛽), and it rises with more pollution intensive output (Muller, 2019). 

                                                           
2 Autonomous pollution intensity is defined as the pollution damage per unit output prior to abatement. 



9 
 

Expression (2) proposes this alternative characterization of national output.   

𝑌௧ାଵ
௘ = 𝐶௧ାଵ൫1 − 𝛾௧ାଵ − (𝛼௧ାଵ − 𝛽௧ାଵ𝛾௧ାଵ)൯ + 𝐼௧ + 𝐺௧ + 𝑋௧  (2) 

a. Augmented Accounts in a “Pre-Policy” Economy. 

Because this paper’s focus is explicitly historical, and in early stages of development, abatement 

of pollution (the provision of environmental public goods) is likely to be at or near zero, the 

model begins in a situation with zero abatement. In this “pre-policy” economy, growth in the 

augmented index (which, importantly, features an augmentation only consisting of damages) is 

shown in (3):  

௒೟శభ
೐ ି௒೟

೐

௒೟
೐ =

௒೟శభ
೘ ି௒೟

೘ା൫஼೟(ఈ೟)ି஼೟శభ(ఈ೟శభ)൯

௒೟
೐       (3) 

Expression (3) reveals that the intertemporal change in damage ൫𝐶௧(𝛼௧) − 𝐶௧ାଵ(𝛼௧ାଵ)൯ is a key 

driver in the augmented growth rate. Rising (falling) damages attenuate (enhance) growth. 

Consider the following cases. If pollution intensity remains fixed, (𝛼௧) = (𝛼௧ାଵ), damages rise if 

consumption rises. If pollution-intensity increases and consumption increases, remains constant, 

or falls by less than pollution intensity increases, damages also increase. Hence, falling damages 

are most likely to occur during contractionary periods and during periods when autonomous 

pollution intensity falls precipitously3. Further, since damage in period (t) lowers (𝑌௧
௘), higher 

initial levels of damage enhance the growth rate. 

                                                           
3 Note that, by construction, these periods do not correspond to more stringent environmental policy. Rather, the 
convenience-driven transitions from coal-based home heating to the use of natural gas is an example of a large 
change in autonomous pollution-intensity. 
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In the pre-policy economy with zero abatement, the difference between growth in the market 

index and growth in the augmented accounts reduces to (4): 

௒೟శభ
೐ ି௒೟

೐

௒೟
೐ −

௒೟శభ
೘ ି௒೟

೘

௒೟
೘ =

஼೟(ఈ೟)

௒೟
೐ ቀ

௒೟శభ
೘

௒೟
೘ ቁ −

஼೟శభ(ఈ೟శభ)

௒೟
೐      (4) 

The difference in growth rates is a simple expression of GDP growth ቀ
௒೟శభ

೘

௒೟
೘ ቁ and the damage 

intensity of output. This expression again emphasizes the importance of the intertemporal change 

in damage to growth in the augmented metric. Setting (4) to zero and rearranging produces: 

௒೟శభ
೘

௒೟
೘ =

஼೟శభ(ఈ೟శభ)

஼೟(ఈ೟)
. Hence, the rates of growth in GDP and the augmented index equate when 

damages change at the GDP growth rate. The upshot of this result for policymakers is the 

following. When damages rise more (less) rapidly than GDP, growth estimates based on GDP 

overestimate (underestimate) comprehensive growth.  

b. Augmented Accounts with Pollution Abatement. 

Next, abatement is added to the model. Growth in (2) between time periods (t) and (t+1) is 

shown in (5). 

௒೟శభ
೐ ି௒೟

೐

௒೟
೐ =

௒೟శభ
೘ ି௒೟

೘ାቀ஼೟(ఊ೟)ି஼೟శభ(ఊ೟శభ)ା൫஼೟(ఈ೟ିఉ೟ఊ೟)ି஼೟శభ(ఈ೟శభିఉ೟శభఊ೟శభ)൯ቁ

௒೟
೐  (5) 

This expression reflects two facets of growth in an extending national accounting identity 

previously reported in the literature. First, there is a positive effect on growth when expenditures 

on abatement and damages fall through time (Le Kama and Schubert, 2007; Hoel and Sterner, 

2007; Heal, 2009; Gollier, 2010; Baumgartner et al., 2014; Six and Wirl, 2015; Muller, 2019). 

Second, the net effect on growth of including abatement expenditure and damages from current 

period consumption depends on both the trajectories and relative magnitudes of abatement and 



11 
 

damage (Muller, 2019). If both are increasing, growth is diminished. If both are falling, growth is 

enhanced. If, say, damage falls when abatement expenditures rise, then the impact on growth 

depends on which is larger. 

Next, (5) is compared to growth in the market index.  

௒೟శభ
೐ ି௒೟

೐

௒೟
೐ −

௒೟శభ
೘ ି௒೟

೘

௒೟
೘ =

஼೟∆೟௒೟శభ
೘

௒೟
೐௒೟

೘ −
஼೟శభ∆೟శభ

௒೟
೐      (6) 

where: ∆௧= (𝛼௧ − 𝛽௧𝛾௧ + 𝛾௧), and ∆௧ାଵ=  𝛼௧ାଵ − 𝛽௧ାଵ𝛾௧ାଵ + 𝛾௧ାଵ. This expression is equivalent 

to (4) except that (6) includes both damage and abatement.  

With pollution abatement, under what conditions do the growth rates in market output and 

augmented output coincide? Setting (6) equal to zero and rearranging yields: 

௒೟శభ
೘

௒೟
೘ =

஼೟శభ∆೟శభ

஼೟∆೟
         (7) 

This indicates that when growth in the monetary expenditure on abatement plus damage equals 

the GDP growth rate, the two indices change at the same rate. Alternatively, when the combined 

drag from abatement and damage change at the same rate as GDP, the expansion (or contraction) 

of the augmented measure of income and GDP align. To see this more clearly, suppose growth in 

the money value of abatement and damage exceeds the rate of growth in GDP by some small 

amount (𝜀). Adding (𝜀) to the left-hand side of (6) and re-arranging yields:  𝐶௧ାଵ∆௧ାଵ=

𝐶௧∆௧ ቀ
௒೟శభ

೘

௒೟
೘ + 𝜀ቁ. Then, evaluating (5) results in: 

ିఌ∆೟஼೟

൫௒೟
೐൯

. Thus, incrementally higher growth in 

abatement and damage exerts a negative effect on the difference in growth rates between the 

augmented indicator and GDP. 
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What does one learn from the above exercises? Policymakers charged with assessing economic 

performance will mischaracterize growth by ignoring damages and abatement. In a pre-policy 

economy, errors in growth accounting depend strictly on damage. The sign of the mistake 

depends on the sign of the change in damage. The magnitude of the error also depends on the 

initial period pollution intensity. Once an economy adopts environmental policy, the trajectories 

of abatement and damage together determine whether market-oriented growth estimates differ 

from comprehensive estimates and how.  

III. Methods. 

This section begins with the mechanics of the exposure, mortality, and damage calculation. 

Using population by age cohort (a), state (i), and time (t), denoted (Popa,i,t), and baseline 

(reported) mortality rates, by (a), (i), and (t), denoted (Ma,i,t), (CDC, various) premature mortality 

due to PM2.5 exposure is computed as shown in (8). 

𝑀𝑜𝑟𝑡௔,௜,௧ = 𝑃𝑜𝑝௔,௜,௧𝑀௔,௜,௧ ቆ1 − 1
𝑒𝑥𝑝൫𝜃𝑃𝑀௜,௧൯൘ ቇ    (8) 

The (𝜃) term is reported in the empirical evidence reported in the epidemiological literature 

(Krewski et al., 2009).  Recent work in environmental economics explores the exposure-

mortality relationship using causal models (Jha, Muller, 2019; Deryugina et al., 2016; Ebenstein 

et al., 2017). Papers that have explored exposure to annual mean levels in an instrumental 

variables context (Jha and Muller, 2019) report estimates of (𝜃) that are in line with the values 

from the epidemiological literature. It is difficult to directly compare results from other recent 

studies that estimate the effects of daily exposure on daily mortality rates (Deryugina et al., 
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2016). In addition, other studies apply quasi-experimental methods in very different contexts, 

rendering meaningful comparisons difficult (Ebenstein et al., 2017). 

Aggregating over age groups and locations yields an estimate of national premature mortality. 

Monetary damages (D) are calculated by simply multiplying premature mortalities times the 

VSL. 

𝐷௧ = 𝑀𝑜𝑟𝑡௧𝑉௧         (9) 

Note that the VSL (Vt) varies by year according to the reported per capita income and estimates 

of the VSL-income elasticity reported in the literature (Kleckner and Neumann, 1999; Costa, 

Kahn, 2004; Hammitt, Robinson, 2011). Hammitt and Robinson (2011) provide evidence that the 

VSL-income elasticity itself varies according to income. In particular, studies focusing on higher 

income countries in the modern era tend to report lower VSL-income elasticities. In contrast, 

analyses probing developing economies, or historical time-periods in what are now developed 

economies find higher elasticities. In light of this, the present analysis employs the decadal VSLs 

reported in Costa and Kahn (2004) for mortality risk valuations from 1957 to 1980 (which imply 

a variable income elasticity). For the 1980 to 2016 period, the paper uses the USEPA’s 

recommended VSL of $7.4 million ($2006). This value is adjusted for real income using the 

USEPA’s 0.4 income elasticity.  VSLs implied by the two different approaches used herein 

equate in 1980. Figure A.3 in the appendix shows how the VSL from 1957 to 2016.  

Expression (10) demonstrates how VSLs in different time periods are calculated with respect to a 

base period VSL (V0). In time period (t), (Vt) is: 

𝑉௧ = 𝑉଴ ቀ
ூ೟

ூబ
ቁ

ఌೡ

         (10) 
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where: It = real personal income in period (t) 

 𝜀௩ = VSL-income elasticity. 

For the 1980 to 2016 period, the concentration data used in (8) are spatially resolved satellite, 

modeled, and monitored “readings” of ambient PM2.5. Meng et al., (2019), provide the data in 1o 

latitude-longitude coordinates by year from 1980 to 2016. The data are geolocated and then 

averaged to the state level, by year. These estimates are then fed into (8) and to compute state 

and national damages. Figure A.1 in the appendix demonstrates the close correspondence 

between the satellite data and USEPA’s monitor data over the 1999 to 2016 period for which 

both datasets are available. 

The pre-1980 historical PM2.5 data is derived from USEPA monitoring data for total suspended 

particulates (TSP) provided by Clay et al., (2016). PM2.5 is a sub-set of TSP. On this basis, one 

hypothesis is that TSP yields useful information regarding PM2.5 levels, though PM2.5 was not 

separately monitored prior to 1999. As such, a linear regression model is fitted to the overlapping 

series of PM2.5 and TSP monitoring data. (This includes the years 1999 through 2016.) This is 

shown in (11). 

𝑃𝑀௜,௧
ଶ.ହ = 𝛽଴ + 𝛽ଵ𝑇𝑆𝑃௜,௧ + 𝛽ଶ𝑌𝑒𝑎𝑟௧ + 𝜑௜ + 𝜀௜,௧    (11) 

The (𝛽଴, 𝛽ଵ, 𝛽ଶ) terms are OLS parameter estimates. The (𝜑௜) term reflects state fixed effects, 

and ൫𝜀௜,௧൯ is a stochastic error term. Then, using the fitted coefficients, a series is extrapolated 

back through 1957 using national average TSP levels. The results of this fitting and extrapolation 

exercise are only used from 1980 back to 1957. Further, the series is spliced to the series 

provided by Meng et al., (2019) to ensure continuity in 1980. Table A.3 in the appendix reports 
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the fitted coefficients from three variants of (11). The first features OLS estimation without state 

fixed effects. The second includes state fixed effects. The third specification includes state 

specific linear trends. Adopted is the second specification (with state fixed effects). The entire 

spliced time series of national, annual average PM2.5 levels along with the monitored TSP series 

is shown in figure A.2. Figure A.2 displays the 95 percent confidence intervals on the predicted 

PM2.5 levels prior to 1980 (since the 1980 forward values are from satellite data there are no 

standard errors). 

a. Integration of the GED into the NIPAs. 

The standard approach to augmenting national accounts with pollution damage that manifests 

outside of (or external to) markets is to deduct such impacts expressed in monetary terms from 

an aggregate measure of output such as GDP or Value-Added (VA) (Abraham and Mackie, 

2006). GED is subtracted from national GDP to estimate environmentally adjusted VA (EVA). 

The analysis then computes growth in both GDP and the EVA. 

State-level GED are debited from PCE. Ambient pollution levels in a location are an 

amalgamation of discharges from many sources. Hence, subtracting exposure-based GED from 

GDP produced in a particular state would potentially “charge” that state with impacts from 

emissions produced elsewhere. In recognition of the asymmetry between geographically resolved 

measures of production and exposure to pollution, the state GED is deducted from PCE to 

estimate environmentally adjusted PCE or EPCE. 

The USBEA reports PCE nationally from 1980 – 2016, and by state from 1997 forward 

(USBEA, 2018). State GDP is reported over the full 1980 – 2016 time series. State PCE from 

1996 back to 1980 is imputed using the state specific ratio of GDP to PCE from 1997 forward. 
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b. Descriptive Regressions on Determinants of Growth and Damage. 

In order to characterize how various relevant factors affect the GED and EPCE growth rates, the 

empirical analysis includes a set of descriptive regression exercises. The models regress the GED 

growth rates (by state) and the spread between the EPCE growth and GDP growth (at the state-

year level) on three groups of covariates. These include a set of macroeconomic controls: the 

federal funds target rate (FRED, 2018), state-level unemployment rates (BLS, 2016), housing 

starts (Census, 2018), an indicator for years including an NBER recession, and state level 

population (CDC Wonder, 2018). The next group of covariates features state level (per capita) 

fossil fuel and electricity consumption delineated according to fuel type (petroleum, natural gas, 

and coal). These variables are further decomposed according to sector of end use: electric power 

generation, transportation, industrial, commercial, and residential (USDOE SEDS, 2018). The 

third collection of regressors model environmental policy. This group includes indicators for the 

two phases of the Acid Rain Program (interacted with coal and natural gas-fired electricity 

consumption), indicators for years in which the PM2.5 or the O3 NAAQS were tightened, counts 

of counties (within each state) out of attainment with the NAAQS, an indicator for states having 

a renewable portfolio standard (RPS), and whether states featured deregulated electricity 

markets. The models also feature state and year fixed effects. Of particular interest are the 

controls for environmental policies and their association with both damages and EPCE growth 

spreads over PCE growth. Importantly, the analysis does not claim to identify causal policy 

effects. Rather, the models are intended to provide provocative results interpreted as associations 

between the covariates and the outcome variables. Quasi-experimental designs intended to tease 

out causal policy effects are left to future work. 
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IV. Results. 

The results section proceeds in three parts. The first sub-section gives an account of mortality 

and the national GED estimates from 1957 to 2016. The second sub-section details the GED and 

EVA (again in both levels and growth rates) back to 1980. And, the third part discusses the fitted 

coefficients from the descriptive regression analyses.  

a. Deaths and Pollution Damage Intensity: 1957 - 2016. 

Figure 1 plots the number of PM2.5 induced deaths nationwide from 1957 to 2016. In 1957, about 

430,000 deaths were estimated to be associated with PM2.5 exposure. This is roughly four-times 

more deaths from PM2.5 than calculated for 2016. The CDC reports that about 1.7 million deaths 

occurred in 1957. Thus, PM2.5 associated deaths amounted to about one-quarter of all mortalities. 

In an attempt to bound this figure, recent estimates of PM2.5 associated mortalities in China are 

compared to the 1957 death estimate for the U.S. Specifically, Rohde and Muller (2015) report 

that in 2014, 1.6 million deaths occurred due to exposure to PM2.5. This amounted to 17 percent 

of all deaths. Hence, the mortality burden from PM2.5 in the 1950s in the U.S. was quite similar 

to that in China in very recent years. How did the PM2.5 levels compare? The annual average 

PM2.5 level reported in the Rohde and Muller (2015) study was 52 ug/m3 while that in the U.S. in 

1957 was 54 ug/m3. An important contributing factor to the difference in the PM2.5 mortality 

burden between the U.S. in 1957 and China in 2014 is that the baseline (population-weighted) 

mortality rate in the U.S. in 1957 was about 9.9/1000 whereas that for China in 2014 was 

7.2/1000.  

Figure 1 indicates that deaths from PM2.5 fell to around 400,000 by 1960, and then, with some 

oscillation, dropped to about 350,000 in 1970. Between 1970 and 1980, deaths from PM2.5 fell to 
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250,000. Importantly, 1970 saw the passage of the Clean Air Act. Further, the energy crisis and 

associated recession from 1973 to 1975 was concurrent with a significant reduction in deaths. 

The sharp recessions from 1980 to 1982 reduced air pollution mortality to close to 200,000. 

From 1982 onward, mortalities then roughly linearly decreased to just over 118,000 in 2016. The 

CDC reports that 2.7 million deaths occurred in 2016. Hence, PM2.5-associated deaths accounted 

for just about four percent of all mortalities in 2016.  

Several broad or national level, trends affect the change in deaths from particulate air pollution. 

First, from 1957 to 2016, the estimated annual average PM2.5 level dropped by a factor of seven4. 

Additionally, the population-weighted average mortality rate declined from 9.6 per 1,000 to 8.5 

per 1,000 (CDC, 1959; CDC, 2018). Countervailing the dramatic reduction in PM2.5 and the 

reduction in mortality rates was population growth. In 1957, the U.S. population was about 172 

million, whereas in 2016 the U.S. had grown to 323 million.  

In addition to the broad changes driving the reductions in deaths, more subtle forces were also at 

work. Note, as shown in (8) that deaths from exposure are multiplicatively related to baseline 

mortality rates. As such, differences in the distribution of (within-year) baseline mortality rates 

are a potentially important driver of both the level and the distribution of damages. Figure A.4 

reports the share of total PM2.5 induced deaths among populations over 65 years of age.  The 

share of deaths among the elderly increased from 60 percent in 1957 to over 75 percent in the 

late 1990s. Figure A.5 indicates that this mapped closely to the aging of the U.S. population. 

However, after the year 2000, the population continued to age, but the share of PM2.5 deaths 

among the elderly fell slightly through 2016. There are likely two explanations for this pattern. 

                                                           
4 Yet, deaths from PM2.5 fell by a factor of four. This less-than-proportional response ultimately 
derives from the mortality dose-response function used herein (Krewski et al., 2009).  
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First, abatement of PM2.5 occurred in places consisting of relatively older populations (such as 

the industrial Midwest). Second, relative growth in the population over 65 tended to occur in 

lower PM2.5 locations: the western U.S. for example. 

Figure 2 reports the GED-to-GDP ratios from 1957 to 2016. From 1957 to 1960, pollution 

intensity fell from 30 percent of output to about 27 percent. Then, during the 1960s, GED-to-

GDP increased to nearly 40 percent. The peak pollution intensity occurred in 1971, one year 

after passage of the Clean Air Act. There was then a remarkably steep decline in pollution 

intensity until 1980 when GED comprised about 25 percent of GDP. The GED-to-GDP ratio 

declined from 0.25 in 1980 down to under 0.10 in 2016. 

Figure 2 also includes a plot of the annual average PM2.5 level. Beginning in the late 1950s, 

PM2.5 averaged about 55 ug/m3. Ambient concentrations fell rapidly to about 40 ug/m3 by the 

mid-1960s. (The steep drop in monitored, ambient TSP corroborates this estimated reduction 

over this time period shown in figure A.2.) In 1980, PM2.5 averaged about 25 ug/m3. PM2.5 levels 

fell steadily through the 1980s and essentially through the rest of the decades covered herein.  

Figure 2 also reveals that from 1970 to the early 2000s, GED/GDP fell more rapidly than 

pollution levels. This implies that either pollution fell in high damage locations (like large cities), 

or that GDP growth outpaced pollution and damage reductions, or a combination of the two 

factors. Both the 1980 through 1982 recessions and the Great Recession were associated with 

sharp reductions in GED. Following the year 2000, pollution intensity and ambient PM2.5 

declined in lock step.  
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b. Comparative Growth Rates in GDP, EVA, and GED: 1957 - 2016. 

Table 1 summarizes the annual growth rates in GDP, GED, and EVA by decade. (All growth 

rates are expressed in per-capita terms.) Over the entire sample, real GDP growth averaged just 

under two percent; damages fell by an average of 0.41 percent, and EVA expanded by 2.45 

percent. Hence, EVA outpaced GDP by about one-half of a percentage point. There was, of 

course, considerable heterogeneity in this growth rate spread. From 1957 through 1970, GDP 

grew more rapidly than EVA did. As the conceptual model suggested, accounting for pollution 

damage attenuates growth when pollution intensity rises. From 1957 to 1970, GED grew by 4 

percent, annually.  

 As pollution levels plummeted through the 1970s, GED fell by 1.06 percent per annum, and 

EVA exceeded GDP growth by 1.5 percentage points. During the 1980s, real GDP per capita 

increased by an average of 2.2 percent while EVA grew by 3.2 percent. GED declined by about 

1.4 percent, per year. During this decade, the EVA indicator suggests the American economy 

grew by one full percentage points more rapidly than GDP. During the 1990s, the spread 

between EVA and GDP growth fell to 0.70 percent. The rate of GED reduction accelerated to 

about 1.75 percent. The 2000s featured attenuation of both GDP and EVA growth as the 

economy incurred the effects of the Great Recession. EVA outpaced GDP by 0.5 percentage 

points. During this decade, GED fell by nearly three full percentage points per year. Although 

subsequent sections of this analysis delve more deeply into factors associated with changes in the 

GED, it is helpful to note at this point that this decade featured the implementation of Phase II of 

the Acid Rain Program, several reductions in the NAAQS, and the significant substitution from 

coal to gas in power production. Finally, during the 2010s, the rate differential contracted to 
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under 0.2 percentage points. Table A.1 in the appendix repeats this exercise using the alternative 

VSL assumptions. The patterns are essentially robust to the different VSL assumptions. 

Table 2 summarizes growth rates according to the business cycle. During recession years, annual 

GDP growth was -0.32 percent on average, whereas EVA growth was 0.39. This is a difference 

of 0.7 percentage points. Note that the GED, on average, contracted by 3 percent during 

recession years. In contrast, when the U.S. economy was not in recession, EVA outpaced GDP 

by about 0.4 percentage points. (GED tended to increase slightly during expansionary periods.) 

Hence, whether the economy is in recession or not explains about half of the difference between 

EVA and GDP growth over all six decades. It is also interesting to note that the sign of GED 

growth hinges on whether the economy is in recession or expansion – irrespective of regulatory 

constraints. 

Table 2 reports growth summaries for two major macroeconomic shocks: the energy crisis of the 

1970s and the Great Recession. During the energy crisis years of 1973 through 1975, GDP 

growth was positive but below the sample average. EVA growth, by contrast was nearly 4 

percent – significantly above the average of 2.45 percent. The growth rate differential between 

EVA and GDP during the energy crisis was 2.20. Further, pollution damage fell abruptly by 

nearly 3 percent, annually. During the Great Recession, GDP growth was -1.19, EVA contracted 

by 0.73 percentage points and GED fell precipitously at over 5 percent. (Table A.2 in the 

appendix repeats this analysis using the alternative VSL assumptions.) 

Figure 3 presents indexed values of per-capita GDP (solid line), the EVA (dashed line) and GED 

(dashed-dotted line) from 1957 to 2016. (This figure employs the default, time variant VSL-

income elasticity.) First, the GDP index reveals the remarkable growth that has occurred within 
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the market economy since 1957. In real terms, the U.S. economy has grown by nearly three times 

in this 60-year period. The shaded areas represent recessions. The early 1980s recessions and the 

Great Recession had a large effect on GDP growth. Both the 1990 recession and the downturn 

associated with the bursting of the “tech bubble” had mild effects on growth.  

The dashed line represents EVA growth. Accounting for air pollution damage suggests that the 

U.S. economy has more than tripled in size since 1957. Dividing figure 3 into two time-periods 

(before and after the energy crisis of 1973 to 1975) is useful. Prior to 1973, GDP growth 

exceeded EVA growth because GED grew more rapidly than GDP. Figure 3 shows that GED 

increased by nearly 50 percent during the 1960s. GED then plateaued in 1970. From the 

beginning of the energy crisis onwards, real GED per capita fell. Once GED began to fall, the 

EVA index caught up to GDP and then for the remainder of the sample period, EVA growth 

outpaced GDP (corroborating the results in table 1).  

Two factors explain these macroeconomic patterns, both of which were elucidated by the 

conceptual model above. First, the U.S. economy, as measured by the EVA index was about 30 

percent smaller around the time of the energy crisis than GDP would suggest. Thus, growth in 

EVA occurs over a smaller base than GDP. Second, pollution damage fell from 1973 to 2016. 

The conceptual model highlights that these two effects increase the differential between EVA 

and GDP growth.  Figure 3 provides an illustration of how these factors affect the relative 

growth rates of EVA and GDP in the U.S. economy. 

c. State Growth: 1980 to 2016. 

Do the comparisons between adjusted output and the market indices at the state level resemble 

the national scale results? Importantly, when analyzing states, the focus shifts from GDP to 
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personal consumption expenditures (PCE) because of the difficulty attributing damages, 

exposures, and concentrations in a given state to the location of emissions. As such, the adjusted 

index (EPCE) features the deduction of the GED from PCE in a given state-year. 

Figure A.7 in the appendix plots the growth indices for four state economies: Pennsylvania, West 

Virginia, Texas, and North Dakota. The top-left panel shows that the Pennsylvania economy (as 

measured by PCE) just about doubled between 1980 and 2016. When measured by EPCE, this 

state economy expanded by six times. Concomitantly, GED fell by one half. The factors that 

contributed to the U.S. EVA growing more rapidly than GDP are at work here as well. In the 

base year, GED comprised nearly 50 percent of Pennsylvania PCE. The pollution intensity of 

output in Pennsylvania plummeted to just 11 percent in 2016. Not only did the state begin with a 

heavy burden of pollution damage, but also the Pennsylvania economy cleaned-up significantly. 

Both effects, as explicated by the conceptual model, contribute to the dramatically faster growth 

in EPCE relative to PCE. 

The top-right panel of figure A.7 displays the growth indices for West Virginia. Real PCE grew 

such that the 2016 economy was about twice the size of the 1980 economy. EPCE growth, 

however, was much higher. The EVA index suggests West Virginia’s economy expanded by 

almost seven times. Damages dropped by about one-quarter. Like the case Pennsylvania, the 

stark difference in economic performance suggested by the EPCE and PCE indices in West 

Virginia stems from substantial reductions in pollution intensity: from about 50 percent down to 

under 20 percent between 1980 and 2016. As this state’s economy mitigated the burden of air 

pollution exposure and health risks, it grew far more rapidly. The value of these risk reductions is 

not captured by PCE. 
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Pennsylvania and West Virginia are likely integrated and share aspects of the composition of 

their economies. An economy such as Texas presents a different case, both in terms of 

composition and region. The bottom-left panel of figure A.7 displays the growth indices for 

Texas. The first pattern evinced in the figure is the much smaller disparity between EPCE and 

PCE than either Pennsylvania or West Virginia. Why does this occur? Texas never had the 

grossly high GED/PCE metrics registered in Pennsylvania and West Virginia. In 1980, the 

GED/PCE index in Texas was about 0.15. It subsequently fell to 0.06 in 2016.  

The bottom-right panel of figure A.7 repeats this exercise for the North Dakota state economy. 

Like Texas, the difference between EPCE and PCE is modest throughout the 1980 – 2016 time 

period. Further, real PCE and EPCE fell from 1980 until the late 1990s. From that time forward, 

PCE increased in real terms. And, as GED remained lower than the 1980 level, EPCE began to 

outpace PCE growth. Additionally, figure A.7 detects the oil and gas extraction boom in these 

aggregate statistics. The rapid rise in both PCE and EPCE in 2011 coincides with the increase in 

extraction in North Dakota’s Bakken Formation.  

d. Descriptive Regressions. 

Tables 3 and 4 report the results from the descriptive regression analyses. For each model, the 

unit of observation is the state-year. The thrust of these empirical exercises is to provide a sense 

of how three sets of factors affect the GED and EPCE growth rates: macroeconomic factors, 

energy consumption, and environmental policies. Importantly, tables 3 and 4 only present results 

for those covariates that display significant relationships to the dependent variables. Table 3 

begins with the regressions of GED growth rates. Whether or not the economy is in recession has 

a large and robustly significant effect on GED growth (p < 0.01). In column (1), the model only 
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includes state fixed effects. In this context, being in a recession year deducts two percentage 

points from the GED growth rate. However, upon inclusion of year fixed effects (column 2), the 

effect of a recession rises considerably; being in a recession year is associated with a 25 

percentage point reduction in GED growth. The top income tax rate is negatively associated with 

damage growth. Unemployment rates, housing starts, and population do not exhibit robust or 

significant influences on the GED growth rate. 

Table 3 also includes the controls intended to characterize how environmental policy affected the 

GED. Specifically, table 3 includes contemporaneous measures and up to two year lags of years 

when the NAAQS for PM2.5 and O3 were tightened. When controlling for year fixed effects, the 

two-year lag measure of the PM2.5 NAAQS is significantly associated with a reduction in GED 

growth (p < 0.01). The association is also economically significant: about a nine-percentage 

point reduction in GED growth. Further, the concurrent measure of O3 NAAQS changes exhibits 

a significant, negative effect on the GED (p < 0.01). Although the GED encompasses PM2.5, 

emissions of precursors to O3 production (NOx and VOCs) also affect PM2.5 levels. As such, it is 

plausible that O3 NAAQS adjustments affect PM2.5 exposures.  

Table 4 covers the regressions with the growth rate differential between EPCE and PCE as the 

dependent variable5. Table 4 begins with macroeconomic controls. Whether or not the economy 

is in recession has a significant effect on the rate spread. Specifically, controlling for state and 

year fixed effects, recession years feature rate spreads that are about five percentage points 

greater than non-recession years (p < 0.01). Recall that table 3 reported a large, negative, and 

                                                           
5 The EPCE-PCE differential is used since these are state level regressions. 
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significant effect of recessions on damages. Since EPCE rises when GED falls, this result 

supports that in table 3. 

The federal funds rate also exhibits a significant association with the EPCE-PCE rate differential. 

Without year fixed effects, the federal funds rate is positively associated with the rate spread (p < 

0.01). Inclusion of year fixed effects reverses the sign (p < 0.01). The interaction term between 

the federal funds rate and the recession indicator is robustly significant and positively associated 

with the EPCE - PCE growth rate spread. 

The income tax rate on the highest income bracket is strongly associated (p < 0.01) with higher 

rate spreads. Recall that table 3 reported a significant negative relationship between damages and 

the top tax rate. Income taxes tend to dampen consumption. Consumption yields pollution. 

Hence, as tax rates rise, damages fall increasing the differential between EPCE and PCE growth 

rates. 

While higher levels of housing starts suggest faster market index growth (and lower spreads), 

table 4 reports evidence of a positive association between spreads and housing starts (p < 0.05, 

inclusive of year fixed effects). One explanation for this is that housing starts have grown more 

rapidly in the West and Southeast where pollution damages tend to be lower than in the industrial 

Northeast and Midwest.  

Table 4 also demonstrates that greater levels of per-capita petroleum use through transportation 

significantly attenuates the EPCE-PCE spread (p < 0.01). The magnitude of this effect, 

presumably due to emissions from combustion of gasoline, diesel, and oil, is between one and 

three percentage points.  
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Table 4 also explores the links between environmental policy and the EPCE-PCE growth rate 

differentials. The findings are largely supportive of those reported for the GED in table 3. For 

instance, two years after the PM2.5 NAAQS change, the rate spread is higher by up to four 

percentage points. And, a similar effect is observed concurrent to O3 NAAQS amendments: 

damages fall and the EPCE-GDP differential widens. 

V. Conclusions. 

This paper conducts the first long run environmental accounting exercise. The analysis focuses 

on air pollution both because of rich data availability and in light of the fact that this setting has 

the potential to appreciably affect estimates of both levels and growth in national output. 

Damage from exposure to fine particulate matter are estimated from 1957 to 2016.  

The paper uses standard damage function methods to translate pollution concentrations and 

exposures into damage. The article reports dramatic levels of pollution intensity in the American 

economy in years past. In 1957, the paper reports about 435,000 premature mortalities from 

PM2.5 exposure. The mortality burden implied by this estimate is commensurate with the current 

mortality impacts from PM2.5 in China, where ambient levels are approximately on par with the 

U.S. in 1957. The GED in 1957 comprised between 30 percent and 40 percent of GDP. Damage 

intensity of output fell precipitously to about 20 to 30 percent of GDP in 1980. Since 1980, the 

GED/GDP fell to under 10 percent. This reduction was especially rapid prior to 2000, with 

GED/GDP declining more rapidly than ambient PM2.5.  

The implication of this stunning clean-up has been rapid growth in EVA, defined as GDP less air 

pollution damage. Prior to the landmark environmental legislation passed in the early 1970s, 
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GDP grew more rapidly than EVA, as damage intensity in the U.S. economy increased.  Since 

then, EVA outpaced GDP growth as GED declined both in levels and relative to GDP. 

It is important to note that applying the VSL-income elasticity and epidemiological results to the 

damage calculations back to the 1950s and 1960s imparts significant uncertainties into the 

calculations. Nonetheless, the upshot of these computations is the following: using GDP as the 

barometer to gauge growth, the U.S. economy has slightly more than double in size since 1957. 

When EVA (which deducts air pollution damage) is used, the economy has more than tripled in 

size from 1957 to 2016.  

Macroeconomic conditions play a clear role in the differential growth rates. The spread between 

EVA and GDP growth is 0.3 percentage points higher during recessions than during expansions. 

During the Great Recession, GED fell by 5 percent annually. Similarly, during the energy crisis 

of the 1970s, GED dropped by between 2 and 3 percentage points.  

The paper also provides evidence of a relationship between tax policy and monetary policy and 

environmental outcomes. Top tax rates are significantly associated with reduced damages and 

higher rates of EVA growth, relative to GDP growth. While in depth study of the mechanism is 

relegated to future work, the connection appears to work through reduced consumption 

associated with higher rates. In the preferred specification, the federal funds rate, during 

recessions, is negatively associated with EVA growth, relative to GDP growth.  

Regression analysis reveals that the Clean Air Act also played an important role in damage 

reduction and EVA growth. Detected herein is an effect of NAAQS adjustments on GED and 

EVA growth. Specifically, years during which (and following) the PM2.5 and the O3 NAAQS 

were tightened reduced GED, and provided a boost to EVA. Many of the rules governing 
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vehicles and fuel content are difficult to assess because of their overlapping implementation. For 

instance, controlling for state and year fixed effects the analysis finds little effect of policies like 

the Acid Rain Program. Additional research is needed to causally parse the effects of the myriad 

pollution rules on adjusted growth. 

The empirical analyses conducted in this paper should stimulate new research in several areas. 

First, delving more deeply into the state and regional accounts may reveal insights into the 

relationship between the composition of regional economic systems, policies shaping such 

systems, and both GDP and EVA growth. Second, this paper’s macro-focus leaves unanswered 

issues related to the distribution of economic resources. Future papers should examine how 

measures of adjusted income have changed over this 60-year time period. Third, though this 

paper provides provocative evidence of a link between macroeconomic policy and GED and the 

EVA-GDP growth rate differentials, more targeted studies of this nexus are warranted.  And, 

finally, the divergent conclusions drawn from measuring economic performance with either EVA 

or GDP suggest that official statistical agencies should track a set of satellite accounts inclusive 

of environmental pollution damages. 
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Figures 

Figure 1: Deaths Associated with PM2.5 Exposure from 1957 to 2016. 
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Figure 2: Ambient PM2.5 and GED/GDP Ratio for U.S. Economy 1957-2016. 

 

Squares: Ambient PM2.5; Line: GED/GDP 

GED computed using variable VSL-income elasticity. 

Shaded areas demarcate NBER recessions. 
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Figure 3: Per Capita GDP, EVA, and GED Growth Indices. 

 

Dash = EVA; Solid = GDP; Dash-dot = GED. 

GED computed using default VSL-Income Elasticity. 

Shaded areas demarcate NBER recessions. 
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Tables. 

Table 1: GED Intensity and Per Capita Growth Rates 

 in GDP, EVA, and GED. 

  
 Total sample 1960s 1970s 1980s 1990s 2000s 2010s 
GDP  1.94A 2.62 2.12 2.15 2.00 0.96 1.52 
 (2.130)B (2.548) (2.459) (2.542) (1.566) (2.048) (0.583) 
        
EVA  2.45 1.93 3.61 3.20 2.68 1.44 1.67 
 (2.394) (2.400) (3.302) (2.791) (1.643) (1.996) (0.742) 
        
EVA – GDP 0.51 -0.69 1.49 1.05 0.69 0.48 0.15 
 (1.440) (1.986) (1.628) (1.280) (0.522) (0.676) (0.339) 
        
GED  -0.41 4.15 -1.06 -1.42 -1.72 -3.00 -0.24 
 (5.335) (6.067) (3.444) (4.518) (3.016) (7.018) (3.698) 
        
GED/GDP 0.21C 0.32 0.32 0.22 0.15 0.10 0.08 
 (0.100) (0.0328) (0.0384) (0.0294) (0.0169) (0.0110) (0.00476) 
N 
 

60 12 10 10 10 10 8 

A = average annual growth rate (%). 
B = standard deviations in parenthesis. 
C = ratio of GED to GDP. 
All GED estimates in table 1 employ the default VSL-income elasticity. 
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Table 2: GED Intensity and Per Capita Growth Rates 

 in GDP, EVA, and GED and the Business Cycle. 

 Time-Variant VSL-Income Elasticity 
 Total sample 

 
Recession Not Recession Energy Crisis Great Recession 

GDP  1.94A -0.32 2.85 1.52 -1.19 
 (2.130)B (2.134) (1.289) (4.318) (2.151) 
      
EVA  2.45 0.39 3.28 3.72 -0.73 
 (2.394) (2.524) (1.781) (4.276) (1.525) 
      
EVA – GDP 0.51 0.72 0.42 2.20 0.46 
 (1.440) (1.571) (1.394) (0.0427) (0.662) 
      
GED  -0.41 -3.00 0.64 -2.67 -5.65 
 (5.335) (5.516) (4.947) (4.576) (8.568) 
      
GED/GDP 0.21C 0.24 0.20 0.33 0.09 
 (0.100) (0.0967) (0.0994) (0.0106) (0.00776) 
      
N 
 

61 18 43 2 3 

A = average annual growth rate (%). 
B = standard deviations in parenthesis. 
C = ratio of GED to GDP. 
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Table 3: Factors Determining Damage Growth. 

 
    (1)        (2)    

   
Recession  -2.183**   -24.50***  

(1.042)    (2.522)    
Federal Funds Rate x Recession  -0.252**    11.73     

(0.102)    (11.33)    
Top Income Tax Rate -0.0201     -2.795***  

(0.0258)    (0.342)    
PM2.5 NAAQS Change  -3.630***   1.140    

 (0.769)    (2.599)    
PM2.5 NAAQS Change (t - 1)   6.741***  -3.188    

 (0.936)    (2.431)    
PM2.5 NAAQS Change (t – 2)   0.205     -8.940*** 

 (1.157)    (2.617)    
O3 NAAQS Change  -0.409     -14.85*** 

 (0.678)    (2.058)    
O3 NAAQS Change (t -1)  -1.043*    -1.693    

 (0.585)    (2.739)    
O3 NAAQS Change (t – 2)  -1.457**   -1.101    

 (0.605)    (3.199)    
State Fixed Effects Y Y 
Year Fixed Effects N Y 

 
adj. R2   0.145      0.345    
N    1554       1554    

OLS Standard errors in parentheses 

Note: * = p< 0.1, ** = p < 0.05, *** = p < 0.01. 

Dependent variable is annual, real GED growth rate. 
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Table 4: Factors Determining EPCE-PCE Growth Spread. 
 

    (1)        (2)     
  

Federal Funds Rate   0.168***  -12.47***  
(0.0347)    (3.082)    

Recession  -1.133***   4.823***  
(0.277)    (0.632)    

Federal Funds Rate x Recession   0.301***   11.54***  
(0.0386)    (3.037)    

Top Income Tax Rate  0.0552***   1.087***  
(0.0135)    (0.127)    

Ln(Housing Starts)  -1.168***   0.844**   
(0.287)    (0.383)    

Petroleum Use  -2.236***  -1.756*   
Transportation (0.786)    (0.882)    
PM2.5 NAAQS Change   1.051***  -0.979*   

 (0.173)    (0.569)    
PM2.5 NAAQS Change (t - 1)  -2.003***   2.948*** 

 (0.292)    (0.868)    
PM2.5 NAAQS Change (t – 2)   0.509**    3.942*** 

 (0.216)    (0.699)    
O3 NAAQS Change   0.140      5.060*** 

 (0.174)    (0.704)    
O3 NAAQS Change (t -1)   0.649***  -0.887    

 (0.155)    (0.643)    
O3 NAAQS Change (t – 2)  -0.338*    -1.521**  

 (0.170)    (0.690)    
State Fixed Effects Y Y 
Year Fixed Effects N Y 
   
adj. R2   0.182      0.340    
N    1554       1554    

OLS Standard errors in parentheses 

Note: * = p< 0.1, ** = p < 0.05, *** = p < 0.01. 

Dependent variable is annual, real EPCE growth rate less PCE growth rate. 
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Supplementary Appendix. 
 

Tables. 
 

Table A.1: GED Intensity and Per Capita Growth Rates in GDP, EVA, and GED. 

 Unit VSL-Income Elasticity 
 Total sample 1960s 1970s 1980s 1990s 2000s 2010s 
GDP  1.94A 2.62 2.12 2.15 2.00 0.96 1.52 
 (2.130)B (2.548) (2.459) (2.542) (1.566) (2.048) (0.583) 
        
EVA  2.51 3.38 3.27 2.60 2.35 1.41 1.55 
 (2.137) (2.291) (2.548) (2.567) (1.538) (1.817) (0.886) 
        
EVA – GDP 0.57 0.77 1.15 0.45 0.35 0.46 0.03 
 (1.022) (1.461) (0.816) (1.133) (0.549) (0.961) (0.564) 
        
GED  -0.00 1.12 -1.15 0.43 0.26 -1.83 1.34 
 (4.953) (4.672) (3.279) (5.273) (3.554) (7.723) (4.249) 
        
GED/GDP 0.21C 0.32 0.25 0.19 0.16 0.13 0.12 
 (0.0771) (0.0164) (0.0286) (0.0150) (0.00868) (0.0104) (0.00396) 
N 60 12 10 10 10 10 8 

A = average annual growth rate (%). 
B = standard deviations in parenthesis. 
C = ratio of GED to GDP. 
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Table 2: GED Intensity and Per Capita Growth Rates in GDP, EVA, and GED and the 
Business Cycle. 

      
      
 Unit VSL-Income Elasticity 
 Total sample Recession Not Recession Energy Crisis Great Recession 
GDP  1.94A -0.32 2.85 1.52 -1.19 
 (2.130)B (2.134) (1.289) (4.318) (2.151) 
      
EVA  2.51 0.58 3.29 2.86 -0.56 
 (2.137) (2.151) (1.579) (3.868) (0.984) 
      
EVA – GDP 0.57 0.90 0.43 1.34 0.63 
 (1.022) (1.215) (0.914) (0.450) (1.194) 
      
GED  -0.00 -3.40 1.38 -2.09 -5.45 
 (4.953) (5.592) (3.970) (5.618) (10.35) 
      
GED/GDP 0.21C 0.23 0.19 0.26 0.12 
 (0.0771) (0.0806) (0.0735) (0.00870) (0.0116) 
N 61 18 43 2 3 

A = average annual growth rate (%). 
B = standard deviations in parenthesis. 
C = ratio of GED to GDP. 
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Table A.3: Regression Analysis: PM2.5 Prediction Model. 

Covariate (1) (2) (3) 
TSP 0.049*** 

(0.008) 
0.062*** 
(0.015) 

0.046*** 
(0.016) 

Year -0.238*** 
(0.029) 

-0.265*** 
(0.028) 

2.73*** 
(0.078) 

State Fixed 
Effects 

 X X 

State-Year 
Trends 

  X 

Constant 485.980*** 
(58.358) 

539.819*** 
(56.487) 

234.965*** 
(13.055) 

N 620 620 620 
R2 0.169 0.169 0.053 

se in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

Dependent variable is PM2.5 
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 Supplementary Figures. 
 

Figure A.1: Annual Average PM2.5 Concentrations: Satellite-Monitor Comparison. 

 

Squares = USEPA AQS Monitor Data, Circles = PM2.5 Data from Meng et al., (2019). 
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Figure A.2: TSP and PM2.5 National Average Concentrations. 

 
Dash = PM2.5 (95% Confidence intervals on predicted values prior to 1980); Solid = TSP 
Vertical lines demarcate NBER recessions. 
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Figure A.3: VSL under various assumptions. 

 

 
 
Solid: variable income elasticity; Dash: income elasticity = 0.4; Dash-dot: income elasticity 
= 1.0. 
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Figure A.4: Share of All PM2.5-Associated Deaths Among Persons Over 65 Years of Age. 

 
Vertical lines demarcate NBER recessions. 
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Figure A.5: Indexed Values of Senior Population Share and Senior PM2.5 Mortality Share. 
 

 
Vertical lines demarcate NBER recessions. 
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Figure A.6: GED-to-GDP under various VSL–income elasticity assumptions. 
 

 

Solid: Variable VSL-income elasticity; Dash: Unit VSL-income elasticity. 

Vertical lines demarcate NBER recessions. 
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Figure A.7: EPCE, PCE, and GED in Four State Economies. 
 

 
 

Solid = PCE; Dash = EPCE; GED = Dash-dot. 
Top-left = Pennsylvania; Top-right = West Virginia; Bottom-left = Texas; Bottom-right = 
North Dakota. 


