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Abstract
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1 Introduction

There is a long tradition in economics, commonly traced back to Hayek (1945), which emphasizes
the role of financial markets aggregating dispersed information. Under this view, prices not only
convey scarcity but they also reveal the dispersed information held by investors about the underlying
fundamentals of the economy. Within this paradigm, a key object of interest is the level of
price informativeness. Price informativeness, formally defined as the precision of the signal about
fundamentals revealed by asset prices, is a natural measure of the ability of financial markets to
aggregate information. Unfortunately, price informativeness is a complex equilibrium object that is
hard to measure directly, in particular at high frequencies. An alternative equilibrium object that
is easily computable and that is the subject of continuous scrutiny is price volatility. In this paper,
we explore the relation between both variables, with the ultimate goal of characterizing the type of
inferences that can be drawn about price informativeness by observing price volatility.1

By relating both variables, our results allow us to determine the conditions under which observing
large fluctuations on asset prices can be interpreted as a reflection of informative asset markets or
vice versa. Because price volatility and price informativeness are jointly determined in equilibrium, this
paper adopts a somewhat unconventional methodological approach. It initially explores the equilibrium
relation between both endogenous variables as the first step to subsequently shed light on conventional
comparative static exercises conducted within fully specified models.

Our first main result shows that the equilibrium relation between price informativeness and price
volatility in financial markets for the class of models with linear asset demands and additive noise –
which we refer to as the fundamental relation – is uniquely characterized by i) the variance of the
innovation to the fundamental and ii) the signal-to-price demand sensitivity, which corresponds to
the ratio of investors’ demand sensitivities to private information and to asset prices. Exploiting this
relation, we identify two different channels through which changes in price informativeness that leave
the fundamental relation otherwise unchanged are associated with changes in price volatility.2 We
refer to the first channel as the noise reduction channel. Through this channel, an increase in price
informativeness is directly associated with a reduction in price volatility, since less noise is incorporated
into the price. We refer to the second channel as the equilibrium learning channel. Through this channel,
which is inactive when investors do not learn from asset prices, an increase in price informativeness
changes investors’ behavior by varying their equilibrium signal-to-price (demand) sensitivities. In
principle, the sign of the equilibrium learning channel can be positive or negative.

To further characterize the behavior of signal-to-price sensitivities, we specialize our analysis to
a general CARA-Gaussian environment. The additional structure allows us to show that the signal-

1The relevant definition of price volatility for our analysis corresponds to the conditional idiosyncratic volatility of asset
prices given past public information, as it will become clear in Section 2.

2Since price informativeness is an endogenous object, considering changes in price informativeness that do not otherwise
affect the fundamental relation is only possible for a subset of all the model parameters. This type of changes is nonetheless
useful for definitional purposes. We eventually consider changes in parameters that at the same time change price
informativeness and shift the fundamental relation.
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to-price sensitivity is strictly increasing in the level of price informativeness, implying that the noise
reduction channel and the equilibrium learning channel operate in opposite directions. Intuitively, an
increase in price informativeness tilts investors’ demands toward putting more weight on the price as a
signal about the fundamental, increasing the sensitivity of prices to aggregate shocks and, consequently,
price volatility. The additional structure also allows us to express the fundamental relation between
price informativeness and price volatility exclusively as a function of a subset of primitives. The
only primitives that explicitly enter into the fundamental relation are i) the prior volatility of the
fundamental, ii) the precision of investors’ private signals about the fundamental, and iii) the ratio of
precisions of the signal contained in the price for an investor relative to an external observer.

Our second main result shows that, under a simple and plausible parameter restriction that limits the
precision of the signal conveyed by the equilibrium price to be less than two times more informative for
an investor relative to an external observer, the fundamental relation between price informativeness and
price volatility has a positive (negative) slope whenever price informativeness is sufficiently high (low).
This result implies that any change in the subset of parameters that do not enter the fundamental
relation directly must induce a positive comovement between price informativeness and volatility
when prices are sufficiently informative and a negative comovement when price informativeness is
sufficiently low. This result also implies that any change in the subset of parameters that at the
same time shifts the fundamental relation upwards and increases price informativeness must also
induce a positive comovement between equilibrium price informativeness and volatility when prices are
sufficiently informative. Alternatively, we show that a change in the subset of parameters that shifts
the fundamental relation upwards and increases price informativeness induces a negative comovement
between informativeness volatility when prices are barely informative. When interpreted through the
lens of our two-channel decomposition, when prices are sufficiently informative, the equilibrium learning
channel becomes overwhelmingly important and dominates the noise reduction channel. Alternatively,
when prices are sufficiently uninformative, the noise reduction channel dominates.

While the results derived in the general case provide interesting insights into the nature of the
relation between price volatility and informativeness, understanding the exact comovement between
both variables for any set of parameters and their independent behavior requires the study of fully
specified models. Therefore, we specialize our results to three applications that allow us to interpret
conventional comparative statics through the lens of the fundamental relation. First, we study a model
in which heterogeneity in investors’ priors provides the source of aggregate noise in the economy. Second,
we study a model in which the breakdown of the Law of Large Numbers caused by the interaction of
a finite number of strategic investors is the source of aggregate noise. Finally, we study a model in
which uncertainty about the aggregate level of hedging needs is the source of aggregate noise. These
applications illustrate the different values that the ratio of precisions of the signal contained in the price
for an investor relative to an external observer can take. For instance, in the first application, investors’
private trading motives are not useful to forecast the level of aggregate noise, which implies that price
informativeness is identical for investors in the model relative to an external observer. In the case of
strategic traders, price informativeness is higher for an external observer relative to investors in the
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model, while in the model with stochastic hedging needs, price informativeness is higher for investors
in the model relative to an external observer.

Our third main result shows that whenever prices are sufficiently informative (uninformative), it
is indeed the case that changes in any underlying parameter induce a positive (negative) comovement
between price informativeness and volatility across all applications considered. For instance, an increase
in the precision of investors’ private signals about the fundamental increases price informativeness and,
at the same time, shifts the fundamental relation upwards, since investors are more responsive to
their private signals for any level of informativeness. Alternatively, an increase in the precision of
investors’ priors about the fundamental decreases price informativeness and, at the same time, shifts
the fundamental relation downwards, since investors are less responsive to their acquired information.
In both cases, whenever the slope of the fundamental relation has a positive slope (informativeness
is high), informativeness and volatility positively comove, whereas if the fundamental relation has
a negative slope (informativeness is low), informativeness and volatility react in different directions.
Our results show that increases in price volatility are associated with increases (decreases) in the
informational content of asset prices when price informativeness is sufficiently high (low). Finding
an unambiguous positive or negative comovement between price volatility and informativeness after
changes in primitives, even for specific regions of the parameter space, may come as a surprise, since
no clear prior exists regarding the sign of the relationship.3

Propositions 2 and 3 formalize the relation between volatility and informativeness depending on the
value of price informativeness, which, despite being a meaningful variable, is an equilibrium object. The
next natural question to ask is whether the region in which volatility and informativeness positively or
negatively comove can be characterized as a function of primitives. With that goal, we make use of
the results already derived to study comparative statics in all three applications. Several interesting
insights emerge from the study of comparative statistics in each individual application. It is worth
highlighting that, when prices are sufficiently informative, consistent with our results, a reduction
in the magnitude of aggregate noise increases price informativeness and, perhaps surprisingly, price
volatility. Intuitively, a reduction in the amount of trading due to noise or in the variance of aggregate
common beliefs or hedging needs directly increases price informativeness. Therefore, when prices are
sufficiently informative, the equilibrium learning channel dominates the noise reduction channel and the
fundamental relation is upward sloping, guaranteeing that price informativeness and volatility positively
comove. An increase in the number of investors when there is a finite number of them also increases
aggregate noise with similar consequences.

Subsequently, in Section 5, our final main result explicitly characterizes the positive and negative
comovement regions as a function of primitives. We show that positive and negative comovement
regions can be characterized as a function of ratios of primitives, in particular, ratios of precisions
of private signals, the fundamental, or the source of noise, among other primitives. Finally, in the
context of our leading application with heterogeneous priors, which is the most tightly parameterized,

3We show that a region in which price volatility and informativeness positively comove always exists. However, we
show that the region in which price volatility and informativeness negatively comove may be empty in some applications.
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we use data from U.S. stocks between 1963 to 2017 to recover stock-specific parameters that allow us to
determine whether the recovered primitives for a given stock are in the positive comovement region, the
negative comovement region, or in neither. We leverage the identification results developed in Davila
and Parlatore (2018) to provide a structural interpretation to regressions of asset prices on earnings.
Our empirical findings imply that most the stocks in our final sample (roughly 60%) are in the negative
comovement region. For these stocks, our results imply that observed increases in price volatility
are associated with a decrease in price informativeness. Intuitively, the large amount of idiosyncratic
volatility unrelated to changes in earnings at the stock level suggests that price informativeness is low for
most stocks, which given our theoretical results implies that most stocks feature negative comovement
between price volatility and informativeness. Interestingly, we find that none of the remaining stocks
are in the positive comovement region.

Related Literature This paper is most directly related to the literature that studies the role played
by financial markets in aggregating dispersed information, going back to Hayek (1945), and following
Grossman and Stiglitz (1980), Hellwig (1980), and Diamond and Verrecchia (1981), among others.
Biais, Glosten and Spatt (2005), Vives (2008), and Veldkamp (2011) provide recent reviews of this
well-developed body of work. Although price informativeness is a central object of study in many of
these papers, we provide, to our knowledge, the first systematic study of the relation between price
volatility and price informativeness. While the textbook treatment of Vives (2008) separately discusses
the comparative statics of price volatility and informativeness in a competitive model similar to the
one that we consider, it does not explore further the relation between both variables.4

There exists a vast literature focused on the measurement of asset price volatility, including the
seminal contribution of Engle (1982), which spurred a large amount of work in Financial Econometrics.
Campbell et al. (2001) and Brandt (2009) are well-known references within this vast literature. While
these studies emphasize the implications of price volatility for diversification, as well as its relation
with expected returns, these papers have not related their findings to whether prices are more or less
informative. Our results seek to broaden the impact of these studies, by showing how to draw inferences
for price informativeness from measures of price volatility. By modeling dispersed information and
learning, our results also contrast to the vast literature studying excess volatility and predictability
that follows Shiller (1981), mostly focused on a representative investor.

A small recent literature that seeks to empirically identify the behavior of price informativeness.
In particular, Bai, Philippon and Savov (2016) empirically test for the forecasting ability of financial
markets (a measure of price informativeness) running cross-sectional regressions of future earnings on
current market prices. Their measure of informativeness has increased over the last decades. Farboodi,

4Since we consider a CARA-Gaussian setup, our results should be interpreted as a first-order approximation to more
general environments (Ingersoll (1987), Huang and Litzenberger (1988)). There is scope to further understand the relation
between volatility and informativeness in the context of non-linear models, as those studied by Barlevy and Veronesi
(2000), Albagli, Hellwig and Tsyvinski (2014, 2015, 2017), Breon-Drish (2015), Chabakauri, Yuan and Zachariadis (2015),
or Pálvölgyi and Venter (2015). There is scope to use a similar approach to the one developed in this paper to link
outcomes of alternative allocative mechanisms (e.g., auctions) to measures of information aggregation.
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Matray and Veldkamp (2017) show that this increase is due to increases in the forecasting ability
of older and larger firms, despite finding decreases in the forecasting ability of financial markets for
younger and smaller firms. Davila and Parlatore (2018) develop a new methodology to structurally
recover stock-specific measures of price informativeness using time-series regressions.

Finally, we would like to highlight the high-level relation between our results and the work of
Bergemann, Heumann and Morris (2015). They show in an abstract linear-quadratic environment
that the information structure that yields maximal aggregate volatility is such that agents confound
idiosyncratic and aggregate shocks, excessively responding to aggregate shocks. Their goal is to study
how alternative information structures affect the moments (e.g., volatility) of endogenous variables
in the economy. Instead, our goal is to understand the endogenous equilibrium relation between the
signal-to-noise ratio associated with asset prices, which is an unobservable variable that captures the
ability of financial markets to aggregate information, with the volatility of asset prices, which is an easily
measurable endogenous outcome of financial market trading activities, with the aim of potentially using
this relation to infer the ability of financial markets to aggregate information.

Outline Section 2 describes the general setup and presents the fundamental relation between
price informativeness and price volatility. Section 3 specializes our results to the CARA-Gaussian
environment, while Section 4 introduces three canonical applications and provides full comparative
statics on primitives exploiting our main results. Section 5 explicitly characterizes the set of primitives
that guarantee positive and negative comovement and uses stock market data to recover model
parameters and determine in which region different stocks lie and Section 6 concludes. The Appendix
contains derivations, proofs, and additional results.

2 Fundamental Relation: General Environment

In this section, we characterize the equilibrium relation between price informativeness and price
volatility when investors use linear asset demands and face additive noise.

2.1 General environment

Time is discrete, with periods denoted by t = 0, 1, 2, ...,∞. There are two assets: A riskless asset in
elastic supply with gross return R > 1 and a risky asset in fixed supply Q, which is traded at a price
pt in period t. The risky asset has a random payoff given by

θt+1 = µθ + ρθt + ηt,

where µθ is a scalar, |ρ| ≤ 1, and θ0 = 0, and where the innovations to the payoff, ηt, have mean
zero, finite variance, and are independently distributed.5 We often refer to the asset payoff as the
fundamental.

5When ρ = 0, our model effectively becomes static, as in Grossman and Stiglitz (1980). When ρ = 1, fundamentals
and prices are non-stationary and follow a random walk.
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A set of investors, indexed by i ∈ I, trade both assets in period t. Before trading in period t,
each investor i observes the already realized value of the fundamental θt and a private signal sit of the
innovation to the fundamental ηt. Moreover, investors have additional motives for trading the risky
asset that are orthogonal to the asset payoff. We denote by nit investor i’s additional trading motive in
period t. These trading motives are private information of each investor.

We derive our first set of results under two assumptions. The first assumption imposes an
additive informational structure, while the second assumption imposes a linear structure for investors’
equilibrium asset demands. In Sections 3 and 4, we provide fully specified sets of primitives that are
consistent with Assumptions 1 and 2.

Assumption 1. (Additive noise) Each period t, every investor i receives an unbiased private signal
sit about the innovation to the payoff, ηt, of the form

sit = ηt + εist, (1)

where εist, ∀i ∈ I, ∀t, are random variables with mean zero and finite variances, whose realizations are
independent across investors and over time. Each period t, every investor i has a private trading need
nit, of the form

nit = nt + εint, (2)

where nt is a random variable with finite mean, denoted by µn, and finite variance, and where εint, ∀i ∈ I,
∀t, are random variables with mean zero and finite variances, whose realizations are independent across
investors and over time.

Assumption 1 imposes a noise structure that is additive and independent across investors for the
signals about the innovation to the fundamental ηt as well as for other sources of investors’ private
trading needs nit. This assumption does not restrict the distribution of any random variable beyond
the existence of finite first and second moments. Our second assumption describes the structure of the
investors’ net demands for the risky asset ∆qit.

Assumption 2. (Linear asset demands) Investors’ net asset demands satisfy

∆qit = αiss
i
t + αiθθt + αinn

i
t − αippt + ψi,

where αis, αiθ, αin, αip, and ψi are individual demand coefficients, determined in equilibrium.

Assumption 2 imposes that the net asset demand for the risky asset for a given investor is linear in
his signal about the fundamental and his private trading needs, as well as in the asset price pt and the
realized fundamental θt. It also allows for an individual specific invariant component ψi. This linear
structure arises endogenously under CARA utility and Gaussian uncertainty, as we show in Section
3. More broadly, linear asset demands can be interpreted as a linear approximation to general asset
demand functions, so the results in Proposition 1 are valid generally up to a first-order approximation.
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2.2 Equilibrium price characterization

Market clearing in the risky asset market implies that
´

∆qitdi = 0 each period t.6 Assumptions 1 and
2, when combined with market clearing, imply that the equilibrium asset price must satisfy

pt = αθ
αp
θt + αs

αp
ηt + αn

αp
nt +

´
I α

i
sε
i
stdi

αp
+
´
I α

i
nε
i
ntdi

αp
+ ψ

αp
,

where we denote the cross sectional averages of individual demand coefficients by αθ =
´
I α

i
θdi,

αs =
´
I α

i
sdi, αn =

´
I α

i
ndi, αp =

´
I α

i
pdi, and ψ =

´
I ψ

idi. The linearity of net demands implies
that the equilibrium asset price is also linear in the innovation to the fundamental ηt, the realized
fundamental θt, and in the common component of investors’ private trading needs nt. When there is
a continuum of investors, a Law of Large Numbers guarantees that the terms

´
I α

i
sε
i
stdi

αp
and

´
I α

i
nε
i
ntdi

αp

vanish. Otherwise, these terms operate as additional sources of aggregate noise.
The equilibrium price pt imperfectly reveals the innovation to the fundamental payoff of the asset

ηt. The sensitivity of the equilibrium price to the realization of the innovation is modulated by the
average weight that investors put on their private signals sit. However, investors’ demands also depend
on their private trading motives nit, which are uncorrelated with the fundamental payoff of the asset.
Since investors do not observe the common component of these additional trading motives, they cannot
distinguish whether a high price is due to a high realization of the innovation to the fundamental ηt or
due to a high aggregate trading need unrelated to the fundamental nt. In this sense, investors’ private
trading motives act as noise, since they prevent their signals about the fundamental from being revealed
by their quantity demanded and, consequently, they prevent the price from being fully revealing. In
our applications, we map the variable nt to random heterogeneous priors and hedging needs, which
become sources of noise in the filtering problem solved by investors.

Finally, we denote the unbiased signal about the fundamental innovation ηt contained in the price
by p̂t. We make use of the unbiased signal p̂t in our definition of price informativeness. Formally, we
define p̂t as

p̂t = αp
αs

(
pt −

αθ
αp
θt −

αn
αp

E [nt]−
ψ

αp

)
= ηt + αn

αs
(nt − E [nt]) +

´
I α

i
sε
i
stdi

αs
+
´
I α

i
nε
i
ntdi

αs
, (3)

which guarantees that E [p̂t|ηt] = ηt. The last three terms in Eq. (3) represent the noise contained in the
price. The first of these three terms is the realization of the common component of the investors’ private
trading needs, adjusted by the ratio αn

αs
, so it is expressed in payoff units. The final two terms in Eq.

(3) capture the sources of aggregate noise that arise from the imperfect aggregation of idiosyncratic
shocks when there is a finite number of investors. Note that our definition of p̂t allows us to write
pt = αs

αp
p̂t + αθ

αp
θt + αn

αp
E [nt] + ψ

αp
, which allows us to interpret αs

αp
as ∂p

∂p̂ .

2.3 Relating price informativeness and price volatility

Using the equilibrium price pt and the unbiased signal about the fundamental contained in the price
p̂t, we can formally define our two objects of interest as follows.

6To accommodate a continuum or a finite number of agents, all integrals in the paper represent Lebesgue integrals.
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Definition 1. (Price informativeness) We define price informativeness as the precision of the
unbiased signal of the innovation to the fundamental payoff ηt contained in the asset price, p̂t, defined
in Eq. (3), from the perspective of an external observer. We denote price informativeness by

τ ep̂ = (Var [p̂t|ηt, θt])−1 . (4)

Price informativeness is a variable that summarizes the ability of financial markets to disseminate
information through prices. It is the relevant variable that captures how precise the price is as a signal
of ηt from the perspective of an external observer who observes the realization of the fundamental
θt. When price informativeness is high, an external observer receives a very precise signal about the
fundamental by observing the asset price pt. On the contrary, when price informativeness is low, an
external observer learns little about the fundamental by observing the asset price pt.

Definition 2. (Price volatility) We define price volatility as the conditional variance of the asset
price, given the past realizations of the fundamental. We denote price volatility by

V ≡ Var [pt| θt] .

For our purposes, price volatility is simply the idiosyncratic variance of asset prices conditional on
the current publicly observed realization of the fundamental. Our goal in this paper is to understand how
price volatility and price informativeness are related in equilibrium to be able to make inferences about
price informativeness, which is not directly observable and is hard to compute at high frequencies, from
idiosyncratic conditional price volatility, which is easily computable. Characterizing the equilibrium
relation between these two endogenous variables is the first step to understand how price informativeness
and price volatility react to changes in primitives.

Our first set of results builds on the the Law of Total Variance, which is an elementary identity that
states that conditional price volatility can be decomposed into two components:

Var [pt| θt] = E [Var [pt| ηt, θt]] + Var [E [pt| ηt, θt]] .

The Law of Total Variance asserts that the total variation in the equilibrium price pt can be decomposed
into two components, after conditioning on the fundamental innovation ηt. The first component
corresponds to the expectation over the different realizations of the fundamental innovation ηt of the
conditional variance of the equilibrium price pt, given ηt. The second component corresponds to the
variance of the conditional expectation of pt, after learning ηt. Intuitively, the first component captures
learnable uncertainty, captured by the best estimate of the residual error in pt after learning ηt, while
the second term captures residual uncertainty, which corresponds to the error from the best guess of pt
after learning ηt.

Under Assumptions 1 and 2, we can express both components as follows

E [Var [pt| ηt, θt]] =
(
αs
αp

)2 (
τ ep̂

)−1
and Var [E [pt| ηt, θt]] =

(
αs
αp

)2

τ−1
η ,
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which allows us to establish the most general characterization of the relation between price
informativeness and volatility in Proposition 1. Intuitively, the variation in E [pt| ηt, θt] is driven by
the variance of the fundamental innovation τ−1

η , while the average residual variance is modulated by
changes in price informativeness τ ep̂ .

Proposition 1. (Fundamental relation)
a) Given Assumptions 1 and 2, price volatility V and price informativeness τ ep̂ satisfy the following

relation

V =
(
αs
αp

)2 (
τ−1
η +

(
τ ep̂

)−1
)
. (5)

b) The equilibrium elasticity of price volatility to price informativeness is given by

dlogV
d log τ ep̂

= 2
d log

(
αs
αp

)
d log

(
τ ep̂

)
︸ ︷︷ ︸

Equilibrium Learning

−

(
τ ep̂

)−1

τ−1
η +

(
τ ep̂

)−1

︸ ︷︷ ︸
Noise Reduction

. (6)

We refer to Eq. (5) as the fundamental relation between price informativeness and price volatility.
Part a) of Proposition 1 shows that such equilibrium relation features the exogenous primitive τ−1

η ,
which corresponds to the variance of the innovation to the fundamental, and the equilibrium object αs

αp
,

which we refer to as the signal-to-price sensitivity and that in general depends on τ ep̂ . By expressing αs
αp

as a function of τ ep̂ and potentially other primitives, we identify two distinct channels that determine the
relation between price informativeness and volatility at this level of generality in Part b) of Proposition
1.

We refer to the first channel as the equilibrium learning channel. If a high level of price
informativeness is associated with a high (low) level of the signal-to-price sensitivity αs

αp
, this induces

a positive (negative) relation between price informativeness and volatility. A high value of the signal-
to-price sensitivity αs

αp
amplifies the sensitivity of asset prices to aggregate shocks.7 Intuitively, a high

αs
αp

implies that, on average, either investors react significantly to their private signals (high αs), or
that they have very steep – under the traditional economics convention that uses quantities in the
horizontal axis – asset demand curves (low αp), so investors barely adjust the quantity demanded even
for large price changes, implying that equilibrium prices substantially react to changes in the realization
of aggregate fundamental shocks. Alternatively, a low αs

αp
implies that, on average, investors barely react

to their private signals (low αs), or that they have very flat – under the traditional economics convention
– asset demand curves (high αp), so investors significantly adjust the quantity demanded even for small
price changes, implying that equilibrium prices are barely responsive to the realization of aggregate
fundamental shocks.

We refer to the second channel as the noise reduction channel. It is evident from Proposition 1
that, holding αs

αp
constant, a high level of τ ep̂ is mechanically associated with a low level of V. In fact,

7Note that Var [p| θt] =
(
αs
αp

)2
Var [ p̂| θt], since the variance of the unbiased signal about the fundamental can be

expressed as Var [ p̂| θt] = τ−1
η +

(
τep̂
)−1. We can thus interpret asset price volatility as the volatility of the unbiased signal

about the fundamental, corrected by investors’ endogenous responses through the signal-to-price sensitivity.
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Eq. (5) implies that there exists an inverse relation between both variables. Intuitively, when prices
are very informative, the noise in the price is low and the conditional variance of the price for a given
realization of the fundamental is necessarily low.

It is worth highlighting that part b) of Proposition 1 is not a comparative statics exercise, but
a characterization of a relation between two endogenous variables that must be satisfied in any
equilibrium, given the economy’s parameters. There are scenarios in which changes in some primitives
do not shift the locus defined in Eq. (5). In those cases, Eq. (5) can be interpreted as the possible
combinations of V and τ ep̂ that can arise in equilibrium for different values of those primitives. In those
scenarios, Proposition 1 implies that equilibria with high volatility are also equilibria with high (low)
price informativeness whenever dlogV

d log τep̂
> 0 (< 0). However, changes in parameters that shift the locus

defined in Eq. (5) entail a shift of the fundamental relation and, in general, a movement along the
curve. Therefore, it is necessary to determine how αs

αp
and τ ep̂ are related in equilibrium as a function

of the model’s parameters to further understand the relation between price informativeness and price
volatility.

Before we study the link between αs
αp

and the model’s primitives in more detail, it is worth
emphasizing that the fundamental relation can only have a positive slope when investors learn from
asset prices. When investors do not learn from prices, changes in the level of price informativeness do
not affect investors’ behavior, so d log

(
αs
αp

)
/d log(τep̂) = 0. In this case, only the noise reduction channel

is active, and the relation between price informativeness and price volatility in Eq. (5) is monotonic
and decreasing. However, as we show next, in the CARA-Gaussian case αs

αp
is increasing in τ ep̂ , so the

equilibrium learning channel and the noise reduction channel operate in opposite directions.

3 Fundamental Relation: CARA-Gaussian Setup

In this section, we specialize our results to a canonical CARA-Gaussian environment, which
endogenously satisfies Assumptions 1 and 2. This allows us to further characterize the relation between
the signal-to-price sensitivity αs

αp
and price informativeness τ ep̂ . In the next section, we provide several

fully specified models to completely characterize the fundamental relation between price informativeness
and volatility as a function of primitives. We specialize the environment described in Section 2 along
the following dimensions.

Timing and assets. Time is discrete, with periods denoted by t = 0, 1, 2, . . . ,∞. There are two
assets in the economy: A riskless asset in perfectly elastic supply with gross return R > 1 and a risky
asset in fixed supply Q, which is traded at a price pt in period t.

Preferences. A new set of investors, indexed by i ∈ I, is born in each period t. Investors born
in period t trade in period t and consume their terminal wealth in period t + 1. Each generation of
investors lives two periods and has constant absolute risk aversion (CARA) preferences over their last
period wealth. The expected utility of investor i born in period t is given by

U
(
wit+1

)
= −e−γwit+1 , (7)
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where Eq. (7) imposes that investors consume all their terminal wealth wit+1. The parameter γ > 0
represents the coefficient of absolute risk aversion, γ ≡ −U ′′

U ′ .
Fundamental process and signals. The payoff of the risky asset each period t is given by

θt+1 = µθ + ρθt + ηt,

where µθ is a scalar, |ρ| ≤ 1, and θ0 = 0, and where the innovations to the payoff, ηt, have finite mean,
finite variance, τ−1

η , and are independently and normally distributed. Before trading in period t, each
investor i observes the current realized fundamental θt. Each investor i receives a private signal sit
about the innovation to the fundamental ηt, given by

sit = ηt + εist with εist ∼ N
(
0, τ−1

s

)
.

Private trading needs. As before, the investors’ privately observed trading motives are sources of
aggregate noise in the economy that prevent the price from being fully revealing. In particular, every
investor i privately observes nit, which takes the form

nit = nt + εint, with εint ∼ N
(
0, τ−1

ε

)
,

where nt ∼ N
(
µn, τ

−1
n

)
, which can be interpreted as the aggregate sentiment in the economy, is

orthogonal to εint. We assume that the private trading needs of the investor are orthogonal to the
fundamental and that all error terms are independent of each other, of the common component of the
private trading needs, and of the innovation to the fundamental.

In the CARA-Gaussian setup presented in this section, all equilibria in linear strategies satisfy
Assumption 2. As it is standard in this body of work, we focus on symmetric equilibria in linear
strategies.8 Investors in the model have more information than external observers because they receive
a private signal about ηt and they observe their private trading need. For example, investors could
learn about the aggregate noise in the price from their private trading need. If an investor’s private
trading need was perfectly informative about the aggregate trading need in the economy, the investor
could perfectly observe the fundamental by looking at the equilibrium price. Therefore, the amount of
information that is contained in the price from an internal investor’s perspective, which determines the
investors’ equilibrium learning, may differ from the informational content of prices from an external
observer’s point of view. To account for this discrepancy, we introduce the notion of internal price
informativeness.

Definition 3. (Internal price informativeness) We define internal price informativeness as the
precision of the additional information contained in the unbiased signal of the innovation to the
fundamental payoff ηt contained in the asset price, p̂t, defined in Eq. (3), from the perspective of
an investor in the model. We denote internal price informativeness by

τp̂ =
(
Var

[
p̂|ηt, θt, nit

])−1
. (8)

8To ease the exposition, we describe our results in the text as if the model had a unique equilibrium, although we
consider the possibility of multiplicity in the Appendix. If there were multiple equilibria, our analysis would be valid for
locally stable equilibria as long as the economy does not jump from one equilibrium to another.
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The notion of internal price informativeness becomes relevant in models in which investors’ private
trading needs are informative about the aggregate noise in the price, and in strategic environments.
In the first case, internal price informativeness is higher than price informativeness for an external
observer, since investors have additional information about the noise. In the second case, internal price
informativeness is lower than price informativeness for an external observer. The new information
contained in the price aggregates the signals of all investors from an external observer’s perspective.
Since one of these signals is the private signal observed by the investor, the price contains one new
signal less for an strategic investor than for an external observer.

The following Lemma characterizes the equilibrium relation between αs
αp

and τp̂ in the CARA-
Gaussian setup that we consider.

Lemma 1. (Signal-to-price sensitivity) In the CARA-Gaussian setup, the signal-to-price sensitivity
can be expressed as a function of internal price informativeness τp̂ and primitives τs, τη, and R−1ρ as
follows

αs
αp

= 1
1−R−1ρ

τs + τp̂
τη + τs + τp̂

, (9)

where τp̂ is defined in Eq. (8).

Given that investors have three sources of information about the asset payoff (their prior, their
private signal, and the price signal), the signal-to-price sensitivity corresponds to the share of
information acquired from the new signals at the disposal of investors, discounted by R−1ρ. Therefore,
high values of τs and τp̂ are associated with high values of αsαp , while high values of the prior precision τη
are associated with low values of αs

αp
. Similarly, if the process for the fundamental is highly persistent

(ρ is high) or the investors’ discount rate is small (R is low), the signal-to-price sensitivity αs
αp

is high,
since new information about the innovation ηt becomes more valuable.

It is useful to interpret αs
αp

as the sensitivity of the equilibrium price pt to a change in the realization
of the innovation fundamental ηt, since ∂pt

∂ηt
= αs

αp
. Intuitively, a unit increase in the realization of ηt

increases the value of the signals received by investors, increasing aggregate demand by αs. This increase
in aggregate demand increases the equilibrium price, which endogenously changes investors’ demands,
according to 1

αp
, for two reasons: i) a reduction in demand for purely pecuniary considerations reasons,

and ii) an increase in demand for informational reasons, since a higher price leads investors to infer that
other investors received high signals about the asset payoff. Since substitution effects dominate in our
model, the first effect always dominates in equilibrium, so that asset demands are downward sloping
(αp > 0).

Figure 1a illustrates how the behavior of the signal-to-noise ratio varies with the strength of the
prior precision τη, for a given internal price informativeness τp̂. If the fundamental is extremely volatile
(τη → 0), investors exclusively rely on the signals about the fundamental at their disposal, and αs

αp
→ 1.

Alternatively, if investors’ prior information is extremely accurate (τη →∞), investors exclusively rely
on their prior information, so changes in the realization of ηt barely move at all the equilibrium price,
and αs

αp
→ 0. Intuitively, the more precise the prior information τη held by investors, the less sensitive

the asset price to the realization of ηt.
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(a) Varying the prior precision about the fundamental, τη
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(b) Varying the precision of investors’ signals, τs

Figure 1: Signal-to-price sensitivity, αsαp
Note: Figure 1 shows how the signal-to-price sensitivity αs

αp
, characterized in Eq. (9), varies as a function of internal price

informativeness τp̂ for different values of τη and τs, respectively, when ρ = 0 and R = 1.04. This parameterization implies
that 1

1−R−1ρ = 1. Figure 1a is drawn for τs = 1 and Figure 1b is drawn for τη = 1.

Figure 1b illustrates how the behavior of the signal-to-noise ratio varies with the strength of the
precision of investors’ private signals τs, for a given τp̂. If investors’ signals are extremely precise
(τs →∞), investors trade one for one with their private signals, so αs

αp
→ 1. Alternatively, if investors’

signals are very inaccurate (τs → 0), investors exclusively rely on their prior information, so αs
αp
→ τp̂

τη+τp̂ .
For a given τs and τη, changes in τp̂ have the same effect as changes in τs given τp̂.

Note that Lemma 1 expresses the signal-to-price ratio αs
αp

as a function of internal price
informativeness, τp̂, so we need to further understand the relation between internal and external price
informativeness to fully characterize the fundamental relation in Eq. (5). We do so in the following
Lemma.

Lemma 2. (Relating internal price informativeness and price informativeness for an
external observer) In the CARA-Gaussian setup, there exists a scalar λ > 0 that can be expressed
exclusively in terms of model primitives, such that

τp̂ = λτ ep̂ ,

where τ ep̂ and τp̂ are respectively defined in Eqs. (4) and (8).

Lemma 2 shows that both notions of informativeness are related in this setup. Intuitively, when
there is a continuum of investors and investors private trading needs reveal information about the
aggregate noise, λ > 1 and τ ep̂ ≤ τp̂. If investors do not learn about the aggregate sources of noise from
their own private trading needs, then τp̂ = τ ep̂ , as in the applications with heterogeneous priors and noise
traders in Section 4. Alternatively, when there is a finite number of strategic investors N , investors
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perceive the price to be less informative than an external observer, because the price aggregates N new
signals for an external observer, while for an investor in the model it only aggregates N −1 new signals,
so λ < 1 and τ ep̂ ≥ τp̂.

Combining Lemmas 1 and 2, we specialize the fundamental relation between price volatility and
price informativeness to the CARA-Gaussian environment in the following Lemma.

Lemma 3. (Fundamental relation CARA-Gaussian setup) In the CARA-Gaussian setup, the
fundamental relation between price volatility V and price informativeness τ ep̂ is given by

V =
(

1
1−R−1ρ

τs + λτ ep̂
τη + τs + λτ ep̂

)2 (
τ−1
η +

(
τ ep̂

)−1
)
, (10)

where λ = τp̂
τep̂
.

Lemma 3 represents the endogenous relation between V and τ ep̂ as a function of only three
(combinations of) primitives: τθ, τs, and λ, which allows us to explicitly characterize the properties of
the fundamental relation. Note that the variance of the equilibrium price converges to the variance of
the fundamental when prices are infinitely informative. Alternatively, the equilibrium price is infinitely
volatile when prices are totally uninformative. Formally,

lim
τep̂→∞

V = τ−1
η and lim

τep̂→0
V =∞.

Note also that
lim
τep̂→0

∂V
∂τ ep̂

= −∞ and lim
τep̂→∞

∂V
∂τ ep̂

= 0.

Intuitively, for low levels of price informativeness, the noise reduction channel dominates the equilibrium
learning channel, since learning is ineffective. When prices are infinitely informative, the noise reduction
channel and the equilibrium learning channel perfectly cancel each other. These observations already
provide some structure to the fundamental relation. Combining both sets of limits with the continuity
of the relation, we conclude that the fundamental relation has an asymptote at τ ep̂ = 0 and that it
converges smoothly towards τ−1

η when prices are sufficiently informative.
Whether the relation between price volatility and price informativeness in Eq. (5) is monotonic

depends on the value of λ. In particular, when λ < 2, which encompasses the scenario in which internal
and external price informativeness are equal, the fundamental relation is non-monotonic. The variable
λ represents how much more new information is contained in the price for an investor relative to an
external observer. If λ > 2, the investor learns more than twice as much as an external observer by
using the price as a signal. Although one could argue that active investors may have better information
about the noise embedded in asset prices, hence learning more from the price than external observers,
it is not easy to argue why there should be a two-fold difference between both groups. In fact, most
models considered in the literature on learning in financial markets (e.g., Veldkamp (2011) and Vives
(2016)) implicitly adopt parameterizations that imply λ = 1. In two of our three applications, λ is also

15



0 5 10 15
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

Figure 2: Fundamental relation

Note: Figure 2 plots price volatility as a function of price informativeness, as given by the fundamental relation in Eq.
(10), for parameters τη = 0.5, τs = 1, λ = 1, ρ = 0, and R = 1.04. The vertical red dotted line represents the threshold
τ that delimits (to its right) the region in which the fundamental relation is downward sloping. The horizontal yellow
dotted line depicts the limit τ−1

η to which the fundamental relation converges when prices are perfectly informative.

weakly less than one. Therefore, in what follows, we focus on and state our formal results for the case
λ < 2.9

We formally show that the fundamental relation is decreasing for sufficiently low values of τ ep̂ and
increasing for sufficiently high values of τ ep̂ . The following proposition formalizes this non-monotonicity.

Proposition 2. (Slope of fundamental relation) The fundamental relation between price volatility
and price informativeness is increasing (decreasing) if and only if price informativeness is high (low)
enough. Formally, there exists a threshold τ? > 0 such that

dV
dτ ep̂

< 0 ⇐⇒ τ ep̂ < τ? and dV
dτ ep̂

> 0 ⇐⇒ τ ep̂ > τ?,

where

τ? =
−λ (τη − 2τs) +

√
λ (λτη (τη − 8τs) + 8τs (τη + τs))

2 (2− λ)λ . (11)

Proposition 2 shows that, regardless of the source of noise in the model, the slope of Eq. (10)
is positive when τ ep̂ is sufficiently large and negative otherwise. The threshold τ?, which determines
the lower boundary of the positive slope region, only depends on the precision of the fundamental,
the precision of the private signal, and the value of λ. Interestingly, the threshold τ? only depends
on the remaining model parameters indirectly through λ. In particular, the specific source of noise

9In previous versions of the paper, we also studied the case of classic noise traders, which also features λ = 1. The
results of the λ ≥ 2 case are available upon request.
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may only affect τ? through λ. Exploiting our two-channel decomposition, we say that when prices are
sufficiently informative, when τ ep̂ > τ?, the equilibrium learning channel dominates the noise reduction
channel. On the contrary, when τ ep̂ < τ?, the noise reduction channel dominates the equilibrium learning
channel. Figure 2 illustrates the shape of the fundamental relation between price volatility and price
informativeness in Eq. (5) and the threshold τ? when λ < 2.

Proposition 2 implies that any change in the subset of parameters that do not enter the fundamental
relation directly must induce a positive comovement between price informativeness and volatility when
prices are sufficiently informative and a negative comovement otherwise. When interpreted through the
lens of our two-channel decomposition, when prices are sufficiently informative, the equilibrium learning
channel, which is driven by the change in investors’ equilibrium behavior induced by learning, becomes
overwhelmingly important and dominates the noise reduction channel, and vice versa. Proposition 2
also implies that to fully characterize the relation between price informativeness and price volatility
across equilibria whenever there is a change in the subset of parameters that at the same time shifts
the fundamental relation upwards or downwards and increases or decreases price informativeness, it is
necessary to look at fully models in which the source of noise is full specified. In the following section,
we consider three different ways of modeling noise: heterogeneous priors, hedging needs, and a finite
number of investors.

4 Positive and Negative Comovement Regions

While the results derived in the general CARA-Gaussian setup provide interesting insights into the
nature of the relation between price volatility and informativeness, understanding the exact behavior of
both variables across equilibria requires the study of fully specified models. In this section, we seek to
draw conclusions about the comovement of both variables by studying three representative applications
that illustrate the different values that the ratio of precisions of the signal contained in the price for an
investor relative to an external observer, λ, can take.

First, we study a model with λ = 1, in which the aggregate source of noise in the economy is driven
by heterogeneity in investors’ priors. Second, we study a model with λ < 1, in which a finite number
of investors interact strategically. In this case, the Law of Large Numbers breaks down and there are
additional sources of aggregate noise coming from the average of the realized idiosyncratic realizations.
Finally, we study a model with λ > 1, in which uncertainty about the aggregate level of hedging needs
is the source of private trading needs.

In the three models that we consider in this section, it is always the case that when price
informativeness is high enough, price informativeness and price volatility positively comove after any
parameter change. Moreover, it is also the case that when price informativeness is low enough, there may
exist a region in which price volatility and informativeness negatively comove for any parameter change.
Proposition 3 formalizes these results. It’s worth highlighting that our results apply to comparative
static exercises that are valid for changes in any of the underlying model parameters.

Proposition 3. (Positive and negative comovement regions) In all of the applications studied
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in this section:
a) [Positive comovement region] Price volatility and price informativeness positively comove across

equilibria if price informativeness is high enough. Formally, there exists a threshold τ ∈ [τ?,∞) such
that, if τ ep̂ ≥ τ , V and τ ep̂ move in the same direction after any parameter change.

b) [Negative comovement region] Price volatility and price informativeness negatively comove across
equilibria if price informativeness is low enough. Formally, there exists a threshold τ ∈ [0, τ?] such that,
if τ ep̂ < τ , V and τ ep̂ move in opposite directions after any parameter change.

Proposition 3 follows by combining Proposition 2 with the fact that price informativeness i) increases
with the precision of private information, τs, ii) decreases with the precision of the fundamental
innovation, τη, iii) increases with an increase in λ that leaves τn unchanged, and iv) increases with
the precision of aggregate noise, τn, if τ ep̂ > τ , in all applications. Consequently, Proposition 3
implies that parameter changes that shift the fundamental relation upwards (downwards) are associated
with increases (decreases) in price volatility when price informativeness is high enough. Alternatively,
Proposition 3 implies that parameter changes that shift the fundamental relation upwards (downwards)
are associated with decreases (increases) in price volatility when price informativeness is low enough.

Which economic forces underlie the positive comovement finding in the region in which prices are
very informative? For instance, an increase in the precision of investors’ private signals about the
fundamental shifts the fundamental relation upwards because investors are more responsive to their
information for any level of price informativeness, as we describe above when explaining Lemma 1.
As expected, price informativeness also increases when investors receive more precise signals. When
the equilibrium learning channel dominates, the upward shift in the fundamental relation and the
increase in price informativeness guarantee an increase in price volatility, which yields the desired
comovement. Alternatively, an increase in the precision of investors’ priors about the fundamental
shifts the fundamental relation downwards, since investors are less responsive to their information.
As expected, price informativeness decreases when investors rely more on their priors. When the
equilibrium learning channel dominates, the downward shift in the fundamental relation and the
decrease in price informativeness guarantee a decrease in volatility, which yields again the same
comovement. Similar arguments apply to changes in λ that do not involve τn, and to changes in
τn, which may or may not modify λ.10

When price informativeness is sufficiently low, an increase in the precision of investors’ private signals
about the fundamental shifts the fundamental relation upwards while increasing price informativeness.
In principle, it may be that volatility increases or decreases with that change, since the fundamental
relation is downward sloping. However, exploiting the fact, illustrated in Figure 2, that the fundamental
relation has an asymptote at τp̂ = 0, it is possible to show that there may exist a region of the
parameter space such that volatility and informativeness comove negatively for any parameter changes.

10Note that the only scenario in which the tighter threshold τ becomes relevant is when considering changes in τn

in cases in which investors partially infer the value of the aggregate trading need from their idiosyncratic realization,
as it occurs in our application with hedging needs. Otherwise, the threshold τ?, which defines the region in which the
fundamental relation is upward sloping in Proposition 2, remains the relevant threshold for part a) in Proposition 3.
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Intuitively, when informativeness is sufficiently low, the noise reduction channel dominates for any
change in primitives. While the positive comovement region always exists, the negative comovement
region may or may not exist (that is, τ = 0) in specific applications, as we illustrate next.

Finding an unambiguous positive or negative comovement between both variables for any change
in primitives, even for specific regions of the parameter space, may come as a surprise, since the prior
about the sign of the relationship should not be obvious ex-ante. To further explore the results already
derived, we formally introduce and perform comparative statics in all three applications. Subsequently,
in Section 5, we further characterize the positive and negative comovement regions as a function of a
subset of model primitives in all three applications. For our leading application, we eventually recover
from observables the required stock-specific parameters that determine whether a given stock is in the
positive or negative comovement regions.

4.1 Application 1: Disagreement

We consider a CARA-Gaussian setup as the one described in the previous section in which investors’
private trading motives are given by differences in their beliefs about the expected fundamental payoff.
This application yields a particularly tractable equilibrium characterization. More specifically, each
investor i has a prior belief over the distribution of the innovation to the payoff of the risky asset. In
particular, from an investor i’s perspective, the innovation to the asset payoff ηt is distributed according
to

ηt ∼i N
(
ηit, τ

−1
η

)
,

where ηit denotes investor i’s prior expected payoff. We assume that investors’ prior expected payoff
innovations are random and distributed according to

ηit = nt + εiut,

where
εiut

iid∼ N
(
0, τ−1

u

)
and nt ∼ N

(
µn, τ

−1
n

)
,

with εiut ⊥ ηit, εist ⊥ ηit and εiut ⊥ ε
j
st for all i, j ∈ I, i 6= j, and nt ⊥ ηt for all t.

This formulation implies that an investor’s prior mean has two components: an aggregate
component, nt, which can be interpreted as a measure of sentiment in the economy, and an idiosyncratic
component εiut, which reflects an individual investors’ beliefs. Investors know their own prior but they
cannot distinguish the market’s sentiment from their own idiosyncratic component.

We assume that investors take their priors as given and do not use them to learn about the priors
of others investors. Consequently, they do not infer anything about nt from their own priors. However,
investors know the distribution of priors in the economy and use this knowledge to learn from the
price. The fact that the realized average prior mean nt is unknown introduces a source of aggregate
uncertainty in addition to the payoff of the risky asset.
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Figure 3: Comparative statics: Application 1

Note: Figure 3 shows comparative statics of price informativeness τep̂ and price volatility V = Var [pt| θt−1] as a function
of all five primitives of the model considered in Application 1. All plots feature two y-axis: the left y-axis corresponds
to the values of τep̂ , while the right y-axis corresponds to the values of V = Var [pt| θt−1]. The five parameters of this
model are the following: τs, precision of private signals about the fundamental, τη, precision of the innovation to the
fundamental, τn, precision of the average prior, τu, the precision of investors’ dispersion of heterogeneous beliefs, and γ,
investors’ coefficient of absolute risk aversion. The reference values are τs = 1, τη = 3, τn = 1.5, τu = 1, and γ = 0.5.
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Consistently with our definition of λ in Lemma 2, the value of λ is unity in this application, so
τ ep̂ = τp̂. Therefore, we can express the Fundamental Relation for this application as

V =
(

1
1−R−1ρ

τs + τ ep̂
τη + τs + τ ep̂

)2 (
τ−1
η +

(
τ ep̂

)−1
)
. (12)

In this application, we can explicitly compute the equilibrium values of price volatility and price
informativeness as a function of primitives. Formally, τ ep̂ and V are given by

τ ep̂ =
(
τs
τη

)2

τn

V =

 1
1−R−1ρ

τs +
(
τs
τη

)2
τn

τη + τs +
(
τs
τη

)2
τn


2(

τ−1
η +

(
τη
τs

)2
τ−1
n

)
.

Figure 3 shows the comparative statics of τ ep̂ and V as a function of the five primitives of the model:
τs, τη, τn, τu and γ. Interestingly, in this application, both price volatility and informativeness are
independent of investors’ risk aversion, γ, and of the dispersion in investors’ priors, τu, although there
are other equilibrium variables that do depend on γ or τu, for example, the risk premium and trading
volume.

Figure 3 illustrates the existence of positive and negative comovement regions, as established
in Proposition 2. For instance, when investors have precise private signals (τs is high), price
informativeness τ ep̂ is high, and over that region volatility and informativeness comove positively.
Intuitively, an increase in τs increases equilibrium price informativeness and shifts up the locus defined in
Eq. (12). When price informativeness is high enough, which holds for high values of τs, the fundamental
relation in Eq. (12) is increasing, so volatility necessarily increases in equilibrium. Similarly, when
investors’ prior precision τη is low or the amount of aggregate noise is low (τn is high), τ ep̂ is in the
positive comovement region and any change in parameters moves the locus defined in Eq. (12) and
equilibrium price informativeness in the same direction, which implies that τ ep̂ and V positively comove.
Therefore, if price informativeness is in the positive comovement region, a change in any of the model’s
parameters leads to positive comovement between price volatility and price informativeness.

Alternatively, when investors have imprecise private signals (τs is low), price informativeness τ ep̂
is low, and over that region volatility and informativeness comove negatively. Intuitively, an increase
in τs increases equilibrium price informativeness and shifts up the locus in Eq. (12), which pushes
price volatility in an indeterminate direction. However, when price informativeness is low enough, the
slope of the fundamental relation is sufficiently negative that it is the case that price volatility goes
down, establishing the negative comovement. Similarly reasoning applies to the comparative statics for
τη and τn. It is worth highlighting that while price informativeness varies monotonically with all the
parameters, price volatility is non-monotonic on changes on primitives. This is a necessary feature of
the model in order to have both a positive and a negative comovement region.
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Figure 4: Comparative statics: Application 2

Note: Figure 4 shows comparative statics of price informativeness τep̂ and price volatility V = Var [pt| θt−1] as a function
of all five primitives of the model considered in Application 2. All plots feature two y-axis: the left y-axis corresponds to
the values of τep̂ , while the right y-axis corresponds to the values of V = Var [pt| θt−1]. The parameters of this model are
the following: τs, precision of private signals about the fundamental, τη, precision of the innovation to the fundamental,
N , number of investors, τn, precision of aggregate noise, and γ, risk aversion. The reference values are τs = 6, τη = 2,
τn = 1, γ = 0.5, and N = 100.
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4.2 Application 2: Strategic Traders

While the previous applications feature a continuum of price-taking investors, we now allow for strategic
behavior. We specialize the environment presented in the previous section to a finite number of investors,
N , who have heterogeneous priors over the value of the asset.11 In particular, from the perspective of
investor i, the asset payoff θ is distributed according to

θt+1 = µθ + ρθt + ηt,

where θ0 = 0,
ηt ∼i N

(
ηit, τ

−1
η

)
, and ηi

i.i.d∼ N
(
0, (N + 1) τ−1

n

)
,

where the variance of noise increases with the number of investors to ensure the economy converges to
the competitive economy in Application 1. In a symmetric equilibrium in linear strategies, we postulate
net demand functions given by

∆qit = αss
i
t + αθθt + αnη

i
t − αppt + ψ,

where αs, αθ, αn, and αp are positive scalars, while ψ can take positive or negative values. Market
clearing in the asset market implies that the equilibrium price takes the form

pt = αs
αp

(
ηt +

∑N
i=1 ε

i
st

N

)
+ αθ
αp
θt + αη

αp

∑N
i=1 η̄

i
t

N
+ ψ

αp
.

In this case, the price is not fully revealing because the noise contained in the signals on which the
investors’ trade and the noise contained in the investors’ priors do not wash out in the aggregate. There
is aggregate uncertainty coming from the realized signals and priors. Consistently with our definition
of λ in Lemma 2, in this application,

λ = N − 1
N

< 1,

so τp̂ < τ ep̂ , and the fundamental relation can expressed as

V =
(

1
1−R−1ρ

τs + N−1
N τ ep̂

τη + τs + N−1
N τ ep̂

)2 (
τ−1
η +

(
τ ep̂

)−1
)
.

Note that when investors behave strategically, the price is more informative for an external observer
than for an investor inside the model. The price aggregates theN signals received by the active investors,
which is all new information for an external observer. However, since an investor already knows the
realization of his own signal, from the investors’ perspective the price conveys new information only
about N − 1 new signals.

Figure 4 shows the comparative statics of τ ep̂ and V as a function of the five primitives of the model:
τs, τη, N , τn, and γ. As in the disagreement model with a continuum of agents, price informativeness and
volatility are invariant to the level of risk aversion γ. Figure 4 also illustrates the existence of positive
and negative comovement regions, as established in Proposition 2. The intuition behind the results is

11The heterogeneity in beliefs introduces the additional motive for trading needed to escape the no-trade theorem.
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identical to the one provided in Application 1. Interestingly, changes in the value of aggregate noise τn
induce a positive comovement between volatility and informativeness when price informativeness is high
enough. On the other hand, when price informativeness is low enough and in the negative comovement
region, volatility and informativeness move in different directions.

This application includes a new comparative static exercise on the number of investors. In this
model, price informativeness is increasing in the number of investors N . However, price volatility is
non-monotonic in the number of investors, initially decreasing in N in the negative comovement region,
and finally increasing with N once price informativeness is sufficiently high. Finally, as in Application
1, note that while price informativeness varies monotonically with all the parameters, price volatility is
non-monotonic on changes on primitives, which is consistent with the existence of positive and negative
comovement regions.

4.3 Application 3: Hedging Needs

In this application, we use aggregate hedging needs as an alternative formulation for investors’ private
trading needs. In particular, we assume that the fundamental payoff has both a learnable and an
unlearnable component. Formally, we assume that

θt+1 = µθ + ρθt + ηt,

where θ0 = 0,
ηt = ηlt + ηut ,

and
ηlt ∼ N

(
0, τ−1

η

)
and ηut ∼ N

(
θ, τ−1

u

)
.

ηut and ηlt, which represent the unlearnable and learnable components of the innovation to the asset
payoff and they are orthogonal to each other. The realized fundamental θt is observable in period t.

We further assume that investors born in generation t have an endowment nit+1 which is potentially
correlated with the unlearnable component of the asset payoff ηut+1 and is independent of the learnable
component. Investors’ hedging needs, given by the correlation between the investors’ endowment and
the asset payoff, are given by a random variable hit, which is distributed as follows

hit ≡ Cov
(
θt+1, n

i
t+1

∣∣∣ θt) = Cov
(
ηut , n

i
t+1

)
= nt + εiht,

where
nt ∼ N

(
0, τ−1

n

)
and εiht

iid∼ N
(
θ, τ−1

h

)
.

Investors receive a private signal of the learnable component of the asset’s payoff

sit = ηlt + εist, with εist
iid∼ N

(
θ, τ−1

s

)
.

Depending on parameters, this model can potentially feature multiple equilibria, as described in detail
in Davila and Parlatore (2017). Consistent with our definition of λ in Lemma 2, in this application,

λ = τh + τn
τh

> 1,
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Figure 5: Comparative statics: Application 3

Note: Figure 5 shows comparative statics of price informativeness τep̂ and price volatility V = Var [pt| θt−1] as a function
of all five primitives of the model considered in Application 3. All plots feature two y-axis: the left y-axis corresponds
to the values of τep̂ , while the right y-axis corresponds to the values of V = Var [pt| θt−1]. The five parameters of this
model are the following: τs, precision of private signals about the fundamental, τη, precision of the innovation to the
fundamental, τn, precision of aggregate hedging term, τh, precision of individual hedging need, and γ, investors’ coefficient
of absolute risk aversion. The reference values are τs = 1, τη = 1, τn = 2, τh = 1, and γ = 0.5.
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so the fundamental relation can be expressed as

V =
(

1
1−R−1ρ

τs + τn+τh
τn

τ ep̂

τη + τs + τn+τh
τn

τ ep̂

)2 (
τ−1
θ +

(
τ ep̂

)−1
)
.

Note that when investors are aware that the source of aggregate noise has a common component,
the price is less informative for an external observer than for an individual investor. In this case, an
individual investor can make use of the realization to his hedging need to partially infer the level of
aggregate hedging needs, which allows him to better filter the information conveyed by the price.

Figure 5 shows the comparative statics of τ ep̂ and V as a function of the five primitives of the
model: τs, τη, τn, τh, and γ. In this model, all five primitives determine the equilibrium values of
τ ep̂ and V. As in the previous applications, and consistently with Proposition 3, Figure 5 shows that,
when price informativeness is high enough, changes in τs, τη, τh, τn, and γ move price volatility and
price informativeness in the same direction. Interestingly, a negative comovement region between price
volatility and informativeness does not exist in this application, that is, the threshold τ , defined in
Proposition 3, is equal to zero. Figure 5 shows that even when price informativeness is arbitrarily
small, changes in parameters other than τn and γ imply a positive comovement between volatility and
informativeness.

5 Comovement Regions: Characterization and Measurement

Propositions 2 and 3 are formalized in terms of price informativeness, which, despite being a meaningful
variable, is an equilibrium object. Our theoretical results beget the question of which precise
combinations of primitives are consistent with a negative or positive comovement between volatility
and informativeness. To that end, we now show that it is possible to characterize whether a given
economy is in the positive or negative comovement regions as a function of a subset of model primitives
in all three applications. Subsequently, for our leading application, we recover from observables the
required stock-specific parameters that determine whether a given economy features positive or negative
comovement. We empirically find that most stocks are in the negative comovement region.

5.1 Explicit Characterization of Comovement Regions

For simplicity, we state Proposition 4 only for our leading application, which is the most tightly
parameterized, although we study the remaining applications in the Appendix.

Proposition 4. (Explicit characterization of comovement regions) Consider our leading
application, which features a continuum of investors with private trading motives based on differences
in beliefs, introduced in Section 4.1. In that case,

a) Sufficiently large values of the “signal-to-prior” ratio of precisions, τs
τη
, and the “noise-to-

fundamental” ratio of precisions, τn
τη
, guarantee that the economy is in the positive comovement region

and that volatility and informativeness positively comove for any change in primitives. Explicitly, the
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economy is in the positive comovement region when

τn
τη
≥

√
1 + 8 τsτη − 1 + 2 τsτη

2
(
τs
τη

)2 . (13)

b) Sufficiently low values of the “signal-to-prior” ratio of precisions, τs
τη
, and the “noise-to-

fundamental” ratio of precisions, τn
τη
, guarantee that the economy is in the negative comovement region

and that volatility and informativeness negatively comove for any change in primitives. Explicitly, the
economy is in the negative comovement region when

τn
τη

< min

1,

(
τs
τη
− 1

)
+
√

5
(
τs
τη

)2
− 2 τsτη + 1

2
(
τs
τη

)2 ,
−
(
2− τs

τη

)
+
√(

2− τs
τη

)2
+ 8

(
τs
τη

)2

4
(
τs
τη

)2

 . (14)

Eqs. (13) and (14) provide an explicit characterization of conditions on model primitives that
guarantee a positive or negative comovement between price informativeness and price volatility.
Interestingly, our characterization can be expressed exclusively in terms of two ratios of precisions,
which allows us to provide a sense of the magnitudes implied by the model in a scale-invariant form.
In particular, both Eqs. (13) and (14) remain valid regardless of the values of investors’ risk aversion
γ, the dispersion of investors’ heterogeneous beliefs the precision τu, or the supply of the risky asset.
As we show in the Appendix, the conditions that determine whether an economy features positive or
negative comovement in equilibrium can be expressed exclusively as a function of ratios of primitives
in all applications.

Figure 6a graphically illustrates the combinations of noise-to-fundamental τn
τη

and signal-to-prior
τs
τη

precisions that delimit the positive and negative comovement regions. When either τs
τη
, which

measures the ratio of the precision of private information to the investors’ prior information, or τn
τη
,

which measures the relative volatility of the innovation to the fundamental relative to the volatility
of sentiment, are sufficiently large, the economy features positive comovement. Intuitively, when τs

is high, investors receive precise signals and price informativeness is high, which puts the economy in
the positive comovement region. Similarly, when τn is high, aggregate noise is low, which also implies
high price informativeness, guaranteeing that the economy is in the positive comovement region. When
either τs

τη
or τn

τη
are small, informativeness is small and the economy is in the negative comovement

region.
In terms of magnitudes, our model implies that when investors’ private signals and priors about

the innovation are of equal precision, i.e., τs
τη

= 1, volatility and informativeness positively comove
whenever the variance of the aggregate component of beliefs is less than one half of the variance of
the innovation to the fundamental ( 1

τn
< 1

2
1
τη
) and negatively comove whenever the variance of the

aggregate component of beliefs is greater than twice the variance of the innovation to the fundamental
( 1
τn

> 2 1
τη
), regardless of the value of the remaining parameters of the model. Moreover, our model

implies that when the variance of the innovation to the fundamental and the variance of the aggregate
component of beliefs are of equal magnitude, i.e., τn

τη
= 1, volatility and informativeness positively
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Figure 6: Comovement regions

Note: Figure 6a shows the combination of ratios of primitives τn
τη

and τs
τη

that are consistent with an economy that is in the
positive or negative comovement region, as defined in Proposition 4, and that features positive or negative comovement,
as defined in Proposition 3. The highest dashed line determines the lower bound of the positive comovement region. The
lowest dashed line represents the upper bound of the negative comovement region. For aesthetic reasons, we only show
values of ratios that are less than four, however, the two lowest dashed lines intersect each other at a value of τs

τη
higher

than 10.
Figure 6b shows the combination of ratios of primitives τn

τη
and τs

τη
that are consistent with a stock in the positive and

negative comovement regions, as defined in Proposition 4, and that features positive or negative comovement, as defined
in Proposition 3. The orange shaded region in the bottom left quadrant represents the negative comovement region and
the blue shaded region in the upper right quadrant represents the positive comovement region. Each dot corresponds to
the measures of τn

τη
and τs

τη
recovered from each individual stock, using the stock price and earnings data is annual from

CRSP/Compustat from 1961 to 2016.
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comove provided that the precision of investors’ private signals is greater than 2.2 times the precision
of their prior about the innovation to the fundamental (τs > 2.2τη). Figure 6a illustrates all remaining
possible combinations. In the next section, we recover these ratios of primitives at the stock level.

5.2 Comovement Regions in the Data

In our final proposition, we recover stock-specific measures of τnτη and τs
τη
, which allows us to determine

in practice if a given stock is in the positive or negative comovement region. To do so, we leverage the
methodology developed in Davila and Parlatore (2018), which provides formal identification results for
a class of models that includes those considered in this paper.

It is well known, see e.g., Campbell (2017) for a recent discussion of the literature, that assuming
that measures of asset payoffs (dividends, earnings, etc.) are non-stationary is often perceived as a
better assumption. In what follows, we recover primitives under the assumption that the payoff is
non-stationary, that is, ρ = 1. We formally describe the procedure to recover estimates of τnτη and τs

τη
in

the following Proposition.

Proposition 5. (Recovering stock-specific primitives) Let β0, β1 and β2 denote the coefficients
of the following regression of asset price changes on changes on fundamentals,

∆pt = β0 + β1∆θt + β2∆θt+1 + εt, (R1)

where pt denotes the ex-dividend price at the beginning of period t and θt denotes the measure of
fundamentals realized over period t. Let ζ0 and ζ1 denote the the coefficients of the following regression
R2 of price changes on changes on lagged fundamentals

∆pt = ζ0 + ζ1∆θt + εζt . (R2)

Let τRp̂ denote a measure of relative price informativeness, defined and computed as described in the
Appendix. It is then possible to find measures of τn

τη
and τs

τη
as follows

τs
τη

= β2
1 +R−1ζ1 − β2

, and (15)

τn
τη

=
(

β2
1 +R−1ζ1 − β2

− τRp̂
)−2

τRp̂ , (16)

where R corresponds to the risk-free rate.

Proposition 5 shows that it possible to recover the desired ratios by using outcomes of regressions
of price changes and changes on fundamentals. In particular, recovering the ratios τn

τη
and τs

τη
involves

using the coefficients β1 and β2 from Regression R1, the coefficient ζ1 from Regression R2, and the
R-squared of both regressions to recover τRp̂ , as shown in the Appendix. We describe the data used to
find estimates of these variables next.
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Table 1: Summary Statistics (All Observations)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Market Cap. 21,366 7,696.14 25,651.10 1.10 227.49 1,074.08 4,363.38 619,962.40
Earnings 21,366 832.89 2,866.76 −80,806.11 27.45 130.40 534.03 66,913.64

Note: Table 1 presents summary statistics for the full sample of 21, 366 stock-year observations. It provides information
on the sample mean, median, and standard deviation, as well as the minimum, the maximum and the 25th and 75th
percentiles of the distribution of market capitalization and total earnings. All variables are expressed in millions of dollars
in 2008.

Data Description We conduct our analysis using annual data from 1963 to 2017. We obtain stock
price data from the Center for Research in Security Prices (CRSP) to calculate stocks market values,
data on reported earnings, to use as a measure of fundamentals, from CRSP/Compustat Merged (CCM),
and a personal consumption deflator index from FRED.

Table 1 shows summary statistics for our full sample of 21, 366 stock-year observations. Our sample
exhibits considerable variation in terms of market capitalization and total earnings. The distribution
of market capitalization across firms and periods has a mean of $7, 696 million, a median of $1, 074
million and a standard deviation of $25, 561 million. The minimum market capitalization in a given
quarter is $0.72 million and the maximum is $619, 962 million. The distribution of total earnings across
firms and periods has a mean of $832, 89 million, a median of $130 million, and a standard deviation
of $2, 866 million.

Table 2 shows summary statistics at the stock level for the 466 stocks that form our final sample,
which is restricted to include stocks with more than 40 observations. In particular, this table summarizes
the differences in the distribution of earnings across stocks. The mean earnings across stocks have a
mean of $778 million, a median of $170 million and a standard deviation of $2, 038 million. The
median standard deviation in earnings is $136 million and it exhibits a standard deviation of $1, 771
million. These summary statistics show that there is significant heterogeneity in the earnings process
in the cross-section of firms as the mean and, more importantly, the volatility of the fundamental varies
considerably across stocks.

The summary statistics presented in Tables 1 and 2 suggest that the process for earnings is different
across stocks. Moreover, the amount of information available is not uniform across stocks. Therefore,
our results about the comovement of volatility and informativeness should be applied at the stock level.

Recovering Primitives We empirically implement Proposition 5 by running the following
specifications in differences for each of the stocks (indexed by j) in our sample:

∆M j
t = βj0 + βj1∆Ejt + βj2∆Ejt+1 + εj∆t (17)

∆M j
t = ζj0 + ζj1∆Ejt + ε̂j∆t, (18)
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Table 2: Summary Statistics (Mean and Standard Deviation of Earnings)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Mean Earnings 466 778.08 2,038.33 −7.04 41.41 170.12 567.11 21,649.80
St. Dev. Earnings 466 662.11 1,771.28 1.73 32.05 136.22 531.08 15,434.57

Note: Table 2 presents summary statistics for the full sample of 466 stocks. It provides information on the sample
mean, median, and standard deviation, as well as the minimum, the maximum and the 25th and 75th percentiles of the
distribution of the variance of earnings. All variables are expressed in millions of dollars in 2008.

where M j
t denotes a stock total market capitalization and Ejt denotes total earnings. As shown in the

Appendix, we can recover relative price informativeness using the R-squareds R2j
|∆θt,∆θt−1

and R2j
|∆θt−1

.
Therefore, by using the OLS estimates of βj1, β

j
2, and ζ

j
1 , we can apply the results in Proposition 5 and

make use of Eqs. (15) and (16) to recover ratios τ jn
τ jη

and τ js
τ jη

that determine whether for stock j price
informativeness and price volatility positively or negatively comove.

Figure 6b illustrates the main empirical findings of the paper. Figure 6b shows the non-negative
estimated values of the pairs

(
τ jn
τ jη
, τ

j
s

τ jη

)
for the stocks in our sample in conjunction with the positive and

negative comovement regions defined in Proposition 4.12 It is evident from the figure that roughly 60% of
the final set of stocks are in the negative comovement region. For these stocks, our model implies that a
decrease (increase) in price volatility is associated with an increase (decrease) in price informativeness.
Interestingly, there are no stocks whose estimated primitives lie in the positive comovement region.
We recover ratios of primitives for the remaining 40% of stocks in the intermediate region between
the positive and negative comovement regions. For these stocks, our framework shows that it is
not possible to find an unambiguous prediction for how volatility and informativeness comove after
a change in primitives. Intuitively, the large amount of idiosyncratic volatility unrelated to changes in
earnings at the stock level suggests that price informativeness is low for most stocks, which given our
theoretical results implies that most stocks feature negative comovement between price volatility and
informativeness.

6 Conclusion

This paper has systematically characterized the equilibrium relation between price informativeness
and price volatility in models of financial market trading, identifying two different channels (noise
reduction and equilibrium learning) through which changes in price informativeness are associated
with changes in price volatility. Our main results establish that whenever prices are sufficiently

12Our methodology does not impose that the estimates of the ratios must be non-negative. The fact that we find that a
non-zero number of ratios with negative values is a symptom of model misspecification. The representation of the results
in Figure 6b implicitly disregards these observations.
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informative (uninformative), changes in parameters induce a positive (negative) comovement between
price informativeness and price volatility in response to a change in primitives. We characterize simple
conditions in terms of primitives that identify whether volatility and informativeness positively or
negatively comove for a given stock for different applications of our general framework. In the context
our leading application, we use data on U.S. stocks to recover stock-specific estimates of such primitives.
This allows us to determine whether individual stocks are in the region of the parameter space in which
informativeness and volatility comove positively or negatively. Our empirical findings conclude that
most stocks feature negative comovement between price informativeness and price volatility. In practical
terms, our results imply that stocks with more volatility prices are likely to be less informative, and
vice versa.

There is scope to extend the framework that we develop in this paper to explore in detail the
relation between price informativeness and volatility in more general environments that incorporate
multiple assets or richer wealth effects. The overall approach of relating easily computable statistics to
interesting unobservables that capture the ability of markets to aggregate information seems to be of
broader applicability to other contexts in which information dispersion is relevant, for instance, macro
environments or auctions.
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Appendix

A Proofs: Section 2
Assumption 2 and market clearing imply that

ˆ
∆qi1tdi =

ˆ
αiθdiθt +

ˆ
αiss

i
tdi+

ˆ
αinn

i
tdi−

ˆ
αipdipt +

ˆ
ψidi = 0,

which implies that the equilibrium price must satisfy

pt =
´
αiss

i
tdi

αp
+ αθ
αp
θt +

´
αinn

i
tdi

αp
+ ψ

αp
,

where we define cross sectional averages αθ =
´
αiθdi, αp =

´
αpidi and ψ =

´
ψidi.13 Using the additive

structure of the signals in Eqs. (1) and (2), we can further write

pt = αs
αp
ηt + αθ

αp
θt + αn

αp
nt +

´
αisε

i
stdi

αp
+
´
αinε

i
ntdi

αp
+ ψ

αp
, (A.1)

where we define cross sectional averages αs =
´
αsidi and αn =

´
αnidi. Under a Strong Law of Large Numbers,

see, e.g. Vives (2008), the terms
´
αisε

i
stdi

αp
and

´
αinε

i
ntdi

αp
vanish when there is a continuum of investors.

Proposition 1. (Fundamental relation between price informativeness and price volatility)

Proof. a) Eq. (A.1) can be written as

p = αs
αp

(
ηt + αθ

αp
θt + αn

αp
nt +

´
αisε

i
stdi

αp
+
´
αinε

i
ntdi

αp

)
+ ψ

αp
.

Consistently with the definition of price informativeness in Eq. (4), the inverse of price informativeness can be
written as (

τep̂
)−1 = Var [p̂|ηt, θt] = Var

[
αn
αs
nt +

´
αisε

i
stdi

αs
+
´
αinε

i
ntdi

αs

]
.

Using this definition of
(
τep̂
)−1, price volatility can be expressed as follows

V =
(
αs
αp

)2 (
τ−1
η +

(
τep̂
)−1
)
,

where τη = Var [ηt]−1 and τep̂ denote precisions (inverse of variances).
b) Differentiating Eq. (5) with respect to τep̂ , we find that

dV
dτep̂

= 2αs
αp

d
(
αs
αp

)
dτep̂

(
τ−1
η +

(
τep̂
)−1
)
−
(
αs
αp

)2 (
τep̂
)−2

= V
τep̂

2
d log

(
αs
αp

)
d log

(
τep̂

) − (
τep̂
)−1

τ−1
θ +

(
τep̂

)−1

 ,

which corresponds to Eq. (6) in the text.
13To simplify the notation, we omit the set of agents over which integrals are defined whenever there is no ambiguity.

35



B Proofs: Section 3
Characterization of equilibrium In the CARA-Gaussian setup that we consider in Section 3, the demand
for the risky asset of an investor i is given by the solution to

max
qit

(
E
[
θt +R−1pt+1|Iit

]
− pt

)
qit −

γ

2Var
[
θt +R−1pt+1|Itt

] (
qit
)2
,

where Iit =
{
θt−1, s

i
t, n

i
t, pt

}
is the information set of investor i at time t. Then, the net demand for the asset of

investor i is

∆qit ≡ qit+1 − qit =
E
[
θt+1 +R−1pt+1|Iit

]
+ nit − pt − γVar

[
θt+1 +R−1pt+1|Itt

]
qit

γVar [θt+1 +R−1pt+1|Itt ]
.

In a symmetric equilibrium in linear strategies,

∆qi1t = αss
i
t + αnn

i
t − αippt + ψi,

and market clearing in the asset market is given by
´
I

∆qi1tdi = 0, which yields the following equilibrium price
function:

pt = αθ
αp
θt + αs

αp

(
ηt +

ˆ
εistdi

)
+ αn
αp

(
nt +

ˆ
εintdi

)
+ ψ

αp
.

When investors learn from their private trading motives, the information contained in the price for investor i
taking into account the informational content of his private trading needs is

p̂t + αn
αs

(
E [nt]− E

[
nt|nit

])∣∣∣∣ ηt, θt, nit ∼ N (ηt, τ−1
p̂

)
,

where

E
[
nt|nit

]
= τnµn + τεn

i
t

τn + τε
and τ−1

p̂ =
(
αn
αs

)2(
(τn + τε)−1 + τ−1

ε

N − 1

)
+ τ−1

s

N − 1 ,

where N is the number of investors in the economy. If there is a continuum of investors, then N =∞.
Given our guesses for the demand functions and the linear structure of prices we have

θt+1 +R−1pt+1 = θt+1 +R−1
(
αθ
αp
θt+1 + αs

αp
ηt+1 + αη

αp
nt+1 + ψ

αp

)
,

E
[
θt+1 +R−1pt+1|Iit

]
=
(

1 +R−1αθ
αp

)
E
[
θt+1|Iit

]
+R−1

(
αs
αp

E [ηt+1] + αη
αp

E [nt+1] + ψ

αp

)
=
(

1 +R−1αθ
αp

)(
ρθt + E

[
ηt|Iit

])
+R−1

(
αs
αp

E [ηt+1] + αη
αp
µn + ψ

αp

)
,

and

Var
[
θt+1 +R−1pt+1|Iit

]
=
(

1 +R−1αθ
αp

)2
Var

[
θt+1|Iit

]
+R−1

((
αs
αp

)2
Var [ηt+1] +

(
αη
αp

)2
Var [nt+1]

)

=
(

1 +R−1αθ
αp

)2
Var

[
ηt|Iit

]
+
(
R−1αs

αp

)2
Var [ηt+1] +

(
R−1αη

αp

)2
τ−1
n .

Given the normal linear structure of the signals, we can express investors ex-post variances about the innovation
to the fundamental after solving their filtering problem as

Var
[
ηt
∣∣sit, nit, pt, θt ] = τ−1

η|s,p̂ where τη|s,p̂ ≡ (τη + τs + τp̂)−1
.

Similarly, investors’ means can be expressed as

E
[
ηt
∣∣sit, nit, pt ] =

τss
i
t + τp̂

(
p̂t − αn

αs

(
E [nt]− E

[
nt|nit

]))
τη + τs + τp̂

.
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Matching coefficients, we have 14

αs =

(
1 +R−1 αθ

αp

)
κ

τs
τη|s,p̂

, αp = 1
κ

(
1−

(
1 +R−1αθ

αp

)
τp̂
τη|s,p̂

αp
αs

)
, (A.2)

αn =

(
1 +R−1 αθ

αp

)
κ

(
π − τp̂

τη|s,p̂

αn
αs

τ̂ε
τn + τ̂ε

)
, and αθ =

(
1 +R−1 αθ

αp

)
κ

(
ρ− τp̂

τη|s,p̂

αθ
αs

)
where

κ ≡ γ

((
1 +R−1αθ

αp

)2
Var

[
ηt|Iit

]
+
(
R−1αs

αp

)2
Var [ηt+1] +

(
R−1αη

αp

)2
τ−1
n

)
and where we denote by π is the loading of the private trading need on the investors’ utility, which will vary
across applications, and τ̂ε is the precision of the investors’ private trading need as a signal of the aggregate noise
contained in the price. When investors do not learn from their private trading needs τ̂ε = 0 and if they learn
from it τ̂ε = τε.

From Equations (A.2), we have

αθ
αs

=
ρ− τp̂

τη|s,p̂

αθ
αs

τs
τη|s,p̂

⇒ αθ
αs

= ρ
τη|s,p̂

τs + τp̂
(A.3)

αn
αs

=
π − τp̂

τη|s,p̂

αn
αs

τ̂ε
τn+τ̂ε

τs
τη|s,p̂

⇒ αn
αs

=
πτη|s,p̂

τs + τp̂
τ̂ε

τ̂ε+τn

(A.4)

αθ
αp

=

(
1 +R−1 αθ

αp

)(
ρ− τp̂

τη|s,p̂

αθ
αs

)
(

1−
(

1 +R−1 αθ
αp

)
τp̂

τη|s,p̂

αp
αs

) ⇒ αθ
αp

= ρ

1−R−1ρ
(A.5)

and
αs
αp

=

(
1 +R−1 αθ

αp

)
τs

τη|s,p̂

1−
(

1 +R−1 αθ
αp

)
Var

[
ηt|Iit

]
τp̂
αp
αs

⇒ αs
αp

=
(

1
1−R−1ρ

)
τs + τp̂
τη|s,p̂

. (A.6)

Then, the equilibrium demand sensitivities are given by

αs = 1
κ (1−R−1ρ)

τs
τη|s,p̂

(A.7)

αp = 1
κ

τs
τs + τp̂

(A.8)

αn = π

κ (1−R−1ρ)
τs

τs + τp̂
τ̂ε

τ̂ε+τn

(A.9)

αθ = ρ

κ (1−R−1ρ)
τs

τs + τp̂
(A.10)

Lemma 1. (Signal-to-price sensitivity)

Proof. Eq. (9) in the text follows directly from Eq. (A.7) and Eq. (A.8).

Lemma 2. (Relating internal price informativeness and price informativeness for an
external observer)

Proof. Suppose that there is a continuum of investors. In this case, the unbiased signal contained in the price
from the perspective of an investor i is

p̂it = ηt + αn
αs

(
nt − E

[
nt|nit

])
,

14Note that the term τp̂
τθ|s,p̂

αp
αs

is the impact of the information contained in the equilibrium price on investors’ demand.
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and internal price informativeness is given by

τp̂ =
(
αs
αn

)2
Var

[
nt|nit

]−1 =
(
αs
αn

)2
(τn + τ̂ε) ,

where τ̂ε is the precision of the investors’ private trading motive as a signal of the aggregate private trading need.
An external observer does not have any private trading need from which he can learn about the aggregate

noise contained in the price. Hence, the unbiased signal about the innovation to the fundamental contained in
the price from the perspective of an external observer is

p̂it = ηt + αn
αs

(nt − E [nt]) ,

and external price informativeness is given by

τep̂ =
(
αs
αn

)2
Var [nt]−1 =

(
αs
αn

)2
τn.

Hence,
τp̂ = λτep̂ , where λ ≡ Var [nt]

Var
[
nt|nit

] = τn + τ̂ε
τn

.

Lemma 3. (Fundamental relation CARA-Gaussian setup)

Proof. It follows by direct substitution of the result in Proposition 1a) and the results of Lemmas 1 and 2.

Proposition 2. (Slope of fundamental relation)

Proof. From Eq. (9) using Lemma 2 it follows that

d log
(
αs
αp

)
d log

(
τep̂

) = τη
τη + τs + λτep̂

λτep̂
τs + λτep̂

Therefore, from Lemma 3 it follows that

dlogV
d log τep̂

= 2
d log

(
αs
αp

)
d log

(
τep̂

) − (
τep̂
)−1

τ−1
η +

(
τep̂

)−1 = 2 τη
τη + τs + λτep̂

λτep̂
τs + λτep̂

− τη
τη + τep̂

= τθ

 (2− λ)λ
(
τep̂
)2 + λτep̂ (τη − 2τs)− τs (τη + τs)(

τη + τs + λτep̂

)(
τs + λτep̂

)(
τη + τep̂

)
 .

We can then conclude that

sgn
(
d logV
d log τep̂

)
= sgn

[
(2− λ)λ

(
τep̂
)2 + λτep̂ (τη − 2τs)− τs (τη + τs)

]
.

Note that, since λ < 2, the expression on the right hand side is a convex quadratic function of τep̂ with only one
positive root given by

τ? ≡
−λ (τη − 2τs) +

√
λ (λτη (τη − 8τs) + 8τs (τη + τs))

2 (2− λ)λ .

Then,
dV
dτep̂

< 0 ⇐⇒ τep̂ < τ? and dV
dτep̂

> 0 ⇐⇒ τep̂ > τ?.
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Figure A.1: Fundamental relation decomposition

Note: Figure A.1 plots the fundamental relation and its determinants for parameters τη = 0.5, τs = 1, λ = 1, ρ = 0, and
R = 1.04.
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C Proofs: Section 4
In the next three subsections we will use the following result

dV
dτep̂

= 1
1−R−1ρ

αs
αp

(
τep̂
)−2(

τη + τs + λτep̂

)2

(
λ (2− λ)

(
τep̂
)2 + λ (τη − 2τs) τep̂ − τs (τη + τs)

)
.

In order to proof Proposition 3 in the text, we establish three propositions, one for each application.

Proposition 2. (Slope of fundamental relation)

Proof. It follows from Propositions 6, 7, and 8 below.

C.1 Disagreement

Characterization of equilibrium In a symmetric equilibrium in linear strategies, we postulate net demand
functions given by

∆qit = αss
i
t + αηη

i
t + αθθt − αppt + ψ,

where αθ, αs, and αp are positive scalars, while ψ can take positive or negative values. This implies that the
equilibrium price takes the form

pt = αθ
αp
θt + αs

αp
ηt + αη

αp
nt + ψ

αp
.

In this case, the asset price depends on both the aggregate sentiment in the economy nt, and the actual payoff
realization ηt, which are both unobservable. Therefore, if an investor faces a high price in the asset market, it
can be because the sentiment in the economy is high or because the asset payoff is high. The price is not fully
revealing because the sentiment in the economy is random and not observed by the investors. However, the
price contains information about the innovation to fundamental value of the asset ηt. The unbiased signal of ηt
contained in the price is given by

p̂ = αp
αs

(
p− αη

αp
µn −

αθ
αp
θt −

ψ

αp

)
= ηt + αη

αs
(nt − µn) .

Then, the variance of p̂, which we denote by (τp̂)−1 and whose inverse we adopt as the relevant measure of price
informativeness, is given by

τp̂ =
(
αs
αη

)2
τn =

(
τs
τη

)2
τn.

Note that since investors do not learn about the aggregate sentiment in the economy from their own prior, they
have the same information that an external observer has. Then, λ = 1 and

τep̂ = τp̂.

The equilibrium is characterized by Eq. (A.7), Eq. (A.8), Eq. (A.9), and Eq. (A.10). This characterization
maps to the model in Section 3 by setting λ = 1, τ̂ε = 0, and π = τη

τη|s,p̂
.

Proposition 6. (Comovement disagreement) a) Price volatility and price informativeness positively comove
(weakly) across equilibria if price informativeness is low enough. Formally, if τep̂ ≥ τ?, V and τep̂ move in the
same direction after any parameter change.

b) Price volatility and price informativeness negatively comove (weakly) across equilibria if price
informativeness is low enough. Formally, there exists a threshold τ ∈ [0, τ?] such that, if τep̂ < τ , V and τep̂
move in opposite directions after any parameter change. Moreover, if τη < τn then τ > 0.
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Proof. The change in volatility when a parameter x changes is given by

dV
dx

= ∂V
∂x

+ dV
dτep̂

dτep̂
dx

.

Note that
dτp̂
dτu

= 0 and dV
dτu

= 0,

dτp̂
dγ

= 0 and dV
dγ

= 0,

and
dτp̂

d (R−1ρ) = 0 and dV
d (R−1ρ) > 0,

so the comovements in this proposition are weak.
a) Positive comovement
For changes in τs it follows that

dV
dτs

= dV
dτp̂

dτep̂
dτs

+ 2αs
αp

d
(
αs
αp

)
dτs

(
τ−1
η +

(
τep̂
)−1
)
.

Since in equilibrium τep̂ =
(
τs
τη

)2
τn, it follows that

dτep̂
dτs

= 2τep̂
τs

> 0. Moreover,

d
(
αs
αp

)
dτs

= 1
1−R−1ρ

d
(

τs+τep̂
τη+τs+τep̂

)
dτs

= 1
1−R−1ρ

τη(
τη + τs + τep̂

)2 > 0.

Then, dV
dτp̂

> 0 is a sufficient condition for dV
dτs

> 0.
Similarly, for changes in τη we have that

dV
dτη

= dV
dτp̂

dτep̂
dτη

+ 2αs
αp

d
(
αs
αp

)
dτη

(
τ−1
η +

(
τep̂
)−1
)
−
(
αs
αp

)2
τ−2
η

where dτp̂
dτη

< 0 and

d
(
αs
αp

)
dτη

= 1
1−R−1ρ

d
(

τs+τep̂
τη+τs+τep̂

)
dτη

= − 1
1−R−1ρ

τs + τep̂(
τη + τs + τep̂

)2 < 0.

Then, dV
dτp̂

> 0 is a sufficient condition for dV
dτη

< 0.

For changes in τnwe have dτp̂
dτn

=
(
τs
τη

)2
> 0 and ∂V

∂τη
= 0. Hence,

dV
dτn

= dV
dτp̂

dτp̂
dτn

.

and dV
dτp̂

> 0 is a sufficient and necessary condition for dV
dτn

> 0.
Therefore, if τep̂ > τ? an increase in price volatility reflects a weak increase in price informativeness for any

parameter change.
b) Negative comovement
For changes in τs we have

dV
dτs

= 2
(

1
1−R−1ρ

)
αs
αp

(
τep̂
)−2(

τη + τs + τep̂

)2
1
τs

((
τep̂
)2 + (τη − τs) τep̂ − τ2

s

)

=
(

1
1−R−1ρ

)
2αs
αp

1(
τη + τs + τep̂

)2
τs
τep̂

1
τ2
η

((
τn
τη

)2
τ2
s − τnτs − τη(τη − τn)

)
.
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Then, if τη > τn there exists a threshold s such that for all τs ≤ s, dV
dτs

and price informativeness and price
volatility negatively comove when τs changes. This thresholds is given by

s ≡
τn +

√
τ2
n + 4

(
τn
τη

)2
τη(τη − τn)

2
(
τn
τη

)2 =
τ2
η

2τn

(
1 +

√
1 + 4τ−1

η (τη − τn)
)
.

This implies that if τη > τn, price informativeness and price volatility negatively comove when τs changes for all
τep̂ < ττswhere

ττs ≡ τη
−
(

1− τs
τη

)
+
√(

1− τs
τη

)2
+ 4

(
τs
τη

)2

2
In terms of parameters, this region is given by

τn
τη

<
−
(

1− τs
τη

)
+
√(

1− τs
τη

)2
+ 4

(
τs
τη

)2

2
(
τs
τη

)2

τs
τη

<
1

2 τnτη

(
1 +

√
1 + 4

(
1− τn

τη

))
. (A.11)

For changes in τη we have

dV
dτη

= −
(

1
1−R−1ρ

)
2αs
αp

(
τep̂
)−1(

τη + τs + τep̂

)2
1
τη

(
2
(
τep̂
)2 + (2τη − τs) τep̂ − τ2

s

)

= −
(

1
1−R−1ρ

)
2αs
αp

(
τep̂
)−1(

τη + τs + τep̂

)2
1
τη

(
2
(
τs
τη

)4
τ2
n + (2τη − τs)

(
τs
τη

)2
τn − τ2

s

)
.

Then, we have

sgn
(
dV
dτη

)
= − sgn

(
2
(
τs
τη

)4
τ2
n + (2τη − τs)

(
τs
τη

)2
τn − τ2

s

)
.

Since

lim
τη→∞

2
(
τs
τη

)4
τ2
n + (2τη − τs)

(
τs
τη

)2
τn − τ2

s = −τ2
s ,

there exists a threshold η > 0 such that dV
dτη

is positive for all τη > η. This implies that there exists a threshold
ττη such that for all τep̂ < ττη where

ττη ≡ τη
−
(

2− τs
τη

)
+
√(

2− τs
τη

)2
+ 8

(
τs
τη

)2

4 .

In this case price informativeness and price volatility negatively comove when τη changes. In terms of parameters,
this expression is

τn
τη

<
−
(

2− τs
τη

)
+
√(

2− τs
τη

)2
+ 8

(
τs
τη

)2

4
(
τs
τη

)2 . (A.12)

For changes in τn, price volatility and price informativeness negatively comove if τep̂ < τ?. Note that ττs and
ττη are lower than τ? since it is necessary for ∂V

∂τe
p̂
< 0 for price informativeness and price volatility to comove

negatively for changes in τs and τη.
Therefore, τ = min

{
ττs , ττη

}
if τη > τn, and τ = 0 otherwise.
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C.2 Strategic traders

The equilibrium demand sensitivities are given by by Eq. (A.7), Eq. (A.8), Eq. (A.9), and Eq. (A.10) setting
π = τη

τη|s,p
,τ̂ε = 0, λ = N−1

N , and κ = γVar [θ|si, p̂] + χ = γ
τθ+τs+τp̂ + χ where χ = 1

(N−1)αp is the price impact of
an investors. In equilibrium,

αs
αn

= τs
τη
,

external price informativeness is

τep̂ = N

(
τ−1
s +

(
αn
αs

)2
(N + 1) τ−1

n

)−1

= N
(
τ−1
s + τ−2

s τ2
η (N + 1) τ−1

n

)−1 = N
τs
τη
τn
τη

+N + 1

(
τs
τη

)2
τn, (A.13)

and internal price informativeness is

τp̂ = (N − 1)
(
τ−1
s +

(
αn
αs

)2
(N + 1) τ−1

n

)−1

= (N − 1)
τs
τη
τn
τη

+N + 1

(
τs
τη

)2
τn.

Lemma 4. (Comparative statics strategic traders) Price informativeness is increasing in τs, τn, and N

and decreasing in τη.

Proof. From the definition of price informativeness in Eq. (A.13) we have

dτep̂
dτs

= N
1
τ2
η

2τs
(
τs
τη
τn
τη

+N + 1
)
− τs τsτη

τn
τη(

τs
τη
τn
τη

+N + 1
)2 τn = N

τs
τη
τn
τη

+ 2 (N + 1)(
τs
τη
τn
τη

+N + 1
)2 τn > 0.

Moreover,
dτep̂
dτn

= N(
τs
τη
τn
τη

+N + 1
)2

(
τs
τη

)2
> 0,

dτep̂
dN

=
τs
τη
τn
τη

+ 1(
τs
τη
τn
τη

+N + 1
)2

(
τs
τη

)2
τn > 0,

and
dτep̂
dτη

= − 2N (N + 1)(
τs
τη
τn
τη

+N + 1
)2
τ2
s

τ2
η

τn
τη

< 0.

Proposition 7. (Comovement strategic traders) a) Price volatility and price informativeness positively
comove (weakly) across equilibria if price informativeness is low enough. Formally, there exists τ ∈ (τ?,∞) such
that if τep̂ ≥ τ , V and τep̂ move in the same direction after any parameter change.

b) Price volatility and price informativeness negatively comove (weakly) across equilibria if price
informativeness is low enough. Formally, there exists a threshold τ ∈ [0, τ?] such that, if τep̂ < τ , V and τep̂
move in opposite directions after any parameter change.

Proof. Note that
dτp̂

d (R−1ρ) = 0 and dV
d (R−1ρ) > 0,
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so the comovements in this proposition are weak. Moreover,

∂τep̂
∂τn

< 0 and dV
dτn

= 0.

Hence, movements in τn will induce positive (negative) comovements between price informativeness and price
volatility if and only if τep̂ > (<) τ?.

a) Positive comovement
From Lemma 4 and using that

αs
αp

= 1
1−R−1ρ

τs + N−1
N τep̂

τη + τs + N−1
N τep̂

,

we have
dτep̂
dτs

> 0,
dτep̂
dτη

< 0,
dτep̂
dN

> 0 and,

∂V
∂τs

< 0, ∂V
∂τη

< 0, ∂V
∂Ns

> 0.

Therefore, whenever τep̂ > τ?, price informativeness and price volatility positively comove.
b) Negative comovement
For changes in τs we have

dV
dτs

= ∂V
∂τs

+ dV
dτep̂

dτep̂
dτs

dV
dτs

= 2αs
αp

1
1−R−1ρ

τη(
τη + τs + N−1

N
τep̂
)2

(
τη + τep̂
τητep̂

)

+

(
2αs
αp

1
1−R−1ρ

N−1
N

τη(
τη + τs + N−1

N
τep̂
)2

(
τη + τep̂
τητep̂

)
−
(
αs
αp

)2 (
τep̂
)−2

)
N

τs
τη

τn
τη

+ 2 (N + 1)(
τs
τη

τn
τη

+N + 1
)2 τn

dV
dτs

= αs
αp

1
1−R−1ρ

(
τep̂
)−2(

τη + τs + N−1
N

τep̂
)2

 2
(
τη + τep̂

)
τep̂+(

2N−1
N

(
τη + τep̂

)
τep̂ −

((
τη + τs + N−1

N
τep̂
)))

N
τs
τη

τn
τη

+2(N+1)(
τs
τη

τn
τη

+N+1
)2 τn


Using the definition of τ ep̂ we have limτs→0 τ

e
p̂ = 0. Then, taking limits when τs → 0 we have

lim
τs→0

dV
dτs

= lim
τs→0

αs
αp

1
1−R−1ρ

(
τ ep̂

)−2

(
τη + τs + N−1

N τ ep̂

)2

(
− (τη)N

2 (N + 1)
(N + 1)2

)
= −∞.

Then there exists a threshold ŝ such that dV
dτs

< 0 for τs < ŝ, which implies there exists a threshold ττs
such that for τ ep̂ < ττs price volatility and price informativeness negatively comove.

For changes in τη we have

dV
dτη

= −
2
(
αs
αp

)2

(
τη + τs + N−1

N
τep̂
) (τη + τep̂

τητep̂

)
−

 2αs
αp

1
1−R−1ρ

N
N−1 τη(

τη+τs+ N
N−1 τ

e
p̂

)2

(
τη+τe

p̂

τητ
e
p̂

)
−(

αs
αp

)2 (
τep̂
)−2

 2N (N + 1)(
τs
τη

τn
τη

+N + 1
)2

τ2
s

τ2
η

τn
τη

= −2αs
αp

1
1−R−1ρ

τη
(
τep̂
)−1(

τη + τs + N−1
N

τep̂
)2

 (
τs
τη

+ N−1
N

τe
p̂

τη

)(
1 +

τe
p̂

τη

)
+(

2 N
N−1

(
1 +

τe
p̂

τη

)
−
(

1 + τs
τη

+ N
N−1

τe
p̂

τη

)(
τep̂
)−1
)

N(N+1)
(τsτn+N+1)2 τ

2
s
τn
τη


Using the definition of τ ep̂ we have limτη→∞ τ

e
p̂ = 0. Hence, taking limits when τη →∞ we have

lim
τη→∞

dV
dτη

= lim
τη→∞

2αs
αp

1
1−R−1ρ

(
τ ep̂

)−2

(
τη + τs + N−1

N τ ep̂

)2
N (N + 1)

(τsτn +N + 1)2 τ
2
s τn =∞
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since

lim
τη→∞

(
τ ep̂

)−2

(
τη + τs + N−1

N τ ep̂

)2 = lim
τη→∞

 N
τs
τη
τn
τη

+N + 1

(
τs
τη

)2

τn

(
τη + τs + N − 1

N
τ ep̂

)−2

=∞.

Hence, there exists a threshold η such that for all τη > η we have dV
dτη

> 0. Then, there exists a threshold
ττη such that for all τ ep̂ < ττη informativeness and volatility negatively comove after changes in τη where

ττη ≡
N

τsτn + (N + 1) η2 (τs)2 τn.

For changes in N we have

dV
dN

= 2αs
αp

1
1−R−1ρ

τητ
e
p̂

(
1
N2

)(
τη + τs + N−1

N
τep̂
)2

(
τη + τep̂
τητep̂

)

+

(
2αs
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1
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N−1
N

τη(
τη + τs + N−1

N
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)2

(
τη + τep̂
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)
−
(
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αp

)2 (
τep̂
)−2
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τs
τη

τn
τη

+ 1(
τs
τη

τn
τη

+N + 1
)2

(
τs
τη

)2

τn

dV
dN

= αs
αp

1
1−R−1ρ

(
τep̂
)−2(

τη + τs + N−1
N

τep̂
)2

 2
(
τη + τep̂

)( τe
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N

)2
+(

2N−1
N

(
τη + τep̂

)
τep̂ −

(
τη + τs + N−1

N
τep̂
)) τs

τη

τn
τη

+1(
τs
τη

τn
τη

+N+1
) τep̂
N


. Moreover,

lim
N→0

dV
dN

= lim
N→0

αs
αp

1
1−R−1ρ

(
τ ep̂

)−2
(

1
τs
τη

τn
τη

+1

(
τs
τη

)2
τn

)2

(
τη + τs + 1

τs
τη

τn
τη

+1

(
τs
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)2
τn

)2

−
(
τη + τs − 1
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τn
τη

+1

(
τs
τη

)2
τn

)
1

τs
τη

τn
τη

+1

(
τs
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)2
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 = −∞

Hence, there exists a threshold N such that for all N < N we have dV
dN < 0. This implies that there

exists a threshold τN for all τ ep̂ < τN informativeness and volatility negatively comove after changes
in N . Note that for an equilibrium to exists we need N ≥ 3. The threshold N depends on all other
parameters in the economy. When τ ep̂ is low, N is larger. Moreover, for all N there exist parameters
such that dV

dN < 0 when τ ep̂ is low enough.
Therefore, for all τ ep̂ < τ informativeness and volatility (weakly) negatively comove for any parameter

change, where τ = min
{
ττs , ττη , τN

}
since max

{
ττs , ττη , τN

}
< τ?.

C.3 Hedging needs

In this case, λ = τn+τh
τn

. Therefore, λ < 2 implies τh < τn. If τh < τn, there exists τ? such that

dV
dτep̂

> 0 ∀τep̂ > τ?.

Moreover, the equilibrium demand sensitivities are given by Eq. (A.7), Eq. (A.8), Eq. (A.9), and Eq. (A.10)
setting π = 1 and τ̂ε = τh and

κ = γ

((
1 +R−1αθ

αp

)2
Var

[
ηlt|Iit

]
+
(
R−1αs

αp

)2
Var

[
ηlt+1

]
+
(
R−1αη

αp

)2
τ−1
n + τ−1

u

)
.

Then, in equilibrium,

τep̂ =
(
αs
αn

)2
τn, (A.14)
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where αs
αn

solves the following fixed point

J

(
αs
αn

)
=

τs
τη+τs+

τn+τh
τn

τe
p̂(

γ −
τn+τh
τn

τe
p̂

τη+τs+
τn+τh
τn

τe
p̂

αn
αs

τh
τn+τh

) , (A.15)

where we used the equilibrium demand sensitivities which depend on αs
αn

directly and through τep̂ .15 J (x)
determines the ratio αs

αn
when investors expect the signal-to-noise ratio in the price to be x. The fixed point of

Eq. (A.15) can also be found as the solution to

Ĥ

(
αs
αn

)
≡ −γ (τn + τh)

(
αs
αn

)3
+ τh

(
αs
αn

)2
− γ (τs + τη)

(
αs
αn

)
+ τs = 0. (A.16)

The polynomial Ĥ
(
αs
αn

)
always has a positive root but there may be multiple equilibria (generically, one or

three). We adopt a conventional notion of stability. The function Ĥ
(
αs
αn

)
is defined such that if Ĥ (x0) > 0,

then J (x0) > x0, which implies that if investors in the model expect the signal-to-noise ratio to be x0, the realized
value of this ratio will be x1 > x0. Let x∗ be a solution to Ĥ (x∗) = 0. Then, we will say that the equilibrium x∗

is stable if for all x0 ∈ (x∗ − δ, x∗ − δ) for some δ > 0 the sequence {xm}∞m=0 where xm = J (xm−1) for m > 1
converges to x∗. This sequence will converge only if J ′ (x∗) < 0, which is equivalent to Ĥ ′ (x∗) < 0. Hence, in all
stable equilibria, Ĥ ′ (x∗) < 0. Finally, note that when τs = 0, the only root of Ĥ (x∗) is at x∗ = 0.

Lemma 5. (Comparative statics hedging needs) In any stable equilibrium, the signal to noise ration αs
αn

increases with τs and τh and it decreases with τη, τn, and γ.

Proof. From Eq. (A.16) we have

∂Ĥ

∂τh
= −γ

(
αs
αn

)3
+
(
αs
αn

)2
=
(
αs
αn

)2(
−γ
(
αs
αn

)
+ 1
)
> 0,

∂Ĥ

∂τs
= −γ

(
αs
αn

)
+ 1 > 0,

∂Ĥ

∂γ
= − (τn + τh)

(
αs
αn

)3
− (τs + τη)

(
αs
αn

)
< 0, and

∂Ĥ

∂τη
= −γ αs

αn
< 0, and

∂Ĥ

∂τn
= −γ

(
αs
αn

)3
< 0,

since αs
αn

< 1
γ . Using the implicit function theorem and that in any stable equilibrium Ĥ ′ < 0 we have

d
(
αs
αn

)
dτh

> 0,
d
(
αs
αn

)
dτs

> 0,
d
(
αs
αn

)
dγ

< 0 ,
d
(
αs
αn

)
dτη

< 0 and
d
(
αs
αn

)
dτn

< 0.

Proposition 8. (Comovement hedging needs) a) Price volatility and price informativeness positively comove
(weakly) across equilibria if price informativeness is low enough. Formally, there exists τ ∈ (τ?,∞) such that if
τep̂ ≥ τ , V and τep̂ move in the same direction after any parameter change.

b) Price volatility and price informativeness negatively comove (weakly) across equilibria if price
informativeness is low enough for changes in τn and γ. For changes in τs, τh, and τη price informativeness
and price volatility always comove positively. Hence, there does not exist a negative comovement region.

15We could have alternatively adopted similar notions of trading with stochastic hedging needs, as in Ganguli and Yang
(2009) and Manzano and Vives (2011).
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Proof. Note that
dτp̂

d (R−1ρ) = 0 and dV
d (R−1ρ) > 0,

so the comovements in this proposition are weak. Moreover,

dτep̂
dγ

= 2αs
αn

d
(
αs
αn

)
dγ

τn < 0 and ∂V
∂γ

= 0.

Hence, price informativeness and price volatility positively (negatively) comove after a change in γ if τep̂ > (<)τ?.
a) Positive comovement. Using Lemma 5 and the definition of equilibrium price informativeness in Eq.

(A.14), we get
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and
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Then, since
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Hence, if τep̂ > τ? price volatility and price informativeness (weakly) comove when τs, τθ, or τh change.
For changes in τn we have that

∂V
∂τn

= −
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1
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which is increasing in τep̂ with limτe
p̂
→∞
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= 0. Also,
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since the denominator is negative in any stable equilibrium
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Note that the numerator can be written as
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)
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(
1 + 3 τh
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√
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This is a concave quadratic function of τep̂ which is negative at τep̂ = 0. Then, if 4 τ
2
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−4γ2
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)
(τs + τη) < 0
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Then, when λ < 2, there exists a threshold τ̃ such that

dV
dτn

> 0

for all τep̂ > τ̃ , where τ̃ = τ? if 4 τ
2
h

τn
− 4γ2

(
1 + 3 τhτn

)
(τs + τη) < 0 and τ̃ = max {τ?, n} otherwise.

Hence, if τep̂ > τ̃ price informativeness and price volatility weakly positively comove for any parameter change.
b) Negative comovement
For changes in τn we have from part a) of this proof that for τn < n,

dτep̂
dτn

> 0. Moreover, we know that
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< 0 and ∂V
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< 0 for all τep̂ < τ?. Hence, since
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< 0 and price informativeness and price
volatility negatively comove when τn changes.
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We know that limτs→0
αs
αn

= 0. Moreover, using the definition of αs
αn

in Eq. we have
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where we used that limτs→0
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d
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= 1. Hence, dV
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> 0 and price informativeness and price volatility positively

comove for changes in τs.
For τη, we have
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Since limτη→∞
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Then, ττη = 0 and when τη changes, volatility and informativeness always positively comove.
Finally, for changes in τhwe have

dV
dτh

=
2αs
αp

1−R−1ρ

(
τep̂
)−1(

τη + τs + τn+τh
τn

τep̂
)2

 1
τn

(
τη + τep̂

)
τep̂+(

τn+τh
τn

(
2− τn+τh

τn

) (
τep̂
)2 + τn+τh

τn
(τη − 2τs) τep̂ − τs (τη + τs)

)
αs
αn

(
−γ
(
αs
αn

)
+1
)(

−H′
(
αs
αn

))


and

lim
τh→0

dV
dτh

=
(

1
1−R−1ρ

)2 2
(
τs + τep̂

)(
τη + τs + τep̂

)3

(
τep̂
)−1

(
1
τn

(
τη + τep̂

)
τep̂ +

((
τep̂
)2 + (τη − 2τs) τep̂ − τs (τη + τs)

)
αs
αn

(
−γ αs

αn
+ 1
)(

−H ′
(
αs
αn

)))
where limτh→0 τ

e
p̂ ∈ (0,∞). Note that

sgn
(

lim
τh→0

dV
dτh

)
= sgn

 1
τn

(
τη + τ ep̂

)
τ ep̂ +

((
τ ep̂

)2
+ (τη − 2τs) τ ep̂ − τs (τη + τs)

)
αs
αn

(
−γ αsαn + 1

)
(
−H ′

(
αs
αn

))


which is positive for low enough values of price informativeness since −γ
(
αs
αn

)
+1 > 0 and in any stable

equilibrium H ′
(
αs
αn

)
< 0. Hence, ττh = 0 and price volatility and price informative always comove

positively for changes in τh.
Hence, for τ ep̂ < τ = min

{
ττs , ττη , ττn , ττh , τγ

}
= 0 and there is no negative comovement region.
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D Proofs: Section 5
Proposition 4. (Explicit characterization of comovement regions) Using Proposition 2 and the
characterization of equilibrium price informativeness in the previous section of this Appendix, we can write the
positive and negative comovement regions in terms of parameters for Application 1. In this case, price volatility
is given by

V =
(

1
1−R−1ρ

)2
(

τs + τep̂
τη + τs + τep̂

)2 (
τ−1
η +

(
τep̂
)−1
)

and price informativeness is given by

τep̂ =
(
τs
τη

)2
τn.

There are three parameters that determine price informativeness and price volatility in equilibrium, the precision
of private information, τs, the precision of the investors’ prior, τη, and the precision of the aggregate sentiment,
τn. The term R−1ρ affects price volatility but leaves informativeness unchanged. All other parameters leave the
price distribution unchanged.

The threshold τ? in Proposition 2 is given by

τ? ≡
− (τη − 2τs) +

√
τ2
η + 8τ2

s

2 .

Since λ = 1, τ = τ? and, using the definition of τep̂ , the positive comovement region is characterized by τep̂ > τ?,
which, in terms of primitives, is given by

τn
τη
≥

√
1 + 8

(
τs
τη

)2
− 1 + 2 τsτη

2
(
τs
τη

)2 .

Moreover, using the results in Eq. (A.11) and Eq. (A.12) in the proof Prop. 6 we have that the negative
comovement region is characterized by the following conditions: τn

τη
< 1,

τn
τη

<

(
τs
τη
− 1
)

+
√

5
(
τs
τη

)2
− 2 τsτη + 1

2
(
τs
τη

)2 ,

and

τn
τη

<
−
(

2− τs
τη

)
+
√(

2− τs
τη

)2
+ 8

(
τs
τη

)2

4
(
τs
τη

)2 .

Proposition 5 (Recovering stock-specific primitives) From the characterization of the equilibrium
described above, we can express αs

αp
and αs

αη
as follows:

αs
αp

=
(

1 +R−1αθ
αp

)
τs + τp̂

τη + τs + τp̂
=
(

1 +R−1αθ
αp

) τs
τη

+ τRp̂

1 + τs
τη

+ τRp̂
(A.17)

αs
αη

= τs
τη
.

Under the stated assumptions, we can therefore interpret the coefficients β1 and ζ1as follows

β2 = αs
αp

and ζ1 = αθ
αp
. (A.18)
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Therefore, Equations (A.17) and Equation (A.18) imply that τs
τη

+ τRp̂ can be recovered as follows

β2 =
(
1 +R−1ζ1

) τs
τη

+ τRp̂

1 + τs
τη

+ τRp̂
⇒ τs

τη
+ τRp̂ = β2

1 +R−1ζ1 − β2
,

which allows to express τs
τη
:

τs
τη

= β2

1 +R−1ζ1 − β2
τη − τp̂ = τRp̂

(
β2

1 +R−1ζ1 − β2

1
τRp̂
− 1
)
.

Finally, exploiting the relation τp̂ =
(
τs
τη

)2
τn, τnτη can be recovered as follows

τp̂ =
(
τs
τη

)2
τn =

(
β2

1 +R−1ζ1 − β2
− τRp̂

)2
τn ⇒

τn
τη

=
(

β2

1 +R−1ζ1 − β2
− τRp̂

)−2
τRp̂ ,

where R can be mapped to the risk-free rate.
Finally, it is possible to show (see Davila and Parlatore (2018)) that τRp̂ can be recovered using the following

expression

τRp̂ = τp̂
τη

= 2
R2
|∆θt+1,∆θt −R

2
|∆θt

1−R2
|∆θt+1,∆θt

,

where R2
|∆θt+1,∆θt ≡ 1 − Var[εt]

Var[∆pt] denotes the R-squared of the following regression of changes on lagged
fundamentals

∆pt = β0 + β1∆θt + β2∆θt+1 + εt, (R1)

and where R2
|∆θt denotes the R-squared of the following regression R2 of price changes on changes on fundamentals

∆pt = ζ0 + ζ1∆θt + εζt . (R2)
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