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Abstract

Empirical research on sovereign default shows “hard defaults”—defined as de-
faults with above-average haircuts—have worse outcomes for GDP growth than “soft
defaults” and that sovereigns continue to borrow post-default. We propose a model
capable of capturing these and other empirical regularities. In it, the sovereign makes
period-by-period decisions of whether to make the prescribed debt payments or not.
Hard defaults arise when the sovereign repeatedly chooses to not pay over the course
of many years. Unlike in the standard model, default does not exogenously result in
autarky. Rather, autarky-like conditions arise endogenously as the shocks leading to
default result in higher spreads than the sovereign is willing to pay. The calibrated
model predicts that growth shocks are the main determinant of whether default is
hard or soft. We use the model and the particle filter to decompose how much of the
empirical correlation between default intensity and output growth is selection and
how much is causal. Decomposition of model forces shows that one-third (one-tenth)
of hard (soft) defaults are explained by actual default costs with the rest explained
by selection. A historical decomposition of shocks reveals that transitory shocks and
trend shockswere the primary drivers of the Argentinean defaults in the 1980s and the
2000s, respectively. Estimated haircutswere 20 percentage points higher in the 2001 de-
fault than in the one in the 1980s, consistent with the data. Our estimated productivity
shocks coincide with major events such as the convertibility plan and the Asian crisis.

JEL Codes: C51,C68,F34,F41,F43,F44
Keywords: Default, Sovereign, Debt, Autarky, Growth, Argentina, Nonlinear Filtering

∗Grey Gordon, greygordon@gmail.com; Pablo Guerron, pguerron@gmail.com.We thankAndres Blanco,
Pablo D’Erasmo, GernotMüller, Kris Nimark, Bruce Preston, and seminar participants atMonashUniversity
for helpful comments, and especially Gabriel Mihalache for particularly detailed and helpful ones.

1

mailto:greygordon@gmail.com
mailto:pguerron@gmail.com


1 Introduction

Recent research (Trebesch and Zabel, 2017) has revealed a striking pattern in the data that
can be seen in Figure 1. In particular, the path for output following hard defaults—i.e., de-
faults characterized by large haircuts—and soft defaults—defaults characterized by small
haircuts—are completely different.Whereas hard defaults are associatedwith a sharp and
extremely persistent decline in output relative to a year before default, soft defaults are as-
sociated with a small decline on impact and growing output post default. The benchmark
sovereign default models (Arellano, 2008; Hatchondo and Martinez, 2009; Chatterjee and
Eyigungor, 2012) have nothing to say about this pattern as all defaults result in 100% hair-
cuts. In this paper, we construct a default model with an intensive margin of default that
rationalizes these patterns while simultaneously shedding light on how much of these
patterns are causal—i.e., hard (soft) defaults literally reduce output—versus howmuch of
these patterns are driven by selection—i.e., persistently low output growth leads to hard
defaults.

In the standard model, the sovereign’s debt repudiation decision is a once-and-for-
all choice to never repay any existing debt. We replace this assumption with an alternate
one, having the sovereign decide on a period-by-period basis whether they wish to make
the prescribed debt payments or not. Large (small) haircuts occur when the sovereign
finds it optimal to default on the prescribed payments for many (few) periods. Including
growth and transitory shocks then naturally produces a pattern where (1) bad growth
shocks reduce output and incentivize default for long periods of time—leading to large
haircuts—whereas (2) bad transitory shocks reduce output for a short periods of time and
result in small haircuts. This selection into default, however, is only part of the story as
default costs also play a direct role in reducing output. Disciplining the model by making
itmatch a host of empirical regularities, including the pattern in Figure 1, lets us determine
how much of the pattern is driven by selection versus causal effects.

Our proposedmodel has new and richer predictions than the benchmarkmodelswhile
also being significantly simpler. Unlike in the benchmark models, there is no need to keep
track of whether the sovereign defaulted in the past, and the sovereign faces the same
choices every period. Despite this, the model produces near-autarky endogenously—with
debt issuance falling sharply in default—, endogenous autarky durations, and endoge-
nous haircuts. It also rationalizes the large post-default spreads seen in the data. In our
formulation, 100%haircuts never occur—as in the data (Arellano,Mateo-Planas, and Ríos-
Rull, 2013)—because that requires the sovereign defaulting in every future period. More-
over, ourmodel retains the benchmarkmodel’s successes such asmatching the correlation
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Figure 1: Hard and Soft Default Episodes (From Trebesch and Zabel)
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between spreads and output.
We take our model to the data using a tractable approach, which we call SMM-pf. In

the first step, we use the simulated method of moments to match the model’s predictions
to moments in the data like debt-to-output ration, the mean and standard deviation of
spreads, and the probability of default. In the second stage, we combine the calibrated
model, the bootstrap particle filter, and Argentina’s data on output and spreads to recover
the path of structural shocks and other unobserved variables like consumption, haircuts,
and the cost of default. This approach strikes a good balance between the computational
complexities behind solving/calibrating/filtering and the desire to recover the dynamic
paths of relevant variables in a reasonable amount of time.

From this empirical exercise, we learn several patterns regarding Argentina. The fil-
tering step correctly identifies the 2001-2005 epoch as a default episode. This default can
be classified as a hard default, characterized by haircuts in excess of 60% and a sudden
collapse of fundamentals, in particular, those related to trend growth. The default results
from a sudden reversal of fortune with adverse shocks affecting trend growth in 2001. In
all, the drop in fundamentals explains about 95%of the decline inGDP,with the remaining
5% explained by the cost of defaulting.

In contrast, the default in the 1980s looks more like a soft default with smaller haircuts
(around 40%). The cost of default accounted for 4% of the contraction in GDP during the
last part of the decade. This default episode had no trend growth and persistently adverse
transitory shocks, resulting in depressed output throughout the decade. The recovery in
the early 1990s is the product of an initial strong recovery in transitory innovations fol-
lowed by moderately favorable trend shocks.

In the last part of the paper, we relate our estimated productivity shocks to economic
events in the recent history of Argentina. For example, the speculative attacks against the
peso in 1995, resulting from the Tequila crisis, led to a sequence of adverse trend and
transitory shocks. The economic debacle in the late 1990s started with the Asian crisis
and accelerated with the Russian crisis. These events triggered a long-lasting decline in
transitory productivity, followed by adverse trend shocks in the eve of the 2001 default.

Existing literature

Our work is closely related to Arellano et al. (2013). They show that default in the data is
always partial in that defaulted debt relative to payments due is always less than one. Fur-
ther, they propose a model that explicitly keeps track of debt in arrears, which rolls over
at an exogenous rate. Relative to them, we have three main contributions. First, we show
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that the composition of growth and transitory shocks is the main driver for how “partial”
default is (in the sense of how large the haircuts are). Second, our model captures many of
the features of partial default without having to explicitly keep track of debt in arrears (it is
still included, but in the overall stock of debt). Third, our model is computationally more
facile, and the long-term debt specification can be computed without trouble (in their on-
line draft, only the short-term debt version has results as of this writing). This tractability
makes the model amenable to estimation and extensions along other dimensions. We also
decompose the observed negative correlation between haircut size and output growth into
causal and selection effects.

Our work is also related to a substantial literature on debt renegotiation including Yue
(2010), Asonuma and Trebesch (2016), and many other papers . Most of this literature fo-
cuses on an explicit bargaining problem formulated between a sovereign and large cred-
itors. Our model’s assumption that sovereign’s decide how much to pay on existing obli-
gations period by period essentially assumes that either (1) there is perfect competition
among creditors, or (2) the bargaining power of creditors is zero, or (3) that the sovereign
makes a take-it-or-leave it offer, extracting all possible surplus. Creditors in our model act
passively, simply computing the present value of existing debt obligations and offering
that as payment on any obligations.

To our knowledge, our is the first paper filtering data using a fully-fledge sovereign
default model. Although there have been previous attempts, they impose stringent restric-
tions on the default decision for tractability reasons. A common abstraction is to assume
an exogenous default rule, according to which the small open economy defaults if the
state variables cross some threshold (Bi and Traum (2014) for Greece and Bocola (2016)
for Italy). This tractability comes at the expense of ignoring the dependence of the rule on
fundamentals of the economy like the discount factor and risk aversion. As a result, the
rule is subject to the Lucas critique.

The rest of the paper proceeds as follows. We show the model and theoretical results
in Section 2. The calibration exercise is in Section 3. In Section 4, we discuss the model’s
implications for hard and soft defaults. Section 5 presents estimates for the paths of several
variables during the defaults in the 1980s and 2001 in Argentina. We conclude that section
with a narrative account of economic events in Argentina and relate them to the filtered
shocks and decomposition from our model.
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2 Theoretical model and results

Following Aguiar and Gopinath (2006), we assume output is given by

yt = ztΓt

The transitory shock zt is an AR1 process with

log zt = ρz log zt−1 + σzεz,t

The “permanent component” is
Γt = gtΓt−1

with gt an AR1 process

log gt = (1− ρg) log(µg) + ρg log(gt−1) + σgεg,t

The appendix provides evidence that growth and transitory shocks affect bond prices, as
will come out of the model.

The utility function is
u(c) = c1−σ/(1− σ).

2.1 The model with trend

The model with trend is given in the appendix, as well as a proof that it corresponds to
the detrended model in the next subsection.

2.2 The detrended model

The asset/debt structure is the same as in Chatterjee and Eyigungor (2012). In particular,
debt is −b in some finite set B. Debt matures at a geometric rate λ ∈ (0, 1]. The (1 − λ)

fraction of debt that does not mature has a prescribed coupon payment κ ∈ R+. Define
λ̃ := λ+ (1−λ)κ so that λ̃ is the payment due in a period from a unit obligation. Unlike in
Chatterjee and Eyigungor (2012), a “default” does not eliminate future obligations to pay
debt. Rather, a default—and we will return to the definition in the calibration section to
determine default durations—is any payment less than the prescribed payment.
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In every period, the sovereign solves

V (b, z, g) = max
d∈{0,1},b′∈B

u(c) + βE[z′,g′|z,g]g
′(1−σ)V (b′, z′, g′)

s.t. c+ q(b′, z, g)(b′ − (1− λ)
b

g
) = z(1− χ(d; z, g)) + λ̃

b

g
(1− d)

Note that a default does not reduce future “obligations” to pay: The prescribed debt pay-
ments next period are b′ irrespective of d. Rather, the sovereign decides period by period,
given the nominal obligations to pay, whether the sovereign wants to or not. Note that
default is associated with a cost χ(d; z, g).1 The cost is purely within period. However, the
calibrated model will generate financial autarky endogenously by q falling close to zero
when default occurs. We interpret the output loss χ as a literal reduction in output that
is reflected in the national accounting identities. Because our focus is on long-term debt,
allowing for only a partial default on the prescribed payments has a quantitatively negli-
gible effect. So we have made the d within the period be a discrete choice. Let the policy
functions associated with this problem be denoted a′(b, z, g) and d(b, z, g).

The bond prices correspond to the net present value of payment streams.

q(b′, z, g) =
1

1 + r∗
E[z′,g′|z,g](λ̃(1− d′) + (1− λ)q(b′′, z′, g′)))

where b′′ = a′(b′, z′, g′) and d′ = d(b′, z′, g′).
The optimal intratemporal default decision—because there is no exclusion post default

so that d is purely intratemporal—is to default whenever zχ(d; z, g) > λ̃ b
g
. Consequently,

the problem can be rewritten as

V (b, z, g) = max
b′∈B

u(c) + βE[z′,g′|z,g]g
′(1−σ)V (b′, z′, g′)

s.t. c+ q(b′, z, g)(b′ − (1− λ)
b

g
) = max{z(1− χ(1; z, g)), λ̃

b

g
}.

Note that having to treat all creditors equally —the sovereign cannot issue new debt
that is treated better than existing debt holders—means the declining sequence of geomet-
ric payments holds and only b is needed as a state variable.

Proposition 1. V is increasing in b.

Sketch. A larger b gives higher utility for any b′, d choice and must therefore increase V
holding continuation utility as given.

1We assume χ is positive and bounded above by some number less than 1. While we could have χ sepa-
rable, thinking of the Mendoza and Yue QJE mechanism it makes more sense to have it proportional.
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Proposition 2. If q is increasing in b′, then a′ is increasing in b and m.

Sketch. I think the sufficient conditions in Gordon and Qiu (2018) hold here.

Proposition 3. If a′ is increasing in b and m, then q is increasing in b′.

Sketch. Because the default decision is decreasing in b, a higher b′ is going to translate
into larger q(b′, z, g) provided that the continuation price (1− λ)q(b′′, z′, g′) increases. This
happens if b′′ = a(b′, z′, g′) increases in b′ (for each z′, g′).

For haircuts, we use a “market haircut” definition.2 Specifically, we define it as one less
the market value of debt relative to the risk-free value of debt. In the appendix, we show
starting from the not-detrended problem that it is given by

Hsz(b, z, g) := 1− market value of debt
risk-free value of debt

= 1− λ̃(1− d) + (1− λ)q(b′(b, z, g), z, g)

λ̃+ (1− λ)q̄

where q̄ is the risk-free price of debt, which solves q̄ = (1 + r∗)−1(λ̃ + (1 − λ)q̄) (i.e., q̄ =

λ̃/(r∗+λ)). (From this definition it is clear that in every period there is a “haircut,” and so
that when a default occurs the stated haircut was partially anticipated. This is why Tomz
andWright, 2013 note that this formulation overstates creditor losses.) Note that the price
schedule and haircuts are related via

q(b′, z, g) =
λ̃+ (1− λ)q̄

1 + r∗
E[z′,g′|z,g] [1−Hsz(b

′, z′, g′)]

2.3 Formulation with taste shocks

As discussed in Chatterjee and Eyigungor (2012), the dependence of q on future policy
functions creates serious convergence problems that are not well mitigated by increasing
grid sizes or increasing the number of AR(1) shocks. However, they show that by incor-
porating an i.i.d. shock to the endowment, and explicitly treating it as continuous, con-
vergence can be obtained. For our purposes, we produce the same qualitative properties
at much lower computational cost by using taste shocks. The reader not interested in the
details of how we do this can go to the next section without much loss.

With taste shocks ~ε over bond choices, we have the following specification. For each
2While there are alternative definitions, Tomz andWright (2013) say in their data theydeliver surprisingly

similar results.
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b′ ∈ B let εb′
i.i.d.∼ Gumbel(−γ − log(#B), 1) where γ is the Euler-Mascheroni constant.3 Let

w(b′, b, z, g, d) = u(c) + βE[z′,g′|z,g]g
′(1−σ)V (b′, z′, g′)

where c = −q(b′, z, g)(b′ − (1− λ)
b

g
) + z(1− χ(d; z, g)) + λ̃

b

g
(1− d)

and
W (b, z, g, d, ~ε) = max

b′∈B
w(b′, b, z, g, d) + σεεb′

While there is a policy function a′(b, z, g, d, ~ε), we will use the associated choice probabili-
ties, call them p(b′|b, z, g, d) ∈ [0, 1] with

∑
b′ p(b

′|b, z, g, d) = 1.
Let v(b, z, g, d) =

∫
W (b, z, g, ~ε)dF (~ε). We assume there are also taste shocks ~η that in-

fluence the default decision with εη
i.i.d.∼ Gumbel(−γ − log(2), 1):

V̂ (b, z, g, ~η) = max
d∈{0,1}

v(b, z, g, d) + σηηd.

Consequently, “the default decision” is given by choice probabilities p(d|b, z, g) ∈ [0, 1]

with p(0|b, z, g) + p(1|b, z, g) = 1. The V in the continuation utility of the first problem is
then V (b, z, g) :=

∫
V̂ (b, z, g, ~η)dF (η). Of course, if ση = σε = 0, the problem is the same as

if there were no taste shocks and the choice probabilities are degenerate (unless there is
exact indifference).4

The price schedule then becomes

q(b′, z, g) =
1

1 + r∗
E[z′,g′|z,g]

[∑
d′,b′′

p(d′|b′, z′, g′)p(b′′|b′, z′, g′, d′)(λ̃(1− d′) + (1− λ)q(b′′, z′, g′)))

]
.

The well-known formulas due to McFadden (1974) and Rust (1987) give the choice
3The usual distribution is Gumbel(−γ, 1) (Rust, 1987). However, note that the preference shocks have

unbounded support so, as the number of choices grows, a law of large numbers gives thatW would go to
infinity else equal even if w were bounded. This modest adjustment ensures that if w is uniformly equal to
some w̄, that

∫
WdF (~ε) = w̄ as well.

4While w is not well-defined for every b′, d choice, we note that if non-feasible choices are made feasible
with severe penalties, the same numerical approximation will be obtained as if treating w = −∞ when
not-feasible.
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probabilities and value functions as

p(b′|b, z, g, d) =
exp(w(b′, b, z, g, d)/σε)∑
b̃′ exp(w(b̃′, b, z, g, d)/σε)

v(b, z, g, d) = σε log

(
1

#B
∑
b′

exp(w(b′, b, z, g)/σε)

)

p(d|b, z, g) =
exp(v(b, z, g, d)/ση)∑
d̃ exp(v(b, z, g, d̃)/ση)

V (b, z, g) = ση log

(
1

2

∑
d

exp(v(b, z, g, d)/ση)

)
.

Note that as long as the value functions move continuously in q, the choice probabilities
and hence the implied q do as well. This makes convergence extremely easy to obtain com-
putationally provided that ση and σε are sufficiently large. The complication behind this
new formulation is that we need to adapt the particle filter to track the entire distribution
of states/choices, rather than the current state as in start filtering problems.

3 Calibration and validation

This section describes howwe calibrate themodel and gives themodel’s fit of both targeted
and untargeted moments.

3.1 Functional forms

Let χ(d; z, g) be given by dχδ(z, g). The parameter χ determines the overall magnitude the
default costs. The “slope” term δ(z, g) depends on the growth and transitory shocks via5

δ(z, g) = max{0, 1 + δ1(z − 1) + δ2(g − µg)}. (1)
5A justification for this assumption is the default excusability discussed in Tomz and Wright (2013).

Specifically, if default came as a surprise or was “unavoidable” (thereby making it excusable), empirical
evidence suggests default costs are lower. Additionally, this flexible parameterization of δ may reflect a ne-
gotiation process where bad output shocks reduce the sovereign’s surplus from reaching an agreement
thereby lowering effective default costs. Specifically, a bad transitory shocks produces an incentive to bor-
row (since output mean-reverts in expectation)—thereby increasing the surplus from reaching a settlement
with creditors—while a bad growth shock does not. We don’t take a stance apriori on whether low z or low
g lowers default costs more.
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3.2 GDP process estimation

Our procedure to separate out trend from transitory shocks in the data is to first log and
HP-filter the observed quarterly output series in Argentina from 1980:1 to 2005:2. We then
fit an AR1 to the trend and an AR1 to the first differences of the deviations from trend. Ab-
sent default costs that depress output and assuming the HP-filter correctly distinguishes
between the trend and deviations, this exactly identifies the shocks. This is misspecified
in default periods because we have assumed default costs directly lower output.

The values are reported in the first rows of Table 1. The transitory component of output
has values similar to the existing literature (in large part because this is the only part of
output the literature usually looks at—the deviation in HP-filtered output). The growth
shocks are more interesting and reveal an extremely persistent growth process with a
small conditional standard deviation (but a .005 unconditional standard deviation). The
appendix plots the actual output series for Argentina along with the HP-filtered compo-
nents, which clearly shows why the regressions pick up a very persistent growth shock.

Parameter Value(s) Reason / Data

(ρz, σz) (.853,.0243) AR1 fitted to HP-filtered log output deviations
(µg, ρg, σg) (.0133,.989,.0008) AR1 fitted to HP-filtered log output trend differences
(σb, σd) (.0003,.0003) Large enough to ensure convergence
λ 0.0357 Tomz and Wright (2013)
κ 0.03 Chatterjee and Eyigungor (2012)
σ 2 Commonly used CRRA value

Note: .

Table 1: Parameters fixed a priori

3.3 Exogenously determined parameters

We set the constant relative risk aversion (CRRA) parameter to 2 in line with most of the
literature. The coupon payment κ is set to 0.03, which follows Chatterjee and Eyigungor
(2012) (who calibrate to Argentina). To have a chance of matching (1) a mean duration of
staying in default for 28 quarters and (2) haircut sizes of (38%), we need a debt maturity
that is not too large—28 quarters of continual non-payment result in (1 − λ)28 of the face
value being left to pay.6 Hence, we use a λ smaller than Chatterjee and Eyigungor (2012)
(who use .05) by setting λ = .0357. This number is the average from Tomz and Wright

6Wewill not require continual non-repayment to stay in default. Rather default will end when dt = 0 for
8 quarters in a row.
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(2013), who discuss how debt maturity calculations are sensitive with no clear winning
strategy. The taste shock magnitudes were chosen to enable reliable convergence while
also being small.

3.4 Calibrated parameters and calibration targets

The remaining parameters are three default cost parameters—δ1, δ2, χ—and the discount
factor β. We use these to match five statistics. The first three, the debt-output ratio (1), the
mean spread (8.15), and the spread standard deviation (4.43), are from CE and are based
on Argentinean data.7 We also match two other statistics.

First, we want default to persistent as in the data, and so we match the probability
of staying in default. Annually, using the data of Trebesch and Zabel (2017), we find this
number is 0.882 for Argentina and 0.823 for all countries in their sample on average. Note
that the definition in terms of when default ends is not clear—Tomz andWright (2013) say
the S&P definition is when no further paymentsare likely to occur—, which is why we we
focus on transition rates to and from default. We say default is exited at time twhen dt = 0

for the next 8 quarters in the simulation. Table 2 reports the transition rates.

Transition rates Argentina All

P(d = 1|d−1 = 0) .167 (.048) .027 (.001)
P(d = 1|d−1 = 1) .882 (.214) .823 (.057)

Implied P(d = 1) .586 .132

Note: standard error of the mean is in paren-
theses; observations are annual; all coun-
tries is the sample from Trebesch and Zabel
(2017).

Table 2: Default transition rates

Second, we want to match the pattern observed in Figure 1. To this end, we target
the correlation between output 4 years ahead (relative to the previous years output) and
haircut sizes conditional on default. In the data, we find this measure is −0.547.Because

7Chatterjee and Eyigungor (2012) only target 70% of the debt-output ratio. In particular, they say

We seek to match only a portion of debt because we do not model repayment. In reality,
sovereign debt that goes into default eventually pays off something. In Argentina’s case, the
repayment on debt defaulted on in 2001 has been around 30 cents to the dollar. Thus, we treat
only 70 cents out of each dollar of debt as the truly unsecured portion of the debt. But, as part
of our sensitivity analysis, we also examine the case in which we fully match average external
debt-to-output ratio.
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the Trebesch and Zabel (2017) data is annual and our model is quarterly, we must use
some form of aggregation. For GDP is to obtain an annual series yAt compute the mean of
yQt:1, . . . , y

Q
t:4. For dAt , we take the maximum over dQt:1, . . . , d

Q
t:4. From now on, we use a tilde

(“ ˜ ”) to distinguish a variable as annual. For haircuts, we also take the maximum.

3.5 Model fit of targeted and untargeted moments

The targeted and untargeted moments are displayed in Table 3. Although small relative
to standard RBC values, the discount factor is large relative to existing default models de-
spite matching the largest debt stock to date. The “mean” default cost χ is 0.131 (i.e., the
default costs when z = 1 and g = µg), which does not seem unreasonably high to us. Of
course, the actual default costs realized on average (0.043) are smaller as the sovereign
tends to default when costs are low. The default cost slopes δ1 and δ2 (recall the specifi-
cation δ(z, g) in (1)) must be interpreted in light of the unconditional shock deviations.
For the transitory (growth) shock this is 0.0466 (0.0054). Hence a 1 standard deviation in-
crease in the transitory (growth) shock increases default costs by 0.26 (0.21). This makes
default in states with good shocks almost infeasible while making default in states with
bad shocks be at zero cost. These costs should be reflected in bond spreads in the data, and
they are—the appendix gives regressions (and raw data) showing the significant impact
model-consistent measures of shocks have on spreads.

The model fits the data well along virtually every reported dimension. The model’s
56.3% time spent in default is very close to “the data’s” 58.6%. The latter measure comes
from computing the invariant distribution associated with the flows in Table 2, and is
subject to substantial uncertainty. Using a broad sample of countries, the average time
in default in Tomz and Wright (2013) is 18%, but we suspect Argentina is an unusually
common defaulter.8

A similar issue arises with haircuts, where the data measure we report (38.0%) is from
Trebesch and Zabel (2017). The model’s average haircut size is 57.6%, which seems high
relative to the data. However, we match the mean and standard deviation of spreads, and
given the tight relationship between spreads and haircuts, it would seemwemust be doing
better along that dimension than it seems.9 However, we cannot say for sure because the

8Tomz and Wright (2013) Figure 2 plots the historical proportion of borrowers that are in default. In the
modern era 1980 and on it varies from just a few percentage points to around 42%. They also say “That this
moment [the frequency of default] is sensitive to reasonable changes in the definition of default suggests
that an alternative moment—one more robust to changes in definition—should be used to calibrate models
of default. One possibility is the fraction of time debtors spend in default, which is 18% across the entire
sample” (p. 258). We use the average implied by transition rates.

9Tomz and Wright (2013) report findings on average haircut sizes using three different methodologies.
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Targeted moments Target Model Parameter Value

Debt-output ratio (normal times) 1.000 0.985 β 0.970
Spread mean (normal times) 8.150 9.601 χ 0.131
Spread std. dev. (normal times) 4.430 4.857 δ1 5.583
Corr(100ỹt+4/ỹt−1, HSZ,t|d̃t = 1) -0.547 -0.448 δ2 38.906
Prob. stay in default P(d̃t = 1|d̃t−1 = 1) 0.882 0.789

Untargeted moments Data Model

Corr(log yt, rt) -0.700 -0.538
Prob. go to default P(d̃t = 1|d̃t−1 = 0) 0.167 0.272
Haircut size EHSZ,t 0.380 0.576
Time in default P(d̃t = 1) 0.586 0.563
Time to decisively exit default (see note) 28.000 23.247
Spread at default 28.600 19.997
Realized default costs E[χt|deft = 1] - 0.043

Note: A tilde represents an annual rather than quarterly value. The debt-
output ratio is the debt stock divided by quarterly GDP in the data and
model (the data measure is from Chatterjee and Eyigungor, 2012 who do
the same—the World Bank’s debt series DT.DOD.DPPG.CD series over the
GNI series NY.GNP.ATLS.CD all annual over 1993-2001 gives an average of
0.257). GDP is aggregated via computing an average, default by taking amax.
When a default occurs at time t, we calculate time to decisively exit default
as the first j such that dτ = 0 for all τ ∈ {t+ j, . . . , t+ j+8}; if such a j cannot
be found (because we truncate histories at 200 periods), we assign j = 200.

Table 3: Targeted and untargeted moments
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sample size for Argentina would only have a few data points. In Argentina, according to
Trebesch and Zabel’s data, the haircut size was 32% in the 1982 default and 76.8% in the
2002 default. If one is willing to average these two data points, one arrives at 54.4%, almost
exactly matching the model’s 57.6%.

In sum, the model matches important targeted moments and many of the untargeted
ones. We now look more in depth at the model’s predictions.

4 Equilibrium hard and soft defaults

This section considers the equilibrium policies and prices and shows how the model pro-
duces hard and soft defaults.

4.1 Equilibrium policies and prices: Transitory vs. growth shocks

Figure 2 plots the price schedule, debt issuance, and debt distributions for the four com-
binations of highest and lowest growth and transitory shocks. The worst growth shocks
greatly depress bond prices and trigger default for any nonnegligible debt positions. In-
terestingly, the sovereign still borrows a bit (and this at very large spreads), but the market
value is comparatively small. For the lowest growth shock and a high productivity shock,
the sovereign does not default at conventional debt levels and saves a fair amount. (The
unconditional level of output is normalized to around 1.) These observations back up our
claim that our model endogenous generates periods of autarky where, while in default,
there is little to no borrowing. Here, rather than by assumption, it comes from current
default being positively correlated with future default, depressing bond prices and disin-
centivizing borrowing. Periods of fast growth are characterized by large amounts of bor-
rowing driven by (1) attractive interest rates and (2) debt being easy to afford as reflected
in b/g in the detrended problem. The maximum “sustainable” level of debt, i.e., the debt
where the sovereign is indifferent between dt = 0 and dt = 1 differ tremendously depend-
ing on what the shocks are, ranging from essentially zero to more than twice an average
level of output.

4.2 Hard and soft default episodes

Figure 3 shows the model reproduces almost exactly the hard and soft default episodes
observed in the data (which can be seen in Figure 1). Since we matched the correlation be-

“ Benjamin & Wright (2008) estimate an average market haircut of 38%, whereas Cruces & Trebesch (2013)
estimate a 40% market haircut and a 37% SZ-haircut.”
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Figure 2: Equilibrium objects, policies, and distribution
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tween haircut sizes at default and output growth 4 years ahead, this is not terribly surpris-
ing in itself. Rather, the model’s ability to rationalize that statistic is the accomplishment.

Figure 3: Hard and soft default episodes

As reflected in Figure 4, the logic behind hard and soft defaults is more complicated
than itmight first appear. In particular, growth shocks are themaindeterminant ofwhether
default is hard or soft (with hard defaults driven by negative growth shocks). But defaults
of all types are triggered with negative growth and transitory shocks.

Post-default, the face value of debt to output tends to be the same or higher a few years
after default (and significantly higher following a soft default. This may seem counterfac-
tual. However, Benjamin andWright (2008), as quoted in Tomz andWright (2013), show for
a sample of 90 defaults that the face value of debt to GDP “does not fall and may even rise
after a default. The median country ends the year of the settlement with a debt-to-GDP
ratio 5 percentage points higher than when it entered default.” For the average default

17



Figure 4: Default event comparison
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episode, the debt-output ratio goes from around 1.03 predefault to 1.10 five years after, an
increase of around 7%. Consequently, this is not a failure of the model but a success.

The default episodes also reveal that hard all defaults have a marked reduction in debt
issuance, giving endogenous “autarky” in the model. Clearly, this autarky is not total as
in the standard model, but as discussed in the previous paragraph, it is not total in the
data, either. Note that spreads increase and remain high post default for an extended pe-
riod of time, especially in hard defaults; and also note that the standard model does not
have well-defined spreads while the sovereign is in default. The behavior of net exports is
counterfactual in this class of models because, with autarky-like conditions post default,
net exports must be negative upon reentry as credit markets expand and so does borrow-
ing.10 However, this presumably could be fixed by endogenizing default costs along the
lines of Mendoza and Yue (2012).

In sum, the model reproduces many features of the data, including the hard and soft
default trajectories for growth, while being richer and simpler than the benchmarkmodel.
We now turn to Argentina’s actual path to analyze its hard and soft defaults.

5 Argentina’s hard and soft defaults

In this section, we consider the actual path that Argentina’s economy has undertaken
over the past few decades. This is an interesting test case because at face value Argentina
presents a counter-narrative to the hard and soft default story of Trebesch andZabel (2017):
Argentina’s soft default in the 1980s was characterized by a sluggish recovery while its
hard default in the 2000s had a rapid return to growth. To analyze it, we use the calibrated
parameters and run the particle filter to obtain a historical shock decomposition. The ob-
servables for this exercise are quarterly output and spreads corresponding to the period
1984:Q1-2005.Q1 (blue crossed line in Figure 5).11 We add i.i.d. Gaussian measurement er-
rors with mean 0 and standard deviation equal to 5% of the volatility of each observable.
Details on the filtering step are provided in appendix C.

The red lines in Figure 5 display the filtered paths for output and spreads. Clearly,
the filtered series track closely the data, but there are some differences around the 2001
default. The gray areas correspond to default episodes as predicted by our model (see
notes in Table 3). Although we don’t have spread series post 2002, our filtering exercise
estimates that as the economy started to recover in 2003, spreads declined. The low spreads
in 2005 coincide with the beginning of Argentina’s debt restructuring process. That our

10For more on this, see the discussion on pp. 78-79 of Gordon and Guerron-Quintana, 2018.
11We have output data going back to 1980.Q1, which we use to initialize the filter.
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model matches the data is expected given that its calibration targeted several features of
the output and spread (see Table 3). Importantly, the good fit of the data shows the power
of our SMM-filtering approach.

5.1 Predictions for nonobservables

Figure 6 shows the dynamics paths for some nonobservables in our model. According
to the model, Argentina’s debt remained roughly stable during the 1980s and early 1990s
(solid blue line in right upper panel). However, debt skyrocketed in the second part of Car-
los Menem’s tenure. Indeed, debt almost doubled between 1994 and 2001. Following de-
fault in 2001, our model/filtering approach has Argentina entering a deleveraging epoch,
with its debt dropping 30% by the end of our sample. For comparison purposes, the red
circles correspond to debt-to-GDP ratio in the data. Although our model initially over
states the amount of debt in Argentina, we correctly capture the dynamics of debt around
the 2001 crisis. Moreover, the deleveraging in the data is consistent with that predicted by
the model.

Looking at the default flag (left lower panel), we observe that our approach correctly
detect the default episodes of the 1980s picking up one in 1984 and in 1988. The latter
coincides well with Argentina’s 1989 default. Moreover, the model correctly identifies the
2001 default episode.

The panel in the lower right corner displays the default costχ from (1) in percent.When
Argentina defaulted in 2001, default costs accounted for roughly 5% of the drop in GDP
in the early part of the default period. In other words, fundamentals account for 95% of
the contraction of the Argentinean economy. In the following years, the output loss from
default hovered around 3%. We estimate that the default loss between 2001 and 2005 in
net present value was equivalent to roughly 60% of GDP (3% for 20 quarters).

The implied haircut is plotted in Figure 7. During the 1980s default, the haircut av-
eraged 40% and reached 60% in 1990. The 2001 default was characterized by an average
haircut of 64%, but it was as high as 73% in 2002. By comparison, Edwards (2014) reports
that the 2003 renegotiation (known as the Dubai guidelines, black circle) implied a haircut
of 75% (red dashed line in figure 7). Over the long run, haircuts are on average 37%, which
is in line with the cross-country average reported by Edwards.12 Based on these estimated
haircuts, it seems reasonable to label the first and second defaults as a soft default and a
hard default, respectively.

12Edwards (2014) compiles a sample of 180 debt restructurings between 1978 and 2010, the average haircut
in the sample is 37%
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5.2 Historical shock decomposition

We now examine what shocks drove the soft default in the 1980s and the hard default in
the 2000s. Figure 8 shows the filtered paths for the structural shocks: permanent gt in the
upper panel and transitory zt in the bottom.

The structural reforms introduced by Carlos Menem in the early 1990s are reflected in
strong tailwinds in persistent and temporary productivity. The recovery in the estimated
productivity shocks coincides with strong readings in output per worker, which averaged
7% per year between 1990 and 1994 (Llach and Gerchunoff (2018)). All of this happening
while the level of debt relative to GDP remained relatively flat (figure 6). The sudden drop
in productivity in 1995 coincides with capital flights and speculative attacks to the peso,
resulting from the Tequila crisis.13

As we move through the second half of the 1990s, Argentina recovered from 1995 re-
cession benefited from favorable persistent shocks to the trend. Temporary innovations re-
inforced Argentina’s expansion during the last part of that decade. The advent of the new
century brings a change of fortune to Argentina. First, transitory innovations weakened
and eventually turned into headwinds. Second, and more important, there is a sudden
reversal in the trend shocks around 2001. Together, these forces brought the economy to
a hard default with a large haircut and severe contraction. By 2005, transitory shocks had
mean reverted but permanent shocks continued to be a drag on the economy.

One way to understand these transitory and permanent disturbances is to relate them
toArgentina’s terms of trade. This is a reasonable approach givenArgentina’s dependence
on exports, primarily agriculture. The red dashed lines in Figure 8 corresponds to the
terms of trade between 1985 - 2005.14 A quick look at the bottom panel reveals that our
transitory shocks are correlated with the terms of trade in Argentina (with a correlation
coefficient of 0.60). For example, one can see that Argentina’s transitory disturbances in
the 1990s mostly reflects developments in the external sector (in particular, those related
to the soy and wheat markets). Both the recovery in the early 1990s and the demise in the
late 1990s coincide with periods of terms of trade appreciations and depreciations, respec-
tively. When we turn to shocks to the growth rate (upper panel), the connection between
the terms of trade and the shocks in our model become less clear (the correlation drops
to 0.3). However, it is not difficult to see that the terms of trade seem to lead the growth
shocks (the one-year ahead correlation is 0.65). These results suggest that disturbances in
the international commodity markets initially fed to the Argentinean economy via what

13The Argentinean Central Bank lost one forth of its foreign reserves and the EMBI shut up from 8% to
55% (Llach and Gerchunoff (2018)).

14The data is taken Fernandez, Schmitt-Grohe, and Uribe (2017).
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our model interprets as transitory innovations. But as the adverse terms of trade lingered,
they affected the long run growth of the economy. This narrative is consistent with the
recovery post-2001 default.
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Figure 8: Filtered Shocks

Figure 9 shows the counterfactual paths of outputwhen only growth shocks (reddashed
line) or only transitory shocks (green dotted line) are in place. As one can see, our exercise
reveals that the Argentinean economy was driven by transitory shocks during the 1980s
and the early part of the 1990s. Soon after, trend shocks favored growth in the economy.
The path to the 2001 defaultwas paved by a slowdown in transitory shocks in the late 1990s
and the abrupt decline in growth in 2001. Between 2001 and 2005, growthwasmutedwith
the mild recovery in 2004 driven by transitory innovations.

To further interpret our results, Figure 9 also displays some major events in Argentina
during the 1980s and 1990s. We begin our narrative in 1985 with the introduction of Plan
Austral, which aimed to contain inflation and restart growth. Based on our decomposi-
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tion, the plan worked initially through trend growth and later via temporary productivity
advances. However, a change of fortunes in 1987, which coincides with a failed military
coup against Alfonsin’s presidency (Llach and Gerchunoff, 2018), reverses the recovery
the economy enjoyed in 1986. Weak growth and rising inflation (prices claimed 10% in
August 1987) were the first signs that the Plan Austral was failing.

By the end of a dismal economic decade, Carlos Menem was elected president, with
the mission of reining on inflation andmodernizing the economy.15 After two tumultuous
years in office, Menem appointed Domingo Cavallo as minister of the treasury, introduc-
ing the Convertibility plan as well as a series of privatizations in areas such as commercial
aviation and telecommunication. After years of stagnation, the economy finally began to
grow, which our model attributes to a combination of trend growth and positive tempo-
rary productivity innovations. The good times are also reflected in low spreads (figure 5),
strong consumption growth (figure 6), and historically low haircuts (figure 7).

The Tequila crisis entered full swing in 1995, hitting the Argentinean economy at the
same time that corruption scandals (like the IBM case; Sims, 1996) were rampant. These
forces brought higher spreads (figure 5) and adverse (temporary and permanent) produc-
tivity shocks, resulting in a decline in GDP of 6%.16 Interestingly, the plan convertibilidad
was effective in keeping inflation on track, reaching 1.6% per year in 1995 (Llach and Ger-
chunoff, 2018). Prior to the Asian crisis, Argentina was back in trend thanks to favorable
shocks and spreads. But Argentina ran out of luck as the Asian crisis brought adverse tem-
porary shocks. After a quick rebound, the Russian crisis (1998) brought a second round
of adverse temporary shocks, which marked the beginning of the collapse of Argentina’s
economy. By the time de la Rua takes power, GDP was 4 % below its peak. The combi-
nation of some trend growth and mild adverse temporary disturbances led to two years
of muted output growth. However, the cumulative effect of the temporary negative pro-
ductivity and a sudden reversal en trend productivity brings a deep recession, eventually
forcing the economy to default.

5.3 Causation vs. selection in output/default intensity relationship

We now answer the question of why output growth is significantly lower following hard
defaults compared to output growth in soft defaults. Part of the answer lies in selection,
which is what we have stressed the most thus far. However, output is also causally lower

15Llach and Gerchunoff (2018) refers to this era as the new macroeconomy
16Mauro (1995) presents some evidence showing the negative relation between corruption and economic

growth. De Rosa, Gooroochurn, and Gorg (2010) find that bribe taxes, defined as informal payments to
government officials, have a negative effects on firm-level productivity.
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because of the default costs χ(dt; zt, gt). Because we have the shocks, we can say what
χt(dt; zt, gt) is at each point in time and, consequently, disentangle the direct effect on out-
put versus selection. To this end, figure 10 shows the filtered path of output (blue line) and
the filtered path excluding default costs (red dashed line). During the 2001 default, output
in themodel declined by 16% from peak (1998) to trough (2002). Of this drop, about 5 per-
centage points corresponds to the cost of default. In other words, the decision to default
contributed to about 1/3 of the contraction in GDP with the rest coming from fundamen-
tals in the economy. This means that the default decision contributed to the recession but
it was not its main driver. As the economy recovered, the gap between the two output
measures closed as well. If we consider the default episode in 1990, the decline in GDP is
close to 11 % of which 1 percentage point comes from default costs. Based on this decom-
position, we can see that the 2001 episode was more costly in term of output loss from the
decision to default. However, the sovereign still finds default optimal because at that time
leverage was very high following the protracted growth of the 1990s and associated low
spreads.
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Figure 10: Output loss
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6 Conclusion

We proposed a novel theory of hard and soft sovereign defaults that, while quite simple,
captures many features of the data. First and foremost of these is the low output growth
following hard defaults and comparatively high output growth following soft ones. The
model rationalizes this feature by having negative growth shocks lead to protracted peri-
ods of non-payment and hence hard defaults with less negative growth shocks resulting in
shorter period periods of non-payment. Using a historical shock decomposition to recover
the shocks in, before, and after Argentina’s defaults, the model successfully reproduced
the behavior of the observable spreads and output as well as non-observables such as the
the paths of debt, the magnitude of haircuts, and the timing of defaults episodes. The his-
torical shock decomposition led to a natural narrative of Argentinean history that notably
captured the election ofMenem and the Tequila crisis. Finally, we used themodel to quan-
tify howmuch of the output declines observed in default are caused by default versus how
much is selection into default. We found selection played the larger role in the soft default
in the late 1980s while actual default costs played the larger role in the early stages of the
2001 hard default.
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A Data

The toppanel of Figure 11 plots the log realGDP series forArgentina and the trend implied
by the HP filter. Visually it appears Argentina goes through different growth regimes,
and the filter picks this up. The bottom panel gives a scatter plot of the deviations from
trend against their lag. The slope of the best fit line is the estimate for the transitory shock
persistence (and the mean is zero). The bottom right panel does similarly, but for the first
differences in the trend against their lag—the first difference is the growth shock. The slope
of the best fit line is the persistence estimate for the growth shock, which reveals why the
process persistence (.989) is so large.

Figure 12 plots Argentina’s spread data in the raw time series (top panel) and against
the growth shocks (bottom left panel) and transitory shocks (bottom right panel). For tran-
sitory shocks, there is a clear negative relationship in the rawdata. For growth shocks there
is also some evidence, but it is not as striking. This may be because of transitory shocks
that create significant dispersion in the raw data.

Table 4 builds on these figures by regressing spreads on the growth shocks and transi-
tory shocks, which here are linearly transformed to zero mean and unit variance for easier
interpretation of the coefficients. To limit dependence on “outliers," we do a full sample
regression in column (1) and through 2001 in column (2). These two shock values, inde-
pendent of any debt measure or lagged spreads explains 50% of the data’s spreads varia-
tion. Both shocks have a significant effect on spreads, but the transitory shock’s impact is
several times larger (but the shocks are less persistent, so the cumulative effect is unclear).

(1) (2)
Spreads Spreads

Log real GDP trend 1st difference, normalized -2.151 -1.081
(0.001) (0.006)

Log real GDP deviations, normalized -7.802 -4.273
(0.000) (0.000)

Constant 12.79 10.89
(0.000) (0.000)

Observations 80 75
R2 0.511 0.492
p-values in parentheses
Robust standard errors were used. (1) is full sample; (2) is up to 2001:4.

Table 4: Regressions of spreads on shocks
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B Detrending the equilibrium

B.1 Not detrended

Say u(c) = c1−σ/(1 − σ). For any Γ, define B̃(Γ) = {b′|b′/Γ ∈ B} for some B. Let the state
space be S̃ = {(b, z, g,Γ)|b ∈ B(Γ

g
), z ∈ Z, g ∈ G,Γ ∈ R++}.

Ṽ (b, z, g,Γ) = max
b′∈B̃(Γ),d∈D

u(c) + βE[z′,g′|z,g]Ṽ (b′, z′, g′,Γ′)

s.t. c+ q(b′, z, g,Γ)(b′ − (1− λ)b) = zΓ(1− χ(d; z, g)) + λ̃b(1− d)

Γ′ = g′Γ

Let the associated policies be denoted ã(b, z, g,Γ) (for savings), d̃(b, z, g,Γ), and c̃(b, z, g,Γ).
Note that by the construction of B̃, b′ ∈ B̃(Γ) if and only if b′ ∈ B̃(Γ′/g′) for all g′. Because
of this, the continuation utility is only evaluated at points in the state space, i.e., for any
b′ ∈ B̃(Γ), (b′, z′, g′,Γ′) ∈ S̃ wherever the expectation operator has positive support.

The price schedule q, assuming a risk-neutral intermediary who discounts at rate 1+r∗

is
q̃(b′, z, g,Γ) =

1

1 + r∗
E[z′,g′|z,g]

[
(1− d̃(b′, z′, g′,Γ′))λ̃+ (1− λ)q̃(b′′, z′, g′,Γ′)

]
where b′′ = b̃′(b′, z′, g′,Γ′). A haircut in the model is

H̃sz(b, z, g,Γ) := 1− market value of debt
risk-free value of debt

= 1− λ̃(1− d̃(b, z, g,Γ)) + (1− λ)q̃(ã(b, z, g,Γ), z, g,Γ)

λ̃+ (1− λ)q̄

Note that q̃ is just a transformation of the conditional expectation of q̃.

B.2 Detrended

The above problem is equivalent (in a certain sense to be made precise shortly) to a de-
trended problem. Let the state space of the detrended problem be S = B × Z × G. The
sovereign solves

V (b, z, g) = max
b′∈B,d∈D

u(c) + βE[z′,g′|z,g]g
′(1−σ)V (b′, z′, g′)

s.t. c+ q(b′, z, g)(b′ − (1− λ)
b

g
) = z(1− χ(d; z, g)) + λ̃

b

g
(1− d)
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Let the policy functions associated with this problem be denoted a(b, z, g), d(b, z, g), and
c(b, z, g). The price schedule satisfies

q(b′, z, g) =
1

1 + r∗
E[z′,g′,m′|z,g](1− d(b̃′, z′, g′,m′))λ̃+ (1− λ)q(b′′, z′, g′)))

where b′′ = a(b′, z′, g′). The haircut is

Hsz(b, z, g) = 1− λ̃(1− d(b, z, g)) + (1− λ)q(a(b, z, g), z, g)

λ̃+ (1− λ)q̄

B.3 Equivalence

Proposition 4. Any equilibrium (V, d, c, a, q) in the detrended problem corresponds to an equilib-
rium (Ṽ , d̃, c̃, ã, q̃) in the not-detrended problem with

Ṽ (b, z, g,Γ) = Γ1−σV (
bg

Γ
, z, g)

ã(b, z, g,Γ) = Γa(
bg

Γ
, z, g)

c̃(b, z, g,Γ) = Γc(
bg

Γ
, z, g)

d̃(b, z, g,Γ) = d(
bg

Γ
, z, g)

q̃(b′, z, g,Γ) = q(
b′

Γ
, z, g)

H̃sz(b, z, g,Γ) = Hsz(
bg

Γ
, z, g)

for all (b, z, g,Γ) ∈ S and b′ ∈ B(Γ).

Proof. First, consider that the definition is well-defined in that the detrended functions
are only being evaluted where defined. To see this, take (b, z, g,Γ) ∈ S. Then b ∈ B(Γ/g),
implying b/(Γ/g) = bg/Γ ∈ B̃. So, (bg/Γ, z, g) ∈ S̃. Similarly, q(b′, z, g,Γ) is defined for all
b′ ∈ B(Γ) while q̃(b̃′, z, g) is defined for all b′ ∈ B̃. But then b′ ∈ B(Γ) = {b′|b′/Γ ∈ B̃}
if and only if b′/Γ ∈ B̃. So, all the not-detrended policies, value, and price functions are
well-defined.

Now consider the price schedule mapping. Use E in place of E[z′,g′|z,g]. Let q(b′, z, g) be
an equilibrium price schedule. Then

q(b′, z, g) =
1

1 + r∗
E
[
(1− d(b′, z′, g′))λ̃+ (1− λ)q(b′′, z′, g′)))

]
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where b′′ = a(b̃′, z′, g′). Fixing some Γ ∈ R++ and b′ ∈ B(Γ), evaluating the above at b̃′ =

b′/Γ gives

q(
b′

Γ
, z, g) =

1

1 + r∗
E
[
(1− d(

b′

Γ

Γ′

Γ′
, z′, g′))λ̃+ (1− λ)q(a(

b′

Γ

Γ′

Γ′
, z′, g′), z′, g′)

]
Then, since Γ′/Γ = g′,

q(
b′

Γ
, z, g) =

1

1 + r∗
E
[
(1− d(

b′g′

Γ′
, z′, g′))λ̃+ (1− λ)q(a(

b′g′

Γ′
, z′, g′), z′, g′)

]
.

Since a( b
′g′

Γ′
, z′, g′) = ã(b′, z′, g′,Γ′)/Γ′ and d( b

′g′

Γ′
, z′, g′) = d̃(b′, z′, g′,Γ′), one has

q(
b′

Γ
, z, g) =

1

1 + r∗
E
[
(1− d(b′, z′, g′,Γ′))λ̃+ (1− λ)q(

ã(b′, z′, g′,Γ′)

Γ′
, z′, g′)

]
.

Then, using q̃(b′, z, g,Γ) = q( b
′

Γ
, z, g) and q̃(b′′, z′, g′,Γ′) = q( b

′′

Γ′
, z′, g′), one has

q̃(b′, z, g,Γ) =
1

1 + r∗
E
[
(1− d̃(b′, z′, g′,Γ′))λ̃+ (1− λ)q̃(ã(b′, z′, g′,Γ′), z′, g′,Γ′)

]
,

which is what the equilibrium price schedule must satisfy.
Now, by the optimality of the detrended value functions, the value functions solve a

fixed point problem V = T ◦V taking q as given. Now,wewant to show that the definitions
Ṽ satisfy the fixed point problem associated with the trend problem Ṽ = T̃ ◦ Ṽ taking q̃
as given.

The V problem

V (b, z, g) = max
b′∈B,d∈D

u(c) + βEg′(1−σ)V (b′, z′, g′)

s.t. c+ q(b′, z, g)(b′ − (1− λ)
b

g
) = z(1− χ(d; z, g)) + λ̃

b

g
(1− d).

For any Γ ∈ R++, multiplying through by Γ1−σ and using Γ1−σV (b, z, g) = Ṽ (bΓ/g, z, g,Γ),
this can equivalently be written

Ṽ (b̃, z, g,Γ) = max
c,b′,c̃,b̃′∈B̃,d∈D

u(cΓ) + βEΓ1−σg′(1−σ)V (
b′

Γ
, z′, g′)

s.t. c+ q(b′, z, g)(b′ − (1− λ)
b

g
) = z(1− χ(d; z, g)) + λ̃

b

g
(1− d)

b̃ = bΓ/g
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Noting thatΓ1−σg′(1−σ)V (b′, z′, g′) = Γ′(1−σ)V (b′, z′, g′) = Ṽ (b′Γ′/g′, z′, g′,Γ′) = Ṽ (b′Γ, z′, g′,Γ′),
one has

Ṽ (b̃, z, g,Γ) = max
c,b′,c̃,b̃′∈B̃,d∈D

u(c̃) + βEṼ (b̃′, z′, g′,Γ′)

b̃ = bΓ/g, b̃′ = b′Γ, c̃ = cΓ

s.t. c̃
Γ

+ q(
b̃′

Γ
, z, g)(

b̃′

Γ
− (1− λ)

b̃

Γ
) = z(1− χ(d; z, g)) + λ

b̃

Γ
(1− d)

where superfluous choice variables c̃ and b̃′ have been added. Since a(b̃, z, g) and c(b̃, z, g)

are optimal policies for b′ and c, it is clear that b̃′ = Γa′(b̃, z, g) and c̃ = Γc(b̃, z, g) are optimal.
Using q(b̃′/Γ, z, g) = q̃(b̃′, z, g) andmultiplying the budget constraint through by Γ, one

then has

Ṽ (b̃, z, g,Γ) = max
c,b′,c̃,b̃′∈B̃,d∈D

u(c̃) + βEṼ (b̃′, z′, g′,Γ′)

b̃ = bΓ/g, b̃′ = b′Γ, c̃ = cΓ

s.t. c̃+ q̃(b̃′, z, g)(b̃′ − (1− λ)b̃) = zΓ(1− χ(d; z, g)) + λb̃(1− d)

Noting that, we have

Ṽ (b̃, z, g,Γ) = max
c̃,b̃′∈B̃,d∈D

u(c̃) + βEṼ (b̃′, z′, g′,Γ′)

s.t. c̃+ q̃(b̃′, z, g)(b̃′ − (1− λ)b̃) = zΓ(1− χ(d; z, g)) + λb̃(1− d)

This is exactly the form of the not-detrended problem, and optimal policies for it (from the
discussion above) ã(b̃, z, g,Γ) = Γa(bg/Γ, z, g), c̃(b̃, z, g,Γ) = Γc(bg/Γ, z, g), and d(b̃, z, g,Γ) =

d(bg/Γ, z, g).
The equivalence for haircuts is given by

H̃sz(b, z, g,Γ) = 1− λ̃(1− d̃(b, z, g,Γ)) + (1− λ)q̃(ã(b, z, g,Γ), z, g,Γ)

λ̃+ (1− λ)q̄

= 1− λ̃(1− d(bg/Γ, z, g)) + (1− λ)q̃(Γa(bg/Γ, z, g), z, g,Γ)

λ̃+ (1− λ)q̄

= 1− λ̃(1− d(bg/Γ, z, g)) + (1− λ)q(a(bg/Γ, z, g), z, g)

λ̃+ (1− λ)q̄

=: Hsz(bg/Γ, z, g)
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Note that the proposition does not establish that a “trend” equilibrium can be mapped
into an “untrended” one. This is because, in the case of multiplicity, Γ might act as a
sunspot variable on which creditors coordinate.

Tabel 5 gives the mapping from detrended variables to observables.

Observable Trend variable Mapping to trend
Debt state −b̃t −Γtbt/gt
Debt choice −b̃t+1 −Γtbt+1 = b̃t+1gt+1

Observed bond price q̃(b̃t+1, zt, gt) q(bt+1, zt, gt)
Consumption c̃t Γtct
Output ỹt Γtzt(1− χt)
Net exports ỹt − c̃t Γt(zt(1− χt)− ct)
Debt issuance at face value −(b̃t+1 − (1− λ)b̃t) −Γt(bt+1 − (1− λ) bt

gt
)

Debt issuance market at value −q̃(b̃t+1, zt, gt)
(
b̃t+1 − (1− λ)b̃t

)
−Γtq(bt+1, zt, gt)(bt+1 − (1− λ) bt

gt
)

Table 5: Mapping detrended variables to the data

C Filtering

In this section, we describe the details involved in filtering Argentina’s data.
Themodel solution consists on the grids of permanent shocks, g, and transitory shocks,

z; the grid of bond choices; the transition matrix between the shock states, p(z′, g′|z, g);
the probability distribution of default choice given past debt and shocks, p(d|b, z, g); the
probability distribution of debt given past debt, shocks, and default choice, p(b′|b, z, g, d);
and the stationary distribution of debt and shocks, p(b, g, z). The joint grid of g and z has
441 elements, the grid of debt has 250.

Because we are dealing with discrete variables, the standard particle filter does not
apply directly. First, the discreteness of the state variables limits the number of particles.
We choose the maximum, which is given by the size of the (g, z) grid times the size of the
debt grid, i.e. Np = 441 × 250 = 110, 250. To draw from the discrete distributions, we use
the inversion method (Cappe, Moulines, and Ryden (2005)). We proceed according to the
following algorithm:
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Result: Filtered states and likelihood
initialization: draw initial particles {(bi, gi, zi)} for i = 1, . . . ,M from p(b, z, g);
set weights ωi0 = 1;
for t = 1 to T do

forecasting;
for i = 1, . . . ,M do

draw default choices dit from p(d|bit, git−1, z
i
t−1);

draw debt choices bit+1 from p(b′|bit, git−1, z
i
t−1, d

i
t) ;

compute output, consumption, spread, haircut: yit, cit, spit, H i
t ;

use yit, spit and data to compute likelihood `it;
set weights ωit = `it;

end
updating for i = 1, · · · ,M do

compute normalized weights: ω̃(i)
t =

ω
(i)
t ω

(i)
t−1

1
M

∑
ω
(i)
t ω

(i)
t−1

;

resample from multinomial distribution
{

((b′)i, gi, zi), ω̃(i)
}
;

set ω(i)
t = 1;

end
approximate state distribution and likelihood are:

p(xt|Y1:t) ≈
M∑
i=1

ω
(i)
t δ(xt − x

(i)
t ), p(yt|Y1:t−1) ≈ 1

N

M∑
i=1

`it. (2)

here, xt = {bt, gt, zt}
end

Algorithm 1: Filtering Argentina’s default
We implement a computationally efficient bootstrap particle filter in Cuda 9.1 and do

the filtering using a Nvdia GPU.
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