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Abstract

We study the welfare costs of markups in a dynamic model with heterogeneous

firms and endogenously variable markups. We find that the welfare costs of markups

are large. We decompose the costs of markups into three channels: (i) an aggregate

markup that acts like a uniform output tax, (ii) misallocation of factors of produc-

tion, and (iii) an inefficiently low rate of entry. We find that the aggregate markup

accounts for about two-thirds of the costs, misallocation accounts for about one-third,

and the costs due to inefficient entry are negligible. We evaluate simple policies aimed

at reducing the costs of markups. Subsidizing entry is not an effective tool in our

model: while more competition reduces individual firms’ markups it also reallocates

market shares towards larger firms and the net effect is that the aggregate markup

hardly changes. Size-dependent policies aimed at reducing concentration can reduce

the aggregate markup but have the side-effect of greatly increasing misallocation and

reducing aggregate productivity.
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1 Introduction

How large are the welfare costs of product market distortions? What kinds of policies can

best overcome these distortions? We answer these questions using a dynamic model with

heterogeneous firms and endogenously variable markups. In our model, the welfare costs of

markups can be decomposed into three channels. First, the aggregate markup — the cost-

weighted average of firm-level markups — acts like a uniform output tax levied on all firms.

Second, there is cross-sectional markup dispersion because larger firms effectively face less

competition and so charge higher markups than smaller firms. This markup dispersion gives

rise to misallocation of factors of production across firms. Third, there is an inefficiently low

rate of entry. Our goal is to quantify these three channels using US data and to evaluate

policies aimed at reducing the costs of markups.

Our model features heterogeneous firms engaged in monopolistic competition with non-

CES demand, as in Kimball (1995). Within a given industry, more productive firms are,

in equilibrium, larger and face less elastic demand and so charge higher markups than less

productive firms. As a consequence, changes in the environment that allow more productive

firms to grow at the expense of less productive firms will be associated with an increase

in the aggregate markup and a decline in the aggregate labor share. In this sense, our

model is consistent with the literature’s recent emphasis on the reallocation of production

from firms with relatively high measured labor shares to firms with relatively low measured

labor shares (Autor, Dorn, Katz, Patterson and Reenen, 2017a,b; Kehrig and Vincent, 2017)

and the observation that firms with high markups have been getting larger, driving up the

average markup (Baqaee and Farhi, 2018). Importantly, markups in our model are returns

to past sunk investments in developing new products and in acquiring capital. Policies

aimed at reducing markup distortions can have the unfortunate side-effect of distorting these

investment decisions.

We calculate the welfare costs of markups by asking how much the representative con-

sumer would benefit if the economy transitioned from a steady state with markup distortions

to an efficient steady state. We calibrate the initial steady state to match the levels of con-

centration in sales in US data as well as the firm-level relationship between sales and the

wage bill. We find that the total welfare costs of markups are large. For our benchmark

calibration, the representative consumer would gain 7.5% in consumption-equivalent terms

if they transitioned from the initial distorted steady state to the efficient steady state.

We then turn to quantifying the relative importance of the three channels by which

markups reduce welfare in our model. We find that the aggregate markup distortion is the

most important channel, accounting for about two-thirds of the total costs in our benchmark

model. Misallocation accounts for about one-third of the total costs. The costs due to

inefficient entry are negligible.
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We calibrate our benchmark model to match an aggregate markup of 1.15, correspond-

ing to the 2012 estimate of Barkai (2017) for the US private sector. Recently De Loecker

and Eeckhout (2017) have estimated a 2012 economy-wide markup of about 1.6 based on

Compustat data. Their economy-wide markup of 1.6 is the sales-weighted average of firm-

level markups. But theory implies that it is the cost-weighted average of firm-level markups

that is the relevant statistic that summarizes the distortions to employment and investment

decisions. That is, the ‘wedges’ in the aggregate employment and investment optimality

conditions are proportional to the cost-weighted average markup, not the sales-weighted av-

erage. When we calculate this cost-weighted average using the same Compustat data we

obtain an aggregate markup of 1.25. In an alternative calibration of our model that matches

this higher level of markups we find that the representative consumer would gain 18.6% in

consumption-equivalent terms from the removal of all markup distortions, of which about

four-fifths are due to the aggregate markup and one-fifth is due to misallocation. Since the

Compustat data samples only the very largest firms in the US, we think of these larger losses

as an upper bound on the total costs of markups.

Although the losses from misallocation in our model are sizeable, accounting for an ag-

gregate TFP loss of about 1.2% in our benchmark model, they are nonetheless small relative

to standard estimates in the literature (Restuccia and Rogerson, 2008; Hsieh and Klenow,

2009). Misallocation losses are relatively small because high-productivity firms who charge

high markups do so precisely because they face low demand elasticities. With these low

demand elasticities, the aggregate technology features a kind of ‘near-satiation ’ where there

are strongly diminishing returns to increasing the output of an individual firm. This feature

of the technology implies that a benevolent planner cannot achieve large gains by reallocating

factors of production towards high-productivity firms. By contrast, if we incorrectly impose

constant elasticity demand, as standard in the literature, then the dispersion of markups

in our model would imply much larger losses from misallocation. With constant demand

elasticities a planner can achieve large gains by reallocating factors of production towards

high-productivity firms, so a given amount of markup dispersion is much more costly.

Our decomposition of the relative importance of the three channels by which markups

reduce welfare also helps us evaluate policies aimed at reducing markups. A sufficiently

sophisticated scheme of interventions can of course achieve the efficient allocation, but here

we are interested in simple policies that may be more practical. One such policy is subsidizing

entry (or reducing barriers to entry) so as to increase competition. We find that subsidizing

entry is not an effective policy tool in our model. In particular, we find that even a large

increase in the number of firms has a negligible effect on both the aggregate markup and

the amount of misallocation.1 To understand this, recall that the aggregate markup is a

cost-weighted average of firm-level markups. An increase in the number of firms has two

1There are however standard love-of-variety gains from increasing the number of firms.
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effects on this weighted average. The direct effect is a reduction in the markups of each firm.

But there is also an important compositional effect. In our model, small firms face more

elastic demand and are vulnerable to competition from entrants. Large firms face less elastic

demand and are less vulnerable to competition. So when there is an increase in the number

of firms, small, low markup firms contract by more than large, high markup firms and the

resulting reallocation means high markup firms get relatively more weight in the aggregate

markup calculation. In our model, this offsetting compositional effect is almost exactly as

large as the direct effect so that overall the aggregate markup falls by a negligible amount.2

Another example of a simple policy is the use of size-dependent taxes to reduce within-

industry concentration and thereby reduce the markups of large producers. We find that

taxes that fall disproportionately on large firms, which is a simple way to model antitrust

policy, can substantially reduce the aggregate markup in our model, but they come at con-

siderable cost. This is because in our model the distorted allocation actually features too

little concentration relative to the efficient allocation and a further reduction in concentration

increases misallocation thereby reducing aggregate productivity.

This result has implications for the design of policy responses to the simultaneous rise in

concentration and markups. Regardless of whether the rise in concentration and markups

is due to changes in regulation, as in Peltzman (2014) and Grullon, Larkin and Michaely

(2017), or changes in the scalability of technology, as in Haskel and Westlake (2017), or

some mix of the two, size-dependent policies aimed at reducing concentration in order to

bring down the overall level of markups may backfire because of the resulting increase in

misallocation. Empirically, this also suggests that if the rise in concentration and markups

observed in recent US data is due to a reduction in, say, antitrust enforcement, then it may

be the case that the overall level of markups rose yet at the same time misallocation fell.

This is speculative, but is consistent with Baqaee and Farhi (2018) who document that the

increase in concentration and markups in the US has been accompanied by an improvement

in allocative efficiency.

We also consider a version of our model where firms have a life-cycle, starting out small

and growing over time. Because markups and flow profits are increasing in size, firm markups

and flow profits also start out small and grow over time. In this sense, the returns to the

firm’s initial investment are backloaded in this version of the model. One might conjecture

that this backloading would amplify the distortions caused by markups on the entry margin

and thereby increase the gains from an entry subsidy. But we find that when this model

is calibrated to match the life-cycle facts in Hsieh and Klenow (2014) and the same US

concentration facts as our benchmark model, the gains from an entry subsidy are if anything

slightly smaller than in our benchmark.

2These offsetting direct and compositional effects are reminiscent of results in the trade literature, e.g.,
Bernard, Eaton, Jensen and Kortum (2003) and Arkolakis, Costinot, Donaldson and Rodŕıguez-Clare (2017).

3



Finally we show that our key results are not driven by our assumptions about market

structure. Our benchmark model uses monopolistic competition with non-CES demand. But

in our robustness section we study an alternative model in which variable markups arise due

to oligopolistic competition among a finite number of heterogeneous firms, as in Atkeson and

Burstein (2008) and Edmond, Midrigan and Xu (2015). When this model with oligopolistic

competition is calibrated to match the same US concentration facts as our benchmark model,

we again find that the losses from misallocation are relatively small and that even large

increases in the number of firms have small effects on the aggregate markup and misallocation.

Existing results on costs of markups. The starting point for discussion of the welfare

costs of markups is Dixit and Stiglitz (1977), though the literature goes back to Lerner (1934).

Recent work such as Zhelobodko, Kokovin, Parenti and Thisse (2012), Dhingra and Morrow

(2016) and Behrens, Mion, Murata and Suedekum (2018) studies variable markups in static

models with heterogeneous firms. In contrast, ours is a dynamic model where markups are

returns to past investments. Though policies that reduce markups may be beneficial in the

short run, they are costly overall because they depress the returns to such investments. Like

us, Bilbiie, Ghironi and Melitz (2008) study a dynamic model and quantify the costs of

markups but they assume a representative firm. We find, however, that accounting for firm

heterogeneity plays a crucial role in evaluating policies aimed at reducing markup distortions.3

Markups and misallocation. In our model markups increase with firm size. This is one

form of misallocation in the sense of Restuccia and Rogerson (2008), and Hsieh and Klenow

(2009). We find that the losses from this form of misallocation are on the order of 1 to 3%.

This suggests that size-dependent subsidies can increase aggregate productivity by at most 1

to 3%. We view these numbers as an upper bound on the gains from size-dependent subsidies

since we attribute all of the systematic relationship between firm revenue productivity and

firm size to market power, and not to, say, overhead costs as in Autor, Dorn, Katz, Patterson

and Reenen (2017b) and Bartelsman, Haltiwanger and Scarpetta (2013). Because of this

we are likely somewhat overstating the true relationship between markups and firm size and

overstating the losses from this form of misallocation.

It is important to recognize that we abstract from all other sources of markup varia-

tion that may cause misallocation. Firms may operate in different locations or sell different

products in different sectors and charge different markups depending on the amount of com-

petition they face in those different markets.4 In principle policies that condition on location

3Other related work includes Atkeson and Burstein (2010, 2018) who provide a welfare analysis of innova-
tion policies in firm dynamics models but who abstract from variable markups and Peters (2016) who studies
innovation, firm dynamics, and variable markups but who does not evaluate the welfare costs of markups.

4Rossi-Hansberg, Sarte and Trachter (2018) show that while aggregate US product-market concentration
has been rising since the early 1990s, concentration in geographically-specific local markets has been falling.

4



or other relevant market details may be able to address these forms of misallocation too.

But finely-tuned policies that condition on details of market conditions location-by-location

would require large amounts of information and may need to be adjusted frequently based on

changing conditions. All this seems challenging in practice. For this reason we have limited

our analysis to size-dependent markup variation and we find that the gains from eliminating

misallocation due to size-dependent markup variation are likely no more than 1 to 3%.

The paper proceeds as follows. Section 2 presents the model. Section 3 characterizes the

efficient allocation against which we assess the costs of markups. Section 4 explains how

we calibrate the model to match US concentration facts. Section 5 presents our results on

the costs of markups. Section 6 presents results from an extended model where firms have

a genuine life cycle. Section 7 presents results for an alternative model with oligopolistic

competition. Section 8 discusses some further robustness checks. Section 9 concludes.

2 Model

The economy consists of a representative consumer with preferences over final consumption

and labor supply and who owns all the firms. The final good is produced by perfectly

competitive firms using a bundle of differentiated intermediate inputs. The differentiated

inputs are produced by monopolistically competitive firms using capital, labor and materials.

To enter the differentiated input market a firm must expend a fixed quantity of labor to

develop a blueprint. Upon entry and after it learns its productivity, the firm makes a once-

and-for-all decision about how much to invest in its capital. There is no aggregate uncertainty.

We focus on characterizing the steady state and transitional dynamics after a policy change.

Representative Consumer. The representative consumer seeks to maximize

∞∑
t=0

βt
(

logCt − ψ
L1+ν
t

1 + ν

)
, (1)

subject to the budget constraint

Ct = WtLt + Πt,

where Ct denotes consumption of the numeraire final good, Lt denotes labor supply, Wt

denotes the real wage, and Πt denotes aggregate firm profits, net of intangible investment

and the cost of creating new firms. The representative consumer’s labor supply satisfies

ψCtL
ν
t = Wt.

Since firms are owned by the representative consumer they use the one-period discount factor

βCt/Ct+1 to discount future profit flows.
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Final good producers. Let Yt denote aggregate production of the final good. This can

be used for consumption Ct, investment in intangible capital Xt, or as materials Bt, so that

Ct +Xt +Bt = Yt.

The use of the final good as materials gives the model a simple roundabout production

structure, as in Jones (2011) and Baqaee and Farhi (2018).

The final good Yt is produced by perfectly competitive firms using a bundle of differ-

entiated intermediate inputs yt(ω) for ω ∈ [0, Nt] where Nt denotes the mass of available

varieties. This bundle of inputs is assembled into final goods using the Kimball aggregator∫ Nt

0

Υ
(yt(ω)

Yt

)
dω = 1, (2)

where the function Υ(q) is strictly increasing, strictly concave, and satisfies Υ(1) = 1. The

CES aggregator is the special case Υ(q) = q
σ−1
σ for σ > 1.

Taking the prices pt(ω) of the inputs as given and normalizing the price of the final good

to 1, final good producers choose yt(ω) to maximize profits

Yt −
∫ Nt

0

pt(ω)yt(ω) dω,

subject to the technology (2). The optimality condition for this problem gives rise to the

demand curve facing each intermediate producer

pt(ω) = Υ′
(yt(ω)

Yt

)
Dt, (3)

where

Dt :=

(∫ Nt

0

Υ′
(yt(ω)

Yt

)yt(ω)

Yt
dω

)−1

(4)

is a demand index. In the CES case Υ(q) = q
σ−1
σ this index is a constant Dt = σ/(σ − 1) so

that (3) reduces to the familiar constant elasticity demand curve pt(ω) = (yt(ω)/Yt)
− 1
σ .

Klenow-Willis specification. For our benchmark model we use the Klenow and Willis

(2016) specification

Υ(q) = 1 + (σ − 1) exp

(
1

ε

)
ε
σ
ε
−1

[
Γ

(
σ

ε
,
1

ε

)
− Γ

(
σ

ε
,
qε/σ

ε

)]
, (5)

with σ > 1 and ε ≥ 0 and where Γ(s, x) denotes the upper incomplete Gamma function

Γ(s, x) :=

∫ ∞
x

ts−1e−tdt.
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The left panel of Figure 1 shows the shape of Υ(q). Setting ε = 0 gives the CES case

Υ(q) = q
σ−1
σ . When ε > 0, the elasticity of substitution is lower for firms with higher

relative quantity q = y/Y , implying that larger firms choose higher markups. We view

this as a parsimonious and tractable way of modeling the forces that arise in models of

oligopolistic competition of the type studied by Atkeson and Burstein (2008) and Edmond,

Midrigan and Xu (2015). In those models larger firms face less competition in their own

industries, have lower demand elasticities and choose higher markups. Indeed, as we show

in our robustness section, many of the results in our setting with monopolisic competition

extend to an environment with oligopolistic competition.

Figure 1: Love of variety with Kimball aggregator

logN

lo
g
E

Aggregate Productivity

ε > 0

ε = 0

log q

lo
g

Υ
(q

)

Kimball Aggregator

ε > 0

ε = 0

Love of variety. This specification of the production function implies love of variety in the

sense that aggregate productivity increases with the number of firms. To see this, suppose

that there are N firms in the economy with a constant returns technology in labor, y = l.

Assuming a total labor L available for production, in a symmetric equilibrium y = L/N so

that the total amount of final output is given by NΥ(y/Y ) = NΥ(L/(NY )) = 1. Aggregate

productivity E = Y/L is then implicitly determined by NΥ(1/(NE)) = 1. In the CES special

case ε = 0 we get the familiar solution E = N
1

σ−1 . When ε > 0, aggregate productivity E is

more sensitive to the number of varieties N , as shown in the right panel of Figure 1.

Intermediate input producers. Each variety ω is produced by a single firm. Firms are

created by paying a sunk cost κ in units of labor. On entry, a new firm obtains a one-time

7



productivity draw e ∼ G(e). Firms exit with exogenous probability δ per period. We focus

on a symmetric equilibrium where producers with the same e will make the same decisions so

henceforth we will simply index firms by e. On entry and after drawing e, a new firm makes

a one-time irreversible investment in capital, xt(e). This capital does not depreciate, so the

amount of capital available to a producer of age i = 1, 2, ... is

kit(e) = xt−i(e).

The assumption that capital is chosen once-and-for-all is a simple way of introducing ad-

justment costs that prevent capital from reallocating across firms after policy reforms. This

assumption also lets us capture investments in intangible capital, whose resale value is much

lower than that of tangible capital (as in Haskel and Westlake, 2017).

A firm of age i and productivity e uses its capital kit(e) = xt−i(e), hires labor l and

purchases materials b to produce output according to

yit(e) = e kit(e)
1−η vit(e)

η, (6)

where v is a constant-returns-to-scale composite of the variable inputs

v =
(
φl

θ−1
θ + (1− φ)b

θ−1
θ

) θ
θ−1

, (7)

where φ determines the share of the two factors in production and θ is the elasticity of

substitution between labor and materials.

We break the firm’s problem into two steps, first solving a static profit maximization

problem taking as given the initial investment, and then solving the firm’s dynamic choice of

whether to enter and how much capital to acquire at entry.

Static problem. First observe that a firm that chooses v(e) units of the composite variable

input will allocate that amongst labor and materials according to

l(e) = φθ
(
W

Pv

)−θ
v(e),

and

b(e) = (1− φ)θ
(

1

Pv

)−θ
v(e)

where Pv is the unit price of the composite variable input

Pv =

(
φW 1−θ + (1− φ)

) 1
1−θ

.
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Each firm maximizes profits taking as given the production function (6) and the demand

curve (3). Letting z := e kit(e)
1−η denote the firm’s effective productivity, we can write the

static profits of a firm of type z as

π(z) = max
y≥0

[
Υ′
( y
Y

)
y − Pv

(y
z

) 1
η

]
. (8)

Let y(z) denote the solution to the firm’s static problem and let q(z) = y(z)/Y denote their

relative output. The firm’s price p(z) can be written as a markup µ(q(z)) over marginal cost

p(z) = µ(q(z)) × Pv
η

(
y(z)

z

) 1
η 1

y(z)
. (9)

The Klenow-Willis specification in (5) gives

Υ′(q) =
σ − 1

σ
exp

(
1− q εσ
ε

)
, (10)

which implies the demand elasticity

− Υ′(q)

Υ′′(q)q
= σq−

ε
σ (11)

which in turn implies the markup function

µ(q) =
σ(q)

σ(q)− 1
, σ(q) := σ q−ε/σ (12)

When ε = 0, this reduces to the familiar CES markup µ = σ/(σ − 1). When ε > 0, larger

firms find it optimal to choose higher markups. The extent to which a firm’s markup increases

with its relative size is determined by ε/σ. The ratio of these two parameters is therefore

critical in shaping how markups and quantities change with productivity and competition.

Figure 2 illustrates these static choices, plotting the markup µ(z), relative quantity q(z)

and employment l(z), as a function of effective productivity z. When ε is relatively high, the

markup increases more with productivity, implying that the quantity increases less with pro-

ductivity. Indeed, when productivity is sufficiently high, employment may actually decrease

with productivity because of strongly diminishing marginal revenue productivity.

Note that the firm’s quantity choice is bounded. A profit-maximizing firm will not increase

production to the point where the elasticity of demand from (11) is less than one. This implies

a bound on the relative quantity equal to

q < σ
σ
ε .

The model therefore implies a threshold level of productivity z̄ above which all firms produce

the same amount of output and respond to an increase in productivity z by simply reducing

the amount of variable inputs needed to produce a fixed amount of output.
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Figure 2: Static choices

Also note that

π(z) = p(z)y(z)− Pvv(z) (13)

and we can rewrite the first order condition (9) as

Pvv(z)

p(z)y(z)
=

η

µ(q(z))
. (14)

Since markups are increasing in relative size q(z) this implies that a firm’s variable input

share in sales and well as the sales share of payments to each factor are decreasing in q(z).

Dynamic problem. Now consider a firm at time t that has paid the sunk cost κWt to enter

and drawn e ∼ G(e). From (8), a firm with effective productivity z will have flow profits

πt+i(z) at age i = 1, 2, . . . . Choosing investment xt(e) at entry determines their effective

productivity z = e xt(e)
1−η going forward and delivers the profit stream πt+i(e xt(e)

1−η) for

i = 1, 2, . . . . So having drawn e, a firm that enters at date t choose xt(e) to maximize

− xt(e) + β

∞∑
i=1

(β(1− δ))i−1

(
Ct+i
Ct

)−1

πt+i
(
e xt(e)

1−η) , (15)

where profits are discounted according to βiCt/Ct+i and the firm exits at exogenous rate δ.

Using the definition of πt(z) from (8) and the envelope condition, the first order condition

for xt(e) can be written

xt(e) =
1− η
η

β
∞∑
i=1

(β(1− δ))i−1

(
Ct+i
Ct

)−1

Pv,t+i vt+i(e xt(e)
1−η), (16)
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where we make explicit the dependence of future sales (and therefore the variable input vt+i)

on the firm’s initial investment. The solution to the fixed-point problem in (16) gives the

firm’s optimal investment choice xt(e). Using (14) we can also write this as

xt(e) = (1− η)β
∞∑
i=1

(β(1− δ))i−1

(
Ct+i
Ct

)−1
pt+i(e)yt+i(e)

µt+i(e)
, (17)

where µt+i(e), say, is shorthand for µt+i(ext(e)
1−η). This expression shows that the optimal

investment is a function of the future sales scaled by the firm’s markup at each future date.

Free-entry condition. Let Mt denote the mass of entrants in period t. Free entry drives

the expected profits of potential entrants to zero. Since the sunk entry cost κWt is paid prior

to the realization of the productivity draw e, the free-entry condition is

κWt =

∫ (
β
∞∑
i=1

(β(1− δ))i−1

(
Ct+i
Ct

)−1

πt+i
(
e xt(e)

1−η)− xt(e)) dG(e), (18)

which, using (13), (14) and (16) can be written

κWt =

∫ (
β
∞∑
i=1

(β(1− δ))i−1

(
Ct+i
Ct

)−1 (
1− µt+i(e)−1

)
pt+i(e)yt+i(e)

)
dG(e). (19)

In short, a firm’s incentives to enter are determined by its operating profits, net of investment,

and are therefore a function of markups and the firm’s overall sales. Both markups and a

firm’s sales decrease with additional entry so that entry occurs to the point at which the

expected profits are equal to the cost of creating a new variety.

Equilibrium. Let Ht(z) denote the measure of firms with effective firm productivity z in

period t. Let Nt =
∫
dHt(z) denote the overall mass of firms in period t. Given an initial

measure H0(z), a recursive equilibrium is a sequence of firm prices pt(z) and allocations

yt(z), vt(z), lt(z), bt(z), xt(z), mass of new entrants Mt, wage rate Wt, aggregate output Yt,

consumption Ct, and labor supply Lt, as well as measure of effective productivity Ht(z), such

that firms and consumers optimize and the labor and goods markets all clear.

The total mass of firms evolves according

Nt+1 = (1− δ)Nt +Mt,

while the measure of effective productivity evolves according to

Ht+1(z) = (1− δ)Ht(z) +Mt

∫
1{ e xt(e)1−η ≤ z } dG(e), (20)

where 1{·} denotes the indicator function.
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Labor market clearing requires

Lt =

∫
lt(z) dHt(z) +Mtκ. (21)

Similarly, goods market clearing requires

Yt = Ct +Mt

∫
xt(e) dG(e) +

∫
bt(z) dHt(z), (22)

where the second-last term on the RHS reflects investment by the new entrants and the last

term on the RHS reflects purchases of materials by all firms.

Aggregation. We now derive an aggregate production function for this economy and show

how aggregate productivity and the aggregate input choices relate to the cross-sectional

distribution of markups. These aggregation results motivate a two-step approach that we

use to compute an equilibrium. First, given a distribution Ht(z) of individual firms’ effective

productivity, we solve for the relative quantities qt(z) = yt(z)/Yt that maximize firm profits.

Second, given these choices, we solve for all aggregate prices and quantities.

Let Zt denote the aggregate productivity of this economy, implicitly defined by an aggregate

production function that relates the total amount of final goods Yt to the total amount of

the composite variable input Vt used in production:

Yt = ZtV
η
t . (23)

Here Vt =
∫
vt(z) dHt(z) is an aggregate index of variable inputs given by

Vt =
[
φL̃

θ−1
θ

t + (1− φ)B
θ−1
θ

t

] θ
θ−1

, (24)

where L̃t =
∫
lt(z) dHt(z) denotes the quantity of labor used in production.

Let Mt denote the aggregate markup of this economy, implicitly defined by

Pv,tVt
Yt

=
η

Mt

. (25)

This aggregate markup acts like a wedge in the choice of variable inputs and reduces the share

of payments to variable factors below their production elasticity η. In turn, Mt reduces the

share of each variable input. For example, the share of labor in production is

WtL̃t
Yt

=
η

Mt

× φθ
(
Wt

Pv,t

)1−θ

. (26)

Some algebra shows that the aggregate productivity Zt can be expressed in terms of

firm-level productivities z according to

Zt =

(∫ (
qt (z)

z

) 1
η

dHt (z)

)−η
. (27)
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The aggregate markup Mt is a cost-weighted arithmetic average5 of firm-level markups

Mt =

∫
µt(z)

vt(z)

Vt
dHt(z). (28)

We find it instructive to further decompose aggregate productivity Zt into a term that

captures the exogenous efficiency of individual producers and a term that summarizes their

past investment choices. To this end, let nit = (1−δ)i−1Mt−i denote the measure of surviving

producers of age i in period t. Aggregate capital Kt is

Kt =
∑
i

nit

∫
kit(e) dG(e)

where kit(e) = xt−i(e). We can then write the aggregate production function

Yt = EtK
1−η
t V η

t ,

where aggregate productivity is Zt = EtK
1−η
t and where Et is a measure of aggregate efficiency

Et =

(∑
i

nit

∫
qit(e)

e
dG(e)

)−1

,

that is, a quantity-weighted harmonic average of firm-level efficiency e.

Solution algorithm. We now outline how we solve the model. We use the aggregation

results above to calculate the aggregate production function and evaluate the representative

consumer’s optimality conditions, which are functions solely of aggregate variables, including

the aggregate markupMt and productivity Zt. Given a sequence ofMt and Zt we can solve

for the equilibrium of this economy at each date. We also note that for a given measure of

producers Ht(z), computing Mt and Zt is relatively straightforward. In particular, we can

scale the profit function in (8) by the demand index Dt and aggregate output Yt and write

π̃t(z) = max
q≥0

[
Υ′(q)q − At

(q
z

) 1
η

]
, (29)

where At is an aggregate statistic that summarizes the conditions relevant for an individual

firm, in particular

At :=
Pv,t
Dt

Y
1−η
η

t .

We find the optimal relative quantity q(z, A) for a firm of type z for any arbitrary value of

A by solving the first order condition

Υ′(q(z, A))q(z, A) = µ(q(z, A))
A

η

(
q(z, A)

z

) 1
η

. (30)

5Or a sales-weighted harmonic average as in Edmond, Midrigan and Xu (2015). See Appendix A.
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We then pin down the equilibrium value of At using the Kimball aggregator∫
Υ(q(z, At)) dHt(z) = 1,

which then gives us the equilibrium relative quantities, demand index, and prices

qt(z) = q(z, At),

Dt =

(∫
Υ′(qt(z))qt(z) dHt(z)

)−1

,

pt(z) = Υ′(qt(z))Dt .

From these we can compute the aggregate markup Mt and productivity Zt.
6

Given an initial conjecture for the sequence of Ht(z) during the transition, we can compute

the aggregate prices and quantities at each date and then use these, together with the free

entry condition (19) and an entrant’s optimal investment choice (17), to obtain an updated

sequence Ht(z). We then iterate on the implied fixed-point problem in the sequence Ht(z)

until convergence.

Steady state entry and capital stock. To build intuition, we briefly characterize the

steady-state capital stock K = N
∫
x(e) dG(e) and mass of firms N . Using (17) and aggre-

gating across all firms gives
K

Y
=

1− η
1
β
− 1 + δ

1

M
, (31)

so that the steady state capital stock is distorted by the aggregate markup M, just as the

static choices are. Similarly, evaluating (19) at steady state and simplifying gives

N

Y
=

1

κW

1
1
β
− 1 + δ

(
1− 1

M

)
, (32)

where the first term is the inverse of the cost of entering and the second and third term give

the expected discounted value of entering, which increases with the aggregate markup.

3 Efficient allocation

In this section we derive the efficient allocation in our economy by considering the problem

of a benevolent planner who faces the same technological and resource constraints as in

the decentralized economy. Comparing the efficient allocation chosen by the planner to the

6See Gopinath and Itskhoki (2010) and Amiti, Itskhoki and Konings (2017) for more details on solving
for the equilibrium in this setting.
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decentralized allocation reveals three channels through which markups distort outcomes in

the decentralized economy: (i) the aggregate markup acts like a uniform output tax, (ii)

markup dispersion gives rise to misallocation of factors of production, and (iii) markups

distort the entry margin.

Planner’s problem. The planner chooses how many varieties to create, how to allocate

factors of production, how much to invest, consume, and work so as to maximize the rep-

resentative consumer’s utility subject to the resource constraints for labor (21) and goods

(22), the law of motion for the distribution of productivity (20), the production functions (6)

and (7), and the Kimball aggregator (2). The initial condition for this problem is the initial

distribution of productivities H0(z).

We use asterisks to denote the planner’s allocation. It turns out to be convenient to solve

the planner’s problem by expressing aggregate output as a function of the history of past

entry M∗
t−i and investment x∗t−i choices. With this change of variables, the planner’s problem

can be written as maximizing

∞∑
t=0

βt

(
logC∗t − ψ

(L̃∗t + κM∗
t )1+ν

1 + ν

)
(33)

subject to the resource constraint for goods

C∗t +X∗t +B∗t =

(
∞∑
i=1

(1− δ)i−1M∗
t−i

∫ (
q∗it(e)

e x∗t−i(e)
1−η

) 1
η

dG(e)

)−η
V (L̃∗t , B

∗
t )
η, (34)

and the Kimball aggregator(
∞∑
i=1

(1− δ)i−1 M∗
t−i

∫
Υ (q∗it(e)) dG(e)

)
= 1, (35)

where q∗it(e) is the relative quantity of a productive unit that began i periods earlier with draw

e. In writing these two constraints we have used the constant exit rate δ and the expression

for aggregate productivity Zt in equation (27).

We again break the problem into two steps, first solving a static allocation problem and

then determining the remaining variables.

Planner’s static allocation. To determine q∗it(e) we first recognize that it is sufficient

to determine q∗t (z), since age i only matters through the choice of initial investment, which

in this notation is summarized by z. Then let λ∗1,t denote the multiplier on the planner’s
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resource constraint (34) and λ∗2,t denote the multiplier on the Kimball aggregator (35). The

first order condition that determines q∗t (z) can be written

Υ′(q∗t (z))q∗t (z) = A∗t

(
q∗t (z)

z

) 1
η

, (36)

where

A∗t =
λ∗1,t
λ∗2,t

Y ∗t Z
∗ 1
η

t . (37)

As in the decentralized equilibrium, the distribution of individual productivities only affects

q∗t (z) through the aggregate A∗t . We can therefore solve (36) for an arbitrary value of this

statistic and then find the specific value of A∗t that satisfies the Kimball aggregator (35).

Misallocation. Comparing the equilibrium allocation in (30) and the planner’s allocation

in (36) reveals the misallocation among existing firms in the decentralized equilibrium. Since

more productive firms have higher markups, they produce too little compared to the social

optimum and employ too little of the variable factors. Figure 3 illustrates the misallocation

by comparing the relative sizes of firms in the decentralized equilibrium to the relative size the

planner would allocate for them. The planner’s allocation is not log-linear in productivity, as

it would be with CES demand. The extra concavity reflects strongly diminishing marginal

productivity as relative quantity increases. As we discuss below, this feature of the model

implies that the gains from reallocating factors of production are not as high in this economy

as would be the case in an economy with CES demand (for a given distribution of markups).

Planner’s initial investment choice. Now consider the planner’s choice of how much to

invest in each new variety. Using λ∗1,t = 1/C∗t and X∗t = M∗
t

∫
x∗t (e) dG(e), the planner’s first

order condition for investment xt(e) can be written

x∗t (e) = (1− η)β
∞∑
i=1

(β(1− δ))i−1

(
C∗t+i
C∗t

)−1

Y ∗t+iZ
∗ 1
η

t+i

(
q∗t+i(e)

z∗t+i(e)

) 1
η

, (38)

where z∗t+i(e) = e x∗t (e)
1−η and q∗t+i(e) is shorthand for q∗i,t+i(z

∗
t+i(e)), etc.

This implies that the planner’s steady state capital/output ratio is

K∗

Y ∗
=

1− η
1
β
− 1 + δ

. (39)

Comparing this with the steady state capital/output ratio in the decentralized equilibrium,

given in (31) above, we see that the planner’s capital/output ratio is higher than in the de-

centralized equilibrium. In short, the decentralized equilibrium features too little investment

because of the aggregate markup distortion.
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Figure 3: Equilibrium and planner’s allocations compared
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Planner’s choice of new varieties. Now consider the planner’s choice of new varieties

M∗
t . As shown in Appendix B, the optimality condition that determines M∗

t can be written

κψC∗t L
∗ν
t = β

∞∑
i=1

(β(1− δ))i−1

(
C∗t+i
C∗t

)−1 ∫ [
ε∗t+i(e)− 1

]
p∗t+i(e)y

∗
t+i(e) dG(e), (40)

where we define

ε∗it(e) :=
Υ (q∗it(e))

Υ′ (q∗it(e)) q
∗
it(e)

,

and

p∗it(e) :=
Υ′ (q∗it(e))∫

Υ′(q∗t (z))q∗t (z) dH∗t (z)
.

The term ε∗it(e) is the inverse elasticity of the Kimball aggregator Υ(q) evaluated at the

planner’s allocation for a particular variety q∗it(e). The term p∗it(e) is the social value of an

additional unit of that variety, i.e., the planner’s counterpart to the market price.

Comparing the free-entry condition in the decentralized equilibrium (19) to the plan-

ner’s entry condition (40), we recover an important insight of Bilbiie, Ghironi and Melitz

(2008), Zhelobodko, Kokovin, Parenti and Thisse (2012) and Dhingra and Morrow (2016):

the planner’s incentives to create new varieties are determined by the inverse elasticity ε(e)

of the aggregator while the incentives for new firms to enter are determined by their markups

µ(e). CES demand is the knife-edge special case where these incentives coincide, i.e., where

µ(e) = ε(e) = σ/(σ − 1) for all e. Figure 4 plots markups µ(e) and the inverse elasticity

ε(e) against productivity. Low productivity firms have low markups and do not value entry
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Figure 4: Entry choice

as much as the planner values their entry. High productivity firms have high markups and

value entry more than the planner does.

In steady state, the mass of varieties chose by the planner is given by

N∗

Y ∗
=

1
1
β
− 1 + δ

1

κMPL∗

∫
(ε∗(e)− 1) q∗(e)

e
dG(e)∫ q∗(e)

e
dG(e)

,

where MPL∗ denotes the marginal product of labor for the planner. Likewise, in steady state

the mass of firms in the decentralized equilibrium is given by

N

Y
=

1
1
β
− 1 + δ

1

κMPL

∫
(µ(e)− 1) q(e)

e
dG(e)∫ q(e)

e
dG(e)

.

Whether theN/Y ratio is too low or too high compared to the efficient allocation is ambiguous

and depends on precise details of the parameterization.

To summarize, misalignment between the planner’s and the firms’ incentives to enter is

another source of inefficiency in this economy. The amount of entry in the decentralized

equilibrium is determined by the firm’s expected markups, which do not coincide with the

planner’s marginal valuation of new varieties except in the special case of CES demand.

Implementation. One way to implement the planner’s allocations in the decentralized

equilibrium is to subsidize production. Suppose that each firm receives a size-dependent

subsidy T (s) that depends on the amount the firm sells, s = py. It is straightforward to

show that the planner’s allocation can be implemented by setting a subsidy equal to

T (s) = Υ

(
s

p(s)Y

)
DY − s
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Figure 5: Optimal size-dependent subsidy

where D is the demand index in (4) and p(s) is the firm’s price. This subsidy ensures that

the private incentives to produce, invest, and enter are aligned with those of the planner.

Figure 5 illustrates the shape of the subsidy function. The left panel shows the average

subsidy, T (s)/s. Since Υ(0) > 0, the optimal subsidy is positive even if the firm does not

produce at all, T (0) > 0.7 This lump-sum component of the subsidy ensures that the amount

of entry is optimal and implies the average subsidy is U-shaped in the amount the firm sells.

The right panel shows the marginal subsidy T ′(s) which, unlike the average subsidy, is strictly

increasing in size. This is because the marginal subsidy is equal to the desired markup of a

firm of that size, T ′(s) = σ/(σ − q(s)ε/σ), which increases in the firm’s relative size.

4 Quantifying the model

In this section we first outline our calibration strategy and our model’s implications for the

cross-sectional distribution of markups. We then calculate the aggregate productivity losses

due to misallocation in this economy. Our calibrated model features a considerable amount

of markup dispersion and standard methods for estimating the losses due to misallocation

based on a constant demand elasticity, such as Hsieh and Klenow (2009), would conclude that

misallocation losses are large. But as we show, these standard methods based on a constant

demand elasticity significantly overstate the actual misallocation losses in our model.

7Since Υ′(0) < ∞, and we assume constant returns to capital and variable inputs, there is a cutoff level
of productivity e below which the firm does not produce since its price would be above the choke price.
Whether there is indeed a mass of firms whose productivity falls below this cutoff depends on the exact
parameterization of the model.
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Table 1: Parameterization

Panel A: Assigned parameters

β discount factor 0.96
ν labor supply elasticity 1
δ exit rate 0.10

η variable input elasticity 0.865
φ weight on labor 0.676
θ elasticity subs. between labor & materials 0.50

Panel B: Calibrated parameters

benchmark high ε/σ high M

σ average elasticity 11.55 15.36 6.52
ε superelasticity 2.18 6.14 0.79
ξ Pareto tail 6.66 6.69 4.17

4.1 Calibration strategy

The level and dispersion of markups in our model depend crucially on three underlying

parameters: (i) the average elasticity of demand σ, (ii) the sensitivity of a firm’s demand

elasticity to its relative size, as determined by the ‘superelasticity ’ parameter ε, and (iii) the

amount of productivity dispersion. For parsimony and as is standard in the literature we

assume that the distribution of productivity G(e) is Pareto with tail parameter ξ.

Intuitively, σ pins down the overall level of markups, ε pins down how markups µi and

hence a firm’s wage bill, wili ∼ piyi/µi vary with firm sales, and the Pareto tail parameter ξ

pins down the concentration of firm sales. We choose these three parameters by simultane-

ously matching, for the 2012 US economy, an estimate of the aggregate markup, key moments

of the distribution of sales for firms in 6-digit NAICS industries, and the relationship between

a firm’s wage bill (payroll) and sales for the 2012 US economy.8

8See https://www.sba.gov/advocacy/firm-size-data, which contains data on total sales, the number of
firms, and total wage bill for firms in about 15 revenue-based size classes.
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4.1.1 Assigned parameters

We assume that a period is one year and set the discount factor β = 0.96 and exit rate

δ = 0.1. We set the inverse of the Frisch elasticity of labor supply to ν = 1. We normalize

the disutility from labor supply ψ and the entry cost κ to achieve a steady-state output of

Y = 1 and a steady-state total mass of firms N = 1 for our benchmark economy. We set the

elasticity of substitution between materials and labor equal to θ = 0.5, and set the weight on

labor in production φ = 0.676 to match the 45% share of materials in total sales in the US

private business sector in 2012. Finally, we set the elasticity of the variable input, η = 0.865

to match the 0.15 ratio of private non-residential investment to private sector value added in

2012 in the US. We report all these parameter choices in Panel A of Table 1.

4.1.2 Calibrated parameters

In this section we explain how we choose values for the key parameters σ, ε, and ξ that

determine the amount of concentration in sales and level and dispersion of markups.

Aggregate markup. First, we require that our model matches an aggregate markup of

M = 1.15, corresponding to the estimate of Barkai (2017) for 2012. Intuitively, this moment

pins down the average elasticity σ.

Distribution of relative sales. Second, we require that our model matches the un-

weighted and weighted (by firm sales) distribution of relative sales of firms in each 6-digit

industry. We define relative sales as the average sales of firms in a given size class and in-

dustry relative to the average sales of all firms in that industry. For brevity, from now on we

refer to a group of firms in a given size class as firms. We pool observations of relative sales

across all industries and report moments of this distribution in the left column of Table 2.

Now consider Panel A of Table 2 which summarizes the unweighted distribution of relative

sales. In the data, 32.9% of all firms have average sales that are less then 1/10th of the

industry average. The vast majority of firms, some 87.7%, sell less then their industry

average. About 1% of all firms have sales that exceed 10 times the industry average and

about 0.1% of all firms sell more than 50 times the industry average. Now consider Panel

B of Table 2 which summarizes the sales-weighted distribution. The 32.9% smallest firms

that have relative sales below 1/10th of their industry average account for a total of 1.9% of

overall sales in the US. The 87.7% smallest firms that have relative sales below their industry

average together account for 15.4% of overall sales. Finally, the 1% of the firms whose sales

exceed 10 times their industry average account for a share of 1− 0.66 = 0.34 or 34% of total

sales and the 0.1% of firms whose sales exceed 50 times their industry average account for a

share of 1 − 0.951 = 0.049 or 4.9% of total sales. We choose the Pareto tail ξ to minimize

the distance between all these moments in the data and the model.
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Table 2: Distribution of Relative Sales

Panel A: Unweighted

US data benchmark high ε/σ high M

fraction of firms with

relative sales ≤ 0.1 0.329 0.366 0.442 0.209
relative sales ≤ 0.5 0.761 0.747 0.692 0.738
relative sales ≤ 1 0.877 0.848 0.798 0.852
relative sales ≤ 2 0.942 0.916 0.888 0.923
relative sales ≤ 5 0.979 0.968 0.965 0.971
relative sales ≤ 10 0.990 0.987 0.991 0.988
relative sales ≤ 50 0.999 0.999 1.000 0.999
relative sales ≤ 100 1.000 1.000 1.000 1.000

Panel B: Sales-weighted

US data benchmark high ε/σ high M

fraction of sales in firms with

relative sales ≤ 0.1 0.019 0.026 0.014 0.020
relative sales ≤ 0.5 0.088 0.128 0.091 0.156
relative sales ≤ 1 0.154 0.211 0.183 0.250
relative sales ≤ 2 0.271 0.323 0.338 0.364
relative sales ≤ 5 0.507 0.509 0.630 0.537
relative sales ≤ 10 0.660 0.661 0.847 0.671
relative sales ≤ 50 0.951 0.928 1.000 0.910
relative sales ≤ 100 0.978 0.977 1.000 0.963
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Figure 6: Relative wage bill vs. relative sales

Relationship between relative wages and relative sales. We now discuss the set of

moments that allow us to pin down the superelasticity ε. We calculate, for each size class in

each industry, the relative wage bill of firms in that size class, defined as the average wage

bill of firms in that size class in that industry relative to the average wage bill of firms in

that industry. The model implies that the relative wage bill of firm i depends on its relative

sales and relative markup according to

relative wage billi =
relative salesi

relative markupi
.

If ε is equal to zero, markups do not increase with firm sales and the relative wage bill would

increase one-for-one with relative sales. But if ε is positive, markups increase with firms

sales implying that the relative wage bill increases less than one-for-one with sales. The

extent to which the relative wage bill increases with relative sales is therefore informative

about the extent to which markups increase with firm size. By expressing both the wage

bill and sales in relative terms we are effectively subtracting industry-specific differences in

production functions (in say η or φ) and using within-industry variation to identify ε.

Figure 6 shows the relationship between the relative wage bill and relative sales in the

data. Each circle corresponds to one size class in a given industry and the diameter of the

23



circle indicates the total sales accounted for by firms in that particular size class. The dotted

line in the figure is the 45-degree line, which corresponds to an economy with ε = 0 in which

markups do not systematically increase with size. Though the pattern is difficult to see from

simply eyeballing the data, the relative wage bill increases less than one-for-one with sales.

The slope coefficient of a regression, weighted by firm sales, is equal to 0.964 when we restrict

the sample to firms with relative sales greater than 1 (0.970 for the full sample). Larger firms

thus have a smaller share of payments to labor, a pattern which our model interprets as

evidence that markups increase with sales.

There are of course other plausible explanations for such a pattern. For example, a

fixed (overhead) component to a firm’s wage bill would also imply that larger firms have a

disproportionately low wage bill.9 Similarly, this pattern could arise if larger firms outsource

a larger fraction of their activities or have a larger capital share. In this sense we view our

estimates as providing an upper bound on how rapidly markups increase with size.

We now explain how we use this evidence to estimate the superelasticity ε. Our model

implies a non-linear relationship between the relative wage bill and relative sales which is a

function of ε and the other parameters

log(relative wage billi) = F (log(relative salesi) ; ε),

with a higher ε implying a flatter slope. We can use this relationship to calculate what the

model predicts a firm’s relative wage bill should be given its relative sales for any given ε

in the steady state of the model. We then choose ε to minimize the distance between the

model’s prediction and the actual relative wage bill observed in the data∑
i

ωi
[
log
(
relative wage billdata

i

)
− F

(
log
(
relative salesdata

i ; ε
))]2

,

where ωi is the overall sales share of firms in each size class.

To summarize, we jointly choose the parameters σ, ε and ξ to (i) match a 15% aggregate

markup, (ii) match the distribution of relative sales summarized in Table 2, and (iii) minimize

the distance between the model’s predictions for a firm’s wage bill as a function of its relative

sales and the corresponding observations in the data. For our benchmark calibration we pool

together data from all industries. In our robustness section below we provide alternative

estimates of ξ and ε based on various NAICS industries.

Model Fit. Panel B of Table 1 above reports the parameter values that minimize our

objective function. The elasticity of substitution σ is equal to 11.55, the superelasticity ε

is equal to 2.18, while the Pareto tail coefficient ξ is equal to 6.66. Though our estimate of

9See Autor, Dorn, Katz, Patterson and Reenen (2017b); Bartelsman, Haltiwanger and Scarpetta (2013).

24



ε/σ = 0.189 is much lower than typically assumed in macro studies that attempt to match

the response of prices to changes in monetary policy or exchange rates, it is in line with

the micro estimates surveyed by Klenow and Willis (2016). In our robustness section below

we present alternative estimates of ε/σ derived from more disaggregated product-level data

on markups and sales for the panel of Taiwanese manufacturing firms studied by Edmond,

Midrigan and Xu (2015). We find that a ratio of about ε/σ of about 0.15 best fits the cross-

sectional relationship between markups and market size in that micro data, an estimate very

close to that produced by our benchmark calibration strategy.

With these parameters the model matches the aggregate markup of 15% exactly. Table 2

shows that the model reproduces well the concentration in industry sales observed in the

data, especially at the top. For example, in the data the fraction of firms that sell at least 10

times more than their industry average is equal to 1% and these firms account for 34% of all

sales. In the model the fraction of firms that sell at least 10 times more than their industry

average is equal to 1.3% and these firms account for 33.9% of all sales. Finally, the solid line

in Figure 6 shows the model’s predictions for how the relative wage bill varies with relative

firm size. Recall that in the data the slope coefficient of a regression, weighted by firm sales,

is equal to 0.964 when we restrict the sample to firms with relative sales greater than 1. The

corresponding elasticity in the model is 0.965.

Alternative ‘high ε/σ’ calibration. The magnitude of ε/σ is critical for the model so

we now provide some intuition as to how this ratio is identified. In particular, we report

results for an alternative ‘high ε/σ’ calibration with ε/σ = 0.4, about twice as large as

our benchmark. For this experiment we re-calibrate the Pareto tail parameter ξ to match

the size distribution of firms and the elasticity parameter σ to match the 15% aggregate

markup while continuing to assign all other parameters as before. We report the re-calibrated

parameter values and the model’s fit for the distribution of sales in Table 1 and Table 2 above.

Importantly, this version of the model provides much worse fit to the concentration in sales at

the top. Since high ε/σ means that markups are increasing rapidly with size, this version of

the model predicts too few large firms compared to the data. Figure 7 shows this economy’s

predictions for how the relative wage bill changes with relative sales. The poor fit at the top

of the distribution is evident. With a higher ε the model implies much higher markups for

the largest firms and therefore a much smaller wage bill relative to sales and is incapable of

reproducing the relationship between the wage bill and sales in the data.10

10We have also used the methods proposed by Andrews, Gentzkow and Shapiro (2017) to examine this
argument more formally. We find that the derivate of the moments for wage bill relative to sales and relative
sales concentration are both very responsive to the value of ε/σ and in this sense ε/σ is locally identified.
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Figure 7: Alternative high ε/σ calibration provides worse fit

4.2 Markup distribution

Our model’s implications for the steady-state markup distribution are given in Panel A

of Table 3. Here we report the aggregate markup M, i.e., the cost-weighted average of

individual markups, and the cost-weighted percentiles of the markup distribution for both

our benchmark and the alternative high ε/σ calibration. We also compare our model’s

implications to estimates of markups from the publicly available Compustat data for the US

for 2012. To calculate these, we follow the approach of De Loecker and Eeckhout (2017) using

the ratio of sales to the cost of goods sold, scaled by estimates (at the 2-digit industry level)

of the cost elasticity in the production function from Karabarbounis and Neiman (2018).11

The distribution of markups in our benchmark model ranges from 1.1 at the 25th percentile

to 1.24 at the 90th percentile. The dispersion of markups increases very little in the high ε/σ

economy which implies a 25th percentile of 1.08 and a 90th percentile of 1.27. The Compustat

data implies an aggregate markup of 1.26, larger than our calibration target of 1.15. The

Compustat data also implies more dispersed markups than in our model. We do not find

11If we include selling, general and administrative expenses (SGA) in our measure of costs, as Traina (2018)
does, then the cost-weighted average markup falls from 1.26 to 1.21.
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Table 3: Steady state implications

Panel A: Distribution of markups (cost-weighted)

Compustat benchmark high ε/σ high M

aggregate markup, M 1.26 1.15 1.15 1.25

p25 markup 0.97 1.10 1.08 1.18
p50 markup 1.12 1.14 1.13 1.24
p75 markup 1.31 1.19 1.19 1.31
p90 markup 1.69 1.24 1.27 1.39

Panel B: Productivity losses from misallocation

benchmark high ε/σ high M

actual losses, log(E∗/E)× 100 1.2 2.1 1.3

losses with CES and σ̄ = M
M−1 8.4 16.7 8.7

these discrepancies between the model and the data critical for two reasons. First, the sample

of Compustat firms includes only a subset of the very largest firms in the US, those that are

publicly traded. By contrast, our calibration uses the estimates of the aggregate markup

from Barkai (2017) for the entire US private sector. Second, the ratio of sales to costs in the

data may reflect distortions other than markups (for example credit constraints) or perhaps

may vary across firms due to non-convexities, differences in technologies or costs of adjusting

factors of production. Indeed, we find that most of the markup dispersion in the Compustat

data is not systematically related to firm size.12

Our observation that the aggregate markup in the 2012 Compustat data is about 1.26 may

seem to contradict the findings of De Loecker and Eeckhout (2017) who report an aggregate

markup of about 1.6. But there is in fact no contradiction. The measure of aggregate

markup we construct is the cost-weighted average of individual markups (equivalently, the

harmonic sales-weighted average), since this is the object that distorts the aggregate first-

order conditions and results in welfare losses. By contrast, De Loecker and Eeckhout (2017)

12See also Hall (2018) who finds that the average US markup (weighted by value-added shares) increased
from 1.12 in 1988 to 1.38 in 2015 in KLEMS data.
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Figure 8: Cost-weighted vs. sales-weighted average markups, Compustat data

Solid blue line shows the sales-weighted average of firm-level markups, as in De Loecker and Eeckhout (2017). Dashed red
line shows the cost-weighted average of firm-level markups. The former has increased by a larger amount, but the latter is the
relevant measure of the aggregate distortion to first-order conditions that results in welfare losses.

report the arithmetic sales-weighted average of markups. As Figure 8 shows, the latter has

increased much more in the last several decades than the cost-weighted average, owing to an

increase in markups at the top of the distribution.13 Viewed through the lens of our model,

the increase in the sales-weighted average markup overstates the increase in the distortions

to inputs because it implicitly overstates the amount of inputs hired by high-markup firms.

Alternative ‘high M’ calibration. Our benchmark calibration targets an aggregate

markup of M = 1.15 corresponding to the estimates from Barkai (2017) for the entire

US private sector. To assess the sensitivity of our results to this target for the overall level

of market power we also report results for an alternative ‘high M’ calibration that targets

M = 1.25 corresponding to the cost-weighted average of markups in the Compustat data.

We re-calibrate the parameters σ, ε and ξ to match this higher aggregate markup but keeping

our other target moments the same as in our benchmark.14 We report the re-calibrated pa-

rameter values and the model’s fit for the distribution of sales in Table 1 and Table 2 above.

This version of the model provide a similar fit to the concentration data as our benchmark,

13See also Figure B.4(b) in De Loecker and Eeckhout (2017) which reports a very similar pattern.
14We also adjust the weight on labor in production to φ = 0.610 and the elasticity of the variable input to

η = 0.853 so that we continue to match our targets for the share of materials in total sales and the share of
investment in total value added.
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though it predicts slightly too many firms at the very top when compared to the data (or our

benchmark model). As shown in Panel A of Table 3 above, this version of the model implies

larger and more dispersed markups than our benchmark model but does not fully capture

the dispersion in markups in the Compustat data.

4.3 Implications for misallocation

The markup dispersion generated by our model implies that there are aggregate productivity

losses due to misallocation. How large are these losses due to misallocation? As shown in

Panel B of Table 3 above, aggregate productivity E in the steady state of our benchmark

economy is 1.2% below the level of aggregate productivity that could be achieved by a

planner facing the same technology and resource constraints who could optimally reallocate

all factors of production (including capital) across producers. Since the high ε/σ calibration

implies larger and more dispersed markups, it implies a larger 2.1% loss from misallocation.

Our benchmark 1.2% loss from misallocation is an economically substantial effect but

is much smaller than the losses from misallocation that have featured prominently in the

literature, e.g., Restuccia and Rogerson (2008) and Hsieh and Klenow (2009).15 We now show

that we can reconcile our findings with these estimates in the literature by recognizing that

existing estimates typically rely on the assumption of CES demand, whereas our calculations

use the actual demand system implied by the Kimball aggregator. We show that incorrectly

assuming CES demand implies losses from misallocation that are much larger.

Misallocation with a CES aggregator. Suppose a researcher uses data on the distri-

bution of markups µ(e) generated by our model but incorrectly specifies the final goods

aggregator to be of the CES, rather than the Kimball form:

Y =

(∫
y(e)

σ̄−1
σ̄ dG(e)

) σ̄
σ̄−1

,

for some constant elasticity σ̄ > 1 where intermediate goods are produced with a constant

returns technology in, say, labor and in which firms differ in their productivity e, so that

y(e) = el(e). Then aggregate labor productivity in the efficient allocation is given by

E∗ =

(∫
eσ̄−1 dG(e)

) 1
σ̄−1

,

while the actual level of productivity

E =

(∫ (
e

µ(e)

)σ̄−1

dG(e)

) σ̄
σ̄−1

∫ (
e

µ(e)

)σ̄
1
e
dG(e)

,

15See also Baqaee and Farhi (2018) who proposes an alternative non-parametric approach to calculating
the evolution of these misallocation losses over time.
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is below that under the efficient allocation whenever markups are dispersed.

In Panel B of Table 3 we report the loss implied by comparing E and E∗ calculated using

the CES formula. For our benchmark model we set σ̄ = M
M−1

= 7.67, i.e., the constant

elasticity that rationalizes our model’s aggregate markup of M = 1.15. Assuming a CES

aggregator we would conclude that misallocation losses are 8.4%, almost 7 times larger than

the actual loss of 1.2% implied by the Kimball aggregator. For our high M = 1.25 economy

we set σ̄ = M
M−1

= 5. This gives similar results to our benchmark. The CES formula implies a

loss of 8.7% whereas the true loss implied by the Kimball aggregator is 1.3%. For our high ε/σ

economy markups are more dispersed so the CES formula implies a loss from misallocation

of 16.7%, much larger than the 2.1% true loss implied by the Kimball aggregator.

Why does the CES measurement overstate the true misallocation losses? The

CES measurement overstates the gains the planner could achieve by reallocating factors of

production from low e firms to high e firms. To understand this, observe that the true

demand elasticity with the Kimball technology is

− Υ′(q)

Υ′′(q)q
= σq−

ε
σ ,

which implies that with the Kimball technology the planner encounters strongly diminishing

marginal product from allocating more factors to firms that already have high q. Loosely

speaking, it is as if the planner encounters a form of ‘near-satiation ’. It is of course precisely

this form of near-satiation that leads high e firms in the decentralized equilibrium to charge

high markups. For high q firms lowering prices generates few additional sales so higher

productivity simply translates to higher markups. The CES assumption interprets these high

markups as a great potential source of gains from reallocation because it does not recognize

that reallocating factors towards such firms will run into the same strongly diminishing

marginal product that generates high markups in the first place.

The key point is that explicitly modeling the source of markup variation has important

implications for inferring their costs. Dispersion in markups may not necessarily be as costly

as implied by CES calculations which do not take an explicit stand on the underlying source

of the distortions in the firms’ optimality conditions. Of course, these results reflect a very

specific source of markup variation, namely Kimball demand. But in our robustness section

below we show that similar conclusions are reached in an alternative model of oligopolistic

competition calibrated to match the same concentration facts.
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5 How costly are markups?

We now present our main quantitative results on the welfare costs of markups. We answer two

questions. First, how large are the total welfare costs of markups in our economy? Second,

what is the relative importance of the three channels by which markups distort allocations?

We answer the first question by asking how much the representative consumer would ben-

efit from a full implementation of the efficient allocation that eliminates markup distortions,

taking all of the transitional dynamics into account. We find that the total welfare costs of

markups are large. Implementing the efficient allocation results in a consumption equivalent

welfare gain of about 7.5%.

We answer the second question by removing each of the three channels in isolation using

offsetting subsidies. We show that a uniform output subsidy of 15% that exactly offsets the

aggregate markup goes a long way towards achieving full efficiency, removing about two-

thirds of the total costs of markups. We show that size-dependent taxes and subsidies that

remove misallocation while keeping the aggregate markup unchanged remove about one-third

of the total costs of markups. Although the channels are not strictly additive, this suggests

there is not much scope for large gains from correcting distortions to the entry margin. Indeed

we find that subsidizing entry removes at most about 1/10th of the total cost of markups.

5.1 Total cost of markups

We first contrast the distorted steady state in our decentralized equilibrium to that chosen

by a planner, then calculate the transitional dynamics of the economy from the initial dis-

torted steady state to the efficient steady state, and finally calculate the welfare gains from

implementing the efficient steady state taking these transitional dynamics into account.

Steady state comparison. Table 4 compares the distorted steady state to the efficient

steady state. In the efficient steady state output is higher by 37%, consumption by 30.5%,

and employment by 16.7% relative to the distorted steady state. The efficient steady state

also calls for more product variety, the mass of firms is higher by 15.7%. The capital stock

is 50.9% higher. Aggregate efficiency is 3.8% higher. As discussed above, misallocation only

reduces efficiency in our benchmark economy by 1.2%, so the bulk of this increase in efficiency

is due to the increase in product variety, not the removal of misallocation.

Welfare gains from implementing efficient allocation. We calculate the welfare gains

by solving for the planner’s optimal paths for investment, variety creation, labor supply, etc,

starting from the distribution H0(z) in the distorted steady state. Both the mass of varieties

and the amount of intangible capital for each firm are initially distorted, so the transitional
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Table 4: Steady state allocations under alternative policies

uniform remove entry
efficient output subsidy misallocation subsidy

log deviation from benchmark, ×100

output, Y 37.0 33.0 3.2 4.5
consumption, C 30.5 24.9 4.1 6.3
employment, L 16.7 15.5 0.6 3.4

mass of firms, N 15.7 6.4 3.2 20.3
capital, K 50.9 47.0 3.2 4.6
aggregate efficiency, E 3.8 1.1 1.7 3.4

welfare gains, CEV, % 7.5 4.9 2.5 0.7

dynamics are long-lasting, reflecting both the planner’s desire to smooth consumption and

the irreversibility of the initial intangible investment choices.

Figure 9 shows the planner’s choices during the transition from the distorted steady state

to the efficient one. The upper-left panel shows that the planner increases the amount of

dispersion in investment across the low and high productivity firms. The upper-right panel of

the figure shows that consumption increases gradually, owing to the representative consumer’s

preference for consumption smoothing, but employment increases on impact, owing to the

increase in aggregate efficiency and the removal of the implicit output tax. Finally, the

bottom two panels of Figure 9 show that investment in both varieties and physical capital

overshoots initially, leading to a rapid increase in the economy’s two types of capital.

The last row of Table 4 above reports the welfare gains for the representative consumer

in consumption-equivalent units including the transition, i.e., these take into account the

deferred increase in consumption as investment builds up and the overshooting of employment

during the transition. We find that the representative consumer needs to be compensated

with an additional 7.5% consumption in each period in order for her to be indifferent between

the initial distorted steady state and the transition to the efficient steady state.

5.2 Relative importance of each channel

We now decompose the overall gains into the three channels by which markups distort al-

locations, i.e., the aggregate markup, misallocation, and inefficient entry. We do this by

removing each of the three channels in isolation using offsetting subsidies. These subsidies

are financed by lump-sum taxes levied on the representative consumer. We view these ex-
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Figure 9: Transition to efficient allocation

periments as simply isolating the role of each distortion and illustrating the welfare costs of

markups. The actual welfare consequences of such schemes would of course be much more

complex in economies with heterogeneous consumers and other frictions.

Removing aggregate markup. We first study the consequence of introducing a uniform

output subsidy χ for all producers that eliminates the aggregate markup distortion.

A firm’s profits in this environment are

πt(z) = max
pt(z)

(1 + χ) pt(z)yt(z)− Pv,tvt(z),

and its optimal price is

pt (z) = µt (z)
1

η

1

1 + χ
Pv,t

vt (z)

yt (z)
.

The subsidy thus increases the steady state intangible capital to output ratio,

K

Y
=

1− η
1
β
− 1 + δ

1 + χ

M
,

the variable input cost to sales ratio,

PvV

Y
= η

1 + χ

M
,

as well as the mass of firms to output ratio,

N

Y
=

1 + χ

κW

1
1
β
− 1 + δ

(
1− 1

M

)
.
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Figure 10: Transitional dynamics with uniform output subsidy

We set 1 + χ =M = 1.15, to entirely eliminate the aggregate markup distortion.

Table 4 above reports the effect of introducing the output subsidy on the steady state

of our benchmark model. The subsidy increases output by 33%, consumption by 25%, and

employment by 16%. These increases are only slightly smaller than those from eliminating

all markup distortions. The key difference between the efficient allocation and the economy

with a uniform output subsidy is the lower efficiency E in the latter. This lower efficiency

reflects the continued presence of misallocation and the somewhat smaller mass of firms.

Figure 10 shows the transitional dynamics after the introduction of the uniform subsidy.

These transitions are very similar to when we remove all markups distortions, with one

important exception. Under the efficient allocation the planner chooses to increase overall

concentration, and does this by increasing the amount of investment in more productive firms

and reducing the amount of investment in less productive firms. This outcome cannot be

reproduced by a uniform output subsidy. Nevertheless, as the last row of Table 4 shows,

a uniform output subsidy that eliminates the aggregate markup increases welfare by 4.9%,

about two-thirds of the 7.5% total costs of markups.

Removing misallocation. We next consider size-dependent subsidies that equate the

marginal product of factors across firms but leave the aggregate markup unchanged. Table 4

shows that such subsidies would have a modest impact, increasing output by 3.2%, consump-

tion by 4.1%, and employment by 0.6%. Aggregate efficiency increases by 1.7%, reflecting
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both the removal of misallocation and the 3.2% increase in the mass of firms that results

from subsidies that disproportionately benefit high productivity firms. Overall, removing

misallocation increases welfare by 2.5%, about one-third of the total costs of markups.

Although the three channels we identify are not additive, taken together the aggregate

markup and the misallocation channels seem to account for the bulk of the costs of markups.

We now demonstrate that indeed the costs due to inefficient entry are quite small.

Subsidizing entry. We now consider a uniform subsidy χ that reduces the cost of creating

a new variety to 1
1+χ

and increases the mass of firms to

N

Y
=

1 + χ

κW

1
1
β
− 1 + δ

(
1− 1

M

)
.

We calculate the gains from such a policy for many values of χ. We find that the largest

gains from such a policy occur when the entry subsidy is χ = 0.297 which causes the steady

state mass of firms to increase by 20.3%. Table 4 shows that this subsidy has a modest effect

on economic activity, increasing output by 4.5%, consumption by 6.3%, and employment by

3.4%. Aggregate efficiency increases by 3.4%, reflecting the increase in variety. But these

increases in economic activity do not lead to similarly-sized welfare gains. The welfare gains

from this entry subsidy are 0.7%, less then 1/10th of the total cost of markups. Larger entry

subsidies can actually backfire and reduce welfare. For example, a subsidy of χ = 0.69 that

increases the mass of firms by 50% would lead to a welfare loss of 0.2%. Such losses occur

when too much labor is allocated to variety creation as opposed to production.

Why are the welfare gains from entry subsidies so low? It turns out that increasing the

number of firms has virtually no effect on the aggregate markup or losses from misallocation.

Figure 11 illustrates the dynamics of the economy after the introduction of an entry subsidy

χ = 0.297 which increases the number of firms by 20.3%. The aggregate markup falls by a

tiny amount, from 1.150 to 1.149. Though aggregate efficiency increases, it does so entirely

due to love-of-variety effects, not due to a reduction in misallocation. Overall, the welfare

gains from such an entry subsidy are small because consumption must fall and employment

must rise to finance the increased investment in new firms.

The result that more competition does not decrease the aggregate markup may appear

counterintuitive but is, in fact, a robust result in a large class of models in the international

trade literature which have shown that the removal of trade costs (which subjects domestic

producers to more competition) leaves the markup distribution unchanged.16 To understand

this result, recall that the aggregate markup is a cost-weighted average of firm-level markups

16See Bernard, Eaton, Jensen and Kortum (2003) and Arkolakis, Costinot, Donaldson and Rodŕıguez-Clare
(2017) who show that the markup distribution is invariant to changes in trade costs in models where variable
markups arise due to limit pricing and monopolistic competition with non-CES demand, respectively.
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Figure 11: Transitional dynamics with entry subsidy

µ(q). An increase in the number of firms has two effects on this weighted average. The direct

effect is a reduction in the relative quantity q and hence a reduction in the markups µ(q)

of each firm. But there is also an important compositional effect. Recall that in our model,

small firms face more elastic demand. This makes them more vulnerable to competition

from entrants. By contrast large firms face less elastic demand and are less vulnerable to

competition from entrants. A entry subsidy that increases the number of firms causes small,

low markup firms to contract by more than large, high markup firms and the resulting

reallocation means high markup firms get relatively more weight in the aggregate markup

calculation. In our model, this offsetting compositional effect is almost exactly as large as the

direct effect so that overall the aggregate markup falls by a negligible amount. We develop

this argument more formally in Appendix C.
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Figure 12: Effect of entry subsidy on markups

We illustrate the two offsetting effects in Figure 12. For visual clarity, we consider an

extreme parameterization in which we choose the entry subsidy large enough to triple the

number of firms. Notice in the left panel that markups fall for all firms when the number

of firms increases. The right panel shows that the most efficient firms lose only about 5%

of their employment. By contrast, the least efficient firms contract their employment by a

lot more and indeed some find it optimal to shut down altogether. Though we have derived

this result in a quite specific model of monopolistic competition, in our robustness section

below we show that similar conclusions are reached in an alternative model of oligopolistic

competition calibrated to match the same concentration facts.

The marginal gains from entry are even smaller. As reported in Table 4, the welfare

gains from the optimal entry subsidy are 0.7%. While smaller than the other channels, these

gains may still seem large in absolute terms. But it is important to observe that the marginal

contribution from the entry channel is much smaller than 0.7%, on the order of 0.1%. That

is, if we use a uniform output subsidy to eliminate M and also eliminate misallocation then

we account for about 7.4% of the total 7.5% costs leaving only around 0.1% to be explained

by entry. Since we have seen that the entry channel has a negligible effect on the aggregate

markup itself, most of the difference between the 0.7% for the optimal entry subsidy and

this 0.1% is due to the effect of entry on misallocation. Another way to see this is that if we

simultaneously (i) set a uniform output subsidy of 15% to eliminateM and also (ii) compute

the optimal entry subsidy we find that this joint policy can achieve a welfare gain of 5.0%

as opposed to the 4.9% we find from the uniform output subsidy alone, again suggesting

that the marginal gains from the entry subsidy are on the order of 0.1%. In this sense, we

conclude that the gains from the entry channel are negligible.
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Table 5: Steady state allocations in high M calibration

uniform remove
efficient output subsidy misallocation

log deviation from benchmark, ×100

output, Y 67.6 63.3 3.4
consumption, C 56.8 50.4 4.1
employment, L 26.3 25.1 0.3

mass of firms, N 15.9 9.7 0.2
capital, K 90.0 85.7 3.4
aggregate efficiency, E 5.6 2.6 1.3

welfare gains, CEV, % 18.6 15.2 3.0

Welfare results for our alternative ‘high M’ calibration. We have also calculated

the welfare costs of markups in our alternative calibration that targets an aggregate markup

of M = 1.25, as in the Compustat data. Not surprisingly, since the aggregate markup is

larger the distorted steady state is much further from the efficient steady state. As reported

in Table 5, in the efficient steady state output is higher by 67.6%, consumption by 56.8%,

and employment by 26.3% relative to the high M steady state. The total welfare costs of

markups are correspondingly larger. The representative consumer needs to be compensated

with an additional 18.6% consumption in each period in order for her to be indifferent between

the high M steady state and the transition to the efficient steady state. In this sense, the

total welfare costs of markups are more than twice as large in the M economy as in our

benchmark. The high M economy has both larger and more dispersed markups than the

benchmark, but we again find that it is the aggregate markup itself that accounts for most

of the welfare costs. A 25% uniform output subsidy that eliminates the aggregate markup

increases welfare by 15.2%, more than four-fifths of the 18.6% total costs of markups in this

alternative calibration. In other words, the aggregate markup channel is even more important

in this alternative calibration than it is in our benchmark. Removing misallocation increases

welfare by 3%, slightly higher than in our benchmark. Again we find that, taken together,

the aggregate markup and misallocation channels account for almost all the costs of markups.

5.3 Explaining the rise in markups

So far we have focused on our model’s normative implications. But given the pronounced

rise in markups observed in US data over recent decades, it is worth asking if our model can
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shed light on this phenomenon.

Problem with the barriers to entry story. One explanation for the rise in markups is

a rise in entry barriers and a resulting decline in competition.17 Our model casts doubt on

this explanation. In our model, a rise in entry barriers of this kind would counterfactually

reduce concentration by shifting production to less efficient firms that can now survive due to

less intense competition. And moreover this reallocation of production towards less efficient

firms would leave the aggregate markup essentially unchanged, despite an increase in firm-

level markups, because of the compositional effects illustrated in Figure 12 above.

Given that an increase in entry barriers cannot explain the patterns in the data, what are

the forces that could potentially rationalize the observed increase in markups? We briefly

consider two other possible explanations: (i) a decline in antitrust enforcement, as emphasized

by Peltzman (2014) and Grullon, Larkin and Michaely (2017) and others, and (ii) produc-

tion technologies that are more intensive in intangible capital and hence more scalable, as

emphasized by Haskel and Westlake (2017).

Decline in antitrust enforcement. A detailed model of mergers and acquisitions is be-

yond the scope of this paper. We model the effects of antitrust policy in a simple reduced-form

way. Specifically, we view antitrust policy as a schedule of size-dependent investment taxes.

Our interpretation of a reduction in the enforcement of antitrust policy is then a decline in

the progressivity of these size-dependent investment taxes which disproportionately benefits

large, high markup firms and increases markups and concentration.

To this end, let T (x) denote the tax paid by a firm that wants to invest x with

T (x) = τ0x
1+τ1 − x.

The firm’s tax-inclusive expenditure is then τ0x
1+τ1 . Here the parameter τ1 determines the

progressivity of the tax with a positive τ1 implying higher marginal taxes for larger firms,

while τ0 determines the average tax rate. Clearly, a progressive tax schedule disproportion-

ately hurts larger, more productive firms. Indeed, the investment choices in this economy

are proportional to

x(e) ∼
(
q(e)

e

) 1
1+ητ1

,

and therefore scale less with productivity than they would in the absence of taxes. Figure 13

shows that when τ1 is positive, both capital and the amount firms sell become less dispersed.

To illustrate the effects of these taxes, we choose τ1 = 0.80 which reduces the sales share

of the top 1% of firms from 0.30 in our benchmark to 0.18. This corresponds to the 60%

17See Grullon, Larkin and Michaely (2017) and Gutiérrez and Phillippon (2017) for discussion.
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Figure 13: Effect of size-dependent investment taxes

increase in the top 1% sales share in the Compustat data from 1980 to 2012. We set τ0 = 0.61

to keep the capital-to-output ratio K/Y unchanged relative to our benchmark model.

Table 6 compares the steady states in the two economies, one with 1980 levels of con-

centration and size-dependent investment taxes, the other our benchmark model with 2012

levels of concentration but without size-dependent investment taxes. Returning the economy

to 1980 levels of concentration in this way would reduce the aggregate markup, from 1.15 to

1.12. This is a much larger effect than the entry subsidy we discuss above. But the reduction

in the aggregate markup comes at a considerable cost. The losses from misallocation are now

9.3%, much larger than the 1.2% in our benchmark. Consequently, aggregate efficiency in

the economy falls by 4%, despite a 22% increase in the mass of firms. Output is lower by

11% and consumption is lower by 21% despite a 9% increase in employment.

Overall we find that policies to limit concentration can be costly. Even though they

succeed in reducing the level of markups, especially at the top, they result in considerable

misallocation across firms thereby generating large efficiency losses. Empirically, this also

suggests that if the rise in concentration and markups observed in recent US data is due to

a reduction in, say, antitrust enforcement, then it may be the case that the overall level of

markups rose yet at the same time misallocation fell. This is admittedly speculative, but is

consistent with Baqaee and Farhi (2018) who document that the increase in concentration

and markups in the US has been accompanied by an improvement in allocative efficiency.
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Table 6: Effect of size-dependent investment taxes

benchmark size-dependent taxes

top 1% sales share 0.30 0.18
top 5% sales share 0.58 0.37

aggregate markup 1.15 1.12
losses from misallocation, % 1.2 9.3

log-deviation from benchmark, ×100

mass firms, N – 22.0
aggregate efficiency, E – −4.4

output, Y – −11.4
consumption, C – −20.5
employment, L – 8.9

Intangible capital and scalability. Recently Haskel and Westlake (2017) have argued

that the advent of technologies that are intensive in intangible capital — in design, branding,

R&D, etc — have made production technologies more scalable. One simple interpretation

of this idea is that production functions are beginning to exhibit less diminishing returns to

scale. This means that a given amount of dispersion in productivity will generate a larger

amount of dispersion in output and hence in markups. This argument suggest an alternative,

technological, interpretation of the simultaneous rise in concentration and markups to go

along side a decline in antitrust enforcement. Still, regardless of whether the simultaneous

rise in concentration and markups is due to changes in technology, changes in regulation, or

some mix of the two, our key point is that it may be costly to undo these changes. Size-

dependent policies that reduce concentration in an attempt to bring down the overall level of

markups do so at the cost of increasing misallocation and reducing aggregate productivity.

6 Firms with a life-cycle

In this section we consider an extension of our benchmark model that allows firms to have

a life-cycle, starting out small and growing over time, as in Hsieh and Klenow (2014). In

this model, firms start out with relatively low initial productivity and it takes some time for

their productivity, and hence their size, to grow to their long-run levels. Because firms start

out relatively small their markups, and hence their flow profits, also start out small and take
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time to grow to their long-run levels. In this sense, the returns to the firm’s initial investment

are backloaded.

Our goal in this section is to assess to what extent this backloading of returns acts to

amplify the entry distortion channel of markups. Since firms discount their flow profits,

the backloading of returns acts as a disincentive to entry. The planner also faces a form of

backloaded returns to the creation of new varieties, i.e., the planner also recognizes that the

productivity of entrants will take time to grow, but offsetting this the planner internalizes

the love-of-variety effect and so intrinsically values even low productivity varieties. This

suggests that the backloaded returns may have a larger effect on the returns to entry in the

decentralized equilibrium as compared to the planner’s allocation, thereby amplifying the

entry distortions and increasing the value of an entry subsidy. In fact, we find that this is

not the case. If anything, we find that the gains from an entry subsidy are slightly lower

than in our benchmark model.

Setup. We suppose that the efficiency of a firm of age i = 1, 2, . . . is the product ehi of its

initial draw e from the Pareto distribution G(e) and a deterministic age component hi that

evolves according to

log hi = (1− ρh) log h̄+ ρh log hi−1, i = 1, 2, . . . (41)

with h0 = 1. A firm with of age i with efficiency ehi and sunk investment xt(e) produces

output yit(e) = ehixt(e)
1−ηvit(e)

η where vit(e) denotes the firm’s composite variable inputs.

As in the benchmark model, we can write the firm’s static profits πt(z) and markup µt(z) as

a function of their overall productivity z = ehx1−η and as in the benchmark model the firm’s

initial investment is chosen to maximize the expected discounted present value profits. But

now the choice of investment xt(e) sets the initial condition for the firm’s overall productivity

zit(e) = ehixt(e)
1−η which then increases with age and which delivers a stream of profits

πt+i(ehixt(e)
1−η) for i = 1, 2, . . . . By contrast, in the benchmark model the firm’s overall

productivity is constant once xt(e) has been chosen.

Given the law of motion for hi in (41), a firm with initial draw e chooses xt(e) to maximize

−xt(e) + β

∞∑
i=1

(β(1− δ))i−1

(
Ct+i
Ct

)−1

πt+i
(
ehi xt(e)

1−η)
Since overall productivity increases with age, flow profits also increase with age. In this sense,

the returns to the firm’s initial investment are backloaded.

Calibration. We choose values for the two new parameters, ρh and h̄, to match the life-

cycle of plants documented by Hsieh and Klenow (2014). In particular, we choose ρh = 0.918

and h̄ = 0.425 so that (i) the average employment of middle-aged firms (10-14 years old) is two
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times the average employment of young firms (less than five years old) and (ii) the average

employment of old firms (more than 25 years old) is three times the average employment

of young firms. We then calibrate the three key parameters of the model, the Pareto tail

parameter ξ, the average elasticity σ and the superelasticity ε, using the same strategy as

for our benchmark model. Matching our target moments for this life-cycle model requires

ξ = 6.91, σ = 11.46 and ε = 2.16, very similar to our benchmark parameter values.

We report the fit to the distribution of relative sales and the implied markup distribution

for this version of the model in Table 7. This version of the model fits the data slightly better

than our benchmark model and implies an almost identical distribution of markups.

Results. We report the welfare costs of markups for this firm life-cycle model in Table 8.

The first column compares the efficient steady state to the distorted steady state of the decen-

tralized equilibrium. In the efficient steady state, output is higher by 31.9%, consumption by

26.8%, and employment by 15.2% relative to the distorted steady state. As in the benchmark

model, the efficient steady state also calls for more product variety, the mass of firms is higher

by 17.8%. Overall, once the transitional dynamics are taken into account, this firm life-cycle

model implies that the total welfare costs of markups are 5.7% in consumption equivalent

terms, somewhat smaller than the 7.5% total welfare costs in our benchmark model.

The model with life-cycle dynamics leads to smaller welfare costs of markups because in

this version of the model it is technologically impossible for firm-level capital to keep track

with firm-level productivity (firm level capital is determined once-and-for-all by the initial

investment choice xt(e) while firm-level productivity zit(e) = ehixt(e)
1−η increases with age).

Because of this technological constraint, the planner cannot achieve such large efficiency gains

from reallocating production and hence the implied welfare costs of markups, which depend

on the potential gains the planner can achieve from such reallocation, are smaller.

Although the total welfare costs of markups are smaller than in our benchmark model, we

find that the relative importance of each channel is similar to our benchmark. As reported in

the second column of Table 8, a uniform output subsidy that eliminates the aggregate markup

M increases welfare by 3.6%, just under two-thirds of the 5.7% total costs of markups in

the model with life-cycle dynamics. In this sense, we again find that the aggregate markup

accounts for the bulk of the welfare costs of markups. We find that the gains from entry

are maximized by a uniform entry subsidy of χ = 0.296 and that this increases welfare by

0.6%, very similar to the 0.7% in our benchmark model. As in the benchmark model, this

entry subsidy has a modest effect on welfare precisely because it has a tiny effect on the

aggregate markup that accounts for the bulk of the welfare costs. In particular, the optimal

entry subsidy leads the aggregate markup to fall from M = 1.150 to 1.149.

To summarize, while this firm life-cycle model implies somewhat smaller total welfare

costs of markups, the relative importance of each channel is broadly similar to our bench-
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Table 7: Firm life-cycle model

Panel A: Unweighted

US data benchmark firm life-cycle

fraction of firms with

relative sales ≤ 0.1 0.329 0.366 0.345
relative sales ≤ 0.5 0.761 0.747 0.741
relative sales ≤ 1 0.877 0.848 0.845
relative sales ≤ 2 0.942 0.916 0.915
relative sales ≤ 5 0.979 0.968 0.968
relative sales ≤ 10 0.990 0.987 0.987
relative sales ≤ 50 0.999 0.999 0.999
relative sales ≤ 100 1.000 1.000 1.000

Panel B: Sales-weighted

US data benchmark firm life-cycle

fraction of firms with

relative sales ≤ 0.1 0.019 0.026 0.022
relative sales ≤ 0.5 0.088 0.128 0.128
relative sales ≤ 1 0.154 0.211 0.212
relative sales ≤ 2 0.271 0.323 0.326
relative sales ≤ 5 0.507 0.509 0.514
relative sales ≤ 10 0.660 0.661 0.666
relative sales ≤ 50 0.951 0.928 0.931
relative sales ≤ 100 0.978 0.977 0.978

Panel C: Cost-weighted distribution of markups

benchmark firm life-cycle

aggregate markup, M 1.15 1.15

p25 markup 1.10 1.10
p50 markup 1.14 1.14
p75 markup 1.19 1.19
p90 markup 1.24 1.24
p99 markup 1.37 1.36
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Table 8: Steady state allocations in firm life-cycle model

uniform entry
efficient output subsidy subsidy

log deviation from distorted steady state, ×100

output, Y 31.9 28.3 4.4
consumption, C 26.8 21.7 5.9
employment, L 15.2 14.0 2.8

mass of firms, N 17.8 6.3 21.0
capital, K 45.7 42.2 4.4
aggregate efficiency, E 10.0 6.7 4.0

welfare gains, CEV, % 5.7 3.6 0.6

mark model and if anything, the gains from an entry subsidy are slightly lower than in our

benchmark model. In this sense we find that the backloading of the returns to the firms’s

initial investment does not substantially amplify the markup distortions on the entry margin.

7 Oligopolistic competition

We now present calculations based on an alternative model featuring oligopolistic competition

rather than monopolistic competition. Our goal in this section is to assess to what extent our

results are sensitive to the specific market structure we used in our benchmark model. To

match the US concentration data we end up working with a very high dimensional oligopoly

problem. Solving for the full dynamic equilibrium for this high dimensional oligopoly problem

is computationally impractical, so here we focus on steady state outcomes only.

Setup. The model is based on a version of of Atkeson and Burstein (2008) that we used in

Edmond, Midrigan and Xu (2015). There is a continuum of sectors s ∈ [0, 1] aggregated by a

CES technology with elasticity θ and then within each sector s there is a finite n(s) ∈ N firms

that are aggregated with another CES technology with elasticity γ > θ and these n(s) firms

engage in Cournot competition. Each of these n(s) firms draws their productivity from a

Pareto distribution with tail parameter ξ. The number of firms in each sector n(s) is pinned

down by a free entry condition, as discussed below. The demand elasticity facing each firm

works out to be a (harmonic) weighted average of γ and θ

εi(s) =

(
ωi(s)

1

θ
+ (1− ωi(s))

1

γ

)−1
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where ωi(s) denotes the sales share of firm i = 1, ..., n(s). Markups are then µi(s) =

εi(s)/(εi(s) − 1). As in the benchmark model, within a given industry larger firms have

lower demand elasticities and higher markups.

Solving the free entry problem. A key computational challenge in this model is solving

the free entry problem that pins down the number of firms that operate in a sector. Sectors

are characterized by the vector of productivity draws of incumbent firms. Let en(s) denote

the vector of productivity draws for a sector s with n incumbent firms. Let π(e ; en(s)) denote

the profits of a firm with productivity e in that sector. In this oligopolistically competitive

economy any individual firm recognizes that if it enters it will change the prices (and hence

the profits) of all firms in that sector. A firm will enter if∫
π(e ; (en(s), e)) dG(e) ≥ κ

This potential entrant does not know what e it will draw but does know the productivi-

ties en(s) of incumbents and recognizes that whatever e it draws will change the vector of

productivities to en+1(s) = (en(s), e) and hence change the profits of all firms in that sector.

We assume a sequential entry game where first firm 1 gets to make its entry decision.

We assume that the expected monopoly profits are greater than κ so that firm 1 will choose

to enter. Firm 2 then gets to observe the productivity draw e1(s) of firm 1 in sector s and

enters only if ∫
π(e ; (e1(s), e)) dG(e) ≥ κ

Since expected profits are strictly decreasing in the number of competitors, firm 2 does not

need to worry about firm 3 entering and driving its expected profits below κ. If expected

profits with three firms is below κ then firm 3 will not enter to begin with. In short, to make

its entry decision each firm only needs to compute expected profits following its own entry,

not the entry of other future potential entrants. We proceed in this way until we have found

an n(s) such that∫
π(e ; (en−1(s), e)) dG(e) ≥ κ ≥

∫
π(e ; (en(s), e)) dG(e)

at which point the first n(s) firms find it optimal to enter but firm n(s) + 1 does not find it

optimal to enter. Importantly, at each step of this sequential entry game we must compute

the hypothetical equilibrium of the oligopoly game with n(s) firms, that is, we must solve a

fixed point problem to find the prices p(e ; en(s)) implied by the mutual best responses of

n(s) firms and the associated profits π(e ; en(s)).

The number of firms n(s) is sector-specific because whether it is profitable to enter a

given sector depends on the vector of productivities en(s) of incumbent firms. The gains
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from drawing a high e are higher in a sector where no incumbent firm has high productivity

and lower in a sector where an incumbent firm already has high productivity. In this sense,

high productivity on the part of incumbents acts as an endogenous barrier to entry.

Calibration. We choose the sunk cost κ so that on average there are 1100 firms per sector,

as in the 6-digit NAICS data. We calibrate the three key parameters γ, θ and ξ using the

same strategy as for our benchmark model. Matching our target moments requires γ = 10.25,

θ = 0.46, and ξ = 8.64. As shown in Table 9, the model fits the lower end of the distribution

of relative sales worse than our benchmark, but it matches the top of the distribution well.18

The distribution of markups predicted by the two models is similar, except at the very

top. For example, the 99th cost-weighted percentile of markups is 1.37 in our benchmark

and 1.52 in the model with oligopolistic competition. Intuitively, with a finite number of

producers in any given industry there is a small set of sectors in which the largest firm

is much more productive than the remaining competitors and charges very high markups.

Owing to these higher markups at the very top, this oligopolistic competition model predicts

more misallocation than our benchmark, 3.1% as opposed to 1.2%.

Competition, markups and misallocation. In this oligopolistically competitive equi-

librium, sectors with a small number of firms n(s) tend to have high markups and high levels

of misallocation. We illustrate this in Figure 14, the left panel of which shows the pronounced

negative correlation between n(s) and the sectoral markup µ(s), i.e., the cost-weighted av-

erage of individual firm markups within sector s and the right panel of which shows the

negative correlation between n(s) and sectoral misallocation E∗(s)/E(s). Interestingly, this

pronounced negative correlation emerges despite all sectors having the same sunk cost κ.

This negative correlation emerges because sectors where there are high productivity incum-

bents are sectors where potential entrants will be unlikely to make high profits and hence

such sectors will not attract much entry, keeping the number of firms n(s) low and markups

µ(s) and misallocation E∗(s)/E(s) high.

Looking at this pronounced negative correlation, one might conjecture that policies that

encourage more firms in each sector would reduce markups and reduce misallocation. If so,

there could be substantial welfare gains from subsidizing entry, which would be at odds with

the results from our benchmark model. To assess this, we reduce κ to achieve a doubling

of the typical number of firms per sector, from 1100 to 2200 firms per sector. We find that

this large increase in the amount of competition has small effects, reducing the aggregate

markup from 1.150 to 1.148 and only reducing misallocation from 3.1% to 3%. So, as in our

benchmark model, even a large increase in the amount of competition does not alleviate the

18A richer specification of the productivity distribution allows us to fit the data nearly as well as in our
benchmark model and implies nearly identical results, so we omit it for brevity.
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Table 9: Oligopolistic competition

Panel A: Unweighted

US data benchmark oligopoly

fraction of firms with

relative sales ≤ 1 0.877 0.848 0.864
relative sales ≤ 2 0.942 0.916 0.931
relative sales ≤ 5 0.979 0.968 0.972
relative sales ≤ 10 0.990 0.987 0.987
relative sales ≤ 50 0.999 0.999 0.999
relative sales ≤ 100 1.000 1.000 1.000

Panel B: Sales-weighted

US data benchmark oligopoly

fraction of firms with

relative sales ≤ 1 0.154 0.211 0.285
relative sales ≤ 2 0.271 0.323 0.387
relative sales ≤ 5 0.507 0.509 0.530
relative sales ≤ 10 0.660 0.661 0.644
relative sales ≤ 50 0.951 0.928 0.909
relative sales ≤ 100 0.978 0.977 0.983

Panel C: Cost-weighted distribution of markups

benchmark oligopoly

aggregate markup, M 1.15 1.15

p25 markup 1.10 1.10
p50 markup 1.14 1.12
p75 markup 1.19 1.15
p90 markup 1.24 1.23
p99 markup 1.37 1.52

misallocation, % 1.2 3.1
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Figure 14: Sectors with few firms have higher markups and misallocation

In our model of oligopolistic competition, sectors with few firms n(s) tend to have high markups µ(s) (left panel) and high
misallocation E∗(s)/E(s) (right panel). Despite this, a large increase in the amount of competition has only small effects on the
aggregate markup and misallocation. The reduced-form correlation between the number of firms, markups, and misallocation
does not provide a reliable guide to the kinds of policy interventions that might substantially reduce the losses from markups.

key source of losses from markups. The intuition for this is also the same as in our benchmark

model. Entry has two offsetting effects, reducing the markups of all firms but also reallocating

resources from small firms to large firms so that the cost-weighted average markup hardly

changes. In short, the reduced-form correlation between the number of firms, markups, and

misallocation does not provide a reliable guide to the kinds of policy interventions that might

substantially reduce the losses from markups.

We have also solved for equilibria in versions of the model with Bertrand competition in

which goods sold by producers that belong to a given sector are perfect substitutes so that

the most productive firm engages in limit pricing and charges a markup that depends on the

second-best producer’s costs. We found that our results are robust to this extension as well,

with implied losses from misallocation on the order of 2%. We thus conclude that our results

key are robust to these alternative settings with oligopolistic competition. Solving for the

dynamic equilibrium and the welfare costs of markups in these settings is computationally

impractical because of the very high dimensionality of the state-space, but it is reassuring

that our key steady-state implications remain when we consider oligopolistic competition

rather than monopolistic competition.
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Table 10: Narrower NAICS estimates and misallocation losses

NAICS industries ξ σ ε misallocation, %

benchmark 6.66 11.55 2.18 1.2

(1) exclude finance, real estate, 6.76 11.54 2.16 1.2
education, religion

(2) exclude all (1), and 6.67 11.79 2.43 1.3
health, accommodation, food

(3) just manufacturing 6.72 13.11 4.54 1.9

8 Further robustness checks

In this section we briefly consider a number of further robustness checks designed to assess

the sensitivity of our results. Further details and a full set of results for these robustness

checks are reported in our supplementary Appendix.

8.1 Estimates of superelasticity ε for narrower NAICS industries

In our benchmark model we assume the same productivity dispersion parameter ξ and su-

perelasticity ε for each industry. We now relax this assumption by estimating these two

parameters for narrower sets of NAICS industries. Our first set excludes the finance, educa-

tion, and religion industries. As Table 10 shows, excluding these industries has hardly any

effect on our estimated parameters or the implied amount of misallocation. Our second set

excludes in addition those industries that feature more “local” competition, namely health,

accommodation and food. Again we find that the Pareto tail ξ is close to our benchmark

but now the superelasticity ε is slightly higher at 2.43. This slightly higher ε leads to slightly

larger losses from misallocation, 1.3% up from our benchmark 1.2%. Our third set includes

manufacturing only. Since the wage bill in manufacturing is much less concentrated than the

top sales share for manufacturing, we now estimate a distinctly higher ε = 4.54 with losses

from misallocation rising to 1.9%. Still, the bottom line is that the losses from misallocation

implied by variable markups are relatively small.
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8.2 Estimates of superelasticity ε from Taiwanese micro data

We now estimate the ratio ε/σ using a rich product-level panel dataset from Taiwanese

manufacturing industries that we previously studied in Edmond, Midrigan and Xu (2015).

The Taiwanese manufacturing data is more detailed than the 6-digit NAICS data and allows

us to control for any product-year specific effects that capture sectoral differences.

For this exercise, we use the Klenow-Willis specification of the Kimball aggregator to

derive the relationship between a producer’s markup µi and its sales piyi, namely

1

µi
+ log

(
1− 1

µi

)
= constant +

ε

σ
log(piyi) (42)

The key idea is that if we had measures of the markups µi so that the LHS of this expression

is known then the ratio ε/σ can be estimated as the slope coefficient in a regression on

sales. To implement this, we follow the methodology of De Loecker and Warzynski (2012)

to construct estimates of producer level markups µi. In particular, we estimate an industry-

specific production function from which we can infer the markup from the producer’s cost

minimization problem based on one of the variable inputs. The inverse markup is then

calculated as the variable input share adjusted for the estimated factor output elasticity.

We then estimate equation (42) above in two ways. In the first specification we simply

exploit the cross-sectional variation of producers within a given product category by including

product-year fixed effects. This gives an estimate of ε/σ = 0.15 that is tightly estimated with

a standard error of 0.002. In the second specification we exploit the panel structure of the data

and include a producer fixed effect, thus using the time-series comovement of a producer’s

sales and their markups to identify the superelasticity. This gives an estimate of ε/σ = 0.16

with a standard error of 0.007. Reassuringly, both of these estimates are fairly close to our

benchmark estimate of 0.189 from the 6-digit NAICS data.

8.3 Dotsey-King specification of the Kimball aggregator

In our benchmark model we use the specification of the Kimball aggregator proposed by

Klenow and Willis (2016). A popular alternative is the specification proposed by Dotsey and

King (2005) which can be written

Υ(q) =
1

(1 + ζ)κ
(
(1 + ζ)q − ζ)

)κ
+ 1− 1

(1 + ζ)κ

where to ensure concavity of the aggregator we need the two parameters ζ and κ to be such

that (1 + ζ)(1 − κ) > 0. Both specifications have two parameters, one which controls the

average demand elasticity and the other which controls the superelasticity. In slight abuse

of notation, let σ(q) denote the demand elasticity and let ε(q) denote the superelasticity as
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functions of relative size. For the Klenow-Willis specification these are σ(q) = σ q−ε/σ and

ε(q) = ε q−ε/σ so that σ(1) = σ and ε(1) = ε. For the Dotsey-King specification these are

σ(q) =
1

(1 + ζ)(1− κ)

(1 + ζ)q − ζ
q

and

ε(q) = − 1

(1 + ζ)(1− κ)

ζ

q

We calibrate the three key parameters, namely the Pareto tail parameter ξ and the Dotsey-

King parameters ζ and κ using the same strategy as for our benchmark model. Matching

our target moments requires ξ = 6.69, ζ = −0.54 and κ = 0.82. This value of the Pareto

tail parameter ξ = 6.69 is very close to our benchmark estimate of 6.66, suggesting that

the amount of productivity dispersion needed to match the concentration in the data is not

very sensitive to the details of the aggregator. The values ζ = −0.54 and κ = 0.82 for

the Dotsey-King aggregator give point demand elasticity σ(1) = 11.64, again very close to

the point demand elasticity σ = 11.55 in our Klenow-Willis benchmark, suggesting that the

average demand elasticity needed to match an aggregate markup of 1.15 is again not very

sensitive to the details of the aggregator. By contrast, the point superelasticity is given by

ε(1)/σ(1) = 0.54, higher than our benchmark estimate of 0.189 and more in line with our

alternative ‘high ε/σ’ calibration above.19

We find that the losses from misallocation in this Dotsey-King calibration are about 1.7%,

up just slightly from our benchmark loss of 1.2% but somewhat lower than the 2.1% loss from

our alternative ‘high ε/σ’ calibration of the Klenow-Willis specification that is arguably a

better point of comparison. We conclude from this that our finding of misallocation losses

that are small relative to the existing literature is not driven by the particular details of the

Klenow-Willis specification and is a robust implication of the US concentration data viewed

through the lens of a model with endogenously variable markups. We also find that doubling

the number of competitors has negligible effects on the aggregate markup and the amount of

misallocation, again consistent with our benchmark results.

9 Conclusion

We study the welfare costs of product market distortions in a dynamic model with hetero-

geneous firms and endogenously variable markups. We calibrate the model to match the

amount of concentration observed in US industry in 2012. We find that the welfare costs

of markups are large. For our benchmark calibration, the representative consumer would

19Note that these estimates of the ε/σ ratio from US concentration data are much lower than is typically
used in macro models that assume a representative firm. For example, Sbordone (2010) uses a ε/σ ratio of
2 or 3 and Dotsey and King (2005) use a ratio of 6. By contrast, all of our estimates are substantially below
1 and imply much milder real rigidities at the firm level.
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gain 7.5% in consumption-equivalent terms if all markup distortions were eliminated, once

transitional dynamics are taken into account. In our model markups reduce welfare because

the aggregate markup distortion acts like a uniform output tax and reduces employment and

investment by all firms, because markup variation across firms causes misallocation of factors

of production, and because there is an inefficiently low rate of entry due to the misalignment

between private and social incentives to create new firms. We find that the aggregate markup

accounts for about two-thirds of the total welfare costs in our benchmark model, misallocation

accounts for about one-third, and the costs due to inefficient entry are negligible.

Although we focus on the normative implications of our model, our results also have clear

empirical implications. One simple but important finding is that the overall level of markups

is best measured as a cost-weighted average of firm-level markups. This is the relevant

aggregate distortion to employment and investment decisions. By contrast a revenue-weighted

average of firm-level markups, as used in the existing literature, overstates the rise in the

overall level of market power. In addition, our results provide two reasons to be skeptical of

explanations for the simultaneous rise in concentration and markups that focus on increasing

barriers to entry. First, in our model increasing barriers to entry reduce concentration, because

the resulting lack of competition makes it easier for small firms to survive. Second, in our

model changes in entry have negligible effects on the overall level of markups because entry

is associated with a reallocation of production towards high productivity, high markup firms.

Reductions in antitrust enforcement or increases in the scalability of production may

provide better explanations for the rise in concentration and markups. But whatever the

underlying cause, our key conclusion is that size-dependent policies aimed at reducing con-

centration and markups need to be viewed with caution. While such policies can reduce

the overall level of markups, they can also greatly increase misallocation and thereby reduce

aggregate productivity.

Appendix

A Cost-weighted vs. sales-weighted average markups

The aggregate markup can be written as either a cost-weighted arithmetic average of firm-level markups or
a sales-weighted harmonic average of firm-level markups. To see this simply, consider a special case of our
model where labor is the only variable input so that a firm with productivity z produces y = zlη. Since price
is a markup over marginal cost we have

p(z) = µ(z)W

(
y(z)

z

)1/η
1

y(z)

Hence we can write the firm’s labor share as

Wl(z)

p(z)y(z)
=

η

µ(z)
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As in the main text, the aggregate markup M is implicitly defined by the aggregate labor share

WL̃

Y
=

η

M

where L̃ denotes aggregate labor used in production. Hence we can write the sales shares

p(z)y(z)

Y
=
µ(z)

M
l(z)

L̃
(A1)

Now let the distribution of productivity be H(z). Since Y =
∫
p(z)y(z) dH(z) we can integrate both sides of

(A1) and rearrange to get

M =

∫
µ(z)

l(z)

L̃
dH(z)

which expresses the aggregate markup as an arithmetic average of the firm-level markups µ(z) with cost
weights l(z)/L̃. Equation (28) in the main text is simply this formula but for our more general model where
both labor and materials are variable inputs. Alternatively, re-write (A1) as

p(z)y(z)

Y

M
µ(z)

=
l(z)

L̃
(A2)

Since L̃ =
∫
l(z) dH(z) we can integrate both sides and rearrange to get

M =

(∫
1

µ(z)

p(z)y(z)

Y
dH(z)

)−1
which expresses the aggregate markup as a harmonic average of µ(z) with sales weights p(z)y(z)/Y .

These calculations do not depend on the details of the demand system or market structure. In particular,
they do not on the assumption of Kimball demand and monopolistic competition. In Edmond, Midrigan and
Xu (2015) we obtained equivalent formulas in the Atkeson-Burstein model with oligopolistic competition.

B Planner’s valuation of new varieties

In this appendix we provide more details on the planner’s valuation of new varieties M∗t . Recall that the
planner’s problem is to maximize (33) subject to (34) and (35). Let λ∗1,t and λ∗2,t denote the multipliers on
these constraints. The planner’s first order condition for M∗t can then be written

κψL∗νt + λ∗1,t

∫
xt(e) dG(e) + ηβ

∞∑
i=1

[β (1− δ)]i−1 λ1,t+iY ∗t+iZ
∗ 1

η

t+i

∫ (
q∗t+i (e)

z∗t+i(e)

) 1
η

dG(e)

= β
∞∑
i=1

[β (1− δ)]i−1 λ2,t+i
∫

Υ
(
q∗t+i(e)

)
dG(e).

The LHS of this expression gives the marginal cost of new varieties, i.e., the initial labor cost κ plus the cost
of investment allocated to the new varieties plus the discounted variable input costs used by these varieties.
The RHS gives the marginal benefit from the new varieties. Using λ∗1,t = 1/C∗t and (37) and (38) and
simplifying gives

κψC∗t L
∗ν
t = β

∞∑
i=1

(β(1− δ))i−1
(
C∗t+i
C∗t

)−1 Y ∗t+iZ∗ 1
η

t+i

A∗t+i

∫ [
Υ
(
q∗t+i(e)

)
−Υ′

(
q∗t+i(e)

)
q∗t+i(e)

]
dG(e).

As in the main text, we define the inverse elasticity

ε∗t+i(e) =
Υ
(
q∗t+i(e)

)
Υ′
(
q∗t+i(e)

)
q∗t+i(e)
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We can then simplify terms on the RHS to get

κψC∗t L
∗ν
t = β

∞∑
i=1

(β(1− δ))i−1
(
C∗t+i
C∗t

)−1 Y ∗t+iZ∗ 1
η

t+i

A∗t+i

∫ [
ε∗t+i(e)− 1

]
Υ′
(
q∗t+i(e)

)
q∗t+i(e) dG(e).

Next, integrate the static allocation (36) across all varieties available in period t and use the expression for
aggregate productivity Z∗t in (27) to obtain∫

Υ′(q∗t (z))q∗t (z) dH∗t (z) = A∗tZ
∗− 1

η

t .

This allows us to write the planner’s optimal choice of new varieties as in the main text, namely

κψC∗t L
∗ν
t = β

∞∑
i=1

(β(1− δ))i−1
(
C∗t+i
C∗t

)−1 ∫ [
ε∗t+i(e)− 1

]
p∗t+i(e)y

∗
t+i(e)dG (e) ,

where p∗t+i(e) denotes the planner’s valuation of an additional unit of output of that variety.

C Why entry has negligible effect on aggregate markup

In this appendix we show why increasing the number of competitors has a negligible effect on the aggregate
markup in our model, a result that is analogous to findings in the trade literature, especially the work
of Arkolakis, Costinot, Donaldson and Rodŕıguez-Clare (2017). They study a model with monopolistic
competition and variable markups with more general non-CES demand which nest the Kimball aggregator
we use. We adopt their approach to calculating the response of the aggregate markup M to a marginal
change in the number of firms. To this end, note that a firm’s employment l(e) is proportional to its relative
quantity scaled by productivity, q(e)/e, so we can write the aggregate markup as

M =

∫∞
1
µ(q(e)) q(e)e dG(e)∫∞
1

q(e)
e dG(e)

where the limits of the integral use our assumption that G(e) is Pareto on [1,∞). Using the optimal steady
state investment choice x(e) we can express the optimality condition that determines a firm’s relative size

Υ′(q) = µ(q)
1

Ae
,

where A > 0 is a scalar that depends on the aggregate demand index D and the cost of the variable input
Pv. Since the latter changes as we increase the number of producers, so does the scalar A. In particular,
A′(N) < 0 so that competition effectively increases all firms’ variable costs.

This optimality condition clearly shows that a firm’s quantity choice is a function of the product Ae,
not of e and A in isolation. We can then use a change of variables ẽ = Ae and the assumption that G(e) is
Pareto to write the aggregate markup as

M =

∫∞
A
µ(q(ẽ)) q(ẽ)ẽ dG(ẽ)∫∞
A

q(ẽ)
ẽ dG(ẽ)

.

Hence changes in the number of competitors, summarized by changes in A, only change the aggregate markup
through their effect on the markups of the smallest firms. A direct calculation then gives

M′(N) = − (µ(q(A))−M))
q(A)g(A)∫∞
A

q(ẽ)
ẽ dG(ẽ)

A′(N)

A
≤ 0

Since the markups of the smallest firms, µ(q(A)), are lower than the aggregate markup, M, an increase in
the number of firms reduces the aggregate markup. But this effect is quantitatively small in our calibration
since q(A)g(A) is relatively small because the smallest firms sell very little. Thus, even though we do not
assume a choke price, as Arkolakis, Costinot, Donaldson and Rodŕıguez-Clare (2017) do in deriving their
exact neutrality result, our quantitative results are very similar.
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