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Abstract

We revisit the revenue comparison of standard auction formats, including first-price,
second-price, and English auctions. We rank auctions according to their revenue guar-
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where we hold fixed the distribution of bidders’ values. We conclude that if we restrict
attention to the symmetric affiliated models of Milgrom and Weber (1982) and mono-
tonic pure-strategy equilibria, first-price, second-price, and English auctions all have
the same revenue guarantee, which is equal to that of the first-price auction as charac-
terized by Bergemann, Brooks, and Morris (2017a). If we consider all equilibria or if
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1 Introduction

In auction theory, the revenue equivalence theorem is a central result that helps us under-
stand the relationship between the choice of auction format and the resulting revenue. In an
environment with independent private values, it states the surprising result that many stan-
dard auction formats, including first-price, second-price, and English auctions, all deliver the
same expected revenue (Myerson, 1981). By contrast, in an environment with affiliated val-
ues, there is a revenue ranking theorem that establishes that the first-price auction achieves
less revenue than the second-price auction which in turn generates less revenue than the
English auction (Milgrom and Weber, 1982, hereafter MW). Against this background, we
provide a new revenue ranking theorem for environments with common or interdependent
values, one that reverses the received ranking when values are affiliated. Subsequently, we
also establish a new revenue equivalence theorem under favorable equilibrium selection.

For a given auction format, say the first-price auction, the resulting auction outcome is
conventionally analyzed for a fixed distribution of the values of the bidders and for a fixed
information structure that generates the signals that the bidder have before submitting their
bids. Revenue and welfare in any given auction can be strongly affected by the specific form
of information, e.g., Fang and Morris (2006) and Bergemann, Brooks, and Morris (2017a,
hereafter BBM). This presents a challenge for comparative auction theory, since it may
be difficult to pin down the correct model of information, either through introspection or
measurement. Given such, we propose to rank auctions by a criterion that is less sensitive
to misspecification of the informational environment. In particular, we evaluate an auc-
tion according to its revenue guarantee: the greatest lower bound on the auction’s revenue
that holds across all information structures. Importantly, this guarantee is computed while
holding fixed the payoff environment—that is, the distribution over the bidders’ values.

We establish a revenue guarantee ranking for the auctions studied in the affiliated value
model of MW, namely the first-price auction, the second-price auction and the English auc-
tion. Our main results are exposited for the case of pure common values, with an extension
to interdependent values in Section 5. A first step to obtain a revenue guarantee ranking is
to establish the revenue guarantee of the first-price auction. Here we appeal to an earlier
result in BBM that establishes that the lowest revenue in the first-price auction arises in
an information structure that we refer to as a maximum signal model. This information
structure which supports the lowest revenue is one in which the bidders receive identical and
independent signals, and the value of the object equals the maximum of all the signals.

We then ask what is the equilibrium revenue in the maximum signal model of the second-
price and the English auction. Here, we obtain the first surprising result. In this specific
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common value model, there is an equilibrium in which bidders behave as if each bidder’s
value is equal to their individual signal rather than the common value given by the maximum
signal. Thus, the bidders act as if they are in an independent private value environment,
and all but the bidder with highest signal bid as if their value is lower than their true value.
Given this strategic equivalence with the independent private value model, we can appeal to
the standard revenue equivalence result to conclude that all three auctions generate the same
revenue in the maximum signal information structure. As a result, the revenue guarantee
of the second-price auction or the English auction can be at most equal to the revenue
guarantee of the first-price auction. Strategic equivalence, and hence the revenue guarantee
ranking, can be extended to any “standard” auction that admits an equilibrium in monotonic
pure-strategies in the independent private-value model.

Note that the revenue guarantee for the first-price auction in BBM is valid across all
equilibria, as well as all information structures. But given that the second-price and English
auction have other, less revenue-favorable equilibria, the revenue guarantee of the first-price
auction must be strictly higher than those of second-price and English auctions. Thus,
Theorem 1 reverses the revenue ranking established in MW.

At the same time, second-price and English auctions have compelling equilibria in mono-
tonic pure strategies when the information structure admits a strong ordering on signals, e.g.,
when values are affiliated. We may ask, what is the revenue guarantee ranking if we restrict
attention to symmetric affiliated values and monotonic equilibria? This approach is similar
to the revenue equivalence theorem with symmetric independent private values which estab-
lishes the equivalence result in well-behaved informational environments and under favorable
equilibrium selection.

Theorem 2 shows that in the affiliated common-value model, first-price, second-price and
English auction are revenue guarantee equivalent. This result is established by showing that
the critical maximum signal model is itself affiliated, so that the weak ranking of Theorem
1 is preserved. At the same time, it is a result of MW that the first-price auction generates
weakly lower revenue than the other auction formats when restricting attention to favorable
equilibria that excludes bidding ring like equilibria for the second-price and English auction.
We therefore conclude that all of these mechanisms must have exactly the same revenue
guarantee in affiliated environments and under monotonic equilibria. The maximum signal
model thus has a remarkable property. If we take as a measure of the winner’s curse the
difference between the expected value of the object and the expected equilibrium revenue,
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then the maximum signal model maximizes the winner’s curse uniformly across all three
auction formats.1

Thus, Theorem 1 and Theorem 2 offer a different perspectives of the revenue ranking
result in the affiliated value model. If we are concerned with the robustness of the revenue
comparison across all informational environments, we find that the English auction, and the
second-price auction lose their advantage, as stated in the revenue guarantee equivalence
theorem. Moreover, if we are at the same time concerned with the equilibrium selection,
and seek to offer a revenue guarantee that is valid across all information structures and all
equilibria then we find that the first-price auction offers better guarantees than either the
second-price or the English auction.

In light of our results, a natural question is: what is the mechanism with the greatest
revenue guarantee? This question is answered by Bergemann, Brooks, and Morris (2016)
when there are two bidders and binary common values and by Brooks and Du (2018) for gen-
eral common value models. The revenue-guarantee maximizing auctions look quite different
from the standard auctions considered here, and necessarily involve randomized allocations
to optimally hedge ambiguity about the information structure. We view these results as com-
plementary to our revenue guarantee rankings: revenue guarantees are one of many criteria
that could be used in selecting an auction format, and while the standard auctions considered
here do not achieve optimal revenue guarantee, they have other desirable attributes aside
from revenue guarantees.

Our analysis shares the interest in performance guarantees that is at the core of much
recent work on auction theory in theoretical computer science, see e.g. Roughgarden et al.
(2017). The majority of these results obtains guarantees through approximation algorithms.
By contrast, the central revenue guarantee that emerged from the first-price auction here
arises as an exact equilibrium of a critical information structure, namely the maximum signal
model.

We establish Theorem 1 and 2 for common values with affiliated signals. Towards the end
we discuss extensions of these results to more general settings. We consider interdependent
rather than common values. We argue that the revenue guarantee ranking extends imme-
diately to more general interdependent value environments. Thus, the earlier restriction to
common values is done for simplicity of exposition rather than logical necessity. Extending
revenue guarantee equivalence is more subtle, but there is a sharp sense in which this result

1Bulow and Klemperer (2002) were the first to study the maximum signal model in the context of second-
price auctions. They showed that bidding one’s signal is an equilibrium and that the resulting revenue is less
than what the seller would obtain with a posted price. Bergemann, Brooks, and Morris (2017b) characterize
the optimal auction in the maximum signal model. They show that the posted price is optimal when the
good must be sold, but otherwise the optimal mechanism has a different form.
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would also extend to more general environments. Finally, we give extensions to rankings of
other mechanisms, including those with reserve prices.

2 Model

There are N bidders for a single unit of a good. The set of bidder indices is N = {1, . . . , N}.
Bidders’ values (v1, . . . , vN) are jointly distributed according to a measure π (dv1, . . . , dvN).

For our main results, we will consider environments where values are common. We will
say that the environment is common-values if v1 = · · · = vN with probability one. In this
case, we denote by H (v) the cumulative distribution of the bidders’ common value, and let
[v, v] denote the convex hull of its support. We assume that H is non-atomic.

An information structure consists of measurable sets of signals Si, a joint probability
measure µ (ds1, . . . , dsN) on signal profiles in S = S1 × · · · × SN , and a measurable interim
expected value function

w : S → RN ,

where w (s) is interpreted as the interim expectation of the value profile conditional on the
signals. We say that w is consistent with the prior π (or simply consistent) if v ∼ π is a
mean-preserving spread of w (s) where s ∼ µ, meaning that there is a random variable ε
that is correlated with s such that E [ε|s] = 0 and w (s) + ε is distributed according to π. A
representative information structure is denoted I.

An information structure is symmetric if S1 = · · · = SN , π is exchangeable, and w is
symmetric, in the sense that for all permutations ξ : N → N , we have

wξ(i)
(
sξ(1), . . . , sξ(N)

)
= wi (s1, . . . , sN) .

An information structure has private values if wi is constant in s−i. An information structure
is independent if the si are independent random variables.

A mechanism consists of measurable sets of messages Mi for each player, M = ×Ni=1Mi,
allocations q : M → [0, 1]N with

∑N
i=1 qi (m) ≤ 1 for all m, and transfers to the seller

t : m→ RN
+ . A representative mechanism is denotedM. A pair of an information structure

I and mechanismM comprise a Bayesian game. A Bayes Nash equilibrium of that game is
a profile of strategies σ = (σ1, . . . , σN), where σi : Si → ∆ (Mi) and each player’s strategy
maximizes their ex ante welfare:

Ui (σi, σ−i;M, I) =

∫
s∈S

∫
m∈M

(w (s) qi (m)− ti (m)) (σi, σ−i) (dm|s)µ (ds) .

5



A strategy profile induces revenue

R (σ;M, I) =

∫
s∈S

∫
m∈M

N∑
i=1

ti (m) (σi, σ−i) (dm|s)µ (ds) .

R is a revenue guarantee of the mechanismM if for all I and for all Bayes Nash equilibria
σ of (M, I), R (M, I, σ) ≥ R. R is the revenue guarantee ofM if it is a revenue guarantee,
and if there is no higher guarantee.

3 Revenue Guarantee Ranking

We establish a revenue guarantee ranking across a number of classic auction formats, in-
cluding the first-price, the second-price and the English auction. We begin the analysis by
establishing a revenue guarantee for the first-price auction.

3.1 Revenue Guarantee of First-Price Auction

The determination of the revenue guarantee of the first price auction will use some insights
and formalism established recently in Bergemann et al. (2017a). For a real-vector x ∈ RN,
we let x(k) denote the k-th highest element of the vector. Thus, x(1) is the first-order statistic,
x(2) is the second-order statistic, etc.

The first-price auctionMFPA is defined as follows: Mi = R+,

qFPAi (m) =

 1
|argmaxj mj | if i ∈ arg maxjmj,

0 otherwise;

and
tFPAi (m) = qFPAi (m)m(1).

A specific information structure is given the maximum signal model. For a given dis-
tribution H(v) of the common value v, the distribution G(si) of the individual signal si is
chosen to satisfy

G (x) = (H (x))1/N .

Thus, we can interpret the common value v to be determined as the maximum of the N
independent and identical signals:

v (s1, . . . , sN) = max {s1, . . . , sN} . (1)
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Theorem 1 in BBM establishes that the revenue guarantee of the first-price auction is
given by

RFPA = E
(s1,...,sN )

iid∼G

[
s(2)
]

(2)

where G (x) = (H (x))1/N . In other words, the revenue guarantee in the first price auction,
RFPA is the expected second-highest of N draws from the cumulative distribution G. This
level of revenue is attained in a Bayes Nash equilibrium on the information structure in
which bidders receive signals si that are independent draws from G, and w (s) = s(1), i.e.,
the maximum signal. We call this the maximum signal information structure, and denote
it by I∗. There is a monotonic pure-strategy equilibrium of the first-price auction on this
information structure in which a type si bids

βFPA (si) = E
s−i

iid∼G

[
s
(1)
−i |s

(1)
−i ≤ si

]
. (3)

By this, we mean that the strategy σ (·|si) puts probability one on βFPA (si). We hereafter
adopt this notation for pure strategies.

Proposition 1 (Bergemann, Brooks, and Morris, 2017a).
The revenue guarantee of the first-price auction is RFPA. Moreover, the strategies βFPA are
an equilibrium of

(
MFPA, I∗

)
and RFPA = R

(
βFPA;MFPA, I∗

)
.

The first step in the proof of this result establishes that RFPA is a lower bound on revenue
ofMFPA in any equilibrium in any information structure. The second step shows that βFPA

is an equilibrium in which revenue is RFPA, so that the lower bound is attained. It is this
second step that is the most relevant for the new results in our paper.

The information structure I∗ is strategically very similar to another information struc-
ture, which we denote by IIPV : as before signals are independent draws from G, but now

wi (s) = si.

In other words, IIPV is the independent private values information structure in which the
individual values are distributed by G but highest value among the N values has the same
distribution H as the value in maximum signal model. We note that in the independent
private value model IIPV derived from I∗, all the bidders except for the bidder with the
highest signal, have a strictly lower value for the object than in the corresponding common
value model.

It is a standard result that there is a monotonic pure-strategy equilibrium of
(
MFPA, IIPV

)
in which a bidder with value si bids the expected highest of the others’ signals, conditional on
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others’ signals being less than si, i.e., βFPA (si). We can use this to show that βFPA is also an
equilibrium of

(
MFPA, I∗

)
. First, consider a deviation in which a type si bids βFPA (s′i) for

some s′i ≤ si. Then the bidder only wins when the highest of the others’ signals is less than
si, in which case the highest signal, and hence the value, is just si. The deviator’s surplus is
therefore the same as what it would be in IIPV , which we know is less than or equal to the
equilibrium surplus. On the other hand, by deviating to a higher bid, the deviator’s surplus
would be∫ s′i

x=v

(
max {x, si} − βFPA (s′i)

)
d
(
G (x)N−1

)
=

∫ s′i

x=v

(max {x, si} − x) d
(
G (x)N−1

)
=

∫ si

x=v

(si − x) d
(
G (x)N−1

)
,

which is independent of s′i. Finally, it is clear that bidding above βFPA (v) is not attractive.
From the revenue equivalence theorem (Myerson, 1981), we know that revenue in this

equilibrium must be equal to that of the second-price auction, which is the expected second-
highest value, thus giving us the formula (2).

3.2 Revenue Ranking

Our primary interest is to compare the revenue guarantee of the first-price auction to that
of other mechanisms. We will refer to a mechanism as standard if (i) messages are one-
dimensional bids and (ii) the high bidder is allocated the good, as in the first-price auction.
We say a mechanism is private-value efficient if there is a monotonic pure-strategy equilib-
rium when values are symmetric, independent, and private. First-price auctions, second-price
auctions, all-pay auctions, and the war-of-attrition are all examples of standard private-value
efficient auctions.

Our first main result is a ranking of revenue guarantees of standard and private-value
efficient mechanisms.

Theorem 1 (Revenue Guarantee Ranking).
If M is a standard and private-value-efficient mechanism, then RFPA is greater than any
revenue guarantee ofM.

To prove the theorem, we first establish the following result:

Proposition 2 (Strategic Equivalence).
Suppose that M is a standard mechanism and β is a symmetric monotonic pure-strategy
equilibrium of

(
M, IIPV

)
. Then β is also an equilibrium of (M, I∗).
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Proof of Proposition 2. When others use the strategy β, bidding β (si) must result in the
bidder winning when si ≥ maxj 6=i sj and making an interim payment T (si). This “direct”
allocation is precisely the one that is induced by the first-price auction. Moreover, from the
revenue equivalence theorem, we know that the interim expected payment must be the same
as that induced by the first-price auction, T FPA (si), up to a constant that depends on i but
not on si:

T (si) = T FPA (si) + ci.

Thus, si profits from a deviation to β (si) to β (s′i) in the game (M, I∗) if and only if si
profits from a deviation from βFPA (si) to βFPA (s′i) in the game

(
MFPA, I∗

)
. Since the

latter deviation is unprofitable, the former must be as well. Finally, it cannot be that there
is any type that wants to deviate to a message that is not sent in equilibrium. The fact
that there are no atoms implies that for any message, there is an equilibrium message which
induces the same allocation. If any of the out-of-equilibrium messages were a profitable
deviation, they would have to have a lower expected transfer than the equilibrium message,
which contradicts the hypothesis that β is an equilibrium of

(
M, IIPV

)
.

We now complete the proof of Theorem 1.

Proof of Theorem 1. To prove the result, we will simply exhibit an information structure
and equilibrium in which revenue is equal to RFPA. The information structure is I∗. From
the private-value efficiency hypothesis, we know that

(
M, IIPV

)
must have an equilibrium

in symmetric monotonic pure-strategies, which we denote by β. From Lemma 2, β is also
an equilibrium of the game (M, I∗). This implies the result, since the revenue-equivalence
theorem implies that

R (β;M, I∗) = R
(
β;M, IIPV

)
≤ R

(
βFPA;MFPA, IIPV

)
= RFPA,

where the inequality follows from the fact that first-price auctions maximize revenue among
all efficient auctions when values are private, symmetric, and independent. In particular,
the monotonic equilibrium of the first-price auction induces an efficient allocation and makes
the participation constraint of the lowest type bind.

This theorem immediately demonstrates the maxmin optimality of the first-price auction
among standard and private-value efficient mechanisms.

Corollary 1 (Optimality of the First-Price Auction).
The first-price auction maximizes the revenue guarantee among standard mechanisms that
are private-value efficient.

9



In particular, the first-price auction has a greater revenue guarantee than second-price
auctions, English auctions, all-pay auctions, the war of attrition,2 and all combinations of
these mechanisms. While Theorem 1 and Corollary 1 only show a weak ranking, in the case
of second-price and English auctions, the ranking is clearly strict, since these mechanisms
have “bidding ring” equilibria in which one bidder makes a high bid and the others effectively
do not participate in the auction.3

4 Revenue Guarantee Equivalence

The notion of a revenue guarantee in Section 2 requires that the revenue bound holds across
all equilibria. We could therefore have quite easily concluded that the second-price and
English auctions would have lower revenue guarantees than the first-price auction, without
the use of Theorem 1, since the former mechanisms have “bidding ring” equilibria in which
one bidder bids a large amount and the others bid zero. We might find the revenue ranking
unappealing if it depended on the unfavorable selection of such equilibria, especially since
the second-price and English auctions are known to have very appealing equilibria in well-
behaved environments, such as the affiliated values setting studied by MW. Our next result
shows that even if we restrict attention to affiliated values information structures and if we
select the monotonic pure-strategy equilibrium, the first-price auction still performs weakly
better than the second-price and English auctions. In fact, they all perform equally well.

We now proceed formally. An information structure has affiliated signals if (i) Si = R
for all i, (ii) π is absolutely continuous with respect to Lebesgue measure and has a density
f (s), and (iii) the density f is affiliated in the sense of MW, i.e., f is log supermodular. An
affiliated values information structure is an information structure with affiliated signals and
also satisfies (iv) wi (s) is weakly increasing in each coordinate.

A second-price auction MSPA has an allocation rule qSPA = qFPA that is the same as
that of the first-price auction, but the payment is the second-highest bid, i.e.,

tSPAi (m) = qSPAi (m)m(2).

2By war of attrition, we mean the sealed-bid mechanism defined by Krishna and Morgan (1997): each
bidder submits a real number, the high bidder wins, and all bidders pay the minimum of their bid and the
second-highest bid.

3In personal communication, Ziwei Wang has given an example of an information structure and equilib-
rium in which revenue from the all-pay auction is strictly lower than RFPA.
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As MW show, when values are affiliated, this mechanism has a monotonic pure-strategy
equilibrium in which a type si bids

βSPA (si) = Eµ
[
w (s′) |s′i = si, s

(1)
−i = si

]
.

We say that R is an affiliated values revenue guarantee for the second-price auction if for
any affiliated values information structure I, R

(
βSPA;MSPA, I

)
≥ R. As before, R is

the revenue guarantee if it is a revenue guarantee and it is greater than any other revenue
guarantee.

The English auction MEA has messages that are actually collections of mappings mI
i :

RI
+ → R+ for all I ⊆ N \ {i} that say, as a function of the drop-out prices of bidders in

I, at which price bidder i should drop out of the auction. Our convention is that m∅i is a
constant. A profile of messages induces an outcome wherein the first bidder to drop is the
one with the smallest m∅i , which is the price at which that bidder drops out, and the second
bidder drops out at price mi

j

(
m∅i
)
, etc. The auction ends when only one bidder remains,

and the remaining bidder gets the good (breaking ties equally if more than one bidder drops
out simultaneously to end the auction), and pays the price at which the penultimate bidder
dropped out. For a more formal description of the English auction, see MW. They show that
there is an equilibrium of this game in which, conditional on the first K bidders dropping
out at prices yN−1 ≤ · · · ≤ yN−1−K , a bidder with signal si ≥ yN−1−K drops out at price

βEA
(
si, y

N−1, . . . , yN−1+K
)

= Eµ
[
w (s′) |s′i = si, s

(k)
−i = yk ∀k ≥ N − 1 +K, s

(k)
−i = si ∀k ≤ N −K

]
.

We say that R is an affiliated values revenue guarantee for the English auction if for any
affiliated values information structure I, R

(
βEA;MEA, I

)
≥ R. The revenue guarantee is

the best possible such guarantee.

Theorem 2 (Revenue Guarantee Equivalence).
The first-price, second-price, and English auctions all have the same affiliated values revenue
guarantee, which is equal to given by RFPA.

Proof of Theorem 2. The proof proceeds by two short steps.
Step 1: MW show that for any affiliated values information structure, there is an equilib-

rium of the first-price auction in which revenue is lower than both R
(
βSPA;MSPA, I

)
and

R
(
βEA;MEA, I

)
. This proves that revenue in the second-price and English auctions must

be at least the revenue guarantee of the first-price auction, RFPA.
Step 2: It is easy to verify that the information structure I∗ is symmetric and has

affiliated values. Moreover, the equilibria of the second-price and English auctions reduces
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to bidding your signal and dropping out when the price reaches your signal, respectively.
Both of these equilibria induce revenue equal to the expected second-highest signal, which
is RFPA.

In a sense, Theorem 2 shows that the information structure I∗ has the strongest winner’s
curse of any affiliated values environment with the given distribution over the common value.
By winner’s curse, we mean the adverse selection from winning the good under a mechanism
and equilibrium in which the high-signal bidder is allocated the good. It is well known that
the presence of a winner’s curse induces the bidders to shade their bids, so that they bid based
on their pivotal value on the marginal event that they win. This updating is particularly
severe in the maximum signal information structure I∗. To wit, here learning that one has
the highest signal means that the value is exactly equal to one’s own signal, whereas at the
moment when the bidder only knows his own signal, it is only a lower bound on the true
value of the object. Thus, at interim stage, the signal of each bidder is the greatest lower
bound for the value, and at the ex-post stage, the signal of the winning bidder is least upper
bound.

If we measure the degree of adverse selection in terms of the difference between expected
value and expected revenue, that difference is the largest under the monotonic equilibrium
of I∗, regardless of which of the standard auctions we use to measure the effect.

Thus, we find that when we restrict attention to well-behaved (symmetric and affiliated
value) environments, second-price and English auctions do no better than the first-price
auction in the worst case. At the same time, if we relax these hypotheses (symmetry,
affiliated values, favorable equilibrium selection), the worst-case for the first-price auction
must remain the same, while for these other mechanisms it can only decrease.

5 Extensions

5.1 Revenue Guarantee Rankings with Interdependent Values

The analysis of the first-price auction in BBM goes well beyond the common value case. In
that paper, we characterize the revenue guarantee of the first-price auction as long as the
joint distribution of values π is exchangeable, thus including interdependent as well as private
values. We could similarly extend the robust revenue ranking of Theorem 1 to cover this
more general environment with minimal conceptual innovation, although some additional
notation is required.
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In general, the critical worst-case information structure is defined as follows. For any
realized vector of values v ∈ RN among the N bidders, let

α (v) =
1

N − 1

(∑
i∈N

vi − v(1)
)

denote the average of the N − 1 lowest values. Let H denote the distribution of α (v),
where v is distributed according to π. We continue to maintain the hypothesis that H has
no atoms. In the critical information structure, the bidders receive as before independent
one-dimensional signals

si ∼ G (x) = (H (x))1/N .

The values can then be written in terms of the signals as follows:

wi (s) =

si, if si /∈ H (s) ;

Eπ
[
v(1)|α (v) = si

]
, otherwise.

Thus, the highest signal is equal to the average of the N−1 lowest values, and the high-value
bidder gets the highest signal. We continue to denote this information structure by I∗.

The first-price auction continues to have an equilibrium on this information structure
which is described by (3), which attains the generalized revenue guarantee, still given by (2)
(although with the redefined G and H). This is shown in BBM. Moreover, by exactly the
same steps as in the proof of Theorem 1, we could show that any standard and private-value
efficient mechanism M must have an equilibrium with the same expected revenue, so that
any revenue guarantee ofM must be weakly less than RFPA. The only step in the proof that
changes is that when we evaluate a downward deviation, the deviator’s value is even higher
than it would be in the “as if” independent private value model IIPV . Thus, downward
deviations are even less attractive than before. The argument for upward deviations is
unchanged, and in fact bidders are indifferent to all upward deviations.

5.2 Revenue Guarantee Equivalence with Interdependent Values

Generalizing Theorem 2 is more subtle. The interdependent values version of I∗ is not
affiliated. To see why, consider a simple case in which there are two bidders and vi are
independent draws from the cumulative distribution F . In that case, under I∗, the bid-
ders receive independent signals, and the highest signal is equal to the smallest value:
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maxi=1,2 si = mini=1,2 vi. For example, if we take F to be uniform on [0, 1], then

wi (s) =

si, if si < sj;

1+si
2
, otherwise.

Thus, there is a downward jump in the value function wi (s) as a function of sj when sj = si.
This discontinuity means that there are multiple monotonic pure strategy equilibria. In

particular, bidding si is an equilibrium, but so is bidding (1 + si) /2. In either case, the
equilibrium winner will be the bidder with the higher value, and the winner always pays a
price less than their value, so that downward deviations are not attractive. On the other
hand, increasing one’s bid generally leads to a downward jump in the value on the marginal
event when one wins, so upward deviations are not attractive either. Similarly, there are
multiple monotonic pure-strategy equilibria of the first-price auction, with the one described
by (3) being the lowest. In the uniform example, the lowest equilibrium of the FPA is to bid

β (si) =
1

G (si)

∫ si

x=0

xdG (x) ,

but it is easily verified that the following monotonic strategy is also an equilibrium:

β (si) =
1

G (si)

∫ si

x=0

1 + x

2
dG (x) ,

in which revenue is strictly higher. In effect, when there is a gap between the highest
and second-highest values, there are different equilibria corresponding to different ways of
“selecting” which value in the gap is treated as the value in the pivotal event where the
bidders tie.

So, in order to generalize Theorem 2 beyond common values, we have to both expand the
range of information structures that we consider, and also to decide which of the symmetric
and monotonic pure-strategy equilibrium the bidders should play. This can be done as
follows. We will say that an information structure is one of generalized affiliated values if
the signals are affiliated and if the value function can be written as

wi (s) = ŵi (s) + Isi≥maxj 6=i sj w̃i (s)

where ] ŵi is monotonic and w̃i is non-negative. It is easily verified that when information
is symmetric and generalized affiliated, there are monotonic pure-strategy equilibria of first-
price, second-price, and English auctions, where bidders act “as if” the value function were
ŵi. We refer to this as the minimal monotonic equilibrium. Moreover, the linkage principle

14



of MW applies to these equilibria, so that revenue in this equilibrium is greater under the
English auction than it is under the second-price auction than it is under the first-price auc-
tion. We define the generalized affiliated values revenue guarantee to be minimum revenue in
the minimal monotonic equilibrium across all generalized affiliated values information struc-
tures with the given prior as a mean-preserving spread. The linkage principle implies that
the generalized affiliated values revenue guarantee for the first-price auction is weakly lower
than that of second-price and English auctions. Finally, I∗ is a generalized affiliated values
information structure, and in this information structure, the minimal monotonic equilibria
of these auctions are all revenue equivalent. Thus, we conclude that first-price, second-price,
and English auctions all have the same generalized affiliated values revenue guarantee.

5.3 Auctions with Reserve Prices

It is well-known that adding a minimum bid can raise revenue in private value environments.
This occurs when there are bidder types that have relatively low gains from trade compared
to their information rent. We can extend our results to the case where there is a reserve
price. Specifically, consider the first-price auction with reserve r, denotedMFPA (r):

qFPAi (m) =

 1
|W (m)| if i ∈ W (m) ;

0 otherwise,

where
W (m) =

{
i ∈ N|mi = m(1),mi ≥ r

}
is the set of high bidders whose bids exceed the reserve, and

tFPAi (m) = qFPAi (m)m(1).

Note that this is a different mechanism from the no-reserve first-price auction considered
above, and hence it has a distinct revenue-minimizing information structure. BBM show
that it has the following structure: Let xi be independent draws from G (x) = (H (x))1/N .
Bidder i’s signal is

si =

xi if xi ≥ v̂;

r otherwise,

where v̂ solves ∫ v̂

v=0

vH (dv) = r.
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The value function is again simply
w (s) = s(1).

We denote this information structure by I∗ (r). We can think of this information structure
as being derived from I∗, where signals below v̂ are pooled together as a single signal r. The
cutoff v̂ is chosen so that the expected value is r conditional on the highest signal being r.

As before, there is a monotonic pure-strategy equilibrium of the first-price auction:

βFPA (s; r) =

0 if si = r;

Es−i

[
max

{
r, s

(1)
−i

}
|s(1)−i ≤ si

]
otherwise.

BBM show that this information structure and equilibrium achieve the revenue guarantee of
MFPA (r), which is

RFPA (r) = E
(x1,...,xN )

iid∼G

[
max

{
r, x(2)

}
Ix(1)≥v̂

]
.

Again, there is a strategic equivalence result that says that the same strategies would be
an equilibrium even if bidders treated their signals as private values. Let us denote this
information structure by IIPV (r). Moreover, the revenue equivalence theorem says that
revenue on IIPV (r) is the same as what would obtain with a second-price auction with a
reserve price of r, thus yielding the formula for RFPA (r).

We could extend Theorem 1 to reserve price auctions as follows. Suppose there is another
mechanismM, that results in the same allocation in IIPV (r). This could be a second-price
or English auction with reserve r, or it could be an all-pay auction, albeit with a different
reserve price. In order to have an apples-to-apples comparison, we hold the screening level
fixed, so that the allocation is conditionally efficient when the highest value is greater than
r, but the seller keeps the good when the highest value is weakly less than r. The fact
that these mechanisms are revenue equivalent to the first-price auction on IIPV (r), and the
strategic equivalence of the induced direct mechanism between IIPV (r) and I∗ (r), means
that there is an equilibrium and information structure in which M has revenue equal to
RFPA (r), so the revenue guarantee forM is weakly below RFPA (r).

Theorem 2 can be extended as well. The type space I∗ (r) is still one of affiliated values,
and the revenue ranking of MW in affiliated environments extends to first-price, second-
price, and English auctions with a common reserve price (ibid, Section 7, pp. 1111-1113).
Moreover, the equilibrium βFPA (·; r) coincides with the one described by MW. Thus, we
conclude that first-price, second-price, and English auctions with reserve price r are revenue
guarantee equivalent, with a guarantee of RFPA (r).
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5.4 Revenue Guarantee Equivalence with Other Mechanisms

Theorem 1 is quite general and covers all standard and private-value-efficient mechanisms.
Theorem 2, on the other hand, is specific to first-price, second-price, and English auctions.
Theorem 2 would extend to cover a mechanismM if that mechanism generates weakly more
revenue than the first-price auction when values are symmetric and affiliated. While MW
prove this revenue ranking for second-price and English auctions, their proof technique can
be adapted to cover more mechanisms. In particular, the critical feature of the second-price
auction that yields the revenue ranking is that (i) only the winner pays and (ii) the winner’s
payment is increasing in other bidder’s reports (ibid, Theorem 15, p. 1109). Any mechanism
that satisfies the same conditions and has an equilibrium in monotonic pure-strategies must
generate weakly more revenue than the first-price auction. Thus, for example, Theorem 2
would extend to cover convex combinations of first-price and second-price auctions, where the
winner pays a weighted average of the highest and second-highest bids, provided a monotonic
equilibrium exists. Lizzeri and Persico (2000) proved existence of a monotonic equilibrium
when there are two bidders.

In addition, we expect that the characterization of affiliated revenue guarantees can be
extended beyond monotonic winning payments. Krishna and Morgan (1997) give conditions
under which the all-pay auction and the war-of-attrition always generate more revenue than
the first-price auction. Theorem 2 will extend to these mechanisms as well, as long as I∗

satisfies their additional conditions, which boils down to a hazard rate condition on the
distribution G. The takeaway is that Theorem 2 can extend well-beyond second-price and
English auctions.

5.5 Releasing More Information

MW famously gave conditions under which releasing public information about the value will
raise revenue from first-price, second-price, and English auctions. Analogous results hold
for revenue guarantees. First, suppose the seller has access to a signal that can be publicly
revealed to the bidders. We claim that for any mechanism, revealing the signal must raise the
revenue guarantee. Why? Since all information structures are allowed, it is always possible
that the bidders’ already have access to this signal. Revealing the signal may, however, rule
out some information structures, e.g., no information, so that the revenue guarantee will
weakly increase. At the same time, our revenue guarantee ranking will continue to hold ex
post for each realized public signal, so that the ranking continues to hold ex ante as well.

Similarly, revenue guarantee equivalence would continue to hold if the seller releases public
information that is affiliated with the value, as long as we restrict attention to information
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structures that are jointly affiliated with the value and the public signal. Again, conditional
on the public signal, the information structure is still affiliated. At the same time, it is
possible that conditional on the public signal, the bidders’ get independent signals and the
maximum signal is equal to the value. Thus, revenue guarantee equivalence will hold ex post
conditional on each realization of the public signal.

The bottom line is that releasing public information always helps the seller, but it is also
preserves the dominance of the first-price auction in terms of revenue guarantees.

6 Conclusion

We presented a novel version of the revenue equivalence and revenue ranking theorems.
We compared the auction format in terms of a revenue guarantee across all information
environments rather than in terms of the revenue from a specific information environment.
The revenue guarantee identified the greatest lower bound across all information structures
(and all equilibria). This analysis yields a powerful new argument in favor of first-price
auctions as achieving a greater revenue guarantee than other standard mechanisms, such as
second-price and English auctions.

Some intuition may be found in the following observation. In all standard auctions, be-
liefs about others’ behavior affects one’s preferences over bids in two different ways: First,
the distribution of others’ bids determines the likelihood of winning at each bid and ex-
pected value conditional on winning. Second, the distribution of others’ bids determines
the expected payments conditional on winning and conditional on not winning the auction.
In first-price auctions, the second channel does not exist: one’s own bid completely deter-
mines the payments conditional on winning and on not winning. Thus, there seems to be
less scope to shape preferences over bids using just information, which consequently means
that less extreme bidding behavior can be supported. Understanding better which kinds of
mechanisms will be less sensitive to information is a promising direction for future research.
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