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Abstract

Mediation is an alternative dispute resolution method, which has gained increas-
ing popularity over the last few decades and become a multi-billion dollar industry.
When two or more parties are in a disagreement, they can take the case to a court
and let the judge make a binding final decision. Alternatively, the disputing parties
can get assistance from an experienced, neutral third party, i.e., a mediator, who
facilitates the negotiation and help them voluntarily reach an agreement short of lit-
igation. The emphasis in mediation is not upon who is right or wrong, but rather on
exploring mutually satisfactory solutions. Employment disputes, patent/copyright
violations, construction disputes, and family disputes are some of the most common
mediated disputes. The rising popularity of mediation is often attributed to the
increasing workload of courts, its cost effectiveness and speed relative to litigation,
and disputants’ desire to have control over the final decision. Many traditional
“cardinal” settings of bargaining and mechanism design, starting with the seminal
work of Myerson and Satterhwaite (1983), have shown the incompatibility between
efficiency and incentives, even in Bayesian sense. This paper uses an “ordinal”
market/mechanism design approach, where the mediator seeks a resolution over
(at least) two issues in which negotiators have diametrically opposed rankings over
the alternatives. Each negotiator has private information about her own ranking
of the outside option, e.g., the point beyond which the negotiator would rather
take the case to the court. We construct a simple theoretical framework that is
rich and practical enough allowing for optimal mechanisms that the mediators can
use for efficient resolution of disputes. We propose and characterize the class of
strategy-proof, efficient, and individually rational mediation mechanisms. A central
member of this class, the “constrained shortlisting” mechanism stands out as the
unique strategy-proof, efficient, and individually rational mechanism that minimizes
rank variance. We also provide analogous mechanisms when the issues consist of a
continuum of alternatives.
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“Mediation has rapidly become, with precious little fanfare, the ocean we

swim in and the air we breathe. It would now be hard to imagine a world where

it wasn’t.” Jim Melamed (founder and CEO of Mediate.com, recipient of American Bar

Association Institutional Problem Solver Award.)

Introduction

The best-seller book, “Getting to Yes,” by Roger Fisher and William Ury is arguably

one of, if not the most famous, works on the topic of negotiation. They identify conflict

as a growth industry, and the last few decades proved them right. Courts in all US states

offer some form of ADR (alternative dispute resolution) for the cases filed in state courts.

17 states require mandatory mediation: 11% of civil cases in Northern California courts

in 2011, 35.6% of civil and 21.6% of divorce cases in New York state courts in 2016 have

been mediated.1 Total value of mediated cases in UK is estimated to be £10.5bn. in

2011, excluding mega-cases, family and community disputes.2 In addition to face-to-face

mediation practices, online dispute resolution, aiming to resolve disputes that arise online,

has also gained increasing popularity over the last decade. These are small disputes in

size but large in number. Dispute resolution centers of E-bay, PayPal, Uber and Amazon

tackles more than a billion disputes a year. Many online dispute resolution web sites

use automated mechanisms to help parties resolve their disputes. Empirical studies and

mediation program evaluations suggest 60-90% success rate, 90-95% satisfaction by the

disputants and higher rate of compliance relative to court-imposed orders.

Unlike litigation and arbitration, mediation does not search for truth, rather searches

for satisfaction. In mediation a neutral third party facilitates communication and negoti-

ation, promotes exploration of mutually acceptable alternatives. Namely, the emphasis is

not on who is right or wrong, but rather upon establishing a workable solution that meets

the participants’ needs. Disputants prefer mediation over it’s alternatives because it is

cost effective. According to Hadfield (2000) it costs a minimum of $100,000 to litigate a

straightforward business claim, whereas a mediation session varies from few hours to a

day and even the most reputable mediators charge around $10,000 - $15,000 for a day. In

addition, disputants do not have to pay any fees for expert, witness, document prepara-

tion, investigation or paralegal, which would easily pile up the costs. Airline companies

and hospitals, for example, prefer mediation because mediation sessions are private and

confidential. It is impossible to discuss a legally “irrelevant” issue in litigation/arbitration

and some disputes are not just about money or being right. For example, an employee

1Sources: dispute resolution centers of State of New York and California.
2The Seventh Mediation Audit, Centre for effective dispute resolution.
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would be suing her company for sexual assault and reinstatement or a good reference let-

ter would be more important for her than compensation. However, in mediation, parties

can discuss and negotiate issues that are not directly linked to the case. This infinite

flexibility of bringing any issue on the table can be used to transform a competitive, zero-

sum negotiation problem into a “multi-issue” negotiation problem that enlarges the set

of acceptable outcomes.

Market design has been fruitful in many applications, most notably in auctions and

matching theory. The goal of this paper is to offer a first market design setting to analyze

dispute resolution via mediation, which is simple enough to be practically relevant while

maintaining the informational richness and complexities faced in practical disputes. To

this end, our modeling significantly departs from the traditional mechanism design ap-

proach to bargaining that builds on the seminal work of Myerson and Satterthwaite (1983)

in the context of bilateral trade over a good for which traders have private valuations each

drawn from pre-specified distributions and commonly known utility functions. This type

of “cardinal approach” has however been the subject of the famous Wilson critique for it

lacks “detail-freeness” and does not provide robust incentives to participants. In a similar

vein, Ausubel, Crampton, and Denecker voice a similar concern:

“... Despite these virtues, mechanism design has two weaknesses. First,

the mechanisms depend in complex ways on the traders’ beliefs and utility

functions, which are assumed to be common knowledge. Second, it allows too

much commitment. In practice, bargainers use simple trading rules—such as

a sequence of offers and counteroffers—that do not depend on beliefs or utility

functions.” Handbook of Game Theory

The ordinal approach, whereby the designer elicits only ordinal preference information,

has already lead to quite notable success in applications of matching and assignment

such as medical residency, school choice, kidney exchange, and course assignment, where

a plethora of strategy-proof and efficient mechanisms have been obtained, extensively

studied, and even adopted in practice.

Our model assumes that two negotiators are in a dispute and aim to reach a resolution

through a mediator. There is a main issue, issue X, consisting of a finite number of alter-

natives, which is relevant for both parties’ welfare.3 The negotiators have diametrically

opposed preferences over alternatives in the sense that if one negotiator prefers one al-

ternative over another, then the other negotiator has exactly opposite ranking of the two

alternatives. However, not all alternatives are acceptable for any given negotiator. When

offered one such alternative for her, a negotiator rejects the mediator’s proposal and

3In the paper we later relax the finiteness and discreteness assumptions on X.

3



pursues alternative ways of resolution, e.g., litigation. We capture such circumstances

by assuming an outside option whose ranking is each negotiator’s private information.

The mediator’s objective is to truthfully elicit negotiators’ private information about the

position of their outside options and propose an efficient and mutually acceptable, i.e.,

individually rational, outcome.

We first show that if there is a single issue, i.e., no other issues than issue X, then

there is no strategy-proof, efficient, and strategy-proof mechanism. Furthermore, we

show that this impossibility extends to multiple issues if each issue has an outside option

similarly defined, i.e., in each issue each negotiator has an outside option whose ranking

is her private information. This motivates the need for a setting that asymmetrically

treats different issues: Consider a second issue, issue Y , where the outside option is the

least preferred alternative for both negotiators. In other words, litigation for the second

issue is always inefficient. This asymmetric treatment of the outside options can be

motivated by various employment, family, construction or patent/copyright infringement

disputes. Litigation is naturally the default option if the issue is compensation or division

of property and it is a very long and costly process, and so, inefficient relative to other

potential divisions (alternatives). Although money is an important issue in disputes, it

is rarely the only issue (Malhotra and Bazerman, 2008). Disputes over change orders

and extra work or disputes over the contract scope of work would be alternative issues in

construction disputes. Child custody and visitation would be alternative issues in family

disputes. In this two-issue mediation problem, the mediator recommends a bundle (x, y)

of outcomes from X × Y . A mediation rule/mechanism is a systematic way of choosing

an outcome for any given preferences of the negotiators.

Since the mediator asks negotiators to report their outside options over alternatives

in issue X (recall that there is no uncertainty regarding negotiators’ preferences over

alternatives in issue Y ), one needs to invoke extension mappings to obtain the possible

set of negotiators’ underlying preferences over bundles. Alternatively, it is conceivable that

the mediator elicits preferences over bundles of alternatives. This approach, which we do

not pursue, however, has two drawbacks: First, the number of bundles to rank increases

quadratically with the number of alternatives in each issue, which in turn makes asking

for full-fledged rankings over bundles highly impractical. Second, a similar impossibility

to the single-issue mediation would arise in this case.

In this paper we ask if there is an impartial and dominant strategy incentive compati-

ble, i.e., strategy-proof, way of soliciting true preferences so that mediation outcomes are

efficient and individually rational. A sufficient and almost necessary condition for obtain-

ing a positive answer to this question is the so-called “logrolling (quid pro qu)” condition

on negotiators’ preferences which implies a form of substitution between issues X and Y .
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More specifically, logrolling requires preferences to be rich enough such that a negotiator

is able to compromise issue X for a more preferred alternative in issue Y , e.g., for a given

(x, y) bundle, there exists a (weakly) more preferred bundle which involves getting a worse

alternative in X combined with a better alternative in Y . In the continuous version of

our model, we show that many commonly used utility functions satisfy this assumption.

Our main result is a complete characterization of the class of strategy-proof, efficient,

and individually rational mediation rules. These rules operate through an exogenously

specified precedence order over a set of special bundles, which we call as the logrolling

bundles and always make selections among these bundles. The logrolling bundles form

a simple lattice structure with respect to the negotiators’ preferences: given any set of

mutually acceptable alternatives, for each negotiator there is always an optimal-logrolling

bundle that she prefers over all other acceptable bundles; this bundle is the pessimal-

logrolling bundle for the opposite negotiator. The characterized class of rules nest inter-

esting extremal members. When the precedence order over coincides with the preference

ranking of a given negotiator over the logrolling bundles, we obtain the corresponding

negotiator-optimal rule.

In keeping with our main objective of finding impartial mediation rules, we search

for members of this class of rules that satisfy sensible fairness criteria. To this end, we

define the “rank variance” of an outcome as the sum of the square of each negotiator’s

ranking of each alternative in each issue. It turns out there is a unique member of the

family of strategy-proof, efficient, and individually rational mediation rules that minimizes

rank variance. This is the so-called “constrained shortlisting” rule, which recommends

the median logrolling bundle when it is mutually acceptable, or the closest mutually

acceptable logrolling bundle to it when it is not mutually acceptable. This rule is intuitive

and simple enough to be used as a standardized protocol for finding the middle ground

between disputing parties in practice.

Related Literature

Our paper and modeling approach connects and spans four different types of literature:

1) Bargaining and Mechanism Design: Mediation is a part of the bargaining literature,

which is primarily based on the cardinal approach discussed above. The more broadly-

defined mechanism design approach to bargaining in the presence of private outside op-

tions, started with the classic paper by Myerson and Satterthwaite (1983) [MS henceforth],

has generally emphasized the difficulty/impossibility of reaching efficient outcomes even

in Bayesian settings let alone dominant strategies. Specifically, for the mediation context,
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there are very few papers: Bester and Warneryd (2006) show that the news are even

worse than MS in this setting. The MS result depends on there being a positive probabil-

ity of trade being inefficient ex post. Bester and Warneryd (2006), in a model featuring

continuum of types, show that asymmetric information about relative strengths as an

outside option in a conflict may cause agreement to be impossible even if the agreement is

always efficient. In their model, conflict shrinks the pie and thus agreement on a peaceful

settlement is always ex post efficient. Following Bester and Warneryd (2006), Horner et

al (2015) compare the optimal mechanisms, with two types of negotiators, under arbitra-

tion, mediation and unmediated communication. For both models, there is no ex post

efficient and Bayesian incentive compatible mechanism. Namely, optimal mechanism is

necessarily inefficient.

In our model, we adopt an ordinal mechanism design approach in the sense that nego-

tiators rank finitely many available options in opposite ways, which is common knowledge,

but the outside option of each negotiator is her private information as in the Compte and

Jehiel (2007) model, which adopts a cardinal utility approach much like the rest of this

literature. In our benchmark model of single-issue mediation, a conflict situation which

is defined as the mediators recommending negotiators to exercise their outside options,

is also ex post inefficient so long as the mediators have a mutually acceptable outcome

(clearly, when there is no mutually acceptable outcome, mediation is hopeless). Also,

for the second issue Y , the conflict situation (outside option) is always inefficient in our

model.

By contrast to this literature, our ordinal approach together with our modeling spec-

ifications enables us to obtain positive results: Indeed, we are able to achieve ex post

efficiency in dominant strategies and argue that the proposed rules can potentially be

convenient and simple enough to use in practice.

2) Political Economy: Our benchmark model (but not the main, two-issue model where

preferences over bundles are not necessarily single-peaked) resembles a voting model with

single-peaked preferences where a number of voters have single-peaked preferences over the

single-dimensional political spectrum and a voting rule aggregates individual preferences

(Black 1948, Moulin 1980, Barbera, Gul and Stachetti 1991, and Ching 1997). In this

type of models, the famous median voter theorem states that majority-rule voting system

will select the outcome most preferred by the median voter.

In our model, preferences can also be thought to be single-peaked with each negotiator

preferring the opposite extremes of the spectrum. There are a number of differences in

our model from a voting model. In a voting model, there are several voters whose bliss

point (peak value) is their private information. In our model, peaks are publicly known.

What is private information is the two negotiators’ outside options, which do not have
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any analogues in a voting model. Because of this difference, the voting model admits a

class of strategy-proof rules for which efficiency and individual rationality vacuously hold.

In our setup, however, such rules are either inefficient or violate individual rationality. In

our setup, even dictatorship rules, despite being efficient, violate individual rationality.

In our benchmark model with single issue, there is no strategy-proof, efficient and

individually rational rule. This in turn motivates to consider multi-issue models where

single-peakedness does not necessarily hold and there is asymmetry in terms of outside

options are treated for each issue. In fairness, there are also multi-dimensional voting mod-

els where people vote on multiple issues but this literature also concludes that strategy-

proofness effectively requires each dimension to be treated independently for other. In our

setup, by contrast we exploit a kind of exchangeability between the two issues, together

with an asymmetric treatment of outside options, to arrive at strategy-proof rules

A logically independent but similar result that we find to the median voter theorem

is that although the family of strategy-proof, efficient and individually rational rules we

characterize are much different than those strategy-proof rules characterized generalized

Condorcet rules, our family also nests a central rule dubbed the “constrained shortlisting”

rule that chooses the “median bundle” when preferences of the negotiators are symmetric

and tries to choose outcomes as close to the median bundle as possible. In our setup,

however, the class of rules need not even include the impartial median-type rule. Indeed,

we also identify rules that may also be partial toward either negotiator.

3) Matching/Assignment: Matching models and applications have championed the

ordinal mechanism design approach (see, for example, Gale and Shapley 1962, Shapley

and Shubik 1971, Crés and Moulin 2001, and especially recent applications of ordinal

assignment mechanisms Balinski and Sönmez 1998, Abdulkadiroglu and Sönmez 2003,

Roth, Sönmez and Ünver 2005.) Ordinal rankings over objects together with an outside

option is a common feature of matching/assignment models. Given that both negotiators

end up consuming the same bundle, our model with ordinal preferences can be though

to be a “public good” assignment version of a matching problem. This connection to

matching is important in two regards: 1. Ordinal mechanisms may be more practical and

convenient than cardinal ones as supported by experimental work. In this regard ordinal

mechanisms coupled with strategy-proofness can help avoid the Wilson’s critique often

imposed on the “cardinal/Bayesian” mechanism design approach.

A second connection that surfaces to matching type models as a result of our analysis

is that we find that the class of strategy-proof, efficient and individually rational rules

also contain the negotiator-optimal rules, much in the same spirit as the proposing-side

optimal deferred acceptance mechanisms or the buyer/seller optimal core assignments in

the Shapley-Shubik assignment game.
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4) Non-dictatorial strategy-proof mechanisms escaping the Arrow - Gibbard - Satterth-

waite impossibilities: With the hope of arriving at possibility results, there is a tradition

of identifying strategy-proof rules in restricted economic environments: see, for example,

Vickrey (1961), Groves (1973), Clarke (1971) [VCG] for public goods and private assign-

ment with transfers, uniform rule (Benassy 1982, Sprumont 1991) for division of divisible

private good under single-peaked preferences, generalized median-voters (Moulin 1980),

proportional-budget exchange rules (Barbera and Jackson 1995) that allow for trading

from a finite number of pre-specified proportions (budget sets), deferred acceptance (Gale

and Shapley, 1962) and top trading cycles (David Gale, 1974 and Abdulkadiroglu and

Sönmez, 2003); hierarchical exchange and brokerage (Papai 2001 and Pycia and Ünver

2015). We also add to this literature in the sense that one may draw a conceptual parallel

with the VCG mechanisms, though our rules look nothing like the above rules. In the

VCG model, preferences over objects are private info and the preferences over money is

common knowledge. This is much like negotiator’s preferences over issue X versus issue Y .

This connection is only superficial since VCG mechanisms are cardinal, and assignments

and transfers depend on reported utilities.

The Model

We begin to describe the environment with a simple example and a short discussion

about why the assumption of diametrically opposed preferences is without loss of gener-

ality.

A simple example: single-issue mediation

Negotiators 1 and 2 are in dispute over a single issue that is important for both. Let

x1 and x2 denote the available alternatives (solutions) for the dispute. The negotiators

are also entitled to the outside option, o, in case one or both of them reject to accept

one of the alternatives. Therefore, the set X = {x1, x2, o} denotes the set of all possible

outcomes of the dispute.

It is common knowledge that negotiator 1 (strictly) prefers alternative x1 to x2 and

negotiator 2 prefers x2 to x1. That is, the negotiators have diametrically opposed prefer-

ences over the alternatives x1 and x2. The ranking of the outside option, however, is the

negotiators’ private information. Therefore, each negotiator has two types4:

θx1
1 θx2

1

x1
o
x2

x1
x2
o

θx2
2 θx1

2

x2
o
x1

x2
x1
o

4We suppose, without loss of generality, that there is at least one acceptable alternative for each
negotiator.
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Consider the mediation process, denoted by f , as a mechanism with veto rights that

maps the negotiators’ private information to an outcome in X. Then, it would be repre-

sented by the following matrix

θx2
1

θx1
1

θx1
2 θx2

2

f2,1 f2,2

f1,1 f1,2

where f`,j ∈ X for all `, j ∈ {1, 2}.
We can assign f1,2 = o, without loss of generality, because there is no mutually ac-

ceptable alternative when the negotiators’ types are θx1
1 and θx2

2 , and thus, the outside

option o is effectively the only result in all voluntary mediation processes. If the outcomes

of the mediation process are (Pareto) efficient, then f1,1 should be x1 or x2. Moreover,

if the process produces individually rational outcomes, then we must have f1,1 = x1.

Likewise, an efficient and individually rational mediation process suggests f2,2 = x2 and

f2,1 ∈ {x1, x2}.
Therefore, we can construct several efficient and individually rational mechanisms for

this simple example. However, none of these processes are immune to strategic manip-

ulation (strategy-proofness). To prove this point, suppose that f2,1 = x1. In this case,

type θx1
2 of negotiator 2 would deviate and declare his type as θx2

2 to obtain x2, contra-

dicting with strategy-proofness. Alternatively, if f2,1 6= x1, then type θx2
1 of negotiator 1

would deviate and declare his type as θx1
1 to obtain x1, again contradicting with strategy-

proofness.

It is easy to extend this example to the case with more than two alternatives, and so

extrapolate that there exists no efficient, individually rational and strategy-proof single-

issue mediation process.5

Modeling conflicting preferences

Using diametrically opposed preferences over alternatives, when describing a dispute,

is intuitive because it resembles the standard bargaining problem, which is modeled as a

zero sum game, and unavoidable when the number of available alternatives is just two.

However, intuition suggests that when there are more than two alternatives many other

preference profiles, which are not diametrically opposed, would also depict a dispute.

Consider, for example, the case where the set of available alternatives (other than the

outside option) is A = {x1, x2, x3, x4, x5} and the negotiators’ preferences are

5However, there are efficient, individually rational and Bayesian incentive compatible mediation rules
when negotiators are sufficiently risk averse (Kesten and Ozyurt, 2018).
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θ1 θ2
x1
x2
x3
x4
x5

x3
x5
x4
x2
x1

These preferences are not diametrically opposed but they are certainly conflicting—to

some degree—as the agents cannot agree on their best alternative. Notice, however, that

alternatives x4 and x5 are (Pareto) dominated by x3, and so, if selecting an efficient out-

come by the negotiation protocol is desired, then the presence of these two alternatives is

irrelevant for the negotiation problem. Knowing whether or not these two alternatives are

acceptable, i.e., better than the outside option, is also an “irrelevant” piece of informa-

tion because these alternatives are acceptable by a negotiator whenever x3 is acceptable.

Thus, this particular dispute problem can be transformed into a simplified and “outcome

equivalent” version where the only available alternatives are x1, x2 and x3 and the ne-

gotiators’ preferences over these three are diametrically opposed. We can generalize this

observation for any (discrete) set of alternatives and for any preference profiles, where

negotiators cannot agree upon their first best.

Let A be non-empty set of available alternatives and Θ be the set of all complete,

transitive and antisymmetric preference relations on A. Define max(θ) to be the maximal

element of the preference ordering θ ∈ Θ, namely if x? = max(θ), then x? θ x for all

x ∈ A \ {x?}. Therefore, a two-person, single-issue dispute (dispute in short)

problem is a list D = (θ1, θ2, A) where θi ∈ Θ for i = 1, 2 and max(θ1) 6= max(θ2).

For any non-empty subset ‹A of A, let θ|
Ã

denote the restriction of the preference

ordering θ ∈ Θ on ‹A. Therefore, define D̃ = (θ̃1, θ̃2, ‹A) to be a dispute reduced from

D = (θ1, θ2, A) whenever ‹A ⊆ A and θ̃i = θi|Ã for i = 1, 2.

Proposition 1. By deleting all the Pareto inefficient alternatives, any two-person, single-

issue dispute problem D can be reduced into a two-person, single-issue dispute problem D̃

where the negotiators preferences are diametrically opposed.

A similar result holds for two-person, multi-issue dispute problems whenever prefer-

ences over bundles satisfy monotonicity.6

Proof. Let ‹A ⊆ A is the set of alternatives that survive the elimination of Pareto inefficient

alternatives. Namely, none of the alternatives in ‹A is Pareto inefficient. Re-number the

elements in ‹A, and so suppose, without loss of generality, that ‹A = {x1, ...., xm} where

m ≥ 2, and negotiator 1 ranks alternatives as xk θ̃1 xk+1. If xm is not the best alternative

6See next section for the formal definition of monotonicity.
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for θ̃2 on ‹A, then there must exist some xk where k < m such that xk θ̃2 xm. But this

contradicts with the assumption that xm is not Pareto inefficient. Thus, negotiator 2

must rank xm as the top alternative. With a similar reasoning, if xm−1 is not negotiator

2’s second best alternative, then it must be Pareto inefficient, contradicting with the

assumption that xm−1 survives after deletion of Pareto inefficient alternatives. Iterating

this logic implies that the rankings of the negotiators must be diametrically opposed.

The Main Model: Multi-Issue Mediation

This section proves that we may escape from the impossibility result akin to Myerson

and Satterthwaite (1983) if the negotiators are in dispute over multiple issues and two

issues are enough to make our point. There are two agents, I = {1, 2}, in a dispute who

aim to reach a resolution through mediation. Without loss of generality, there are two

issues that are important for the negotiators.7 Let the sets X = {x1, ..., xm, oX} and

Y = {y1, ..., ym, oY } denote the finite sets of potential outcomes for each issue. The sets

X \ {oX} and Y \ {oY } are the available alternatives. The negotiators are entitled to an

outside option (disagreement point) for each issue, oX and oY , in case one or both of

them reject to accept an alternative that is available for that issue. Negotiators have at

least two available alternatives for each issue, and so m ≥ 2.

Preferences over Outcomes: The negotiators’ preferences over outcomes for each

individual issue satisfy the following three condition:

1. The negotiators’ preferences over alternatives (not including the outside option) for

each individual issue are diametrically opposed and public information.

2. Both negotiators’ rankings of the outside option (relative to other alternatives) are

private information in one of the issues.

3. It is public information that both negotiators rank the outside option as their worst

outcome in one of the issues,.

More formally, for any issue Z ∈ {X, Y }, where Z = {z1, ..., zm, oZ}, let ΘZ
i denote the

set of all complete, transitive and antisymmetric preference relations of negotiator i ∈ I

over issue Z and θZ
i denote an ordinary element of the set ΘZ

i . It is public information

7If there are more than 2 issues, we can easily regroup these issues as those that fall under the
category of issue X and category Y . Please see the distinction between these two categories next. Under
this re-grouping, the alternatives would be vectors of alternatives, one for each issue. The negotiators’
preferences over these vectors of alternatives need not be diametrically opposed. However, in light of
Proposition 1, two issues with diametrically opposed preferences is without loss of generality.
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that zk θ
Z
1 zk+1 and zk+1 θ

Z
2 zk for all k = 1, ...,m−1. Namely, the negotiators’ preferences

over the alternatives for each issue are diametrically opposed (the first condition). The

ranking of the outside option in issue X, oX, is the negotiators’ private information (the

second condition). Finally, it is common knowledge that y θY
i oY for all i and y ∈

Y \ {oY } (the third condition). Therefore, the set of acceptable alternatives for issue X is

privately known by the negotiators, and it is unknown to them whether there is a mutually

acceptable alternative for that issue. However, all alternatives in issue Y are acceptable

by both negotiators and efficient. Note that there is a unique preference ordering in ΘY
i

and m + 1 orderings in ΘX
i . Therefore, let Θi = ΘX

i denote the set of all types for

negotiator i, and Θ = Θ1 ×Θ2 be the set of all type profiles.

This asymmetric treatment of the outside options can be motivated by various employ-

ment, family, construction or patent/copyright infringement disputes. Litigation would

naturally be the default option if the issue is compensation or division of property. It

usually is the case in such disputes that litigation is a very long and costly process, and

so, inefficient relative to other potential divisions (alternatives). Such issues would be

mapped into the issue Y in our framework. Although money is an important component

in disputes, it is not the only issue: In employment disputes, for example, the quality of

the reference letter that the former employer would be willing to write could be another

issue for the disputants, or child custody or visitation would be the alternative issues in

family disputes. Such issues, where the disputants’ ranking of the outside option is not

clear to all the parties, would be represented by the issue X in our setup. Nonetheless, it

is natural to find examples, where the ranking of the outside option in all issues are the

disputants’ private information. For that reason, the symmetric treatment of the outside

option is formally investigated at the end of this section.

Preferences over Bundles: A bundle (x, y) is a vector of outcomes, one for each

issue, and the set X × Y denotes the set of all bundles. Let < denote the set of all

complete and transitive binary relations over the bundles. R is a standard element of the

set < and for any two bundles b, b′ ∈ X × Y , b R b′ means “b is at least as good as b′.”

We denote P for the strict counterpart of R.8 An extension map is a rule Λ which assigns

to every negotiator i and type θi ∈ Θi a non-empty set Λ(θi) ⊆ < of admissible orderings

over bundles.

For any negotiator i and type θi ∈ Θi, let A(θi) = {x ∈ X| x θX
i oX} denote the set of

acceptable alternatives in issue X. For any type profile (θ1, θ2) ∈ Θ, the set A(θ1, θ2) =

{x ∈ X| x θX
i oX for all i ∈ N} denote the set of mutually acceptable alternatives in

issue X. In case we need to specify a type’s acceptable alternatives, we use θxi ∈ ΘX
i : It

8That is, b P b′ if and only if b R b′ holds but b′ R b does not.
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denotes the preference relation (type) of negotiator i in which alternative x ∈ X is the

worst acceptable alternative. Namely, for any x′ ∈ X \ {oX}, x θxi x′ =⇒ oX θxi x
′.

Definition 1. The extension map Λ is consistent if the followings hold for all i,

θi ∈ Θi and all Ri ∈ Λ(θi):

i. [Monotonicity] For any x, x′ ∈ X and y, y′ ∈ Y with (x, y) 6= (x′, y′),

(x, y) Pi (x′, y′) whenever
î
x θX

i x′ or x = x′
ó

and
î
y θY

i y′ or y = y′
ó
.

ii. [Deal Breakers] For any y, y′ ∈ Y \ {oY },

(x, y) Ri (x′, y′) whenever x ∈ A(θi) ∪ {oX}, x′ /∈ A(θi) and x 6= x′.

iii. [Logrolling] For any i, there exists a one-to-one mapping ti : X → Y such that for

all θi ∈ Θi, Ri ∈ Λ(θi) and all x, x′ ∈ A(θi) with x θi x
′,Ä

x′, ti(x
′)
ä
Ri

Ä
x, ti(x)

ä
.

Monotonicity is a standard assumption. The second condition suggests that unac-

ceptable alternatives in issue X are “deal-breakers” for the negotiators: regardless of the

alternative in the second issue, a bundle with an unacceptable alternative is never pre-

ferred to a bundle with an acceptable alternative. Put differently, alternatives in issue

Y are not “too important” for the negotiators, and so, an unacceptable alternative can

never become a part of an acceptable bundle.

Logrolling or quid pro quo allows trading of favors. It requires two things. First, for

any two acceptable alternatives x, x′ in X where x is ranked above x′ for type θi, there must

exist two alternatives y, y′ in Y s.t (x′, y′) is ranked at least as high as (x, y) at all consistent

orderings over bundles, Ri ∈ Λ(θi). Second, types must be “consistent.” Namely, order

reversing mapping, ti, is independent of types. Logrolling implies that alternatives in Y

are “important enough” to reverse the rankings of (acceptable) alternatives in X when

they are bundled with alternatives in the second issue. Logrolling rules out lexicographic

preferences and many standard utility functions satisfy it. We discuss the last point later

in detail. Furthermore, it is sufficient and “almost necessary” for the possibility result.

We prove this point next after an example and some important definitions.

Example 1 (logrolling): Suppose that X = {x1, x2, x3, oX} and Y = {y1, y2, y3, oY }.
Because the number of alternatives in issues X and Y are equal, there is a unique one-to-

one mapping t (which is the same for both negotiators), where t(xk) = y4−k for k = 1, 2, 3,

13



which satisfies the requirements of Definition 1.9 Therefore, logrolling implies that the

type θx3
1 of negotiator 1 who deems all three alternatives in issue X acceptable, i.e.,

x1 θ
x3
1 x2 θ

x3
1 x3 θ

x3
1 oX, will rank (x3, y1) at least as high as the bundle (x2, y2) and rank

(x2, y2) at least as high as the bundle (x1, y3) for all consistent orderings R ∈ Λ(θx3
1 ).

The consistency of the mapping t over the types implies, for example, that type θx2
1 of

negotiator 1 who deems only x1 and x2 acceptable, i.e., x1 θ
x2
1 x2 θ

x2
1 oX θx2

1 x3, will

rank (x2, y2) at least as high as the bundle (x1, y3). Logrolling imposes no restriction on

consistent orderings R ∈ Λ(θx2
1 ) regarding how they rank the bundle (x3, y1) relative to

the bundles (x2, y2) and (x1, y3).

For the rest of the paper, we let B denote the set of logrolling bundles. Namely,

B =
¶
(xk, ym+1−k) ∈ X × Y

∣∣∣k = 1, ...,m
©
.

Direct Mechanisms with Veto Rights: Mediation would be a very complicated,

multi-stage game between the negotiators and the mediator. The mediation protocol,

whatever the details are, produces proposals for agreement that are always subject to

unanimous approval by the negotiators. That is, before finalizing the protocol, each

negotiator has the right to veto the proposal and the option to receive the outside options.

A version of the revelation principle that we prove in the appendix guarantees that we

can stipulate the following direct mechanism with veto rights without loss of generality,

when representing mediation. The direct mediation mechanism consists of two stages: an

announcement stage and a ratification stage; and it is characterized by the mediation rule

f : Θ→ X × Y . After being informed of its type, each negotiator i privately reports his

type, θ̂i, to the mediator, who then proposes f(θ̂1, θ̂2) ∈ X × Y . In the ratification stage,

each party simultaneously decides whether to accept or veto the proposed bundle. In case

both negotiators accept the proposed bundle, then it becomes the final outcome. In case

one or both negotiators veto the proposal, each party gets the outside option for both

issues, i.e., (oX, oY ). Such direct mechanisms will be called direct truthful mechanisms

with veto rights.

Definition 2. The mediation rule f is strategy-proof if for all i and all θi ∈ Θi,

f(θi, θ−i) Ri f(θ′i, θ−i) for all Ri ∈ Λ(θi), θ′i ∈ Θi and all θ−i ∈ Θ−i.

Definition 3. The mediation rule f is individually rational if for all i and all (θi, θ−i) ∈
Θ, f(θi, θ−i) Ri (oX, oY ) for all Ri ∈ Λ(θi).

9Note that logrolling is a well-defined concept only if the number of alternatives in issue Y is greater
than or equal to the number of alternatives in issue X. In case the number of alternatives in Y greater
than that of X, one of many one-to-one mappings suffices.

14



Definition 4. The mediation rule f is efficient if there exists no (θi, θ−i) ∈ Θ and

(x′, y′) ∈ X × Y such that (x′, y′) Ri f(θi, θ−i) for all Ri ∈ Λ(θi) and all i ∈ I, and for at

least one i ∈ I, (x′, y′) Pi f(θi, θ−i) for some Ri ∈ Λ(θi).

We seek direct mechanisms with veto rights in which, it is a dominant strategy equi-

librium to report the true private information at the announcement stage, and in which,

in equilibrium, proposals are not vetoed. It immediately follows from the definitions

that such an equilibrium exists if and only if the mediation rule f is strategy-proof and

(ex-post) individually rational.10

For convenience, we present a mediation rule f as an m×m matrix f = [f`,j](`,j)∈M2 ,

where M = {1, ...,m}. The rows indicate all the types of negotiator 1 and the columns

are for all the types of negotiator 2. We ignore, without loss of generality, the types that

deems no alternative acceptable from our matrix representation.

f =

θxm1

...

θx1
1

θx1
2

. . . θxm2

fm,1 . . . fm,m

...
. . .

...

f1,1 . . . f1,m

In this matrix, row (column) ` represents the preference of negotiator 1 (2) that finds

all alternatives {xk|k ≤ `}
Ä
{xk|k ≥ `}

ä
acceptable. Therefore, there is a unique mutually

acceptable alternative in the main (first) diagonal of the matrix, i.e., {f`,` | ` ∈M}. Note

that there is no mutually acceptable alternative in the upper half of the matrix.

Theorem 1. The mediation rule f is efficient, individually rational and strategy-proof if

and only if the following hold:

(i) If ` < j, then f`,j = (oX, y) for some y ∈ Y .

(ii) If ` = j, then f`,j = (x`, ym+1−`).

(iii) (Adjacency) If ` > j, then f`,j ∈ {f`−1,j, f`,j+1} ⊂ B and there exists a complete,

transitive and strict precedence order B on B such that

f`,j =

 f`−1,j, if f`−1,j B f`,j+1

f`,j+1, oth.

10The proof is omitted as it directly follows from similar arguments in our revelation principle result.
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Example 2 (Adjacent rules): LetX = {x1, x2, x3, x4, x5, oX}, Y = {y1, y2, y3, y4, y5, oY },
so the set of logrolling bundles is B =

¶
(x1, y5), (x2, y4), (x3, y3), (x4, y2), (x5, y1)

©
. A stan-

dard member of the family of adjacent rules is constructed by the following steps. It gives

the outside option in issue X, bundled with some alternative from issue Y , whenever the

negotiators have no mutually acceptable alternative in issue X. For our example, it is the

bundle (oX, y3).

We fill the main diagonal with the members of the set of logrolling bundles, B. In the

first row and column, for example, we have (x1, y5). A reason for this is that the only

mutually acceptable alternative is x1 for the types in the first row and column. Therefore,

deal-breakers property of the preferences imply that an individually rational rule must

suggest a bundle with x1. Thus, we must have (x1, y5) in the first row and column because

the adjacent rules always suggest a bundle from the set of logrolling bundles—a critical

property of the adjacent rules that is necessary for strategy-proofness, and we explain

this point shortly. For the rest of the matrix, i.e., the lower half of it, we need a strict

precedence order over the logrolling bundles, B. One example is

B : (x5, y1) B (x1, y5) B (x4, y2) B (x2, y4) B (x3, y3)

Because the bundle (x5, y1) is ranked first, it beats all the other bundles in B in a

binary comparison. Therefore, starting from the row and column of the bundle (x5, y1), all

the rows below it and all the columns to the left of it should be filled with (x5, y1). Then

the second bundle in the precedence order is (x1, y5), and it beats all the other bundles

in B except (x5, y1). Thus, starting from the row and column of the bundle (x1, y5) on

the main diagonal, all the empty rows below it and all the empty columns to the left of it

should be filled with (x5, y1). Iterating this process for all the bundles in the precedence

order will yield the following matrix:

θx5
1

θx4
1

θx3
1

θx2
1

θx1
1

θx1
2 θx2

2 θx3
2 θx4

2 θx5
2

(x1, y5)

(x2, y4)

(x3, y3)

(x4, y2)

(x5, y1)(x5, y1) (x5, y1) (x5, y1) (x5, y1)

(x1, y5)

(x1, y5)

(x1, y5)

(x4, y2)

(x2, y4)

(x4, y2)

(x3, y3)

(oX, y3) (oX, y3) (oX, y3) (oX, y3)

(oX, y3) (oX, y3) (oX, y3)

(oX, y3) (oX, y3)

(oX, y3)

Figure 1:A standard member of the adjacent rules family
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Special members of the adjacent rules family

There are some special members of the adjacent rules family. Negotiator 1 (2)-optimal

adjacent rule, for example, is constructed by using the strict counterpart of the preference

of negotiator 1 (2) over the logrolling bundles, B, as the precedence order. For the same

example above, the negotiator 1-optimal rule takes

B1: (x5, y1) B1 (x4, y2) B1 (x3, y3) B1 (x2, y4) B1 (x1, y5)

whereas the negotiator 2-optimal rule takes

B2: (x1, y5) B2 (x2, y4) B2 (x3, y3) B2 (x4, y2) B2 (x5, y1)

and they look as follow:

θx5
1

θx4
1

θx3
1

θx2
1

θx1
1

θx1
2 θx2

2 θx3
2 θx4

2 θx5
2

(x1, y5)

(x2, y4)(x2, y4)

(x3, y3)(x3, y3)(x3, y3)

(x4, y2)(x4, y2)(x4, y2)(x4, y2)

(x5, y1)(x5, y1) (x5, y1) (x5, y1) (x5, y1)

Figure 2-a: Negotiator 1-optimal rule

θx5
1

θx4
1

θx3
1

θx2
1

θx1
1

θx1
2 θx2

2 θx3
2 θx4

2 θx5
2

(x1, y5)

(x1, y5)

(x1, y5)

(x1, y5)

(x1, y5)

(x2, y4)

(x2, y4)

(x2, y4)

(x2, y4)

(x3, y3)

(x3, y3)

(x3, y3)

(x4, y2)

(x4, y2) (x5, y1)

Figure 2-b: Negotiator 2-optimal rule

Negotiator 1-optimal rule always picks negotiator 1’s most preferred bundle among

the mutually acceptable logrolling bundles. Although these rules are efficient, individually

rational and strategy-proof, they are not impartial (symmetric). There is another special

member of the adjacent rules family that treats negotiators symmetrically whenever the

mediation problem is symmetric.11

11The mediation problem is symmetric if the number of alternatives in issues is odd number. The
problem is symmetric in this case because there is a unique median alternative in each issue, and thus,
the number of alternatives (not including the outside option) better than the median alternative is the
same for both negotiators. However, if there are two median alternatives, which is the case when the
number of alternatives is even, then the mediation problem is not symmetric.
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θx5
1

θx4
1

θx3
1

θx2
1

θx1
1

θx1
2 θx2

2 θx3
2 θx4

2 θx5
2

(x1, y5)

(x2, y4)(x2, y4)

(x3, y3)(x3, y3)(x3, y3)

(x3, y3)(x3, y3)(x3, y3)

(x3, y3)(x3, y3)(x3, y3)

(x4, y2)

(x4, y2) (x5, y1)

Figure 3: constrained shortlisting rule

Constrained shortlisting and its characterization

In the “constrained shortlisting” (CS) rule the mediator picks one of the nego-

tiators and asks her least acceptable alternative in issue X, say xk. Then the mediator

proposes three bundles to the other negotiator to pick one of them as the final outcome.

One of these bundles is the logrolling bundle with xk, namely (xk, ym−k+1). The other

bundle is the logrolling bundle with the median alternatives in both issues, namely (xn, yn)

where n is the indices of the median alternative in each issue. More formally, n ∈ {n, n},
where n = dm+1

2
e and n = bm+1

2
c. If m is odd, then there is a unique median alternative

in each issue because n = n = m+1
2

. If there are two median alternatives, namely m is

even, then the mediator picks one of them at all times. Finally, the third bundle is the

one with outside option in issue X, i.e., (oX, yn).

CS rule is a special member of the adjacent rule family. It acts as though it is a nego-

tiator 1 or 2-optimal rule if the median alternative in issue X is not mutually acceptable,

and suggests the “median” bundle, (xn, yn), otherwise. In addition to being efficient, in-

dividually rational and strategy-proof, CS rule minimizes rank variance within the class

of efficient, individually rational and strategy-proof rules. We prove this point next.

Given the negotiators’ fixed preferences over alternatives (not including the outside

option), let ri(z) ∈M denote negotiator i’s ranking of the alternative z ∈ Z ∈ {X, Y }.12

Given a mediation rule f = [f`,j](`,j)∈M2 , let f`,j = (fX`j , f
Y
`j ) ∈ X × Y denote the bundle

the mediation rule f proposes when the negotiators’ types are θx`1 and θ
xj
2 . Therefore, the

rank variance of the bundle f`,j is defined by13

var(f`,j) ≡
∑
i∈I

Ä
ri(f

X
`j )
ä2

+
Ä
ri(f

Y
`j )
ä2
.

12We ignore the outside option from the rank calculations without loss of generality because we will
restrict our attention to individually rational and efficient rules.

13One may assign different weights to the issues in the definition of rank variance. The results still go
through without any loss.
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Thus, the rank variance of the mediation rule f is

V ar(f) =
m∑
`=1

m∑
j=1

var(f`,j).

A bundle including a/the median alternative in both issues has the smallest rank

variance and bundles (x1, y1) and (xm, ym) have the highest rank variance. Intuitively,

rank variance of a bundle is a measure of the extent to which that bundle favors one

negotiator over the other negotiator. In this sense, the higher the rank variance of a

bundle or a mediation rule, the more biased its treatment is. Alternately, the lower the

rank variance of a mediation rule, the more impartial it is. Normatively speaking, a rule

that aims to minimize rank variance can be viewed as one choosing “the center of gravity”

or the “middle ground” along the tradeoffs the negotiators are facing.

Definition 5. For any k ∈ M , let the bundle bk = (xk, ym−k+1) be the logrolling bundle

in B. A rule is a “constrained shortlisting” rule, denoted fCS = [f`,j](`,j)∈M2, if it is an

adjacent rule (as described in Theorem 1) that is associated with a precedence order BCS,

where bn BCS bn−1 BCS . . . BCS b1 and bn BCS bn+1 BCS . . . BCS bm with n being the

indices of the median alternative in both issues, and fCS`,j = (oX, yn) whenever ` < j.

Note that there is a unique CS rule if m is odd. If m is even, however, a CS rule

prescribes one of four types of outcomes depending on whether bn or bn has the highest

precedence order and whether yn or yn is chosen when no mutually acceptable alternative

in issue X exists.

Theorem 2. A mediation rule minimizes rank variance within the class of efficient,

individually rational and strategy-proof rules if and only if it is a CS rule.

Proof of Theorem 2: Clearly, a CS rule belongs to the adjacent rule family. To

see that the rank variance of a CS rule is lower than any other member of the adjacent

rule family, we simply consider two cases about the number of possible alternatives. First,

when m is odd, var(bn) = (m+1)2. For any bn−t, bn+t ∈ B with t < n, we have var(bn−t) =

var(bn+t) = 2( (m+1)
2
− t)2 + 2( (m+1)

2
+ t)2 = (m + 1)2 + 4t2. Thus, var(bn) < var(b) for

any b ∈ B \ {bn}.
Since any member of the adjacent rule family must pick an element of B whenever

there is a mutually acceptable alternative in issue X (by cases (ii) and (iii) of Theorem

1), minimization of rank variance requires that bn B b for any b ∈ B \ {bn}. Also observe

that var(bn) < var(bn−1) < . . . < var(b1) and var(bn) < var(bn+1) < . . . < var(bm).

Thus, minimization of rank variance subsequently requires that bn−1 B . . . B b1 and

bn+1 B . . . B bm. By case (i) of Theorem 1, the outcome for issue X is fixed to oX
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whenever there is no mutually acceptable alternative in this issue. Therefore, (oX, yn) is

the rank minimizing bundle. Note that when m is odd, rank variance of the unique CS

rule is strictly less than any other member of the adjacent rule family.

On the other hand, when m is even, var(bn) = var(bn) = 1
2
(m2 + (m + 2)2). For any

bn−t, bn+t ∈ B with t < n, we have var(bn−t) = var(bn+t) = 2(m
2
− t)2 + 2( (m+2)

2
+ t)2 =

1
2
(m2 + (m + 2)2) + 4t2. Hence, var(bn) = var(bn) < var(b) for any b ∈ B\{bn, bn}.

Note that we also have var(bn) = var(bn) < var(bn−1) < . . . < var(b1) and var(bn) =

var(bn) < (bn+1) < . . . < var(bm). Then, minimization of rank variance subsequently

requires that either bn B bn or bn B bn together with bn−1 B . . . B b1 and bn+1 B . . . B bm.

By case (i) of Theorem 1, the outcome for issue X is oX and both (oX, yn) and (oX, yn) are

rank minimizing bundles. Consequently, any one of the four types of CS rules are rank

minimizing. Note that when m is even, rank variance of a CS rule is weakly less than any

other member of the adjacent rule family.

Extension: Continuous Mediation Problem

Suppose now that the issues X and Y are two closed and convex intervals of the real

line with the same measure. The outside options, oY and oY , may or may not be the

elements of these sets. We assume, without loss of generality, that X = Y = [0, 1], with

the interpretation that the negotiators aim to divide a unit surplus in each issue. In order

to keep the notation consistent with the previous section, let a bundle b = (x, y) indicate

that negotiator 2 gets x and y in issues X and Y , respectively, and thus, negotiator 1

gets 1− x and 1− y, respectively. Namely, each alternative in each issue indicates what

negotiator 2 receives. Agents having diametrically opposing preferences on each issue

means that for any issue Z ∈ {X, Y } and two alternatives z, z′ ∈ Z, negotiator 1 (2)

prefers z to z′ whenever z < z′ (z > z′). The value/ranking of the outside option oX

in issue X is each negotiators’ private information. However, the value/ranking of the

outside option oY in issue Y is common knowledge, and both negotiators prefer all y ∈ Y
to oY .

For any ` ∈ [0, 1], type ` of negotiator 1 (2), denoted by θ`1 (θ`2), prefers the outside

option oX to all alternatives k ∈ [0, 1] with ` < k (` > k).14 Parallel to the discrete case,

we denote the mediation rule f = [f`,j](`,j)∈[0,1]2 where f`,j = f(θ`1, θ
j
2) for all 0 ≤ `, j ≤ 1.15

The negotiators have no mutually acceptable alternative in issue X at type profile (θ`1, θ
j
2)

when ` < j. The set of mutually acceptable alternatives is A(θ`1, θ
j
2) = {j, ..., `} whenever

` ≥ j. The consistency assumption in the previous section can directly be applied to the

14Therefore, all k with ` ≥ k (` ≤ k) are deemed acceptable by type θ`1 (θ`2) of negotiator 1 (2).
15We assume, without loss of generality, that each negotiator has at least one acceptable alternative.

Therefore, there is no type profile where a negotiator deems all alternatives unacceptable.

20



continuous case.16 Therefore, the set of logrolling bundles is

B =
¶
(x, y) ∈ [0, 1]2 | y = 1− x

©
.

Thus, for all values of `, j ∈ [0, 1] with j ≤ `, B`j = {(k, 1− k) ∈ B | j ≤ k ≤ `} denotes

the set of all mutually acceptable logrolling bundles at type profile (θ`1, θ
j
2).

Define B to be a complete, transitive and antisymmetric binary relation over the set

of logrolling bundles. When (B, d) is a metric space with a proper metric d, B`j with

` ≥ j is a non-empty and compact subset of the set of logrolling bundles.

Definition 7. The binary relation B is said to be quasi upper-semicontinuous over

B`j with ` ≥ j if for all a, c ∈ B`j with a 6= c, a B c implies that there exists a bundle

a′ ∈ B`j and a neighborhood N (c) of c such that a′ B b for all b ∈ N (c) ∩B`j.
17

Therefore, the binary relation B is quasi upper-semicontinuous if it is quasi upper-

semicontinuous over all compact subsets B`j of B. A bundle b? ∈ B`j is said to be a

maximal element of the binary relation B on B`j if b? B b for all b ∈ B`j. Theorem 1

in Tian and Zhoub (1995) proves that quasi upper-semicontinuity is both necessary and

sufficient for B to attain its maximum on all compact subsets B`j of B. Therefore, the

analogous version of Theorem 1 in the continuous case reads as follows.

Theorem 3. The mediation rule f is efficient, individually rational and strategy-proof if

and only if there exists a complete, transitive, antisymmetric, and quasi upper-semicontinuous

binary relation B over the set of logrolling bundles B and y ∈ Y \ {oY } such that

f`,j =


(oX, y), if ` < j,

argmax
B`j

B, oth.

Analogous to the discrete case, we use the following continuously indexed matrix to

describe a mediation rule f .

16The same is true for the definition of strategy-proofness, individual rationality and efficiency.
17This is Definition 2 in Tian and Zhoub (1995).
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Figure 4: Adjacent rules in the continuous case

The rows, i.e., the vertical axis, correspond to the types of negotiator 1 and columns,

i.e., the horizontal axis, indicate all possible types of negotiator 2. Each point on the

main diagonal represents a logrolling bundle for the mediation rule that is described in

Theorem 3, and each logrolling bundle appears only once on this diagonal. The bundle b,

for example, represents the value of f when the true type of negotiator 1 and 2 are θ`1 and

θj2, respectively. When the true type profile is (θ11, θ
1
2), negotiator 1 finds all alternatives

acceptable and negotiator 2 deems all alternatives except one unacceptable, and thus, the

only mutually acceptable logrolling bundle is (1, 0).

The set of all acceptable logrolling bundles for type θ`1 of negotiator 1 is denoted

by B1,`, which consists of all the logrolling bundles on the upper portion of the main

diagonal, starting from the north west corner bundle, (0, 1), and goes all the way down

to the bundle (`, 1 − `). That is, B1,` = {(k, 1− k) ∈ B | 0 ≤ k ≤ `}. Similarly, the set

of all acceptable logrolling bundles for type θj2 of negotiator 2 is represented by B2,j and

it consists of all the bundles on the lower portion of the main diagonal, i.e., all bundles

from (j, 1 − j) to (1, 0). Namely, B2,j = {(k, 1− k) ∈ B | j ≤ k ≤ 1}. Thus, the set of

all mutually acceptable logrolling bundles at the type profile (θ`1, θ
j
2) is the intersection of

these two sets, i.e., B`j = B1,` ∩ B2,j. Theorem 3 states that bundle b is the logrolling

bundle that maximizes B within the set B`j (see Figure 4). A maximal bundle uniquely

exists because B is antisymmetric.

Preferences that Satisfy Logrolling

The critical requirement for our results is logrolling. Simply put, it requires that

alternatives in issue Y are “important enough” to reverse the ranking of the alternatives

in issue X when they are bundled together. Absolute utility values of the alternatives are

irrelevant for logrolling. To see this point, consider the following simple example:
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Example 3: Suppose that preferences over the bundles are additively separable and

each issue has three alternatives. Let u(.) and v(.) represent preferences over issues X

and Y , respectively. Therefore, U(x, y) = u(x) + v(y) is the utility function over the

bundles.18

X u(.) Y v(.) X × Y U(.)

x1 100 y1 20 (x3, y1) 110

x2 98 y2 12 (x2, y2) 110

x3 90 y3 10 (x1, y3) 110

The utility functions (preferences) in this simple example satisfy logrolling although the

worst alternative in issue X is 4.5 times more valuable, in absolute terms, than the most

valuable alternative in issue Y .

In standard consumer theory, we represent preferences over bundles by drawing corre-

sponding indifference curves on commodity space, where each axis corresponds the quan-

tity of a particular commodity. In the current model, issues serve the same role with

commodities. However, distance between two alternatives is irrelevant in our setup as we

abstract away from quantities. In our discrete setup, marginal rate of substitution is the

rate at which a negotiator can give up some number of alternatives in one issue in ex-

change for the other issue while maintaining the same level of utility. Therefore, without

loss of generality, we can place all alternatives equidistantly. Also, we place less preferred

alternatives closer to the origin, implying (together with monotonicity) higher indifferent

curves as we move northeastern direction. For the previous numerical example, therefore,

preferences of the type that deems all alternatives acceptable can be pictured as follows:

x3 x2 x1

y3

y2

y1

U = 110

Y

X

As it is evident from this graph, logrolling is a property of the bundles that are

placed on the diagonal. Logrolling requires that these bundles are either lying on the

same indifference curve or on higher indifference curves as we move along the diagonal in

18For completeness, one may assume that all types get very large disutility from unacceptable alter-
natives, including the outside option.
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northwestern direction (and southeast direction for the other negotiator). The marginal

rate of substitution at diagonal bundles is one for our example because it requires one

alternative to trade between the issues to keep the negotiator’s utility the same. The utility

function we picked behaves as if issues are perfect substitutes. But it is hardly possible

to make a concrete statement with only nine bundles. On the other hand, logrolling is

consistent with all range of utility functions that have “convex” or “concave” indifference

curves. Consider the following two utility functions, U and U ′:

X u(.) u′(.) Y v(.) X × Y U(.) = u(.) + v(.) U ′(.) = u′(.) + v(.)

x1 100 100 y1 120 (x7, y1) 170 170

x2 90 90 y2 100 (x6, y2) 160 160

x3 80 85 y3 80 (x5, y3) 145 150

x4 70 80 y4 60 (x4, y4) 130 140

x5 65 70 y5 40 (x3, y5) 120 125

x6 60 60 y6 20 (x2, y6) 110 110

x7 50 50 y7 0 (x1, y7) 100 100

Both utility functions satisfy logrolling and their indifference curves are drawn in

the following two graphs. As it is also clear from these graphs, the marginal rate of

substitution of the utility function U (U ′) is increasing (decreasing) as we move to the

right in the X axis, which are interpreted as indifference curves for U (U ′) being concave

(convex).

x7 x6 x5 x4 x3 x2 x1

y7

y6

y5

y4

y3

y2

y1

∆Y = 1

∆X = 3
∆Y

∆X = 2

Bundles
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m
ore

preferred
bundles

U = 100

U = 110

U = 160
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Y

X x7 x6 x5 x4 x3 x2 x1

y7
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y5
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y3

y2

y1

∆Y = 1

∆X = 2
∆Y

∆X = 3
U′ = 100

U′ = 110

U′ = 160

U′ = 170

Y
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In a more standard setup where alternatives for issues X and Y represent quantities

of two commodities, ranging over some interval [a, b] ⊆ R2, logrolling will be satisfied for

all utility functions with marginal rate of substitution (MRS) that is less than or equal

to one at all points of the diagonal. For example, a utility function U(x, y) =
√
x + y
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does satisfy this condition whenever 1/4 ≤ a. This is true because upper counterset of

a bundle (x, y) that is on diagonal includes all the other bundles (x′, y′) on the diagonal

that are situated northwest of the original bundle (x, y).

b

b bundles that are
at least as good as (x, y)

higher
indifference curves

(x, y)

(x′, y′)

(a, a)

Y

X b

b
y = x

preferred
bundles

preferred
bundles

(a, a)

Y

X

In fact, all utility functions with convex indifference curves with MRSx=y ≤ 1 satisfy

a weaker condition of logrolling, where logrolling holds only for the first half of the alter-

natives in issue X. This weaker condition is sufficient to guarantee strategy-proof rules.

An example for these utility functions would be U(x, y) = xαyβ where α/β ≤ 1. The

second graph above demonstrates why such convex utility functions satisfy this weaker

condition.

Alternatively, one may consider a moral hazard situation between a principle and

an negotiator, where X denotes the domain for wage and Y denotes different levels of

effort/output. Consistent to this framework, let the agent’s and the principle’s utility

functions are Ua(x, y) = ua(x) − va(y) and Up(x, y) = vp(y) − up(x), respectively, where

all u’s and v’s are increasing functions. Along the diagonal, the principle’s indifference

curves increase as we move in northwestern direction (and the worker’s indifference curves

increase as we move in southeastern direction) as required by the logrolling condition. For

a simple example, one may consider Uw(x, y) = x − y2 and Up = y − x, which we depict

below.
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Relating to the impossibility result of Myerson and Satterthwaite (83)

This section explores the underlying factors that are potentially absent in Myerson

and Satterthwaite (83) model, which leads to the possibility result in our case. It is

already well-known in the literature that denseness of the type space is one reason for

the impossibility result in Myerson and Satterthwaite (83) [MS]. However, this is not the

driving force for our strategy-proof mediation rules in multi issue mediation case. The

main factor seems to be that MS is effectively not a multi-issue negotiation problem.

MS considers a bilateral trade between a seller, who owns an indivisible good, and a

buyer, who likes to buy this good, as a mechanism design problem. The mechanism (p, x)

has two components; the probability of trade, p, and the transfer, x, both of which are

functions of the players’ reports. If no trade occurs, then x = p = 0 (the outside option),

and so both players receive zero utility. The utility functions are Ub = vbp − x for the

buyer and Us = x − vsp where the valuations vb, vs are the players’ private information.

Consider for simplicity that both players’ valuations are distributed over the unit interval

[0, 1] according to some probability distribution.

One may map this setup to our two-issue framework, with continuum of types, where

the first issue is the probability of trade, i.e., p, and the second issue is the amount of

transfer, i.e., x. It is clear from the utility functions that agents preferences over the

individual issues are diametrically opposed. That is, for any fixed value of x, the buyer

gets better off as p decreases from 1 to 0 and the seller gets worse off as p decreases from

1 to 0. Similarly, for any fixed value of p, the buyer gets better off as x decreases from 1

to 0 and the seller gets worse off as x decreases from 1 to 0. In addition to this, it is easy

to verify that the preferences over the bundles satisfy logrolling.

In our setup, each issue has separate outside option whereas MS assumes joint outside

option for the issues (no trade). However, this is not directly the main driving force for
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the difference between these two papers. Aside from this divergence of these two models,

MS corresponds to our symmetric two issue case. Although the utility of the outside

option in MS in each issue is 0, the ranking of the outside option is the negotiators’

private information. Namely, the set of acceptable alternatives for the agents’ is their

private information. This is true because for the buyer, for example, the set of acceptable

alternatives in issue p must satisfy p ≥ x
vb

for any fixed value of x, and this set is the buyer’s

private information as vb is not common knowledge. Therefore, the set of acceptable

outcomes (or the ranking of the outside option in each individual issue) are the players’

private information, as it is the case in our symmetric case. We show, in the symmetric

treatment of the outside option, that there is no individually rational and ex-post efficient

strategy-proof mediation rules. We prove this point next.

Symmetric Treatment of the Outside Options

In this section, we relax the assumption that y θY
i oY for all i ∈ I and y ∈ Y \ {oY }.

Instead, the negotiators’ ranking of the outside option, oY , is their private information, as

is the case for issue X. Thus, Θi = ΘX
i ×ΘY

i denotes the set of all types of negotiator i,

and Θ = Θ1×Θ2 is the set of all type profiles. We also relax our assumption of consistency

for the negotiators’ ranking over the bundles, and suppose that they satisfy monotonicity,

i.e., condition (i) of Definition 1, and the following modification of condition (ii). We

need a modified version of the second condition of Definition 1 because now both issues

X and Y have unacceptable alternatives.

Definition 6. Under the symmetric treatment of the outside options, the extension map

Λ satisfies for all i, θi ∈ Θi and all Ri ∈ Λ(θi):

i. [Monotonicity] For any x, x′ ∈ X and y, y′ ∈ Y with (x, y) 6= (x′, y′),

(x, y) Pi (x′, y′) whenever
î
x θX

i x′ or x = x′
ó

and
î
y θY

i y′ or y = y′
ó
.

ii. [DB] (oX, oY ) Pi (x, y) whenever oX θX
i x or oY θY

i y.

Proposition 2. Under the symmetric treatment of the outside options, there is no medi-

ation rule f that is strategy-proof, individually rational and efficient.

Note that this impossibility result can easily be carried out to a single issue or more

than two issue contexts. A rule that always picks the pair (oX, oY ) is strategy-proof but

not efficient. A dictatorship is efficient and strategy-proof but not individually rational.

Proof of Proposition 2: Consider the (true) preference profile (θ1, θ2) = (θxm1 , θym1 , θx1
2 , θ

y1
2 ).

That is, both negotiators find all alternatives acceptable. Let (x, y) = f(θ1, θ2). Because
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negotiators preferences over alternatives are diametrically opposed for each single issue,

there is at least one negotiator i ∈ I and an issue for which negotiator i does not get her

top alternative for that issue. Suppose, without loss of generality, that this negotiator is

1 and the issue is X: that is, x 6= x1. Consider the new profile where only negotiator 1’s

preferences are different, (θ′1, θ2) = (θx1
1 , θ

y1
1 , θ

x1
2 , θ

y1
2 ).

We claim that f(θ′1, θ2) = (x1, y1). Suppose for a contradiction that f(θ′1, θ2) =

(x′, y′) 6= (x1, y1). I will only show that x′ = x1 because similar arguments also prove

y′ = y1, yielding the desired contradiction. To show x′ = x1, suppose for a contradiction

that oX θx1
1 x′. Since Λ satisfies DB, (oX, oY ) P1 (x′, y′) for all R1 ∈ Λ(θ′1), and thus

f(θ′1, θ2) = (x′, y′) contradicts with the individual rationality of f . Now suppose for a

contradiction that x′ = oX. Then, since Λ satisfies Monotonicity, (x1, y
′) Pi (x′, y′) for

i = 1, 2 and all R1 ∈ Λ(θx1
1 ) and all R2 ∈ Λ(θx1

2 ). Therefore, (x′, y′) is an inefficient bundle

at (θ′1, θ2), and thus f(θ′1, θ2) = (x′, y′) contradicts with the efficiency of f . Hence, we

must have x′ = x1.

To conclude, we already know that f(θ1, θ2) = (x, y) and x 6= x1, which implies

x1 θ
xm
1 x. Because y1 is negotiator 1’s best alternative in issue Y , either y = y1 or y1 θ

y1
1 y

is true. In either case, Monotonicity and transitivity of preferences imply (x1, y1) P1 (x, y)

for all R1 ∈ Λ(θ1). Finally, we showed in the previous paragraph that by misrepresenting

his preferences at profile (θ1, θ2), negotiator 1 can achieve the bundle (x1, y1), which is

strictly better than (x, y) for all R1 ∈ Λ(θ1), contradicting that f is strategy-proof.

Appendix

Proof of Theorem 1: Proof of ‘if ’ part :

It is relatively easy to verify that an adjacent rule f is individually rational: It never

suggests an alternative for an issue that is worse than the outside option of that issue,

and thus, it is individually rational by the consistency of preferences. To show efficiency,

consider the type profile where both negotiators deem all alternatives acceptable in issue

X. At that profile, an adjacent rule proposes a bundle from the set of logrolling bundles

B. Let us call this bundle as b. If instead the negotiators receive another bundle from B

at that profile, one of the negotiators will certainly get worse off. The reason for this is

the fact that for any two logrolling bundles a, b ∈ B, if a R1 b then b R2 a for all consistent

preferences R1, R2. If the negotiators receive a bundle with the outside option in issue X,

then both negotiators get worse off because of the deal-breakers assumption. Finally, if

the negotiators receive any other bundle, say c, which is neither a logrolling bundle nor

a bundle with the outside option in issue X, then the consistency assumption puts no

restriction on how negotiators compare bundle b with c. Therefore, there exists at least
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one negotiator, i, and a consistent preference ordering, Ri, such that b Pi c. That is, the

bundle c makes negotiator i worse off at some consistent preference ordering.

Thus, no other bundle would make one negotiator better off without hurting the other

when both of the negotiators deem all alternatives acceptable. We can directly apply

the same logic to all type profiles that the negotiators deem less alternatives acceptable.

Finally, for those type profiles where there is no mutually acceptable alternative in issue

X, in which case the rule suggests (oX, y) for some y ∈ Y \ {oY }, any other bundle will

include an alternative that is unacceptable in issue X by at least one of the negotiators

because their preferences over each individual issue are diametrically opposed. Thus, by

monotonicity and deal-breakers assumptions, at least one negotiator gets worse off if f

proposes something other than (oX, y). Hence, the adjacent rule f is efficient.

We next prove that adjacent rules are strategy-proof. Before going through the details

of the proof, we first need to establish some facts about the structure of the adjacent rules

defined in Theorem 1. We start with relevant jargon. Let a = f`,j and b = fr,s be two

bundles, namely bundle a appears on row ` and column j whereas bundle b appears on

row r and column s. We say bundle a appears above (below) bundle b whenever ` < r

(` > r). Likewise, bundle a appears the right (left) of bundle b whenever j > s (j < s).

Given a mediation rule f and a bundle a that appears on the main diagonal, i.e.,

a = fk,k for some k ∈M , define V (a) to be the value region of bundle a, which is the

sub-matrix of [f`,j](`,j)∈M2 excluding all the rows lower than row k and all the columns

higher than column k. Namely, V (a) = [f`,j](`,j)∈(Mk,Mk) where Mk = {k, ...,m} and

Mk = {1, ..., k}. Furthermore, if bundle b = fr,r appears on the main diagonal with

r ∈ M and r > k, then V (a) ∩ V (b) = [f`,j](`,j)∈(Mr,Mk) where M r = {r, ...,m}. In the

following figure, the value region of bundle a is region I and III, value region of bundle

b, V (b), is region II and III, and V (a) ∩ V (b) is region III.

a

column k

row k

b

column r

row r

c
I

IIIII

[f`,j](`,j)∈M2 =

a

b

c

1 2

43

=

Lemma 1. If the mediation rule f is an adjacent rule that is described in Theorem 1,

then for any two bundles a, b ∈ B

29



(i) a never appears outside of its value region V (a),

(ii) a and b both never appear in V (a) ∩ V (b), and

(iii) if both a and b appear on the same column (or row), where a is above b (or a is on

the left of b), then on the main diagonal, bundle a appears above bundle b.

Proof. The first claim directly follows from the last two conditions of Theorem 1. The

existence of complete, transitive and strict order B on B implies the second claim and

deserves a proof. Suppose first that a and b appear on the same column in region III,

say column s, and a is located above bundle b on this column, namely a is on row ra and

b is on row rb where r ≤ ra < rb ≤ m. Starting from column and row r, i.e., from bundle

b, as we move from column r to column s along the row r, adjacency and transitivity of B

imply that the bundles on the row r are either ranked higher than b (with respect to B)

or equal to b, which includes the bundle fr,s. Now starting from column s and row r, i.e.,

the bundle fr,s, and move towards row ra along column s. Adjacency and transitivity of

B imply that the bundle on the row ra and column s, i.e., the bundle a is ranked higher

than b with respect to B. Namely, a B b must hold.

Continue iterating from where we left. Starting from column s and row ra, i.e., the

bundle a, as we move from row ra to rb along the column s, adjacency and transitivity

of B imply that all the bundles are either ranked above a or equal to a, including the

bundle at row rb, i.e., b. Thus, we must have b B a, contradicting with the fact that

B is strict. If bundle b is above bundle a on column s, then we start the iteration from

fk,k = a. Therefore, a and b cannot appear on the same column in region III. Symmetric

arguments suffice to show that they cannot appear on the same row in region III either.

Therefore, suppose that a and b appear on different rows and columns. With similar

arguments above, if we start iteration from fr,r = b and go left on the same row and then

go down to bundle a in region III, we conclude that a B b by adjacency and transitivity

of B. However, when we start iteration from fk,k = a and go down on the same column

and then go left to bundle b in region III, we conclude that b B a, which yields the

desired contradiction. Hence, either bundle a or b, whichever is ranked first with respect

to B, may appear in region III, but not both.

The proof of condition (iii) uses (ii). Suppose for a contradiction that a and b appear

on the same column s, where b is above a (i.e., rb < ra) and a appears above b on the main

diagonal. If we refer back to the previous figure, a and b can appear on the same column

with rb < ra only in region III, which contradicts with what we just proved above. We

can make symmetric arguments for rows as well.

We now ready to show that an adjacent rule f = [f`,j](`,j)∈M2 is strategy-proof.

Consider, without loss of generality, deviations of negotiator 1 only. If ` < j, then
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A(θx`1 , θ
xj
2 ) = Ø. Negotiator 1 may receive a different bundle by deviating to a type that

is represented by a higher (numbered) row, say θxk1 where k > `. A(θ
xj
2 ) is fixed because

negotiator 2’s type is fixed. Because the negotiators’ preferences over issue X are diamet-

rically opposed and f is individually rational, the alternative in issue X at type profile

(θxk1 , θ
xj
2 ) will be unacceptable for negotiator 1’s true type, θx`1 . Thus, by deal-breakers

property, negotiator 1 has no profitable deviation from a type profile (θx`1 , θ
xj
2 ) with ` < j.

On the other hand, if ` = j, then negotiator 1 can deviate to (1) a lower row and

receive (oX, y), which is worse than f`,i = (x`, ym−`+1) by deal-breakers, or (ii) a higher

row and receive a bundle that suggests an unacceptable alternative in issue X. Thus,

deal-breakers property imply that negotiator 1 has no profitable deviation in that case

either.

Finally, suppose that ` > j. Let c ∈ B denote the bundle negotiator 1 gets if he

truthfully reports his type. If negotiator 1 deviates to a row where f takes the value

(oX, y), then he clearly get worse off by deal-breakers property. If he deviates to a lower

numbered row and receives bundle, say, a, then a appears on the first diagonal above

bundle c, by the third condition of Lemma 1. The last observation and logrolling property

of the preferences imply that negotiator 1 prefers bundle c to a at all consistent preferences.

Hence, there is no profitable deviation for negotiator 1 by declaring a lower numbered row.

However, if he declares a higher numbered row and gets a different bundle, say, b, then c

appears on the first diagonal above bundle b, again by the third condition of Lemma 1. As

it is clearly visible in the last figure, Lemma 1 implies that negotiator 1’s true preferences

must give him the bundle c in region 1 or 2 and the deviation bundle b must be in region 3

or 4 because they cannot coexists in region 3 or 4. However, bundle b includes alternative

xr from issue X, which is an unacceptable alternative for all types that lie above row r,

including negotiator 1’s true type. Thus, by deal-breakers property, negotiator 1 has no

profitable deviation in that case either. Hence, f is strategy-proof.

Proof of ‘only if’ :

Proof of Part i : By individual rationality and consistency of preferences, the alter-

native for issue X must be oX whenever ` < j. Then by efficiency, f`,j = (oX, y) for some

y ∈ Y \ {oY }. By strategy-proofness and monotonicity, we must have f`′,j = (oX, y) for

all `′ < j. Similarly, f`,j′ = (oX, y) for all ` < j′. Fixing j (and `) and applying the same

argument for all remaining rows and columns yield f`,j = (oX, y) whenever ` < j.

Proof of Part ii : Consider the main diagonal where ` = j = k. Row and column

k correspond to preference profile (θxk1 , θ
xk
2 ) where the only mutually acceptable alterna-

tive in issue X is xk. Therefore, by efficiency, individual rationality and consistency of

preferences, fX
k,k = xk. Now, we will show that fk,k = (xk, ŷk) for every k = 1, ...,m and
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ŷk = ym+1−k. We start from k = 1. If fY
1,1 = y 6= ŷ1, then f2,1 must also be (x1, y) by

strategy-proofness. This is true because (1) negotiator 1 is not able to unambiguously

rank (x1, y) against any other bundle (x′, y′) with x′ 6= x1 and y′ θY
1 y, and (2) negotiator

1 deviates from θx2
1 if y θY

1 y′ by monotonicity. With exactly the symmetric arguments,

we must have f2,2 = (x1, y). However, fX
2,2 = x1 contradicts with individual rationality

and efficiency of f . Hence, we must have f1,1 = (x1, ŷ1).

By induction, suppose that the claim is true for all entries on the main diagonal up

to k − 1. We now show that it must also hold for k. Suppose for a contradiction that

fY
k,k = y 6= ŷk. Then fk,k−1 must also be (xk, y) by strategy-proofness. This is true because

(1) by efficiency and individual rationality fX
k,k−1 /∈ {xk+1, ..., xm, oX}, (2) negotiator 2 is

not able to unambiguously rank (xk, y) against any other bundle (x′, y′) with xk θ2(xk) x
′

and y′ θY
2 y and (3) negotiator 2 deviates from θxk2 if y θY

2 y′ by monotonicity. With

symmetric arguments, we must have fk−1,k−1 = (xk, y), contradicting with our induction

hypothesis that fk−1,k−1 = (xk−1, ŷk−1).

Proof of Part iii : We refer to bundles {fk,1, fk+1,2, ..., fm,m−k+1} where k = 1, ...,m

as those on the k−th diagonal. Note that each diagonal has one less bundle than its

immediate predecessor and the m−th diagonal consists of a single bundle, namely fm,1.

Lemma 2. Suppose that adjacency holds for all bundles on all diagonals t = 2, ..., k

where k ≤ m. That is, for all t ∈ {2, ..., k} and m ≥ ` > j with ` = j + t − 1,

f`,j ∈ {f`−1,j, f`,j+1} ⊂ B. Consider two bundles a, b ∈ B that appear on some diagonal

t ∈ {2, ..., k}. If bundle a lies on a higher row than b on the first diagonal, then a also

lies on a higher row than b on all diagonals up to (and including) diagonal t.

Proof. Since both a and b appear on diagonal t, by adjacency, they both must also appear

on every diagonal from the second through (t−1)−st diagonal. Suppose that a lies above

b on the first diagonal. From the first diagonal to the second, adjacency implies that a

bundle can either move by one cell horizontally to the left or drop by one cell down. If

a moves horizontally, clearly it will remain above b on the second diagonal. If a drops

by one cell, it remains above b or on the same row with b (which happens when a and

b are diagonally adjacent on the first diagonal). In the former case, b is clearly below a

on the second diagonal. In the latter case, for b to also appear on the second diagonal it

must also have dropped one cell below, in which case it is again below a on the second

diagonal. Iterating this argument for rows 3 through t yields the desired result.

STEP 1 (Adjacency): We first show the following: Take a bundle on some diag-

onal except the first one. This bundle is equal to the bundle immediately above it or

immediately to its right. Lemma 3 states this more formally.
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Lemma 3. For all m ≥ ` > j, f`,j ∈ {f`−1,j, f`,j+1} ⊂ B.

Proof. Part (ii) of Theorem 1 proves that the set of bundles on the first diagonal is equal

to the set of logrolling bundles, B. We first prove our claim for the second diagonal. That

is, take any m ≥ ` > j where ` = j + 1 we have f`,j ∈ {f`−1,j, f`,j+1} ⊂ B. Suppose for a

contradiction that this is not true for some such ` and j. That is, f`,j /∈ {f`,j+1, f`−1,j} =

{(x`, ŷ`), (x`−1, ŷ`−1)}. Note that row ` and column j correspond to the profile (θx`1 , θ
xj
2 )

and by efficiency and individual rationality fX
`,j ∈ {x`, x`−1}.

If f`,j = (x`, y) where y θY
2 ŷ`, then negotiator 2 unambiguously prefers f`,j to f`,j+1 =

(x`, ŷ`) by monotonicity, and so deviates from θ
xj+1

2 , contradicting strategy-proofness. If

f`,j = (x`, y) where ŷ` θ
Y
2 y, then negotiator 2 unambiguously prefers f`,j+1 to f`,j by

monotonicity, and so deviates from θ
xj
2 , contradicting strategy-proofness. Similarly, if

f`,j = (x`−1, y) where y θY
1 ŷ`−1, then player 1 unambiguously prefers f`,j to f`−1,j =

(x`−1, ŷ`−1) by monotonicity, and so deviates from θ
x`−1

1 , contradicting strategy-proofness.

Finally, if f`,j = (x`−1, y) where ŷ`−1 θ
Y
1 y, then negotiator 1 unambiguously prefers f`−1,j

to f`,j, and so deviates from θx`1 , contradicting strategy-proofness. Hence, our claim holds

for the second diagonal.

Now by induction, suppose that our claim holds for all diagonals up to k and show

that the claim also holds for diagonal k + 1. That is, for any m ≥ ` > j where ` = j + k

we have f`,j ∈ {f`−1,j, f`,j+1} ⊂ B. Once again, suppose for a contradiction that for some

`, j with m ≥ ` > j and ` = j + k + 1, f`,j /∈ {f`−1,j, f`,j+1}. There are two exhaustive

cases that we need to consider:

Case 1: Suppose that f`,j ∈ B. First note that by efficiency and individual rationality

of f , all three bundles, f`−1,j, f`,j+1 and f`,j, are unambiguously ranked over (oX, oY ) for

both negotiators at profile (θx`1 , θ
xj
j ). This is true because both agents are more accepting

at this profile. Next we claim that f`−1,j 6= f`,j+1. Suppose not. By strategy-proofness

f`,j R1 f`−1,j for all consistent R1 in Λ(θx`1 ). Because the negotiators’ preferences over

B are diametrically opposed, then f`−1,j = f`,j+1 R2 f`,j for all consistent R2 in Λ(θ
xj
2 ).

Therefore, there exists a consistent R2 such that f`,j+1 P2 f`,j, and thus negotiator 2

prefers to deviate from θ
xj
2 , contradicting with strategy-proofness of f .

Thus, we have f`,j /∈ {f`−1,j, f`,j+1} and f`−1,j 6= f`,j+1. By Lemma 2, we have

f`,j+1 R1 f`−1,j for all R1 consistent with Λ(θx`1 ) because the former is below the lat-

ter in the k−th diagonal. There are three exhaustive subcases that we need to consider

regarding how agent 1 ranks f`,j relative to f`−1,j and f`,j+1:

Case 1A: Suppose that f`,j R1 f`,j+1 R1 f`−1,j for all consistent R1 in Λ(θx`1 ). Because

negotiators’ preferences over B are diametrically opposed, there is a consistent ordering R2

for negotiator 2 such that f`,j+1 P2 f`,j. Thus, negotiator 2 deviates from θ
xj
2 , contradicting
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with strategy-proofness of f .

Case 1B: Suppose that f`,j+1 R1 f`−1,j R1 f`,j for all consistent R1 in Λ(θx`1 ). Then,

there exists a consistent ordering R1 such that f`−1,j P1 f`,j, and so negotiator 1 deviates

from θx`1 , contradicting with strategy-proofness of f .

Case 1C: Suppose that f`,j+1 R1 f`,j R1 f`−1,j for all consistent R1 in Λ(θx`1 ). Because

these three bundles are in B and different from one another, we must have
Ä
fX
`−1,j =

xs
ä
θX
1

Ä
xr = fX

`,j

ä
θX
1

Ä
xh = fX

`,j+1

ä
for some s < r < h. Acceptable alternatives in

issue X for type θ
x`−1

1 of negotiator 1 is {x1, ..., x`−1} and by individual rationality xs is

in this set, i.e., s ≤ ` − 1. Similarly, acceptable alternatives for type θx`1 of negotiator 1

is {x1, ..., x`} and by individual rationality both xh and xr are in this set, i.e., r < h ≤ `.

The last inequality implies that r ≤ ` − 1, and thus xr is an acceptable alternative for

type θ
x`−1

1 . Namely, f`,j is acceptable for type θ
x`−1

1 . Therefore, there exists a consistent

preference R1 in Λ(θ
x`−1

1 ) in which f`,j P1 f`−1,j. Thus, negotiator 1 deviates from θ
x`−1

1 ,

contradicting with strategy-proofness of f .

Case 2: Suppose now that f`,j /∈ B. For notational simplicity, for any z, z′ ∈ Z ∈
{X, Y } and i ∈ I, we denote z �Z

i z′ whenever z θZ
i z
′ or z = z′. Because the bundle

f`−1,j and f`,j+1 are lying on diagonal k and f`−1,j is above f`,j+1, we have f`,j+1 R1 f`−1,j

for all consistent R1 in Λ(θx`1 ) by Lemma 2. Because these two bundles are in B, we must

have
Ä
fX
`−1,j = xs

ä
θX
1

Ä
xh = fX

`,j+1

ä
for some 1 ≤ s ≤ h ≤ m. Strategy-proofness of f

implies that f`,j and f`−1,j are unambiguously ranked and f`,j R1 f`−1,j at all consistent

R1 in Λ(θx`1 ). Because f`,j /∈ B, f`,j is at least as good as f`−1,j at all consistent preferences

whenever
Ä
fX
`,j = xr

ä
�X

1 xs and fY
`,j �Y

1 fY
`−1,j, by monotonicity. Thus, we have r ≤ s.

Similarly, strategy-proofness of f implies f`,j and f`,j+1 are unambiguously ranked and

f`,j R2 f`,j+1 for all consistent R2 in Λ(θ
xj
2 ), and thus xr �X

2 xh and fY
`,j �Y

2 fY
`,j+1 by

monotonicity. Thus, h ≤ r. These three conditions, s ≤ h, h ≤ r, and r ≤ s, hold

simultaneously if and only if s = h = r, implying that fX
`,j = fX

`−1,j = fX
`,j+1. The last

condition requires f`,j+1 = f`−1,j because they both are in B. Let f`,j+1 = f`−1,j = (x, y).

On the other hand, because the negotiators’ preferences on issue Y are diametrically

opposed, fY
`,j �Y

1 y and fY
`,j �Y

2 y hold simultaneously if and only if fY
`,j = y or fY

`,j = oY .

The second case is not possible because f is efficient. Therefore, we have f`,j = (x, y),

contradicting with the assumption that f`,j /∈ B.

STEP 2 (Construction of a precedence order B): By step 1, we know that

f`,j ∈ {f`−1,j, f`,j+1} ⊂ B for all ` > j. To construct B, perform a pairwise comparison
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for all the entries f`,j, f`−1,j, f`,j+1. More formally, f`−1,j B f`,j+1 whenever f`,j = f`−1,j

and f`,j+1 B f`−1,j whenever f`,j = f`,j+1. We obtain a partial order B on B, which may

not be complete at this point. Next, we will show that B is asymmetric and transitive.

Lemma 4. Order B is asymmetric. That is, if a B b for any pair a, b ∈ B, then ¬b B a.

Proof. Suppose for a contradiction that there is a, b ∈ B such that both a B b and

b B a. Let t ≥ 1 be the smallest diagonal on which a and b are diagonally adjacent and

a is “chosen” according to B. That is, let f`−1,j = a, f`,j+1 = b, and so f`,j = a. By

lemma 2, bundle a must appear above bundle b at all diagonals, including the first one,

which means b R1 a for all consistent R1 ∈ Λ(θx`1 ). Furthermore, because f is efficient,

individually rational and taking values a and b when negotiator 1 announces his type as

θx`1 , both bundles must be acceptable for negotiator 1 of types θxk1 where k ≥ `. Because

b B a by assumption, there must exist another diagonal t′ > t in which a and b are

diagonally adjacent and b is chosen. By Lemma 2, bundles a and b cannot be adjacent

to one another more than once on the same diagonal, and thus t′ > t. Therefore, let

fs−1,r = a, fs,r+1 = b = fs,r. By Lemma 2 and Lemma 3, we have s > `. Given the

previous arguments, we know that negotiator 1 unambiguously ranks bundle b over a

and both bundles are acceptable for type θ
xs−1

1 , where negotiator 1 receives bundle a.

Therefore, negotiator 1 would profitably deviate from θ
xs−1

1 to θxs1 and get b, given that

negotiator 2 is of type θxr2 , contradicting strategy-proofness of f .

Let two bundles a and b be diagonally adjacent. If a lies on a higher row than b,

the we say that a is diagonally adjacent to b from below. Equivalently, we say that b is

diagonally adjacent to a from above.

Lemma 5. (i) Let bundle a = f`,j ∈ B be diagonally adjacent to some bundle b ∈ B

from below and a B b. Then, bundle b never appears on or below row `, i.e., there

is no k ≥ ` and r such that fk,r = b. Additionally, bundle a never appears (strictly)

above row ` and (strictly) to the left of column j, i.e., there is no `′ < ` and j′ < j

such that f`′,j′ = a.

(ii) Let bundle c = f`,j ∈ B be diagonally adjacent to some bundle d ∈ B from above

and c B d. Then, bundle d never appears on column j or any lower column, i.e.,

there is no k ≤ j and r such that fr,k = d. Additionally, bundle c never appears

(strictly) below row ` and (strictly) to the right of column j, i.e., there is no `′ > `

and j′ > j such that f`′,j′ = c.

Proof. We prove the first part, i.e., (i), as symmetric arguments will suffice to prove part

(ii). First part of (i): The bundle b must be above a on the first diagonal because b
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is above a at some diagonal. Thus, by logrolling, b R2 a for all types of negotiator 2

that deem both bundles acceptable. Moreover, negotiator 2 may receive bundles a and b

(depending on negotiator 1’s type) when he declares his type as θ
xj−1

2 , and so by efficiency

and individual rationality of f , both these bundles must be acceptable for type θ
xj−1

2 of

negotiator 2. Suppose for a contradiction that b occurs below row `. By the adjacency

property, this b should be coming all the way from the main diagonal, and so b must also

appear on row `. Let f`,k = b for some k 6= j, j−1. But then at some consistent preference

ordering in which b P2 a, negotiator 2 would deviate from θ
xj−1

2 to θxk2 to get the bundle

b, contradicting strategy-proofness of f .

Second part of (i): Because b is above a, then logrolling implies a R1 b for all types of

negotiator 1 that deem both bundles acceptable. Because f`−1,j−1 = b, the bundle b must

appear on the first diagonal on column j or higher. Because a is below b on main diagonal

as well, it also can appear on the main diagonal on column j + 1 or higher. Therefore,

if bundle a appears in the region, for a contradiction, then by the adjacency property

bundle a must appear on column j + 1 as well. Let fk,j+1 = a for some k ≤ ` − 1. But

if a is acceptable for type θxk1 of negotiator 1, it must also be acceptable for type θ
x`−1

1 of

negotiator 1, when he gets the bundle b. Because negotiator 1 prefers a to b, he would

deviate from θ
x`−1

1 to θxk1 to get the bundle a, contradicting strategy-proofness of f .

Lemma 6. Order B is transitive. That is, for any triple a, b, c ∈ B such that a B b and

b B c, we have ¬c B a.

Proof. Suppose, for a contradiction, that a B b and b B c, but c B a. Without loss of

generality, suppose b is diagonally adjacent to a from above. Let t ≥ 1 be the smallest

diagonal on which a and b are adjacent where f`,j = a, f`−1,j−1 = b and f`,j−1 = a because

a B b. By Lemma 5 part (i), b never appears on row ` or below. Let t′ be the smallest

diagonal on which b and c are adjacent. We consider two cases:

Case 1: t′ ≥ t: This case has two subcases:

Case 1A: Suppose first that c is adjacent to b from below on diagonal t′: Consider

diagonal t. Clearly, c should also lie on this diagonal for otherwise, by Lemma 2 it cannot

be on diagonal t′ ≥ t. Then by Lemma 3, since c is adjacent to b from below on diagonal

t′, it must appear below b on row ` + 1 or below on diagonal t. Then by Lemma 2 and

adjacency, c can appear only on ` + 1 or below on diagonal t′ ≥ t as well. However, By

Lemma 5 part (i), f`,j = a B b implies that b can never appear on row ` or below. This

means b and c cannot be adjacent on diagonal t′ ≥ t; a contradiction.

Case 1B: Suppose now that c is adjacent to b from above on diagonal t′. Let fp,q = b

and fp−1,q−1 = c. Because b never appears on row ` or below, p ≤ ` − 1. By Lemma 4,

b B c implies fp,q−1 = b. By Lemma 5 part (i), b B c implies that c never appears on
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row p or below. Because b is diagonally adjacent to a from above and c is adjacent to b

from above, by Lemma 3, c B a implies that c must be adjacent to a from above on some

diagonal t′′. By Lemma 3, there is no b on diagonal t′′ for otherwise it would be either

below a or above c. Then t′′ > t′. Thus, let fr,s = a and fr−1,s−1 = c on diagonal t′′, and

so fr,s−1 = c by c B a. Because there is no c on or below row p ≤ ` − 1, a and c must

then be adjacent above row p on diagonal t′′ > t′. That is, r < p. Then t′′ > t′ implies

that s ≤ q− 2. Because there is no c on row p ≤ `− 1 or below and t′ ≥ t, fr,s = a lies on

row above row p, i.e., r < p and on column j − 2 or to the left, i.e., s ≤ j − 2. However,

by Lemma 5 part (i), f`,j = a B b implies that bundle a should never appear in the box

(strictly) above row ` and (strictly) to the left of column j; a contradiction.

Case 2: t′ < t: This case also has two subcases.

Case 2A: Suppose c is adjacent to b from above on diagonal t′. Consider diagonal

t′. Clearly, a should also lie on this diagonal for otherwise, by Lemma 2 it cannot be on

diagonal t > t′. Since a lies below b on diagonal t, it must again be below b on diagonal t′.

Let k be the row on which b lies on diagonal t′. Clearly, a lies below row k on diagonal t′

or any other diagonal t′′ > t. Since c is adjacent to b from above on diagonal t′ and b B c,

Lemma 5 part (i) implies that c never appears on row k or below. Thus, a and c cannot

be diagonally adjacent on any diagonal t′′ > t′. But they cannot be diagonally adjacent

on any diagonal t′′′ < t′ either because that would mean that there is no b on diagonal t′′′

for otherwise b would be above c or below a, contradicting Lemma 3; a contradiction.

Case 2B: Suppose c is adjacent to b from below on diagonal t′. Consider diagonal

t′. Clearly, a should also lie on this diagonal for otherwise, by Lemma 2 it cannot be on

diagonal t > t′. Because a lies below b on diagonal t, it must lie below both b and c on

diagonal t′. Suppose a and c are diagonally adjacent on some diagonal t′′. Let fp,q = c on

diagonal t′′. Clearly, c must lie above a on diagonal t′′. Because b is diagonally adjacent

to a from above on diagonal t, there is no c on diagonal t (or on any higher numbered

diagonal) for otherwise c would be above b or below a on diagonal t, contradicting Lemma

2. Thus, t′′ < t. Since a = fp+1,q+1 and c = fp,q are diagonally adjacent on t′′ and c B a,

Lemma 5 part (ii) implies that a never appears on column q or any lower numbered

column. Since f`,j = a, we need q < j− 1. Since t′′ < t and q < j−1, bundle a = fp+1,q+1

must lie above row `. But, recall that Lemma 5 part (i) and f`,j = a B b implies that a

should never appear in the box (strictly) above row ` and (strictly) to the left of column

j; a contradiction.

Finally, we stipulate that any incomplete portions of partial order B are chosen in any

arbitrary manner without violating transitivity. This and Lemmas 4-6 give us a complete,

asymmetric and transitive order B satisfying statement (iii) of Theorem 1.
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The Revelation Principle

We prove the revelation principle for the symmetric treatment of the outside options.

The same logic applies directly to the case with heterogeneous treatment of the outside

options. A mediation mechanism Γ =
Ä
S1, S2, g(.)

ä
with veto rights is a collection of

strategy sets (S1, S2) and an outcome function g : S1 × S2 → X × Y . The mechanism Γ

combined with possible types (Θ1,Θ2) and preferences over bundles (R1, R2) with Ri ∈
Λ(θi) for all i defines a game of incomplete information. A strategy for negotiator i in the

game of incomplete information created by a mechanism Γ is a function si : Θi → Si.

Lemma 7 (Revelation Principle in Dominant Strategies). Suppose that there ex-

ists a mechanism Γ =
Ä
S1, S2, g(.)

ä
that implements the mediation rule f in dominant

strategies. Then f is strategy-proof and individually rational.

Proof. If Γ implements f in dominant strategies, then there exists a profile of strategies

s∗(.) =
Ä
s∗1(.), s

∗
2(.)
ä

such that g
Ä
s∗(θ)

ä
= f(θ) for all θ ∈ Θ, and for all i ∈ I and all

θi ∈ Θi,

g
Ä
s∗i (θi), s−i(θ−i)

ä
Ri g

Ä
s′i(θ

′
i), s−i(θ−i)

ä
(1)

for all Ri ∈ Λ(θi), θ
′
i ∈ Θi, θ−i ∈ Θ−i and all s′i(.), s−i(.). Condition 1 must also hold for

s∗, meaning that for all i and all θi ∈ Θi,

g
Ä
s∗i (θi), s

∗
−i(θ−i)

ä
Ri g

Ä
s∗i (θ

′
i), s

∗
−i(θ−i)

ä
(2)

for all Ri ∈ Λ(θi), θ
′
i ∈ Θi, and all θ−i ∈ Θ−i. Because g(s∗(θ)) = f(θ) for all θ ∈ Θ, the

last inequality implies that for all i and all θi ∈ Θi,

f(θi, θ−i) Ri f(θ′i, θ−i) (3)

for all Ri ∈ Λ(θi), θ
′
i ∈ Θi, and all θ−i ∈ Θ−i.

On the other hand, because the mechanism Γ always allows negotiators to veto pro-

posed bundle before the mediation game ends, there exists a deviation strategy ŝi(.) for

any strategy si(.) such that g(ŝi(θi), s−i) =
Ä
oX, oY

ä
for all θi ∈ Θi and all s−i ∈ S−i. The

idea is that the negotiator i plays in ŝi(.) exactly the same way in si(.) (for all θi’s) until

the ratification stage and vetoes the proposed bundle.

Therefore, if ŝi(.) is such a deviation strategy for s∗i (.), then condition 1 must also hold

for ŝi(.), implying that for all i and θi ∈ Θi,

g
Ä
s∗i (θi), s

∗
−i(θ−i)

ä
Ri g

Ä
ŝi(θ

′
i), s

∗
−i(θ−i)

ä
=
Ä
oX, oY

ä
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for all Ri ∈ Λ(θi), θ
′
i ∈ Θi and all θ−i ∈ Θ−i. Because g(s∗(θ)) = f(θ) for all θ ∈ Θ, the

last condition means that for all i and all θi ∈ Θi,

f(θi, θ−i) Ri

Ä
oX, oY

ä
(4)

for all Ri ∈ Λ(θi), θ
′
i ∈ Θi and all θ−i ∈ Θ−i. Hence, conditions 3 and 4 imply that f is

strategy-proof and individually rational.

Proof of Theorem 3:

Proof of ‘if ’: Same arguments in the proof of Theorem 1 suffice to verify that the

mediation rule described in Theorem 3 is individually rational and efficient. Lemma 1

also holds in the continuous case. The proof of part (i) of Lemma 1 is straightforward;

given the location of a logrolling bundle a on the main diagonal, f`,j can be a only if

a ∈ B`j, and so, a can never appear outside of its value region V (a). To prove part

(ii), let f`,j = a and fs,r = b and suppose for a contradiction that a, b ∈ V (a) ∩ V (b).

Therefore, we have a, b ∈ B`j ∩ Bsr. The bundle a beats b with respect to B because a

wins over B`j. Likewise, b beats a with respect to B because b wins over Bsr. The last

two observations contradict with the assumption that B is strict. To prove part (iii),

suppose that f`,s = a and fj,s = b where ` < j, whereas a appears below b on the main

diagonal. This is possible only when a, b ∈ V (a) ∩ V (b), contradicting with the second

part. Similar arguments prove the claim when bundles a and b are on the same row.

Now we prove that f is strategy-proof. It suffices to consider the deviations of one

negotiator to prove that f is strategy-proof. Take any `, j ∈ [0, 1] such that f(θ`1, θ
j
2) =

f`,j = (oX, y) (see figure 5-a). Deviating from θ`1 does not benefit negotiator 1 if he deviates

to θs1 where s < j because the outcome of f will not change. However, if negotiator 1

deviates to some s ≥ j and get some b, we know that b is one of the logrolling bundles in

Bsj. However, all of the bundles in Bsj are unacceptable for type θ`1 of negotiator 1 since

` < s, and so, not preferable to (oX, y) by the deal-breaker property.

θ`1

θj2

B1,`

(oX, y)

b
θs1

Bsj

Figure 5-a

θs1

θ`1

θj2

b

a

BsjB`j

Figure 5-b

Now take any `, j ∈ [0, 1] such that ` ≥ j and f(θ`1, θ
j
2) = f`,j = b ∈ B. Deviating from
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θ`1 does not benefit negotiator 1 if he deviates to θs1 where s < j because the outcome

of f would be (oX, y), which is not better than b ∈ B by the deal-breaker property. If

negotiator 1 deviates to some ` > s ≥ j and get some a, then a must appear above b on

the main diagonal (part (ii) of Lemma 1). Logrolling implies that negotiator 1 finds b at

least as good as a at all consistent preferences, and thus, deviating to s is not profitable.

Finally, suppose that negotiator 1 deviates to some s > ` ≥ j and get some a (see

figure 5-b). Therefore, a beats b with respect to B because both a and b are in Bsj and a

is chosen. Thus, a cannot be an element of B`j as b is the maximizer of B over this set.

Thus, a ∈ Bsj \B`j, implying that a is not acceptable for type θ`1, and so, deviating to θs1

is not profitable by the deal-breaker property. Hence, f is strategy-proof.

Proof of ‘only if’: The same arguments in the proof of Theorem 1 suffices to show

that there must exist some y ∈ Y \ {oY } such that f`j = (oX, y) for all `, j ∈ [0, 1] with

` < j. Consider now for ` ≥ j.

STEP 1 (Adjacency):

Lemma 8. If f is a strategy-proof, individually rational and efficient mediation rule, then

f`,j ∈ B`j for all ` ≥ j.

Proof. First consider the case where ` > j and suppose for a contradiction that f`,j =

(x, y) /∈ B. By individual rationality we have x ∈ [j, `]. Moreover, strategy-proofness

implies x = j. Suppose not, i.e., x > j. If y ≥ j, then there is a consistent preference

ordering of negotiator 1 such that the bundle fj,j is preferred to the bundle f`,j = (x, y)

by monotonicity, and so type θ`1 would profitably deviate to type θj1, contradicting with

strategy-proofness. On the other hand, if y < j, then bundles fj,j and (x, y) are not

unambiguously comparable, namely there exists a consistent preference ordering of ne-

gotiator 1 where the bundle fj,j is preferred to the bundle f`,j and another consistent

ordering where f`,j is preferred to fj,j. Therefore, type θ`1 would profitably deviate to θj1,

contradicting again with strategy-proofness. Symmetric arguments suffice to prove that

x = ` because otherwise negotiator 2 would profitably deviate. The last two claims lead

to the desired contradiction because we must have x = j and x = `, but ` > j.

Now consider the case where j = `. Similar to the previous arguments fs,j = (x, y)

must suggest j in issue X for all s > j, i.e., x = j. This is true because otherwise

negotiator 1 would profitably deviate either because of monotonicity of preferences or

because of the fact that f`,j /∈ B, and so the bundles fj,j and fs,j are not unambiguously

comparable. Similarly, for all s > `, fs,j must suggest s in issue X, i.e., x = s, because

otherwise negotiator 2 would profitably deviate. The last two claims lead to the desired

contradiction because we must have x = j and x = s, but s > j.

Finally, given that f`,j ∈ B, individual rationality requires f`,j ∈ B`j.

40



Lemma 8 and individual rationality suffice to prove that efficient, individually rational

and strategy-proof mediation rule f must satisfy fkk = (k, 1− k) ∈ B for all k ∈ [0, 1].

STEP 2 (Construction of a precedence order): To construct vartriangleright,

we perform the following pairwise comparison: Let f`,` = a ∈ B and fj,j = b ∈ B for some

`, j ∈ [0, 1] with ` > j and define a B b whenever f`,j = a and b B a whenever f`,j = b.

Lemma 9 below proves that this binary relation is not empty. Namely, there exists some

such a and b where either a B b or b B a.

Lemma 9. Let the mediation rule f be strategy-proof, individually rational, efficient and

f`,j = a ∈ B where ` > j. Then there exists some k ≤ j such that fk,k = a and f`,k = a.

Proof. Given that f`,j = a ∈ B where ` > j, Lemma 8 implies that a ∈ B`j, and so there

is some k ∈ [j, `] such that fk,k = a. To prove the second part, suppose for a contradiction

that f`,k = z where z 6= a. Again by Lemma 8, we know that z ∈ B`k and so there is some

k′ ∈ [k, `] such that fk′,k′ = z. By the way the logrolling bundles are ranked by negotiator

2, fk,k = a is preferred to fk′,k′ = z because k < k′. Therefore, type θk2 would profitably

deviate to θj2 to get a instead of z, contradicting with strategy-proofness.

Because the logrolling bundles a and b can appear on the main diagonal only once,

i.e., ` and j’s are unique, the binary relation B is asymmetric by definition. It is not

necessarily complete. The next result shows that it is transitive.

Lemma 10. Order B is transitive. That is, for any triple a, b, c ∈ B such that a B b and

b B c, we have ¬c B a.

Proof. Suppose for a contradiction that there exists a, b, c ∈ B such that a B b, b B c

and c B a. There are six possible cases to consider regarding how these three bundles are

placed on the main diagonal and the readers can refer to figure 6 for all these cases:
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f`,`

fk,k

f`,j

fk,j fk,`

θj2 θ`2 θk2

θk1

θj1

θ`1

deviation

d
ev
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ti
o
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Figure 6
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Case 1: Suppose, a appears above bundle b and b appears above bundle c on the main

diagonal. Namely, fj,j = a, f`,` = b and fk,k = c. Therefore, negotiator 2 prefers a to

b and b to c, and type θj2 finds all three bundles acceptable. Moreover, a B b, b B c

and c B a implies f`,j = a, fk,j = c and fk,` = b. Given that player 1 is of type θk1 , θj2

would profitably deviate to type θ`2 because b is more preferred than c, contradicting with

strategy-proofness.

Case 2: Suppose, a appears above bundle c and c appears above bundle b on the main

diagonal. Namely, fj,j = a, f`,` = c and fk,k = b. Therefore, negotiator 1 prefers b to

c and c to c, and type θk1 finds all three bundles acceptable. Moreover, a B b, b B c

and c B a implies f`,j = c, fk,j = a and fk,` = b. Given that player 2 is of type θj2, θ
k
1

would profitably deviate to type θ`1 because c is more preferred than a, contradicting with

strategy-proofness.

Case 3: Suppose, b appears above bundle a and a appears above bundle c on the main

diagonal. Namely, fj,j = b, f`,` = a and fk,k = c. Therefore, negotiator 1 prefers c to

a and a to b, and type θk1 finds all three bundles acceptable. Moreover, a B b, b B c

and c B a implies f`,j = a, fk,j = b and fk,` = c. Given that player 2 is of type θj2, θ
k
1

would profitably deviate to type θ`1 because a is more preferred than b, contradicting with

strategy-proofness.

Case 4: Suppose, b appears above bundle c and c appears above bundle a on the main

diagonal. Namely, fj,j = b, f`,` = c and fk,k = a. Therefore, negotiator 2 prefers b to

c and c to a, and type θj2 finds all three bundles acceptable. Moreover, a B b, b B c

and c B a implies f`,j = b, fk,j = a and fk,` = c. Given that player 1 is of type θk1 , θj2

would profitably deviate to type θ`2 because c is more preferred than a, contradicting with

strategy-proofness.

Case 5: Suppose, c appears above bundle a and a appears above bundle b on the main

diagonal. Namely, fj,j = c, f`,` = a and fk,k = b. Therefore, negotiator 2 prefers c to

a and a to b, and type θj2 finds all three bundles acceptable. Moreover, a B b, b B c

and c B a implies f`,j = c, fk,j = b and fk,` = a. Given that player 1 is of type θk1 , θj2

would profitably deviate to type θ`2 because a is more preferred than b, contradicting with

strategy-proofness.

Case 6: Suppose, c appears above bundle b and b appears above bundle a on the main

diagonal. Namely, fj,j = c, f`,` = b and fk,k = a. Therefore, negotiator 1 prefers a to

b and b to c, and type θk1 finds all three bundles acceptable. Moreover, a B b, b B c

and c B a implies f`,j = b, fk,j = c and fk,` = a. Given that player 2 is of type θj2, θ
k
1

would profitably deviate to type θ`1 because b is more preferred than c, contradicting with

strategy-proofness.
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Lemma 11. Let f be strategy-proof, efficient, individually rational and f`,j = a. Then,

a B b for all b ∈ B`j with b 6= a.

Proof. Suppose for a contradiction that there exists some b ∈ B`j with b 6= a such that

b B a. Consider the case where the bundle a is located above the bundle b on the main

diagonal. Suppose that fs,s = a and fr,r = b, and so fr,s = b. Strategy-proofness and

IR imply that fr,j = a: This is true because if fr,j ∈ Bsr, then type θ`1 would profitable

deviate to θr1, and if fr,j ∈ Bjs, then θr1 would deviate to θ`1, all of which contradict with

strategy-proofness. With a similar reasoning, we must have fr,s = a given that fr,j = a,

which contradicts with a 6= b: This is true because when fr,s ∈ Brs \ {a}, then type θs2

would deviate to θj2, contradicting with strategy-proofness.

Similar arguments will yield a contradiction when a is located below the bundle b on

the main diagonal. Thus, a B b for all b ∈ B`j with b 6= a .

fj,j

f`,`

a

θj2 θ`2

θ`1

θj1

aθr1

θr2

bθs1

θs2

b

Figure 7

The last lemma proves that a strategy-proof, efficient and individually rational medi-

ation rule picks the maximal element of B on B`j for all 0 ≤ `, j ≤ 1 with ` ≥ j. Namely,

f`,j = argmax
B`j

B for all ` ≥ j. By the Sziplrajn’s extension theorem, one can extend

B to a complete ordering. This extension will clearly preserve the maximal elements in

every compact subset B`j as the maximal element in every set had already complete re-

lation with all the elements in that set. Finally, Theorem 1 in Tian and Zhoub (1995)

proves that quasi upper-semicontinuity is both necessary and sufficient for B to attain its

maximum on all compact subsets B`j, which completes the proof.
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