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Daycare allocation as a matching problem
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Daycare seats over-demand in Japan

Matching mechanisms are
used for daycare allocation.

Policy experiments to improve
matching mechanisms.

Teacher-child ratio (& space-
child ratio) varies with age

(Okumura, 2016)

—not standard “capacity’;
instead, matching with
constraints



Markets with constraints

* Many other matching markets are subject to
constraints too

* Affirmative action (diversity constraints)
* Gender composition in workplace
* More real-lite examples (later)

- Question: Desirable outcomes & mechanisms?



Main Results

Stable matching does not always exist

Fair matchings are characterized via fixed points
of a function

Necessary and sufficient condition for existence of
a student-optimal fair matching (SOFM)

* general upper-bound

Application to daycare allocation with data
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VlioqQel

e Students (denoted /, /) and schools (denoted s, S)
* Many-to-one matching

* Each Student has strict preferences over schools
(& outside option, @)

 Each school has a strict priority order over
students

 (Generalizable to weak priority (i.e., ties)
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Constraints

* Each school s is subject to a constraint

 For each subset /' of students, a constraint tells
“feasible” or “infeasible”

e c.f. Constraints at the level of sets of schools
(Biro et al. 2010, Kamada and Kojima, 2015,
20164a,b, Kojima et al. 2016, Goto et. al 2016)

* For each school, assume there Is at least one
feasible set of students.
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Desirable properties

« Feasibility (students feasible at every school), IR (students should
be matched to @ or better)

 Non-wastefulness: there are no /, s, such that
e /prefers sto her own assignment,
 moving /to s results in a feasible matching

* Fairness (elimination of justified envy): there are no j, i’, s, such that
e /prefers s to her own assignment,

e /IS matched to s and / has a higher priority than /" at s



Discussion on falrness

* Fairness (elimination of justified envy): there are no j, i’, s, such that
Weak fairness
e /prefers s to her own assignment,
e /IS matched to s and / has a higher priority than /" at s
* and replacing /" with /is feasible at s
e Appropriate fairness concept depends on applications
e Labor markets (medical match): weak fairness
e College admission with disability, disaster relief material: fairness

« Non-existence problem robust to fairness concepts employed
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Preliminary racts

* Fact 1: feasibility & IR & fairness & non-wastefulness & stability

* Fact 2: Stability (=Feasibility & IR & Fairness & Non-
wastefulness) leads to non-existence

* "Necessary and sufficient” condition turns out to be capacity
constraints (later)



alr matching

* Approach: Don’t insist on (exact) non-wastefulness
but require fairness (+ feasibility, IR)

e Existence? Structure?

* Characterization via a mapping
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Cutoff adjustment function

e Ps: the cutoff (=lowest priority/“score” to be admitted) at school s;

 regarded as anelementin {1,...,n,n+1}, where n.=number of
students.

 P=(Ps)s. a cutoff profile at all schools.

D(P)=(Ds(P))s: the demand profile at P

e each student chooses favorite available school given P (or @)

Cutoff adjustment function T from cutoff profiles to themselves:
o Ts(P)=Ps+1 (mod n+1) if Ds(P)is infeasible (i.e., “over-demanded”)
» Ts(P)=Psotherwise.

I'is like Walrasian tatonnement but doesn’t try to eliminate under-
demand
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Characterization

Theorem: It a cutoft profile P is a fixed point of T, then
the induced matching is feasible, individually rational,

and fair. Moreover, if a matching is feasible, individually

rational, and fair, then there exists a cutoft profile that
iInduces It.

* Proof: Given Pinduces matching D(P)=(Ds(P))s,
* there is no guarantee that D(P) is feasible, but

« D(P)is IR and fair

e P=T(P)itt D(P)is feasiblemby definition of T.



Problem with fairness

* An arbitrary tair matching may be undesirable.

* |s there a “(most) desirable” tair matching?
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SOFM

A matching is a student-optimal fair matching (SOFM) if
1. fair, IR, feasible, and

2. weakly preferred by every student to any matching
satistying (1).

e Similar to “student-optimal stable matching” in standard case

* note a stable matching may not exist
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General upper bound

We say constraints are general upper-bound it
every subset of a feasible subset is also feasible

* subsume standard settings like (1) capacity
constraints and (2) type-specific quotas

(diversity in schools), but exclude e.g., minimum
(floor) constraints

More examples of general upper-bound; next
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General upper bound

* Recall general upper-bound; every subset of a
feasible subset is also feasible

* More (less standard) examples of general upper-bound

* College admission with students with disability
(budget constraint)

* Refugee match (Delacretaz et al. 2016)
* School Choice and bullying (Kasuya 2016)
* Separating conflicting groups in refugee match

* Daycare/nursery school matching: more on this later
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Sufficiency for SOFM

Theorem: If each school's constraint is a general

upper bound, then there exists an SOFM.

o Similar to the existence of SOSM in standard case
 note a stable matching may not exist

o Computation is easy (c.f. proof)
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Proof (1)

Given our characterization theorem, we study fixed points of T.
Under general upper bound, use Tarski’s fixed point theorem (below)

A set is called a lattice if for any pair of elements, their “join” (least upper
bound) and “meet” (greatest lower bound) both exist.

 Example: “set of cutoff profiles”={1,...n+1}m with the product order.

 |n particular, there is a “largest” and “smallest” elements

Tarski’s Theorem (special case): Let X be a finite lattice and f: X=X
be weakly increasing, i.e., x<x' implies f(x)<f(x’).

Then the set of the fixed points of fis a finite lattice. In particular,
there are largest and smallest fixed points.
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Proof (2)

Tarski’s Theorem (from last slide): Let X be a finite lattice and f:
X—=X be weakly increasing, i.e., x<x' implies f(x)<f(x’).

Then the set of the fixed points of fis a finite lattice. In particular,
there are largest and smallest fixed points.

J

e Back to proof: We'll show T is weakly increasing. Suppose P <P
1. H: ID5<ID’3, then Ts(ID)SPS+7SID’S STs(ID’)
2. Suppose Ps=PF%.

 Demand for sis (weakly) larger if students face higher
cutoffs at all other schools, so Ds(P) is a subset of Ds(P’).

¢ SO, Ts(ID):IDS+1 /m,O/leS TS(ID’)=ID’S+ 7, thUS Ts(P):Ts(P’)
 So T(P)<T(P).
« Smallest fixed point induces SOFM. QED
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Algorithm

e Tarski’'s theorem gives an intuitive (and polynomial-time) algorithm.

e Start with lowest possible cutoff profile, P (i.e., every student is
above the cutoff at every school)

e Then P<T(P)
* Apply Trepeatedly and get: P<T(P)<T(T(P))<T3(P)<T4(P)<...
* At some point it stops at some P~ and

 [(P*)=P” so it induces a feasible, IR, and fair matching

* For any fixed point P P*<P; P* corresponds to SOFM
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More general constraints?

 The "general upper-bound” includes many practical cases,
but not all (e.g., minimum constraints)

 Does SOFM exist more generally?

 Answer: “no” in a specific sense

Theorem: Suppose the constraint of a school sis not a general

upper bound. Then there exist student preferences and capacity
constraints at other schools s.t., SOFM does not exist.
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Proof (1)

* Suppose the constraint at s is not a general upper
bound.

e Consider two cases:
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Proof (2)

 Case 1 (“easy” case): Suppose the empty
matching (i.e., no one is matched) is infeasible at s.

* Assume all students find s unacceptable.

* Clearly, there is no feasible and IR matching.
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Proof (3)

o Case 2 (“less easy” case): Suppose the empty matching is feasible
at s.

 Note there is some set /' of students and its subset /” such that /’is
feasible but /”is not (and both are nonempty).

e Fix s'#s and assume preferences
e studentsin /s, s’
e studentsin I'll”: s’ s
 all other students find all schools unacceptable
s has a large capacity
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Proof (4)

 Two fair (&feasible and IR) matchings:

 Recall (from last slide)

1. everyone in ['is matched to s and
* studentsin/"'s, s everyone else is unmatched

* studentsin /'l/": s s 2. everyone in /’is matched to s’

and everyone else is unmatched.
« all other students find

all schools e |f there is SOFM, then it should
unacceptable

 match everyonein /”’to s, I'll"to s’

S has alarge capacity

and un-match everyone else
—infeasible! QED
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Application: Daycare Match

* Japan: daycare is greatly over-
demanded

* Municipal governments are
under great pressure to
accommodate more children
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Some resources (teachers, rooms,
etc.) can be used for kids of different
ages (Okumura 2017)

Resource demand per kid varies
across ages (younger kids need
more teachers and space per capita)

— general upper bound (while not
capacity)

Centralized matching algorithms.
 flexible assignments tried in

several municipalities (but in ad
hoc manners)



Comparative statics

Proposition: SOFM under flexible constraints is Pareto superior for

students to SOFM under rigid constraints.

* Easy to prove, true more generally for arbitrary
“relaxation of constraints”

e c.f. Results for SOSM in standard models (e.qg.,
Crawford 1991; Konishi and Unver 2006)

* Flexibility across ditferent ages will help.

* How about the magnitude?
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Daycare Match Data Analysis
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« Data from Yamagata City (Yamagata)
and Bunkyo City (Tokyo), Japan:

» preferences (mechanism is
strategy-proof)

e priorities
e outcomes

o We simulate SOFM under “tlexible”
and “rigid” constraints

Recall: SOFM under flexible constraints is

Pareto superior to SOFM under rigid
constraints.
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Match Rate

(1437 applicants in total)
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How many people are better oft”?

(1437 applicants in total)

From /To rigid SOFM flexible SOFM actual allocation flexible ETSD
rigid SOFM 0 867.272 (60.35 %) | 658.456 (45.82 %) | 881.944 (61.37 %)
flexible SOFM 0 0 72.132 (5.02 %) 49.78 (3.46 %)
actual allocation | 13.188 (0.92 %) | 237.944 (16.56 %) 0 248.676 (17.31 %)
flexible ETSD 0 0 62.876 (4.38 %) 0
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Justified Envy

(1437 applicants, 93 daycares in total)

rigid SOFM | flexible SOFM | actual allocation | flexible ETSD
pairs with envy 0 0 989 (0.74 %) | 157.188 (0.12 %)
students with envy 0 0 475 (33.05 %) | 129.956 (9.04 %)
daycares with envy 0 0 62 (66.67 %) |22.164 (23.83 %)

(Data: Yamagata)

Number of justitfied envy is comparable to TTC in Boston and New
Orleans (Abdulkadiroglu et al. 2018)
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Extension: lle In priority
e College admission in Hungary (Biro 2010) uses a mechanism
ike deferred acceptance, but

* Ranking over students are based on test score — ties

« Admitting all students with a score is infeasible — reject all
students of that score

e Disaster shelter in Kobe and Tohoku earthquakes (Hayashi
2003, Hayashi 2011)

 Priorities include lots of ties (e.g., own house livable or not)

* |nsufficient food supply was not allocated
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Problems with ties:

_

A A 1,2

 Ahas capacity of 1
« Aranks 7and 2equally
o But our theory extends: SOFM exists, etc.

e (Characterization: fair and non-wastefulness are
compatible iff capacity C%nstraints and no ties.



Stability: Maximal domain

* Recall stability (=Feasibility & IR & Fairness & Non-wastefulness)

leads to non-existence. In fact,

Theorem: Suppose the constraint of a school sis not a capacity
constraint (while being a general upper-bound). Then there exist a

priority at s and student preferences s.t. there exists no stable
matching.

Note: “necessary and sufficient” condition for stable matching existence

The conclusion holds for any priorities and constraints at other schools.
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Strategic ISsues

« SOFM mechanism isn’t necessarily strategy-proof for students
« (Capacity constraints = SP for students

e Turns out thisis "necessary” as well.

Theorem: Suppose the constraint of a school sis not a capacity
constraint. Then there are school priorities and standard capacity

constraints at other schools such that the SOFM mechanism isn’t
strategy-proof for students.

e But

 The same impossibility holds for any mechanism with feasibility, fairness,
and unanimity.

o Approximate incentive compatibility holds in large markets.
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Conclusion

Characterization of fair matchings via a cutoff adjustment function

The general upper-bound is the most general condition to
guarantee existence of SOFM

Daycare match application

Future research

e Solution under non-general upper bounds

 More numerical and empirical study (new data just granted)

* Implementing the new design
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