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“Didn’t Get a Slot in Day Care. Drop Dead, Japan!!!”

—An anonymous mother

1. Introduction

Daycare services for young children in Japan, as in many countries, are rationed by the

government using matching mechanisms, and a large excess demand for daycare seats is

a highly contentious political issue. A blog post by an anonymous mother who could not

secure a slot in a daycare for her child became viral in 2016, leading to a large protest

movement, a debate in Diet, and Prime Minister Abe’s promise to improve the situation

(Osaki, 2016).1 In the midst of such a heated political environment, increasing allocation

of slots at daycares in a fair manner is now among the very top priorities for many

politicians.2

One notable complication of the daycare allocation problem is that the necessary

teacher-child ratio varies across different ages. In the Japanese case, for instance, the

national regulation requires at least one teacher for every three children of age 0 while

the ratios are one teacher for every 6 children for ages 1 and 2, 20 children for age 3

and 30 children for ages 4 and 5 (Cabinet Office of Japan, 2017).3 This means that each

daycare center’s feasibility constraint cannot be expressed by a mere capacity constraint.

In fact, many matching markets are subject to constraints that are beyond the scope of

the standard theory. In the medical match in the U.K. in the last century, for exam-

ple, some hospitals required a certain composition of men and women in their workforce

(Roth, 1991). In school choice, a school may be subject to diversity requirements (Ab-

dulkadiroğlu and Sönmez, 2003). As discussed in more detail later, many more matching

markets with constraints have recently become the subject of research, including prob-

lems of refugee resettlement, college admissions with budget constraint, and school choice

under bullying concerns.

The aim of this paper is to study a general model of matching with constraints. Fram-

ing the problem as matching between students and schools, we seek to understand the

theoretical properties of this problem (with an eye on market design—we apply our theory

to the daycare allocation problem based on real data from Japan). Instead of considering

various special cases one by one, we begin with a very general model. In that model, each

school is subject to an arbitrary constraint, which is represented simply by an arbitrary

1A variety of policies for this goal are described by Prime Minister’s Office (2017).
2For instance, mayors of all ten most populous municipalities list daycare policy as one of their major

political agendas.
3Detailed institutional information is provided in Section 5.
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family of subsets of students that are feasible at that school. The standard model with

capacity constraints is a special case in which a set of students is feasible at a school if

and only if its cardinality is no greater than the school’s capacity, but many more cases

fall into the scope of this model.

Given the generality of the constraints, a stable matching does not necessarily exist. In

fact, we find that each school’s constraint being a capacity constraint is a “necessary and

sufficient” condition for guaranteeing existence (in a certain “maximal domain” sense).

Faced with this impossibility result, we focus on weaker conditions than stability. More

specifically, we consider a fairness notion which requires there be no justified envy, that

is, there be no student who prefers a school to her outcome while another student with

lower priority is matched to the school. We require this notion of fairness as well as

feasibility and individual rationality as our basic requirements (by contrast, we do not

require non-wastefulness, which together with the previous three conditions are equivalent

to stability). Our first main result provides a characterization of matchings that satisfy

these properties as fixed points of a certain mapping.

Equipped with the fixed-point characterization, we identify the class of constraints

that admit a desirable matching. For this goal, we first define a student-optimal fair

matching, SOFM. A matching is a SOFM if it satisfies fairness, feasibility, and individual

rationality and, in addition, it is weakly preferred by every student to any matching that

satisfies fairness, feasibility, and individual rationality. This is analogous to the well-

known student-optimal stable matching but adapted to our more general environment

where the latter may not exist. We identify a class of constraints on individual schools

under which a SOFM exists. Specifically, if the constraint at each school is in a class that

we call general upper-bounds, meaning that any subset of a feasible set of students is also

feasible, then a SOFM exists. Moreover, if the constraint of even just one school is not

a general upper-bound, then there exist student preferences and capacity constraints at

other schools such that a SOFM fails to exist. In this sense, general upper-bound is the

most permissive restriction on constraints that leads to the existence of a SOFM.

The family of general upper-bounds subsumes many constraints of interest. Standard

cases such as capacities and type-specific quotas are examples of general upper-bounds,

while floor (minimum) quotas and proportionality constraints are not. While excluding

some cases, the family of general upper-bounds includes many less-known or more re-

cent cases. Examples include college admissions with students with disabilities, refugee

matching under multidimensional constraints, school choice under bullying concerns, and

separation of conflicting groups in refugee matching.
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The daycare allocation problem we discussed earlier provides an interesting example

for which our theory can be applied. Daycare services are often highly subsidized and

regulated in many countries such as most European and Asian countries. In Japan, the

assignment of seats in daycare centers for children (of ages 0 to 5) is conducted by each

municipality. It is a matching market: prices are set by the municipality, parents submit

ordinal preferences over daycare centers, and the municipality assigns seats following an

algorithm based on submitted preferences and pre-specified priorities over the applicants.4

As discussed earlier, heterogeneity of teacher-child ratio across age groups implies that

the constraint at each daycare center cannot be described by a capacity constraint. Most

municipalities, however, treat the number of seats for each age group at each daycare

center as fixed and rigid. This leads to an artificial constraint that is more restrictive

than the original daycare constraint since the former fails to take into account the inherent

flexibility in the latter. We establish that the original daycare constraint and the rigid

constraint are both general upper-bound, and that the SOFM under the former constraint

is Pareto superior to the one under the latter.5

We supplement our theoretical investigation by analyzing the data we obtained from

two municipalities in Japan: Yamagata City and Bunkyo City, which are rural and urban

cities in Japan. First, we compare SOFMs under the original daycare constraint and

the rigid constraint. With 250 simulations for each mechanism, we find that the effect

of allowing flexibility in constraints is substantial in our data from both municipalities.

For example, the average fractions of children who are matched with a strictly preferred

daycare center are 60.35% in Yamagata and 51.64% in Bunkyo, and the numbers of un-

allocated children decrease by 87.67% and 48.81%, respectively. Second, we compare the

SOFMs with the real allocations in those municipalities. The real allocation mechanisms

use rigid constraints while eliminating envies only within the same age group and tol-

erating existence of envies across different ages. Although theoretically no clear general

relation exists between the SOFMs and the real outcomes, we find that the loss from

the rigidity in the real allocations overwhelms the efficiency gain resulting from tolerat-

ing existence of certain envies. For example, the average fractions of children who are

matched with a strictly preferred daycare center in the SOFM under flexible constraints

4Priorities are based on characteristics of the children or their parents, such as whether parents have

full-time jobs and whether the parent is a single parent. Most municipalities use either serial dictatorship

or the “Boston” mechanism (also known as the immediate acceptance mechanism), with slight variations

across municipalities. Almost all seats are allocated in the beginning of the academic year (April).
5In fact, some municipalities have been trying to make the allocation “more flexible” by relaxing the

artificial capacity constraints, although in ad hoc manners. See Section 5.1 for more discussions.
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are 16.56% in Yamagata and 25.30% in Bunkyo, while the corresponding numbers for

the real allocation are merely 5.02% in Yamagata and 13.61% in Bunkyo. Moreover, the

real allocation leaves many envies: the proportions of applicants who have justified envy

toward another applicant are 33.05% in Yamagata and 40.82% in Bunkyo. These results

suggest that, relative to the mechanisms that are used in reality, our proposed mechanism

may result in a mild improvement in efficiency while eliminating justified envy completely.

We study a variety of further issues, including the following topics. First, we show

that our theory readily generalizes to the case in which school priorities are weak, which

extends the scope of applications to real-life cases such as disaster relief and centralized

college admissions. We also study the strategic issues. Although the SOFM mechanism

is not strategy-proof unless all constraints are capacity constraints (in a maximal domain

sense), we show that it is not the drawback of SOFM alone but it is, in fact, shared

by every fair mechanism which satisfies feasibility and a mild efficiency requirement.

Moreover, we show that the SOFM mechanism is difficult to manipulate in large markets

in a specific sense. Then we study the relationship between our general upper-bound

and the “multidimensional constraints” studied by Delacrétaz, Kominers and Teytelboym

(2016).

Related Literature. First and foremost, this paper contributes to the literature of

matching with constraints. We discuss the most relevant related works in various parts of

this paper. Other notable studies in this literature include Abdulkadiroğlu (2005), Ergin

and Sönmez (2006), and Hafalir, Yenmez and Yildirim (2013) for school choice, Abraham,

Irving and Manlove (2007) for a project allocation problem, and Westkamp (2013) and

Aygun and Turhan (2016) for college admissions. Importantly, these papers study spe-

cific classes of constraints motivated by their intended applications. In a sharp contrast,

the present paper starts with a fully general class of constraints and finds conditions on

constraints under which desirable matchings and mechanisms exist. These approaches are

complementary to each other.

There is another strand of literature on matching with certain constraints that shares

a broad motivation with our work while differing in several crucial aspects. Inspired by

medical residency matching in Japan, Kamada and Kojima (2015) study a stable matching

problem in which the number of doctors who can be matched to hospitals in each region

is subject to a constraint. Alternative solution concepts are studied by Kojima, Tamura

and Yokoo (2015) and Goto et al. (2014), while more general constraints are studied

by Biro et al. (2010b), Kamada and Kojima (2017, 2016) and Goto et al. (2016). In

particular, general upper-bound may be reminiscent of a condition called heredity studied
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by Goto et al. (2016) and Kamada and Kojima (2017). While sharing broad motivation,

there are at least two major differences between these studies and ours. First, they study

constraints imposed jointly on subsets of institutions (e.g., hospitals or schools) while our

paper considers constraints imposed separately on individual institutions. Second, they

restrict attention to constraints over the numbers of individuals in different institutions,

while the present paper allows constraints to depend on the identity of the individuals.

Due to these modeling differences, these two lines of works differ in many dimensions

including scopes of applications, desirable properties considered, and obtained results.

Although not as closely related, there is also a recent literature on pure object alloca-

tion under constraints. Milgrom (2009) and Milgrom and Segal (2014) consider auction

mechanisms under constraints, while Budish et al. (2013) analyze the problem of imple-

menting lotteries for stochastic object allocation under constraints. The latter analysis

has been extended in various directions by Che, Kim and Mierendorff (2013), Pycia and

Ünver (2015), Akbarpour and Nikzad (2017), and Nguyen, Peivandi and Vohra (2016).

These papers are different from ours in that they are primarily concerned with pure ob-

ject allocation. Moreover, they do not consider elimination of justified envy, our central

concern.

Elimination of justified envy is a standard fairness requirement in the literature of

school choice (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003). Tolerating

some waste is less standard but becoming more common, perhaps due to difficulty (or

even impossibility) of eliminating both waste and justified envy. Feasible, individually

rational, and fair (but possibly wasteful) matchings are studied by Sotomayor (1996)

and Blum, Roth and Rothblum (1997) for one-to-one matching, Wu and Roth (2018) for

many-to-one matching, Delacrétaz, Kominers and Teytelboym (2016) for matching with

multidimensional constraints, Kesten and Yazici (2012) for a setting in which all students

are in the same priority class with one another at all schools, and Biró (2008), Fleiner

and Jankó (2014), and Biró and Kiselgof (2015) for many-to-one matching with weak

priorities. Our paper subsumes the settings of all these papers, so our results directly

apply to their environments.

A small but rapidly growing literature has recently analyzed allocation of daycare seats,

one of the applications of the present paper. Motivated by the practice in Denmark,

Kennes, Monte and Tumennasan (2014) study the issue of dynamic stability arising from

the overlapping-generations structure of children’s composition in daycare centers. Veski

et al. (2017) study the effect of changes in priorities in the context of kindergarten allo-

cation practices in Estonia. In a more descriptive work, Herzog and Klein (2018) discuss
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a variety of policy issues in childcare systems in several German municipalities. While

sharing the interest in application of matching theory to childcare, the overlap with our

paper is rather tangential; none of these papers analyzes the problem of constraints, the

primary focus of the present work. A recent work by Okumura (2018) is motivated by

the daycare seat assignment in Japan and considers the issue of flexible allocation across

ages, although his solution concept does not require our fairness concept and none of his

results implies ours, and vice versa.

Lastly, this paper is part of the growing literature on matching theory and market

design. Ever since the seminal contribution by Gale and Shapley (1962), matching theory

proved to be a source of fruitful insights. What is especially remarkable is its use in

applications to market design. Research in this field has been successfully applied to

various problems such as medical match (Roth, 1984; Roth and Peranson, 1999), school

choice (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003), organ donation

(Roth, Sönmez and Ünver, 2004, 2005, 2007), and course allocation (Sönmez and Ünver,

2010; Budish and Cantillon, 2012), among others.

The remainder of this paper proceeds as follows. Section 2 introduces our model. In

Section 3, we provide a fixed-point characterization of matchings that satisfy feasibility,

individual rationality, and fairness. Based on that result, Section 4 identifies a necessary

and sufficient condition for the existence of a SOFM. Turning to numerical analysis, in

Section 5 we conduct simulations to quantify the welfare gain of relaxing constraints

based on real data on the allocation of slots at daycare centers. Then, Section 6 provides

a number of discussions. We conclude in Section 7. All proofs that are not in the main

text are found in the Appendix.

2. Model

Let there be a non-empty finite set of students I and a non-empty finite set of schools

S. Each student i has a strict preference relation �i over the set of schools and being

unmatched (being unmatched is denoted by ∅). For any s, s′ ∈ S ∪ {∅}, we write s �i s′

if and only if s �i s′ or s = s′. Each school s has a strict priority order �s over the set of

students. For any i, i′ ∈ I, we write i �s i′ if and only if i �s i′ or i = i′.6 We denote by

�I= (�i)i∈I the profile of all students’ preferences, and by �S= (�s)s∈S the profile of all

schools’ priority orders. When there are three students i, i′, and i′′, for example, we write

�s: i, i′, i′′

6In what follows the interpretation of our analysis is that we assume that all schools regard all students

as acceptable.
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to mean that student i is of the highest priority, i′ is of the second-highest priority, and

i′′ is of the lowest priority at s. School s is said to be acceptable to student i if s �i ∅.
We write, for example,

�i: s, s′

to mean that school s is the most preferred, s′ is the second most preferred, and s and s′

are the only acceptable schools under preferences �i of student i.

Each school s is subject to a constraint. A constraint at school s is a nonempty

collection Fs ⊆ 2I of sets of students. Denote FS = (Fs)s∈S. We say that a subset I ′ ⊆ I

is feasible at s if I ′ ∈ Fs and it is infeasible otherwise.

We refer to a tuple (I, S,�I ,�S,FS) as a problem.

A matching µ is a mapping that satisfies (i) µi ∈ S ∪ {∅} for all i ∈ I, (ii) µs ⊆ I

for all s ∈ S, and (iii) for any i ∈ I and s ∈ S, µi = s if and only if i ∈ µs. That is, a

matching simply specifies which student is assigned to which school (if any).

Let us define a few basic terms. First, a matching µ is feasible if µs ∈ Fs for each

s ∈ S. Second, a matching µ is individually rational if µi �i ∅ for each i ∈ S. That is,

no student is matched with an unacceptable school. Third, we say that i has a justified

envy toward i′ if there exists s ∈ S such that s �i µi, i′ ∈ µs and i �s i′. We say that

a matching µ is fair if there exist no students i and i′ such that i has a justified envy

toward i′.7 Fourth, a matching µ is non-wasteful if there is no pair (i, s) ∈ I × S such

that s �i µi and µs ∪ {i} is feasible at s.8 Finally, a matching µ is said to be stable if it

is feasible, individual rational, fair, and non-wasteful.

As we will see in Example 1, there may not exist a stable matching. For this reason,

we will weaken our desiderata by dropping non-wastefulness, while still requiring fairness.

The following concept will be of special interest.

Definition 1. A matching µ is the student-optimal fair matching (SOFM) if (i) µ

is feasible, individually rational, and fair, and (ii) µi �i µ′i for each i ∈ I and every µ′

that is feasible, individually rational, and fair.

Given (I, S,FS), a mechanism ϕ is a function that maps preference profiles to match-

ings for each profile of priority orders. The matching under ϕ at students’ preference

7For detailed discussions on this concept, see Remark 1 and Section 6.6.
8An alternative definition of non-wastefulness would require there be no pair (i, s) ∈ I × S such that

s �i µi, µs ∪ {i} is feasible at s, and µµi \ {i} is feasible at µi if µi 6= ∅. None of the results of this

paper changes if we adopt this definition, so we do not consider it. Similarly, an alternative definition of

fairness may require justified envy to satisfy feasibility of µµi
\ {i} at µi if µi 6= ∅, but we do not consider

such a definition.
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profile �I and priority profile �S is denoted ϕ�S(�I), and student i’s match is denoted

by ϕ�S
i (�I) for each i ∈ I.

In (I, S,FS), a mechanism ϕ is said to be strategy-proof if there do not exist a profile

of priority orders �S, a profile of students’ preferences �I , a student i ∈ I, and preferences

�′i of student i such that

ϕ�S
i (�′i,�I\{i}) �i ϕ

�S
i (�I).

That is, no student has an incentive to misreport her preferences under the mechanism.9

3. Fixed-Point Characterization of Fair Matchings

This section studies matchings that satisfy the desirable properties introduced in the

last section. More specifically, we characterize all the matchings that satisfy fairness,

individual rationality, and feasibility by fixed points of a certain function on a finite (and

hence a complete) lattice. We later use this result to study the existence and structure of

matchings that satisfy these properties.

Our first observation is that there does not necessarily exist a stable matching.

Example 1 (Non-existence of a stable matching). Suppose that there are one school s

and ten students i1, i2, . . . , i10. Every student prefers to be matched to s rather than being

unmatched. The school’s priority is:

�s: i1, i2, . . . , i9, i10.

Each student with an odd index costs the school 3 units of money while each student with

an even index costs 4 units of money. School s is subject to a budget constraint of 20 in

the sense that a set of students is feasible at s if and only if the sum of the costs associated

with them does not exceed 20 units of money.10 Then, for example, the matching µ such

that µs = {i1, i2, i3, i4, i5} is fair but wasteful because µs ∪ {i7} is feasible and i7 prefers

to be matched to s rather than being unmatched. Meanwhile, the matching µ′ such that

µ′s = µs ∪ {i7} satisfies non-wastefulness but violates fairness because s �i6 ∅, i7 ∈ µ′s,

and i6 �s i7. In fact, there exists no stable matching in this example. To see this, first

9In this paper we do not consider incentive problems of the school side. This is because in the

applications we have in mind, the priorities are exogenous to schools; for example, priorities are usually

given by the local government in school choice and daycare allocation. Note also that Roth (1982)

shows that there is no mechanism that produces a stable matching for all possible preference profiles and

is strategy-proof for both students and schools even in a market in which all constraints are capacity

constraints.
10This constraint is not the usual capacity constraint. It satisfies a restriction of “general upper-bound”

that we introduce in Section 4.
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note fairness requires that the set of students who are matched to s should be of the form

I l :=
⋃l
k=1{ik} for some l ∈ {1, . . . , 10}, or I0 := ∅. For any l ≤ 5, the set I l leads to

wastefulness because I l ∪ {i7} ∈ Fs and s �i7 ∅. Meanwhile, for any l ≥ 6, the set I l is

infeasible. �

Remark 1. This non-existence example depends on our definition of fairness. Although

our definition coincides with the standard one, in our general environment a matching

can be deemed unfair even if there is no feasible way to satisfy students who have justified

envy. In the above example, µ′ is not fair even though i6 cannot replace i7 in a feasible

manner ((µ′ ∪ {i6}) \ {i7} is infeasible at s). An alternative weaker definition would call

µ′ fair (a formal definition is provided in Section 6.6). However, there are at least two

justifications for our choice of fairness notion.

First, which definition is more reasonable depends on applications. While there are

cases in which the weaker notion may make more sense, we think there are a variety of

markets in which our notion is more suitable. For example, universities around the world

declare that they will not discriminate against students with disabilities in admissions. For

instance, University of Oxford’s admissions website (University of Oxford, 2018) claims

to “view applications from students with disabilities on the same grounds as those from

other candidates, which are assessed purely on academic merit and potential.” At the

same time, it is widely recognized that students with disabilities incur higher cost, which

may result in a budget constraint similar to the one in Example 1. In this case, fairness

requires that there be no situation in which a student is denied admission while a student

with lower “academic merit and potential” is accepted, even if the former has disability

and thus replacing the latter student with the former violates the budget constraint. This

appears to be the stated policy of universities such as Oxford. Similarly, in allocation

of relief material in the wake of major earthquakes in Japan, organizers of some disaster

shelters regarded fairness as so important that they refrained from assigning the resource

to anyone when it is not feasible to satisfy everyone. We come back to these examples in

Sections 4.1 and 6.1, respectively.

Second, even if we weaken the fairness notion, the non-existence problem persists.

Specifically, Section 6.6 provides an example in which there exists no matching satisfying

feasibility, individual rationality, non-wastefulness and the weaker version of fairness. �

Given the non-existence of a stable matching, our approach is to refrain from insisting on

non-wastefulness while maintaining fairness as well as feasibility and individual rationality.

One could consider an alternative approach in which non-wastefulness is required while

fairness is not. As we discussed in the Introduction, which approach is more reasonable
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depends on applications. In the wide range of examples discussed in the Introduction,

some wastes are tolerated while fairness is considered primarily important.

Our approach is to characterize the matchings that satisfy fairness, individual ratio-

nality, and feasibility by fixed points of a function on a finite lattice. To establish this

characterization, consider the space of cutoff profiles P := {1, . . . , |I|, |I|+ 1}S, endowed

with a partial order ≤ such that p ≤ p′ if and only if ps is weakly smaller than p′s for all

s ∈ S. This space is a finite (hence complete) lattice. For each school s, let i(s,l) be the

student whose rank is the lth from the bottom according to the priority of s (for example,

the best student for s is i(s,|I|), and the worst is i(s,1)). Also, consider a hypothetical

student i∗ 6∈ I such that i∗ = i(s,|I|+1) for all s ∈ S, and expand the domain of �s for

each s ∈ S so that for any i ∈ I, i∗ �s i holds. Given a cutoff profile p ∈ P , define the

“demand” at each s ∈ S as

Ds(p) := {i ∈ I|i �s i(s,ps) and s �i ∅; i �s′ i(s
′,ps′ ) ⇒ s �i s′}.

In this definition, the first part “i �s i(s,ps) and s �i ∅” says that student i is as good

as the cutoff student i(s,ps) and finds s acceptable, while the second part “i �s′ i(s
′,ps′ ) ⇒

s �i s′” says that s is the most preferred school among the ones at which i passes the

cutoff. The demand for s is a collection of students who meet those two criteria.

We consider a mapping T : P → P , called the cutoff adjustment function, defined

as follows.11

Ts(p) =

ps + 1 if Ds(p) 6∈ Fs
ps if Ds(p) ∈ Fs,

(3.1)

where we set (|I| + 1) + 1 = 1.12 That is, for each s and cutoff profile, this mapping

raises the cutoff at s by one if the demand for s is infeasible, and leaves the cutoff

unchanged if it is feasible. This is reminiscent of the standard price-adjustment process

in the general equilibrium theory except that the cutoff does not decrease even when s is

“under-demanded.” For each p ∈ P , let µp be the matching such that

µps = Ds(p) for each s ∈ S.(3.2)

That is, µps simply matches all students who demand s given cutoff profile p.

Theorem 1. If a cutoff profile p ∈ P is a fixed point of the cutoff adjustment function T ,

then µp is feasible, individually rational, and fair. Moreover, if µ is a feasible, individually

11Another possible specification of a function is discussed in Appendix B.1.
12That is, we use the “modulo” operation. This definition ensures that the range of T is P .
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rational, and fair matching, then there exists a cutoff profile p ∈ P with µ = µp that is a

fixed point of T .

Proof. The first part: If p is a fixed point of T , then Ts(p) = ps must hold for all s ∈ S.

The definition of T then implies that Ds(p) ∈ Fs must hold for each s ∈ S. Hence,

feasibility follows. Individual rationality follows from the definition of Ds(·) for each

s ∈ S.

To show fairness, assume for contradiction that µp is not fair. Then there exists a triple

(i, i′, s) ∈ I2 × S such that s �i µpi , i′ ∈ µps and i �s i′. Because i′ ∈ µps, by definition of

Ds(·) and µps, it follows that i′ �s i(s,ps). Since i �s i′, we have that i �s i(s,ps). This and

the definition of Dµpi
(·) imply µpi �i s, which is a contradiction.

The second part: Take a feasible, individually rational and fair matching µ. For each s,

let ps = min{l|i(s,l) ∈ µs} if µs 6= ∅ (where the minimum exists because P is finite), and

ps = |I|+ 1 otherwise. Then, individual rationality and fairness of µ and the definition of

Ds(·) imply µ = µp. Also, feasibility of µ and the definition of T imply that p = (ps)s∈S

is a fixed point of T . �

4. General Upper-Bound and SOFM

This section studies the existence and structure of matchings that satisfy fairness,

individual rationality, and feasibility. More specifically, we establish a tight relationship

between the existence problem and the nature of the constraints. We show that the class

of general upper-bounds characterizes the situations in which a SOFM is guaranteed to

exist.

4.1. General Upper-Bound.

Definition 2. A constraint Fs is a general upper-bound if I ′ ∈ Fs and I ′′ ⊆ I ′ imply

I ′′ ∈ Fs.

That is, a constraint at school s is a general upper-bound if, for any set of students

that is feasible at s, every subset of it is also feasible. Note that if a constraint Fs is a

general upper-bound then ∅ ∈ Fs must hold. This is because non-emptiness of Fs implies

existence of some I ′ ⊆ I such that I ′ ∈ Fs, and we have ∅ ⊆ I ′.

A special case of a general upper-bound is a capacity constraint : a constraint Fs is a

capacity constraint if there exists an integer q ∈ N such that, for any I ′ ⊆ I, I ′ ∈ Fs
if and only if |I ′| ≤ q. Let us provide real-life examples of constraints to discuss the

applicability of general upper-bound as well as its limitation.



13

(1) Diversity in school choice (type-specific quotas): Many school districts

require certain diversity of the student body at each school. A common way

in the literature to formalize this requirement is to impose type-specific quotas

(Abdulkadiroğlu and Sönmez, 2003). Specifically, we require a constraint Fs to

satisfy the following: There exist a partition of the students I :=
⋃
t∈T It with an

index set T (with It∩It′ = ∅ if t 6= t′) and integers q ∈ N and qt ∈ N for every t ∈ T
such that, for any I ′ ⊆ I, I ′ ∈ Fs if and only if |I ′| ≤ q and |I ′ ∩ It| ≤ qt for every

t ∈ T . Because I ′′ ⊆ I ′ and I ′ ∈ Fs imply |I ′′| ≤ |I ′| ≤ q and |I ′′∩It| ≤ |I ′∩It| ≤ qt

for every t ∈ T , this constraint is a general upper-bound.

(2) College admissions with students with disabilities (budget constraints):

In college admissions, it is widely recognized that students with disabilities incur

more cost to the university. For example, University of Oxford’s admissions web-

site mentioned in Remark 1 describes a variety of accommodation and financial

assistance they offer to students with disabilities. One way to model this setup

is through a budget constraint. Formally, assume that each student i is associ-

ated with cost ci ∈ R+ and say that constraint Fs is a budget constraint if there

exists b ∈ R+ such that, for any I ′ ⊆ I, I ′ ∈ Fs if and only if
∑

i∈I′ ci ≤ b.

College admissions with students with disabilities could be modeled as a situation

in which students with disabilities have higher cost than those without disabili-

ties. Budget constraint is not necessarily a capacity constraint as seen in Exam-

ple 1, but it is clearly a general upper-bound because I ′′ ⊆ I ′ and I ′ ∈ Fs imply∑
i∈I′′ ci ≤

∑
i∈I′ ci ≤ b.

Cases of budget constraints in college admissions may also arise in different

contexts (Biró et al., 2010a; Abizada, 2016). For example, a number of universities

commit to so-called “need-blind admission,” where admission decisions are made

without regard to applicants’ financial situations.13 Yet, a college may be subject

to a budget constraint. Because different students may need different amounts

of financial aid, the constraint cannot be described as a capacity constraint in

general, but it is a budget constraint and hence a general upper-bound.

(3) Refugee match (multidimensional constraints): Given the recent surge of

refugees, authorities in many countries are faced with the task of matching refugees

13Some forms of need-blind admission are adopted not only by elite schools but

also by others. A list of institutions committed to such an admission policy is in

https://en.wikipedia.org/wiki/Need-blind admission.
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to different localities.14 One of the requirements in this problem is to match all

members of a family to the same place. In addition, different refugee families

need different kinds of services such as job training, language class, and so on.

Given the available resources of a locality, variations in family size and needs for

different types of resources imply that the constraint is not necessarily a capacity

constraint. This type of constraint is called multidimensional constraints and

studied by Delacrétaz, Kominers and Teytelboym (2016).15 Section 6.5 formally

analyzes this model and shows that, among other things, this constraint is a general

upper-bound.

(4) Anti-bullying school choice design: Bullying has a negative effect on the

victim academically as well as mentally. It is a concern in many countries, and

governments take measures to address this issue. Motivated by such a concern,

Kasuya (2016) considers anti-bullying policies in the context of school choice de-

sign. Specifically, he analyzes a requirement that, no pair of a bully and his

or her victim be placed in the same school. To express this formally as a con-

straint, let B ⊆ I × I be the set of bullying incidents, meaning that (i, j) ∈ B

implies that “i has bullied j.” The constraint at each school s (ignoring other

types of constraints such as the school’s capacity for simplicity) can be expressed

as Fs = {I ′ ⊆ I|(i, j) ∈ B ⇒ {i, j} 6⊆ I ′}. This is a general upper-bound

because I ′′ ⊆ I ′ and {i, j} 6⊆ I ′ imply {i, j} 6⊆ I ′′, hence I ′ ∈ Fs implies

(i, j) ∈ B ⇒ {i, j} 6⊆ I ′′.

(5) Separating conflicting groups in refugee match: Separating different types

of individuals may be important not only in the bullying context, but also in

other applications. For example, in refugee match, authorities are concerned that

refugees from conflicting religious or ethnic groups may fight with each other in

refugee shelters if they live close to each other. The policy to separate them by

placing them in different locations is used or being considered as a temporary, if

not permanent, solution (Breitenbach, 2015). To model this policy formally as a

constraint, assume that there exists a partition of the students (refugees in this

context) I :=
⋃
t∈T It with an index set T (with It ∩ It′ = ∅ if t 6= t′) and, for

any I ′ ⊆ I, I ′ ∈ Fs if and only if there exists t ∈ T such that I ′ ⊆ It. This is a

14As of the end of 2016, there were 22.5 million refugees worldwide (United Nations High Commissioner

for Refugees, 2017).
15Andersson and Ehlers (2016) also study the problem of refugee matching, but the model is different

from the ones studied by Delacrétaz, Kominers and Teytelboym (2016) or us.
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general upper-bound because I ′′ ⊆ I ′ and I ′ ∈ Fs imply there exists t ∈ T such

that I ′′ ⊆ I ′ ⊆ It.

(6) Daycare allocation: In many countries around the world, assignment of daycare

seats for small children is organized by the (local) government through a match-

ing mechanism. There are often legal restrictions on a teacher-child ratio at each

daycare center. Since such a ratio varies across different ages of children, the con-

straints implied by these regulations cannot be described by capacity constraints.

In Section 5 we show that they can be described as general upper-bounds and

study the data of daycare allocation in Japan, where finding a desirable alloca-

tion in the face of this non-capacity general upper-bound has become a pressing

practical issue (Okumura, 2018).

Of course, not all constraints of interest are general upper-bounds. The following are

some of the examples.

(1) Floor constraints: Floor constraints may appear in a variety of environments.

For example, in school choice, a school may need at least a certain number of

students in order to organize group activities, have students interact with one

another, or simply to operate efficiently enough given fixed cost. Formally, the

constraint Fs at each school s (ignoring other types of constraints such as the

capacity of the school) is that there exists an integer q ≥ 1 such that, for any

I ′ ⊆ I, I ′ ∈ Fs if and only if |I ′| ≥ q (Ehlers et al., 2011; Fragiadakis et al., 2012;

Fragiadakis and Troyan, 2016). This is not a general upper-bound because any

I ′ ⊆ I with |I ′| ≥ q is in Fs but, for instance, ∅ is a subset of I ′ but |∅| = 0 < q.

Similarly, a type-specific floor constraint, i.e., a constraint in which at least a

certain number of students of specific types are needed for feasibility, is not a

general upper-bound.

(2) Proportionality constraints: As mentioned earlier, a common requirement in

matching markets is to achieve certain balance of workforce or student body. Such

a requirement is sometimes expressed in terms of proportion. For instance, in the

public school district of Cambridge, Massachusetts in 2003, the proportion of stu-

dents from low socioeconomic status families is required to be within a range of 15

percent of the district-wide proportion (Nguyen and Vohra, 2017). A constraint Fs
is a proportionality constraint (Nguyen and Vohra, 2017) if there exist a partition

of the students I :=
⋃
t∈T It with an index set T (with It ∩ It′ = ∅ if t 6= t′) and

numbers αt, βt ∈ [0, 1] for every t ∈ T with αt ≤ βt and
∑

t∈T αt ≤ 1 ≤
∑

t∈T βt

such that, for any I ′ ⊆ I, I ′ ∈ Fs if and only if αt|I ′| ≤ |I ′ ∩ It| ≤ βt|I ′| for every
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t ∈ T . This is not necessarily a general upper-bound because any I ′ ⊆ I with

αt|I ′| ≤ |I ′ ∩ It| ≤ βt|I ′| for every t ∈ T is in Fs but, for instance, I ′′ := I ′ ∩ It for

any t ∈ T is a subset of I ′ while |I ′′ ∩ It| = |I ′′| > βt|I ′′| if βt < 1 and I ′′ 6= ∅, so

I ′′ 6∈ Fs.

We do not necessarily assert that real-market constraints are general upper-bounds in

all or even most applications. In fact, the two examples of constraints shown just above

are demonstrably not general upper-bounds. Instead, our study aims to characterize the

situations, in terms of restrictions on constraints, under which a solution with desirable

properties exists. As shown in Section 4.2, it turns out that general upper-bound is

necessary and sufficient for guaranteeing the existence of such a solution.

4.2. Existence of SOFM. Equipped with Theorem 1, our approach is to study the

desirable matchings by way of analyzing the fixed points of the cutoff adjustment function

T . Our first observation is, though, that under general upper-bounds, the existence of a

matching satisfying fairness as well as feasibility and individual rationality is trivial; an

empty matching, i.e., a matching with µi = ∅ for each i ∈ I, satisfies all the properties

above.16 Since an empty matching is typically highly inefficient, this example also suggests

that only requiring the above three conditions may not lead to a desirable outcome for

students. To the extent that we care about student outcomes, an interesting question is

whether one can identify a fair matching that is desirable in terms of welfare. The next

theorem answers this question in the affirmative.

Theorem 2. If the constraint at each school is a general upper-bound, then there exists

a SOFM.

Proof. Fix a general upper-bound for each school s, Fs.

Claim 1. The mapping T has the smallest fixed point, i.e., there exists p ∈ P such that

T (p) = p and p ≤ p′ for all p′ ∈ P with T (p′) = p′.

Proof of Claim 1. Tarski’s fixed point theorem implies that if a function from a finite

lattice into itself, f : X → X, is weakly increasing (i.e., for any x, x′ ∈ X, x ≤ x′ implies

f(x) ≤ f(x′)), then the set of the fixed points of f is a finite lattice, and in particular it

has the smallest fixed point. Letting f = T and X = P , we only need to show that, for

any p, p′ ∈ P , p ≤ p′ implies T (p) ≤ T (p′).

16In addition, it is straightforward to show that ∅ ∈ Fs for each s ∈ S is necessary and sufficient to

guarantee existence of a matching that is feasible, individually rational, and fair (in a maximal-domain

sense).



17

To see that this holds, fix s ∈ S. We shall show Ts(p) ≤ Ts(p
′). Note first that

the conclusion holds if p′s = |I| + 1. This is because, as Fs is a general upper-bound,

Ds(p
′) = ∅ ∈ Fs, so Ts(p) ≤ |I| + 1 = Ts(p

′). Thus, in the remainder, we suppose

p′s 6= |I|+ 1. In this case, Ts(p) ≤ Ts(p
′) is immediate if ps < p′s by the definition of T (·).

Hence we consider the case with ps = p′s. Then p−s ≤ p′−s implies that

Ds(p) = Ds(ps, p−s) ⊆ Ds(ps, p
′
−s) = Ds(p

′
s, p
′
−s) = Ds(p

′)

by the definition of Ds(·).17 Since Fs is a general upper-bound, if Ds(p) is infeasible at s

then Ds(p
′) is infeasible at s, too. This implies that, whenever Ts(p) = ps + 1, we have

Ts(p
′) = p′s + 1 = ps + 1 = Ts(p). Finally, if Ts(p) = ps, it is immediate from the definition

of T (·) and ps = p′s that Ts(p
′) ≥ Ts(p).

Hence we have that Ts(p) ≤ Ts(p
′) for any p, p′ ∈ P with p ≤ p′. Since this argument

holds for every s ∈ S, we have T (p) ≤ T (p′). �

To complete the proof of the theorem, let p∗ be the smallest fixed point of the function

T , whose existence is guaranteed by Claim 1. By the first part of Theorem 1, µp
∗

is a

feasible, individually rational, and fair matching. Take an arbitrary matching µ that is

feasible, individually rational, and fair. By the second part of Theorem 1, there exists a

fixed point p of T such that µ = µp. By the relation p∗ ≤ p and the definition of Ds(·)
for each s ∈ S, the equality µ = µp implies that µp

∗

i �i µi for each student i ∈ I. Hence

we have shown that µp
∗

is a SOFM, completing the proof. �

The proof of Theorem 2 is based on Tarski’s fixed point theorem. As such, a simple

algorithm can be used to find the SOFM, building on the cutoff adjustment function T .

Consider the following algorithm, called the cutoff adjustment algorithm:

• Step 0: Let p0 := (1, 1, . . . , 1).

• Step t ≥ 1: Let pt = T (pt−1). If pt = pt−1, terminate the algorithm and define the

outcome as the matching µp
t
.18 Otherwise, go to step t+ 1.

The cutoff adjustment algorithm is well-defined (i.e., it terminates in a finite number

of steps). To see this, first note that since p ≤ T (p) for any p ∈ P by the definition of T

and the fact that ∅ ∈ Fs for each s ∈ S under general upper-bound, we have pt−1 ≤ pt

for every positive integer t. Because P is a finite set, pt
∗−1 = pt

∗
for some finite t∗.

To see that this algorithm produces the SOFM, note that p∗ := pt
∗−1 = pt

∗
satisfies

p∗ = T (p∗), i.e., p∗ is a fixed point of T . Moreover, for any fixed point p′ of T , we have

17The set inclusion relation follows because the property i �s′ i(s
′,ps′ ) that appears in the definition

of Ds(·) is implied by i �s′ i(s
′,p′

s′ ). All the equalities are straightforward.
18For each p ∈ P , T (p) and µp are as defined in Equations (3.1) and (3.2), respectively.
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p0 ≤ p′ by definition of p0, so p∗ = T t
∗
(p0) ≤ T t

∗
(p′) = p′, implying that p∗ is the smallest

fixed point of T . Since the matching corresponding to the smallest fixed point of T is the

SOFM (see the proof of Theorem 2 for detail), the outcome produced by this algorithm

is the SOFM. Thus, we have established the following result:

Proposition 1. The outcome of the cutoff adjustment algorithm is the SOFM.

Under capacity constraints, a standard way to find a stable matching is the deferred

acceptance algorithm. In Appendix B.1, we present a generalization of the deferred ac-

ceptance algorithm which finds the SOFM under a general upper-bound and compare it

with the cutoff adjustment algorithm.

As mentioned earlier, the class of general upper-bounds subsumes many practical cases,

but there are some constraints that are not general upper-bounds, such as floor constraints.

A question of interest, then, is whether the conclusion of Theorem 2 holds without the

assumption of general upper-bound. The following result offers a sense in which the

answer to this question is negative.

Theorem 3. Fix a set of students I, a set of schools S with |S| ≥ 2 and their priorities

�S, and a school s ∈ S and its constraint Fs. Suppose Fs is not a general upper-bound.

Then there exist student preferences �I and a profile F−s of capacity constraints such that

a SOFM does not exist in the problem (I, S,�I ,�S,FS).

This result shows that the class of general upper-bounds is a “maximal domain,” pro-

viding a sense in which Theorem 2 cannot be generalized further. In other words, gen-

eral upper-bound is the most permissive restriction on constraints imposed on individual

schools (as long as the capacity constraints are included) which guarantees the existence

of a SOFM. Even if a SOFM is a desirable outcome, the policy maker cannot expect to

always find a SOFM unless the constraints of each school is a general upper-bound. This

finding may shed light on the non-existence and impossibility results in the literature.

Settings with those negative results include floor constraints (Biro et al., 2010b; Ehlers

et al., 2011; Fragiadakis et al., 2012; Fragiadakis and Troyan, 2016) and proportionality

constraints (Nguyen and Vohra, 2017). These constraints are not general upper-bounds

as pointed out in Section 4.1.

5. Allocation of daycare center slots

This section describes the problem of allocating slots at daycare centers, “daycare

allocation,” as an application of our theory. Then we conduct numerical analysis based
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on unique datasets on daycare allocation we obtained to study the numerical impact of

allowing flexibility in constraints.

5.1. Background and Institutional Detail. Child care services are often highly sub-

sidized and regulated in many countries. Some Scandinavian countries such as Sweden

regard daycare service as parents’ right and guarantee a seat in some, albeit not neces-

sarily the parents’ first choices, daycare center. At the other end of the spectrum are

countries such as the United States, in which a typical daycare center is run by a private

provider and financed by tuitions from parents, though with regulations. Some countries

such as Japan lie between these extremes: daycare services are highly subsidized and reg-

ulated, but at the same time a slot at a daycare is not guaranteed for parents. In many of

those countries, the supply of slots at daycares are very limited, leaving a large number

of applicants unmatched and thus making allocation of slots at daycares an especially big

concern for parents.

Japan provides a good example of the large excess demand for daycare seats. Recently,

a blog post titled “Didn’t Get a Slot in Day Care. Drop Dead, Japan!!!” by an anonymous

mother became viral, leading to a large protest movement. The blog post made its way

into debates in the National Diet, forcing prime minister Abe to respond to the complaint

(Osaki, 2016), with him later promoting a policy to increase child care capacity by more

than 300,000 in 5 years.19 The above blog title was chosen as one of the top ten “New

Words and Buzzwords” of 2016, although the organizers admitted to uneasiness about

selecting what is essentially a swear word (Kikuchi, 2016). In the midst of such a heated

political environment, increasing the number of allocated slots at daycares in a fair manner

is now among the very top agendas for many politicians.20 As we illustrate shortly, our

theory may prove useful for daycare allocation problems with excess demand. For this

purpose, we describe daycare allocation in Japan in some detail below.

In Japan, daycare centers serve children aged between 0 and 5 as of the beginning of a

new academic year, and the assignment of seats in daycare centers is under the authority

of each municipality.21 A number of features of this market make it an unusually good

subject of application of matching theory. First, daycares are heavily subsidized, with the

19A variety of policies for this goal are described by Prime Minister’s Office (2017).
20For instance, mayors of all ten most populous municipalities list daycare policy as one of their major

political agendas.
21In this paper, we focus on Ninka Hoiku En, which could be translated into accredited daycare centers.

There are also daycare centers that are not accredited. Since non-accredited centers are more expensive

(they are not subsidized by the central government) and considered to be of lower quality on average

(Asai, Kambayashi and Yamaguchi, 2015), they are uncommon; of the children who are in daycare centers,



20

tuitions and fees set by each municipal government at a low level, leading to excess demand

in many municipalities.22 Given the excess demand, municipalities ration slots in daycare

centers based on an algorithm. In fact, parents literally submit ordinal preferences over

daycare centers.23 Moreover, while in principle a child could start attending a daycare at

any time of the year, almost all seats are allocated for the beginning of the academic year,

which is April in Japan. Thus, unlike in some other matching problems such as organ

allocation, it appears to be a good approximation to treat each year’s allocation as a

single static problem, just as is assumed in the present paper (as well as in most matching

theory research in school choice and labor markets). Another aspect of daycare allocation

in Japan is that, faced with high demand for daycare seats and resulting rationing, many

municipalities follow formal assignment rules (the most popular are versions of serial

dictatorship and the “Boston” mechanism).

For our purpose, three aspects of this market are especially important. First, the

assignment rules are based on submitted preferences as well as priorities, where the latter

are determined by applicant characteristics such as whether parents have full-time jobs

and whether the parent is a single parent, among others. Second, the national regulation

requires the teacher-child ratio be at least one teacher for every three children of age 0

while the ratios are one teacher for every 6 children for ages 1 and 2, 20 children for age 3

and 30 children for ages 4 and 5 (Cabinet Office of Japan, 2017).24 While such a constraint

is clearly not the traditional capacity constraint as per-capita resources needed to care

for a child varies across the child’s age, it is a general upper-bound and hence our theory

as much as 93.5% go to accredited ones as of March 2016 (Ministry of Health, Labour and Welfare, 2017).

Therefore, we focus on accredited daycare centers.
22The average monthly fee per child is 20491 Japanese yen (about 200 U.S. dollars) as of 2012 (Ministry

of Health, Labour and Welfare, 2014). In 2017, prime minister Abe and the Cabinet decided to make

daycares free of charge beginning in 2020.
23The application form for Yamagata City (City of Yamagata, 2018a), for instance, offers space for

listing a ranking of at most 5 desired daycare centers as a default, but allows for listing more centers

if the applicant wants. All the municipalities that we are aware of provide application forms that are

similar in that they ask a ranking over the applicants’ desired daycare centers, although the number of

centers that can be listed vary across municipalities.
24The national regulation also imposes certain age-dependent space-chid ratio requirements, and there

are other exceptions and variations in rules. However, we ignore these in our analysis. While munici-

palities are allowed to place more stringent regulations than those imposed by the national government,

many municipalities including Yamagata, on which our simulations in Section 5.2 are based, follow the

national regulation on teacher-child ratios. We conducted simulations under specifications including both

teacher-student ratio and space-child ratio and verified that the main conclusions we report in this draft

are robust.
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implies a SOFM exists in this problem. Third, even though the true constraint itself is

not a capacity constraint, most municipalities treat the number of seats at each daycare

center for each age as fixed and non-transferable across different ages, thus effectively

setting an artificial capacity constraint.

Faced with great pressure to improve daycare allocation, some municipalities have been

experimenting with making the allocation “more flexible” by relaxing the artificial capac-

ity constraint in one way or another. Specifically, they have introduced policies to have

daycare centers with excess supply of seats for certain ages admit more children of ages

with excess demand, although in ad hoc manners.25 In fact, due to a variety of institu-

tional features, it turns out that even highly demanded daycare centers often have some

vacancies for children aged 3 to 5 while having excess demand for children aged 0 to 2.26

To proceed formally, let there be a set of ages T and for each t ∈ T , let there be a

teacher-children ratio rt. The interpretation is that if one teacher can watch up to n

children of age t, then rt = 1/n. A constraint Fs is a daycare constraint if there are a

number ms (representing the number of teachers) and a partition of the students (children

in this context) I :=
⋃
t∈T It (with It ∩ It′ = ∅ if t 6= t′) such that, for any I ′ ⊆ I, I ′ ∈ Fs

if and only if

∑
t∈T

rt · |I ′ ∩ It| ≤ ms.(5.1)

Because I ′′ ⊆ I ′ and I ′ ∈ Fs imply |I ′′ ∩ It| ≤ |I ′ ∩ It| for every t ∈ T , this constraint

is a general upper-bound. We say that a constraint F ′s is a rigid constraint associated

with Fs if there exists a number qt for each age t ∈ T such that
∑

t∈T rtq
t ≤ ms, where

for any I ′ ⊆ I, I ′ ∈ F ′s if and only if |I ′ ∩ It| ≤ qt for every t ∈ T . Note that the latter

is a special case of the constraint of type-specific quotas discussed in Section 4.1, with an

additional property that the capacity for the number of students in the entire school s is

not binding.27

25Municipalities with such policies include populous cities such as Yokohama, Kawasaki, Saitama, and

Sendai. See Okumura (2018) for detail.
26Suzuki (2018) points out that about 190,000 seats (across all ages and including both accredited and

non-accredited daycares) were vacant in Japan as of 2017, and attributes a significant part of this figure

to the excess supply of seats for older children.
27Under the notations in Section 4.1, this corresponds to setting q ≥

∑
t∈T qt.
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5.2. Data and Simulations. We use real data in Japan to test the effect of introducing

the SOFM mechanism.28 In particular, we are interested in the effect of allowing flexibility

in seat allocation across different ages. Theoretically, the following observation about

SOFM is of interest even though it is straightforward to show:

Proposition 2. Fix a set of students I, a set of schools S, student preferences �I , and

school priorities �S. Let FS := (Fs)s∈S and F ′S := (F ′s)s∈S be profiles of general upper-

bounds such that Fs ⊆ F ′s for every s ∈ S, and µ and µ′ be the SOFMs in the problems

(I, S,�I ,�S,FS) and (I, S,�I ,�S,F ′S), respectively. Then, µ′i �i µi for every i ∈ I, and

µi ∈ S implies µ′i ∈ S.

In words, the first part of this proposition shows that relaxing constraints leads to a

Pareto improvement of student outcomes. The second part shows that, in particular,

the set of unmatched students becomes weakly smaller in the set inclusion sense as the

constraints are relaxed. This proposition, while being a very simple (perhaps trivial)

observation, may be of interest in practice. This shows that a policy maker may be able

to improve the welfare of the market participants if she relaxes the constraints, say by

devoting more resources or simply by lifting some regulations. While this seems intuitive

and hardly surprising, it is worth noting that it is Pareto improvement for students. In

other words, relaxing constraints do not create any distributional tradeoffs and makes

every student weakly better off.

To put this proposition into perspective, let us mention a comparative statics result due

to Konishi and Ünver (2006).29 The latter result states that, under capacity constraints,

when the capacity of each school increases, every student becomes weakly better off at

the student-optimal stable matching. Because the SOFM reduces to the student-optimal

stable matching under capacity constraints (see Section 6.4 for a formal definition and

analysis), Proposition 2 is a generalization of the result of Konishi and Ünver (2006) to

the cases in which constraints are not necessarily capacity constraints.

To apply Proposition 2 to our daycare allocation problem, we compare the SOFM under

the daycare constraint (henceforth “flexible SOFM”) and the SOFM under an arbitrary

rigid constraint associated with that daycare constraint (henceforth “rigid SOFM”). Since

28The daycare seat allocation problem in Japan has many aspects, but we focus on analyzing matching

mechanisms under the given constraint. For example, some argue that price mechanisms may be effective

in allocating daycare slots (Suzuki, 2018), but we do not consider them.
29See also an earlier result by Crawford (1991) who considers comparative statics with respect to

adding an agent.
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the relaxation from “rigid” constraints to “flexible” ones satisfies the hypothesis of Propo-

sition 2 in the context of daycare allocation, we obtain the following corollary.

Corollary 1. In the daycare allocation problem, fix a set of children I, a set of daycares

S, child preferences �I , daycare priorities �S, and a rigid constraint. Then, every child is

weakly better off under the flexible SOFM than under the rigid SOFM. The set of children

who are unmatched at the flexible SOFM is a subset of those at the rigid SOFM.

While this corollary is unambiguous about the direction of welfare change for students,

it is silent about the magnitude of the welfare improvement. To quantify the magnitude

of the change, we use administrative data on daycare seat allocation we received from

Yamagata City and Bunkyo City in Japan. Yamagata City is the prefectural capital of

Yamagata prefecture in the northeastern part of Japan, with about 250,000 residents as

of 2018. Bunkyo City is one of the 23 special districts of Tokyo. It has about 230,000

residents as of 2018 and has a population density 30 times larger than that of Yamagata

City. Compared with Yamagata, Bunkyo City is much more urban, has a higher concen-

tration of educational institutions, and attracts many more dual-income families investing

heavily in education and demanding childcare, which seems to make its daycare allocation

problem more pressing.30 Despite such a difference, it turned out that the results of the

simulations for these two municipalities resemble each other. For this reason, we only

detail the result from Yamagata City here, while providing the results for Bunkyo City in

the Online Appendix.

Our data involve the applicants (who are anonymized), usually parents, representing

children who would begin attending the daycare in April of 2017. There were 1437 appli-

cants aged between 0 to 5 as of April 1, 2018 on which they would begin attending the

daycare. For each applicant, the data show her submitted preferences over the daycare

centers and priority ranking (the priorities are common across daycare centers). Re-

garding submitted preferences, we note that the mechanism in Yamagata is based on

serial dictatorship (with no restriction on the number of daycares that can be listed).31

Strategy-proofness of serial dictatorship appears to be fairly well understood in practice,

which gives some justification for treating submitted preferences as true preferences.32

30Bunkyo, whose literal translation would be “Literature Capital,” is home to many higher education

institutions such as University of Tokyo as well as prestigious elementary and secondary schools.
31The mechanism is slightly different from pure serial dictatorship, i.e., there are a few special rules,

mainly regarding children with siblings. In our numerical analysis, however, this difference causes only a

minor difference between the assignments from pure serial dictatorship and the actual one.
32A popular how-to book for parents (Habu, 2016), for example, compares strategic properties of serial

dictatorship with those of Boston mechanism as follows (these two mechanisms are the most popular
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The priority order is based on the applicant characteristics such as parents’ job status

and the number of adults available for care at home (City of Yamagata, 2018b). There

are 93 daycare centers in our dataset. For each daycare center, the data show how many

seats are supplied for each age.33

In our simulation, we made several modeling choices given data limitation. First, the

data we have involve ties although the actual priority order is strict. This is because

our data lack information on some characteristics used by Yamagata to determine the

strict order, such as whether the child is currently in an alternative form of childcare

and whether the family has a member with disability. Given the absence of further

information, we randomly break ties using a single tie-breaking (that is, the tie-broken

priorities are common across daycare centers) according to the uniform distribution. For

each mechanism that we consider, we conducted 250 runs of simulations using such a

tie-breaking rule.

The second limitation involves constraints. For daycare centers, our dataset does not tell

the entire family of feasible sets of children or the number of teachers corresponding to the

flexible constraints. Instead, it only shows the number of advertised seats at each daycare

center for each age, which is exactly enough to specify the rigid constraints. To overcome

this limitation, we define ms for each s in the daycare constraints (Equation (5.1)) by

ms :=
∑

t∈T rt · qt, where rt and qt are those in the data (recall that rt is the teacher-child

ratio under the national regulation, and qt is the number of advertised seats for age t

at daycare center s). That is, ms is the minimum of the number of teachers such that

the constraint implied by the number of advertised seats in data is a rigid constraint

associated with our daycare constraint.34.

mechanisms for daycare allocation in Japan). “In the first mechanism [serial dictatorship], ... there is

no advantage or disadvantage associated with your stated first choice, while in the second mechanism

[Boston mechanism], ... if you list a competitive daycare center as your first choice, the probability that

you will be admitted by no daycare center can increase.”
33At some daycare centers in the data, the number of allocated children for a given age under the actual

allocation exceeded the supply of seats reported to us. According to the officials at Yamagata City, such

instances are due to new supplies of capacities that arose after the disclosed data were compiled. For

such cases, we used the number of seats actually allocated as the capacity for the given age.
34We set ms as the bare minimum that is consistent with the data on advertised seats so that we

do not overstate our estimate of the gain from removing the rigid constraint. In a similar spirit, we

allow for non-integral values of ms although the number of teachers is an integer in practice. With an

alternative specification setting ms to be the integer rounded up from our present definition, for instance,

our estimate of the gain from removing rigid constraints would be larger (see Proposition 2).
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We find that the effect of allowing flexibility in constraints is substantial in our data:

the average number of children who are matched with a strictly preferred daycare center

in the flexible SOFM compared to the rigid SOFM is 867.27, which amounts to 60.35%

of all applicants (Table 1).35 By contrast, no applicant is made worse off, as implied by

Proposition 2. The number of children who are unallocated changes from 713.79 to 88.02,

a 87.67% decrease (Figure 1). The average numbers of children who are matched to their

first choice, first two choices, and the first three choices increase by 124.04%, 75.84%, and

59.29%, respectively (Figure 2). Our analysis suggests that utilizing the flexible nature

of the constraints can be substantial in some environments.

From/To rigid SOFM flexible SOFM actual allocation flexible ETSD

rigid SOFM 0 867.27 (60.35%) 658.46 (45.82%) 881.94 (61.37%)

flexible SOFM 0 0 72.13 (5.02%) 49.78 (3.46%)

actual allocation 13.19 (0.92%) 237.94 (16.56%) 0 248.68 (17.31%)

flexible ETSD 0 0 62.88 (4.38%) 0

Table 1. The number of applicants who are made strictly better off by a

change of a mechanism.

Next, we compare the rigid and flexible SOFMs with Yamagata’s actual assignment.

Yamagata’s mechanism is based on what we call rigid envy-tolerating serial dictator-

ship (rigid ETSD). Rigid ETSD runs serial dictatorship, treating the problem for each

age as separate from others. That is, for each age, it runs serial dictatorship for children

of that age and the number of seats committed to that age in advance.36 This means that,

among other things, there may remain justified envy between two children i and i′ if they

are of different ages, while by construction there is no justified envy between children of

the same age.37 Yamagata’s assignment is expected to have some efficiency advantage over

the rigid SOFM since justified envy is tolerated across different ages, while the comparison

with the flexible SOFM is theoretically indeterminate because Yamagata’s assignment is

35This table as well as others also report simulations of other mechanisms we discuss below.
36Yamagata’s assignment mechanism has a few modifications to the serial dictatorship, most notably

in the way it treats siblings. However, deviation of Yamagata’s assignment from pure serial dictatorship

is very minor in magnitude. Detail is available upon request.
37This feature makes rigid ETSD similar in spirit to a mechanism proposed by Okumura (2018) in

that both mechanisms require elimination of justified envy between children of the same age only. The

same comment applies to the “flexible ETSD” discussed below.
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Figure 1. The fractions of matched applicants under different mechanisms.

based on the rigid constraint, which may or may not overwhelm the efficiency gain from

tolerating justified envy across different ages.

Our simulations reveal that the flexible SOFM outperforms Yamagata’s assignment

not only in terms of fairness but also in terms of efficiency. Regarding efficiency, all

of our efficiency measures favor the flexible SOFM; The average fraction of unmatched

children decreased by 62.71%, and 16.56% of children are matched with strictly preferred

daycare under the flexible SOFM while only 5.02% are matched with strictly preferred

daycare under the actual allocation. Turning our focus to fairness, Table 2 provides several

measures of envy for Yamagata’s assignment (note that all measures of envy are zero for

the rigid and flexible SOFM). There are 989 pairs (i, s) such that i has a justified envy

toward someone matched to s under the actual allocations, which amounts to 15.24% of

all pairs (i, s) such that s is acceptable to i. Also, students involved in at least one of such

pairs and daycares involved are 33.05% and 66.67% of the respective total numbers. The

amount of envy for Yamagata’s actual assignment seems broadly comparable to those in

TTC on Boston and New Orleans data (Abdulkadiroglu et al., 2017).
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Figure 2. Rank distributions under different mechanisms: The graph

reports the average cumulative number of children at each rank, as well as

its range across all 250 simulation runs.

rigid SOFM flexible SOFM actual allocation flexible ETSD

pairs with envy 0 0 989 (15.24%) 157.19 (2.42%)

students with envy 0 0 475 (33.05%) 129.96 (9.04%)

daycares with envy 0 0 62 (66.67%) 22.16 (23.83%)

Table 2. Measures of justified envy under different mechanisms. The

percentages for pairs with envies divide the numbers of pairs with envies by

the numbers of pairs (i, s) such that s is acceptable to i.
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Another natural question is to see what happens in serial dictatorship if the rigid

constraint is removed so that it is only subject to the daycare constraint. In the induced

mechanism, called flexible envy-tolerating serial dictatorship (flexible ETSD),

the current dictator receives her most preferred daycare such that adding her to the

current match does not lead to infeasibility. Since some envy is tolerated while the

constraint is flexible in this mechanism, its efficiency is expected to be even higher than

both Yamagata’s actual assignment and the flexible SOFM. Perhaps surprisingly, however,

the magnitude of the improvement of this mechanism over the flexible SOFM seems

rather small; The average number of unmatched children decreases only by 13.83 (15.72%)

and the average number of children who become strictly better off under the flexible

ETSD is 49.78 (3.46%). This difference is much smaller than improvement of the flexible

SOFM over Yamagata’s assignment, whose corresponding numbers are 174.98 (62.71%)

and 237.94 (16.56%), respectively. Meanwhile, the measures of envy for flexible ETSD

are of a similar order to those for Yamagata’s actual assignment. These numbers suggest

that the flexible SOFM may be a potentially useful mechanism in daycare allocation.

One question of interest is whether the numerical patterns we find for Yamagata are

generalizable outside this specific case. To answer this question, we conduct the same set

of simulations based on the data we obtained from Bunkyo City, one of the 23 special

districts of Tokyo. It is much more urban than Yamagata and also has many educational

institutions across children’s ages including University of Tokyo. It also features much

severer shortage of daycare seats; almost half of the applicants are unassigned in the

actual allocation. Despite these differences, the Online Appendix reports that our simu-

lation on Bunkyo’s data finds efficiency gains from removing rigid constraints in daycare

assignments comparable to those found in Yamagata.

6. Discussion

6.1. Weak Priority Orders. As we have argued, there are practical problems in which

fairness is so important that even some inefficiencies are tolerated. This is perhaps most

vividly seen in the context of natural disasters, where the organizer of a disaster shelter

needs to allocate the relief material such as food. For example, in the wake of the Kobe

earthquake of 1995 which killed more than 6400 people in Japan, the organizers of a

disaster shelter who had 150 lunch boxes and two boxes of apples refrained from allocating

them because they were not sufficient to allocate to everyone. In another shelter, the

government instructed not to allocate relief supplies until there were enough to allocate
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to everyone in the shelter.38 Even without such an instruction by the government, the

organizers of yet another shelter made the same rule on their own (Hayashi, 2003).

Similar cases are repeatedly reported during natural disasters. For example, in the

aftermath of Tohoku earthquake of 2011 which killed more than 15800 people in Japan,

the organizers of a disaster shelter in Fukushima refrained from allocating relief supplies,

and they attributed their decision to fairness concerns, saying they “were worried about

conflicts among disaster victims” (Town of Tomioka, 2015).

One of the key features of these problems is that priorities are weak. For instance, in

the first of the aforementioned shelters in the Kobe earthquake, priority is given to the

elderly and children before everyone else, but there were a large number of people in the

same priority class (there were more than 1000 people in total). In the third shelter, there

were only four priority classes (for instance, individuals whose houses were destroyed by

the earthquake are given higher priority than those whose houses were not and who only

need relief material).39

Motivated by these real cases, in this section we study fair matching under weak pri-

orities. To do so, we generalize the model of Section 2 by assuming each school s has

a weak priority order over the set of students. Specifically, the weak priority �s is not

required to have the property that i �s i′ and i′ �s i imply i = i′. In this context, we say

that i has a justified envy toward i′ if there exists s ∈ S such that s �i µi, i′ ∈ µs and

i �s i′. Note that this condition reduces to the earlier definition when priorities are strict.

Fairness and stability are analogously defined, while all other concepts are unchanged.

The following example shows a stable matching fails to exist even if the constraints are

capacity constraints.

Example 2 (Non-existence of a stable matching under weak priorities). There is a disaster

shelter which is endowed with 150 lunch boxes. In this shelter, there are three groups

of individuals: 70 children, 70 elderly individuals, and 70 adults. Priorities are weak;

children have the highest priority, elderly individuals have the next priority, and adults

have the lowest priority, and individuals in the same group have the same priority as one

another. Every individual can consume at most one lunch box and prefers to receive a

lunch box than not.

In this problem, a stable matching does not exist. To see this, first note that non-

wastefulness implies all lunch boxes are allocated. This fact and fairness imply that the

38Cases reported here are from Board of Education of Hyogo Prefecture (1996).
39The end of this section discusses other practical examples in which fairness issues are present and

weak priority orders are involved.
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only candidate for a stable matching assigns the lunch boxes to all children and elderly

individuals while assigning remaining 10 to adults. This matching, however, is not fair

because an adult without a lunch box has justified envy toward an adult with a lunch

box. �

The above example shows that a stable matching based on fairness defined in this

section does not necessarily exist, even if all schools have capacity constraints.40 In fact,

it is possible to show that strictness of the priorities is “necessary” in a maximal-domain

sense. This suggests that requiring stability is too demanding.

The good news is that there exists a SOFM even under weak priorities if the constraint

of each school is a general upper-bound. We can show this result by largely following

the proof of Theorem 2, though with some care that we detail shortly: As in the proof

of Theorem 2, consider the space of cutoff profiles P = {1, . . . , |I|, |I| + 1}S. For each

s ∈ S, assign indices 1, 2, . . . , |I| to all the students, one index for each student, with the

restrictions that (i) each index is assigned to exactly one student and (ii) if i �s i′, then

i has a higher index than i′. For each school s, let i(s,l) be the student whose index is

l.41 Intuitively, the indices represent a tie-breaking of the given weak priority, where 1

represents the lowest and |I| the highest ranks among all the students in I breaking the

ties.

With this modification, the rest of the proof for Theorem 2 needs little change. In

particular, as in the original proof, we can show that if a cutoff profile p is a fixed point of

T , then matching µp such that µps = Ds(p) for each s ∈ S is fair. One might wonder why

such a proof works; we “break ties” when defining the indices of students while fairness

requires there be no envy even between students with the same rank according to the

original weak priority.42

To see the reason, recall the definition of the demand function Ds(·),

Ds(p) := {i ∈ I|i �s i(s,ps) and s �i ∅; i �s′ i(s
′,ps′ ) ⇒ s �i s′}.

40The existing literature often uses an alternative notion of fairness. Specifically, it requires there be

no i, i′ ∈ I and s ∈ S such that s �i µi, i′ ∈ µs and i �s i′ (instead of i �s i′). Under this definition of

fairness, it is well-known that a stable matching exists. In applications we have in mind such as allocation

of disaster relief material, however, our notion of fairness is more appropriate.
41As in the proof of Theorem 2, we also consider a hypothetical student i∗ 6∈ I such that i∗ = i(s,|I|+1)

for all s ∈ S.
42Such a concern would not arise if fairness did not require nonexistence of an envy toward a student

with the same rank, as defined in e.g., Abdulkadiroğlu and Sönmez (2003) and Abdulkadiroğlu, Pathak

and Roth (2009).
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Here, the key is that all the relationships in Ds(·) involving school priorities are specified

with respect to the original weak priority, not the one after tie-breaking. This allows that,

for any given cutoff profile p, if multiple students have the same rank at a school, then

either all of them can demand that school or none of them can, ensuring there be no envy

among them.

For concreteness, consider an example with three students i1, i2, and i3 and one school

s, where i3 has the highest priority while i1 and i2 are tied and below i3. Assume that

s is acceptable to all students. Then Ds(p) reduces to Ds(p) := {i ∈ I|i �s i(s,ps)}. The

indexing procedure would assign either 1 or 2 to i1, the other index to i2, and 3 to i3.

Suppose we assign 1, 2, and 3 to i1, i2, and i3, respectively. In constructing Ds(p), the

only subtle case is when ps = 2.43 In that case, one might think that Ds(p) = {i2, i3}
holds because i2 and i3 have indices no smaller than 2 while i1’s index is 1, and it might

interfere with fairness because i1 would have a justified envy toward i2. Fortunately, this

concern is unfounded because i(s,2) = i2 and i1 and i2 have the same priority at s, so

i1 �s i(s,2) holds, and thus Ds(p) = {i1, i2, i3}. The point is that even though the index of

i1 is strictly lower than that of i2, that is only for convenience, and our construction of the

demand Ds(p) relies on the original weak priority, guaranteeing fairness of the induced

matching.

Finally, let us mention that, although fairness concerns may be the most salient in

allocation during disasters such as the major earthquakes discussed earlier, there are

other examples in which fairness issues are present and weak priority orders are involved.

For example, Hungarian college admissions are conducted by a central clearinghouse and

a fair matching is produced. In their system, priorities at each college are based on test

scores, and the applicants with the same score are ranked equally (Biró, 2008). Chilean

college admissions share these features, although the mechanism in use differs from the

one in Hungary (Ŕıos et al., 2014). Similarly, fairness is explicitly taken into account in

Turkish Navy, where officers in charge of logistical support are instructed to distribute

resources homogeneously across units (Kesten and Yazici, 2012). Our analysis may be

applied to each of these applications in practice.

6.2. Nonexistence of a Stable Matching. In Section 4 we showed that there is an

environment in which no stable matching exists under a general upper-bound. In this

section we provide a theorem clarifying the extent to which this impossibility result holds.

43Just as in the case with strict priority, we have i �s i(s,1) for i = i1, i2, i3 and i �s i(s,3) only for

i = i3, implying Ds(p) = {i1, i2, i3} if ps = 1 and Ds(p) = {i3} if ps = 3.
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Theorem 4. Fix a set of students I, a set of schools S, and a school s ∈ S and its

constraint Fs. Suppose that Fs is not a capacity constraint while being a general upper-

bound. Then there exist a school priority �s and student preferences �I such that, for

any constraint profile F−s and priority profile �−s, there exists no stable matching in the

problem (I, S,�I ,�S,FS).

Since a stable matching is guaranteed to exist if each school has a capacity constraint

(Gale and Shapley, 1962; Roth and Sotomayor, 1990), Theorem 4 provides a tight char-

acterization for the existence of a stable matching. Roughly, capacity constraints are the

maximal domain for the existence of a stable matching, that is, a stable matching is guar-

anteed to exist if and only if each school has a capacity constraint. This result provides

a justification for market designers faced with non-capacity constraints to seek a solution

that may be unstable. The SOFM may be an appealing alternative because it always

exists under general upper-bound and, while possibly unstable, it is most preferred by

every student among all matchings that are fair, individually rational and feasible.

One might wonder why this impossibility result does not contradict the existence of

a stable matching with substitutable preferences (e.g., responsive preferences with type-

specific quota) which may not be associated with any capacity constraint. One major

difference is that our definition of stability requires that there exist no envy even if satis-

fying such an envy is infeasible, which fits the applications we have in mind (see Remark 1

for a discussion of different fairness notions).

6.3. Strategic Issue. Assume that the constraint at each school is a general upper-

bound. Consider a mechanism, called the SOFM mechanism which, for every input,

produces the SOFM; of course this mechanism is well-defined by Theorem 2 because

we assume each school’s constraint is general upper-bound. One question of interest is

whether the SOFM mechanism is strategy-proof. To answer this question, we begin by

noting that the SOFM mechanism is strategy-proof if the constraint of each school is a

capacity constraint. This is because the SOFM and the student-optimal stable matching

coincide under capacity constraints (Balinski and Sonmez 1999), and the mechanism that

produces the student-optimal stable matching is strategy-proof in that setting (Roth 1982,

Dubins and Freedman 1981).

Given this observation, the remaining question is whether strategy-proofness holds more

generally. The following result offers a sense in which such a generalization is impossible.

Theorem 5. Fix a set of students I, a set of schools S with |S| ≥ 2, and a school s ∈ S
and its constraint Fs. Suppose that Fs is not a capacity constraint while being a general
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upper-bound. Then there exists a profile F−s of capacity constraints such that the SOFM

mechanism is not strategy-proof in (I, S,FS).

Theorem 5 only relaxes Fs while keeping F−s to be capacity constraints, and hence this

is a maximal domain result. An implication is that the SOFM mechanism is no longer

guaranteed to be strategy-proof once we go beyond the class of capacity constraints.

Given this impossibility, one question of interest is whether any other reasonable mecha-

nism satisfies strategy-proofness along with fairness, individual rationality, and feasibility.

Of course, the mechanism that always produces an empty matching is strategy-proof and

satisfies the other three properties, but that mechanism is hardly justifiable as it is ex-

tremely inefficient. Thus, the relevant question is whether there is a mechanism satisfying

strategy-proofness and the other desiderata, while also satisfying at least some desirable

efficiency property.

As it turns out, the lack of strategy-proofness is not the drawback of the SOFM mecha-

nism alone, but is shared by a broad class of mechanisms that satisfy a very mild efficiency

property. To state this finding formally, we say that mechanism ϕ satisfies unanimity

if, for any �I and �S, if a matching µ such that µi is the most preferred outcome for

every i ∈ I at �i is feasible, then ϕ�S(�I) = µ. In words, unanimity requires that if

a matching in which every student is matched to her first choice is feasible, then the

mechanism should produce that matching. This is arguably a very mild requirement and

is satisfied by the SOFM mechanism and many other mechanisms. It turns out that this

mild requirement is incompatible with strategy-proofness and other properties, as stated

in the following generalization of Theorem 5.

Theorem 6. Fix a set of students I, a set of schools S with |S| ≥ 2, and a school

s ∈ S and its constraint Fs. Suppose that Fs is not a capacity constraint while being a

general upper-bound. Then there exists a profile F−s of capacity constraints such that there

exists no mechanism that satisfies feasibility, fairness, unanimity, and strategy-proofness

in (I, S,FS).44

This result shows that the lack of strategy-proofness is not a deficiency specific to the

SOFM mechanism. Rather, this theorem establishes that there is a more fundamental

incompatibility between strategy-proofness and other requirements once we go beyond

the restrictive domain of capacity constraints.

44This result is a generalization of Theorem 5 because the SOFM mechanism satisfies feasibility,

fairness and unanimity. We do not require individual rationality in Theorem 6 because it turns out it

is not necessary for establishing the result. Given that this is an impossibility result, not requiring a

condition makes the claim stronger.
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Although the lack of strategy-proofness is inherent in the SOFM mechanism and even

other mechanisms satisfying fairness, it does not necessarily imply that misreporting hap-

pens in practice. In fact, it may be difficult for students to precisely identify the case in

which her misreporting is profitable, let alone what particular misreported preferences to

submit. A simple but intuitive way to see this would be through the cutoff adjustment

algorithm which by Proposition 1 implements the SOFM mechanism.

Proposition 3. Fix a set of students I, a set of schools S, constraints (Fs)s∈S, student

preferences �I , and a misreported preference �′i of a student i ∈ I. Let p and p′ be

the cutoff profiles produced at the end of the cutoff adjustment algorithm under �I and

(�′i,�I\{i}), respectively. If i is matched to s under (�′i,�I\{i}) and i prefers s to the

outcome under �I , then s ∈ S and ps > p′s.

That is, if a student’s manipulation leads her to match with a more preferred school,

then that school’s cutoff has to be strictly lower under misreported preferences. Straight-

forward as this observation may be, it helps identify cases in which strategic manipulation

is not profitable. For instance, in large markets, the cutoff of a school is determined by the

highest-priority applicant who is rejected from it, and this depends on the entire distribu-

tion of student preferences as well as school priorities. Thus, it appears unlikely that any

one particular student is in a position to influence the cutoff in any significant manner.

Based on the above discussion, we conjecture that in a wide class of large markets

the SOFM mechanism has an approximate incentive compatibility property. We do not

attempt to formally establish such a result because it will require us to add more structures

and restrictions on the model, such as introducing cardinal utility to students and taking

a particular stance on how the market with constraints “becomes large.” Instead, here we

consider a simple setup and show that in that environment, it is a low probability event

that a student has any profitable misreport.

Specifically, suppose that there are two schools, s1 and s2. School s1 is subject to a

capacity constraint of n > 0. School s2 has some total budget (which is arbitrary and

could, but does not have to, depend on n), and a subset of students is feasible at s2 if

and only if the sum of the consumption of the budget by them is no greater than the

total budget. There are a certain number of students (which again is arbitrary and could,

but does not have to, depend on n). If a student is matched with s2, she consumes a

fixed positive amount of budget at s2. Let the smallest unit of the budget consumed by

a student be normalized at 1, and k be the maximum of a student’s consumption of the

budget. For any given n, the priority of s1 is uniformly distributed over all possible strict
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orders over the students, while the priority of s2 is arbitrarily fixed. All students prefer

s2 to s1 to ∅.
For each student, we bound the probability that, under the realization of the priority,

there exists a profitable misreporting for that student under the SOFM mechanism.

Proposition 4. In the market described above with n, fix a student i ∈ I arbitrarily. The

probability of the realization of the priority such that there exists a profitable misreporting

for i under the SOFM mechanism is less than k
n

.

Proposition 4 implies that, when k is bounded across all n, the probability that any

given student has a profitable manipulation approaches zero as the market size n goes to

infinity. The intuition for this is that, when the market is large, for any student whose

priority at s2 is close to the cutoff, it is unlikely for her priority at s1 to be close to the

cutoff as well. In Appendix A.6, we generalize this claim further by considering a more

general class of constraints.

6.4. SOSM and SOFM. One may wonder whether the following claim might hold: If

there exists a stable matching µ such that µi �i µ′i holds for each i ∈ I and any stable

matching µ′ (the student-optimal stable matching, or the SOSM) in that market, it is the

same as the SOFM. This claim turns out to be false. To see this, consider the following

example.

Example 3. Suppose that there are four students i1, i2, i3, and i4, and two schools, s1

and s2. Let preferences and priorities be as follows:

�i1 : s2, s1 �s1 : i1, i2, i3, i4

�i2 : s1, s2 �s2 : i2, i1, i3, i4

�i3 : s1, s2

�i4 : s1, s2

The constraints are: Fs1 = {∅, {i1}, {i2}, {i3}, {i4}, {i2, i4}} and Fs2 = {∅, {i1}, {i2}, {i3}, {i4}}.
Note that the constraint of school s2 is a capacity constraint while the constraint of school

s1 is not, and both are general upper-bounds.

Now, consider the following two matchings.

µ =

(
s1 s2 ∅
i1 i2 i3, i4

)
, µ′ =

(
s1 s2 ∅
i2 i1 i3, i4

)
.
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By inspection, one can verify that µ is the SOSM while µ′ is the SOFM. Note that µ′

is unstable because i4 can be feasibly matched to s1. Since µ′ 6= µ, the SOFM and the

SOSM are different.45 �

Remark 2. (1) The difference between the SOSM and the SOFM is caused by the

generality of general upper-bound. To see this, recall that, if each hospital’s con-

straint is a capacity constraint, then the SOSM and the SOFM are identical to each

other (Theorem 2 of Balinski and Sonmez (1999)). Combined with Theorem 3,

this implies that, whenever we impose a condition on constraints over individual

schools which guarantees the existence of a SOSM, it is identical to the SOFM.

(2) Since any stable matching is fair (by definition), for any problem with general

upper-bounds, the SOFM is weakly preferred by every student to any stable

matching (if the latter exists). Therefore, whenever there exists a SOSM and

it is different from the SOFM, the SOFM is strictly preferred to the SOSM by

some students while weakly preferred by every student. Example 3 shows that

this can actually happen.

6.5. General Upper Bounds and Multidimensional Constraints. In a recent work,

Delacrétaz, Kominers and Teytelboym (2016) study a model of matching with multidi-

mensional constraints. This section investigates the relationship between our model of

general upper-bound and their model.

In the model with multidimensional constraints, there is a finite set of services, Σ.

Each student i is associated with service needs νi = (νiσ)σ∈Σ ∈ R|Σ|+ , and each school

s is endowed with service capacity profile κs = (κsσ)σ∈Σ ∈ R|Σ|++.
46 We say that a set

of students I ′ is DKT-feasible at school s if
∑

i∈I′ ν
i
σ ≤ κsσ for every σ ∈ Σ and that

matching µ is DKT-feasible if µs is DKT-feasible at every s ∈ S.

It is obvious that any constraint given as multidimensional constraints described above

is a general upper-bound. The following proposition establishes that there is a specific

45We note that the existence of i3 plays a major role in this example. For example, consider

µ′′ :=

(
s1 s2 ∅
i2, i4 i1 i3

)
.

We can see that µ′′ is not fair (hence unstable), because i3 likes s1 better than ∅ and i3 has higher priority

than i4 at s1.
46Delacrétaz, Kominers and Teytelboym (2016) further assume that service needs and capacities are

represented by integers. As they mention, none of the results in their paper or ours depends on this

assumption. In a similar vein, they allow for zero service capacities but it does not affect any results in

their paper or ours. Our assumptions are made only for convenience in proofs.
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sense in which these two classes of constraints are “equivalent” to each other, if one can

specify any (possibly very large) set of services.

Proposition 5. Fix I, s, and a constraint Fs. The following two statements are equiva-

lent.

(1) Fs is a general upper-bound.

(2) There exist a set of services Σ, a profile of students’ service needs (νi)i∈I , and a

service capacity profile κs such that a set of students I ′ is DKT-feasible at s if and

only if I ′ ∈ Fs.

This proposition demonstrates that the class of constraints that can be described as

general upper-bounds is the same as those that can be described by multidimensional con-

straints. This characterization exactly identifies what property is imposed on the types

of constraints considered by Delacrétaz, Kominers and Teytelboym (2016) that use linear

inequalities. Furthermore, this result is useful as it provides a potentially tractable “lan-

guage” to code any general upper-bound using a number of linear inequalities. Related,

the existence of a SOFM (our Theorem 2) can be obtained by exploiting the connection

between these two models. More specifically, Proposition 6 of Delacrétaz, Kominers and

Teytelboym (2016) shows the existence of a SOFM in the model with multidimensional

constraints. This result and Proposition 5 provide an alternative proof of our existence

result.

However, we also note that our “equivalence” result is subtle, and we need caution

when interpreting this result. To establish a given general upper-bound can be described

by multidimensional constraints, the analyst needs to have the freedom to define the set

of “services,” as well as students’ service needs and service capacities at each school.

These services and related parameters defined in this attempt may not correspond to any

physical services or other entities which one would regard as real services. In fact, in the

proof of the direction “(1) ⇒ (2)” of Proposition 5, we define a “service” corresponding

to every single infeasible set of students.

A related problem is that the number of services needed to describe a given general

upper-bound may be unreasonably large even if the underlying constraint is simple and

easily interpretable. To make this point in a simple setting, suppose that there is a

school s, and the set of students I is partitioned into two groups, I1 and I2. Suppose

Fs = {I ′|I ′ ⊆ I1 or I ′ ⊆ I2}, that is, s can admit a set of students if and only if all of its

members belong to a single group.47 Now, suppose that each of I1 and I2 has n students.

47As detailed in Section 4.1, such a constraint is realistic in the context of refugee match.
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The following proposition demonstrates that even describing the above simple constraint

requires an unboundedly large number of services as n grows.

Proposition 6. Suppose that multidimensional constraints with the set of services Σ

describe the above constraint for the problem with n students from each group. Then

|Σ| ≥ n.48

This result calls for some caution when interpreting the “equivalence” result of Propo-

sition 5. Although for any given general upper-bound one can find multidimensional con-

straints that describe it, the set of services–and hence the number of linear inequalities–

needed to describe it may be large when there are many students. In such a case, the

representation of a given general upper-bound by a system of linear inequalities may not

be practical.

6.6. A Weaker Notion of Fairness. Our notion of fairness stipulates that a matching

can be regarded as unfair even if there is no feasible way to satisfy a student who has

justified envy. As illustrated in Remark 1, this definition seems to be appropriate in

applications we have in mind. However, an alternative notion may be more appropriate

in other contexts. This section formally defines an alternative notion and shows that the

non-existence of a stable matching is robust to the change of the fairness notion.

We say that i has a feasible justified envy toward i′ if there exists s ∈ S such that

(i) s �i µi, i′ ∈ µs and i �s i′ and (ii) (µs ∪ {i}) \ {i′} ∈ Fs. We say that a matching

µ is weakly fair if there exist no students i and i′ such that i has a feasible justified

envy toward i′. Note that the difference from the definition of fairness is the addition

of condition (ii). Since we require a more stringent condition on the triples of the form

(i, i′, s) that cannot exist, the new notion is weaker than the original fairness concept.

We show by an example that the existence problem of a stable matching still persists

under the weaker notion of fairness. More precisely, in the example in Appendix B.2,

there exists no matching that is feasible, individually rational, non-wasteful, and weakly

fair.

7. Conclusion

This paper studied a matching problem where institutions are subject to general con-

straints. Observing that a stable matching typically does not exist, our approach is to

tolerate some waste while requiring fairness. Our first main result characterizes feasible,

individually rational, and fair matchings by fixed points of a certain mapping on the space

48 In Appendix A.8, we show that this bound is tight.
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of cutoff profiles. Building upon this result, we find a necessary and sufficient condition

for guaranteeing the existence of a student-optimal fair matching (SOFM). The condi-

tion is that the constraint of each school is a general upper-bound. Then we provide a

constructive algorithm to find a SOFM based on our fixed-point mapping. Furthermore,

we apply our findings to centralized allocation of daycare seats and find that the SOFM

mechanism under flexible constraints performs substantially better than an alternative

algorithm that treats age-specific capacities as rigid constraints.

This paper leaves various important questions for future research. For instance, our

result shows the general upper-bound is exactly the condition that guarantees the exis-

tence of an unambiguously desirable fair matching, i.e., a SOFM. In particular, when the

constraint of even one school fails to be a general upper-bound, there is no guarantee that

a SOFM exists. In such a case, a natural question for researchers and policymakers alike

is what kind of property to aim for. One possibility may be to find a feasible, individually

rational, and fair matching that is not dominated by another according to student pref-

erences. Although the existence of such a matching is rather straightforward given the

finiteness of the environment, a constructive algorithm may be nontrivial and interesting.

Another direction for future research would involve data. For example, we conducted

numerical analysis of datasets on daycare allocation in two municipalities and found large

welfare gains in both cases. To what extent is such a finding generalizable to daycare

allocation elsewhere?49 How about other applications such as school choice with diversity

constraints, college admissions involving students with disabilities, and refugee match-

ing? These questions are beyond the scope of our paper, but they seem to be important

questions for future research.

Finally, it would be interesting to use our findings for design in practice. Such an expe-

rience may not only improve outcomes in real problems like daycare seat allocation, but it

may also provide more insight about possible directions for future research. For instance,

is the lack of exact strategy-proofness for students a major drawback in practice, or is an

approximate incentive compatibility as shown in our analysis sufficient to eliminate strate-

gic behavior? Is the SOFM mechanism transparent enough for applicants to understand

or trust? Is there any unintended consequence of the change in the mechanism? These

are just a few of many possible questions that one may be able to investigate with the

feedback from policy experience. We wait for future research to answer these questions.

49We recently obtained administrative data from Chiba City, Japan, and analysis on this dataset may

prove useful to answer this question.



40

References
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Konishi, Hideo, and M. Utku Ünver. 2006. “Games of Capacity Manipulation in the

Hospital-Intern Market.” Social Choice and Welfare, 27: 3–24.

Milgrom, P. 2009. “Assignment messages and exchanges.” American Economic Journal:

Microeconomics, 1(2): 95–113.

Milgrom, Paul, and Ilya Segal. 2014. “Deferred-acceptance auctions and radio spec-

trum reallocation.” 185–186.

Ministry of Health, Labour and Welfare. 2014. “Summary of

the Survey on the Regional Child Welfare Project (in Japanese).”

http://www.mhlw.go.jp/toukei/saikin/hw/jidou/12/dl/kekka-01.pdf.

Ministry of Health, Labour and Welfare. 2017. “Summary of the Cur-

rent Status of Non-Publicly Certified Daycare Centers, Fiscal Year 2015

(in Japanese).” http://www.mhlw.go.jp/file/04-Houdouhappyou-11907000-

Koyoukintoujidoukateikyoku-Hoikuka/0000112872 1.pdf.

Nguyen, Thanh, Ahmad Peivandi, and Rakesh Vohra. 2016. “Assignment prob-

lems with complementarities.” Journal of Economic Theory, 165: 209–241.
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Appendix A. Proofs

A.1. Proof of Theorem 3.

Proof. Suppose the constraint Fs of s is not a general upper-bound. Consider the following

two cases.

(1) Suppose that ∅ is infeasible at s. Then, assume all students find s to be unaccept-

able. It is clear that there is no feasible and individually rational matching in this

case.

(2) Suppose that ∅ is feasible at s. Then there exist non-empty sets I ′′ ( I ′ ⊆ I such

that I ′ is feasible at s but I ′′ is infeasible at s. Let s′ be a school different from

s (note that such a school exists by the assumption that |S| ≥ 2). Fix student

preferences as follows:

�i : s, s′, for every i ∈ I ′′,

�i : s′, s, for every i ∈ I ′ \ I ′′,

and every other student finds all schools unacceptable. In addition, assume that

each school other than s has a capacity constraint with a capacity of |I|.

In this problem, both of the following matchings are fair as well as feasible and individually

rational:

(1) every student in I ′ is matched to s and every other student is unmatched.

(2) every student in I ′ is matched to s′ and every other student is unmatched.

Therefore, if there is a SOFM, then it should match every student in I ′′ to s, every student

in I ′\I ′′ to s′, and leave every other student unmatched. But such a matching is infeasible

because I ′′ /∈ Fs. �

A.2. Proof of Proposition 2.

Proof. Because µ is feasible in the problem (I, S,�I ,�S,FS) by definition of SOFM and

Fs ⊆ F ′s for every s ∈ S by assumption, µ is feasible in (I, S,�I ,�S,F ′S) as well. More-

over, because µ is individually rational and fair in the problem (I, S,�I ,�S,FS) by defini-

tion of SOFM, µ is individually rational and fair in (I, S,�I ,�S,F ′S) as well. Therefore,

since µ′ is the SOFM in (I, S,�I ,�S,F ′S), it follows by the definition of SOFM that

µ′i �i µi for every i ∈ I, completing the first part of the proposition statement. This

conclusion, together with individual rationality of µ and µi ∈ S, imply µ′i �i µi �i ∅ and

hence µ′i ∈ S, completing the second part of the proposition statement. �
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A.3. Proof of Theorem 4.

Proof. Suppose the constraint Fs of s is not a capacity constraint while being a general

upper-bound. Let k be the largest nonnegative integer such that all sets of students with

cardinality k or smaller are feasible at s (note that k may be 0. Also note that k is

well-defined, for ∅ is feasible at s because Fs is a general upper-bound, and I is finite).

Claim 2. There exist I1 ∈ Fs and I2 6∈ Fs such that |I1∩I2| = k and |I1\I2| = |I2\I1| = 1.

Proof of Claim 2. Let I1 = {I ′ ⊆ I||I ′| = k+1, I ′ ∈ Fs} and I2 = {I ′ ⊆ I||I ′| = k+1, I ′ 6∈
Fs}. The former is nonempty because otherwise Fs would be a capacity constraint, and

the latter is nonempty due to the definition of k. Let l := min{|I ′1 \ I ′2||I ′1 ∈ I1, I
′
2 ∈ I2}

and assume for contradiction that l > 1; note that the minimum exists because I1 and I2

are nonempty finite sets. Fix arbitrarily Ī1 ∈ I1 and Ī2 ∈ I2 such that |Ī1 \ Ī2| = l. Then,

fix i1 ∈ Ī1 \ Ī2 and i2 ∈ Ī2 \ Ī1 and define Ī := (Ī1 \ {i1}) ∪ {i2}. If Ī ∈ Fs, then Ī ∈ I1

and |Ī \ Ī2| = l− 1 < l, a contradiction to the minimality of l. If Ī 6∈ Fs, then Ī ∈ I2 and

|Ī1 \ Ī| = 1 < l, again a contradiction to the minimality of l. �

In the remainder, we assume the condition in Claim 2 holds for I1 and I2. Denote by

i1 and i2 the agents such that {i1} = I1 \ I2 and {i2} = I2 \ I1.

Now consider the following preference profile: every student in I1 ∪ I2 finds only s

acceptable; every other student finds all schools unacceptable. Also assume school s ranks

all students in I1 ∩ I2 first (in an arbitrary order), then the (unique) student i2 ∈ I2 \ I1,

then the (unique) student i1 ∈ I1 \ I2, and then every other student (in an arbitrary

order).

Suppose that µ is a stable matching. Now, note I2 is infeasible at s by assumption,

but because k = |I2| − 1 is such that any set of doctors whose cardinality is at most k is

feasible at s, non-wastefulness requires that at least k doctors are matched at s under µ.

Because of the construction of �s and the requirement of fairness, all students in I1 ∩ I2

should be matched at s. Because I1 and I2 satisfy the condition described by Claim 2,

(I2 ∪ {i1}) \ {i2} = I1 is feasible at s. By non-wastefulness, i1 should be matched at s,

and this implies i2 is not matched to s and hence unmatched.50 This is a contradiction

to fairness because i2 �s i1 and s �i2 ∅. �

A.4. Proof of Theorems 5 and 6.

Proof. Because Theorem 5 is a special case of Theorem 6, we only provide a proof for

the latter result. Suppose the constraint Fs of s is not a capacity constraint while being

50If i1 is not matched to s but some student in I \ (I1 ∪ I2) is, then the matching violates fairness.
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a general upper-bound. Let k be the largest nonnegative integer such that all sets of

students with cardinality k or smaller are feasible at s (note that k may be 0. Also note

that k is well-defined, for ∅ is feasible at s because Fs is a general upper-bound and I

is finite). Then, Claim 2 implies that there exist subsets of students, I1 and I2, such

that I1 is feasible at s while I2 is not, |I1 ∩ I2| = k, and there exist i1, i2 ∈ I such that

{i1} = I1 \ I2 and {i2} = I2 \ I1. Now, fix a school s′ 6= s and consider the following

preference and priority profiles as well as constraints: s ranks all doctors in I1 ∩ I2 as

the highest (in an arbitrary order), then i2, then i1, and then all other students (in an

arbitrary order). School s′ ranks i1 first and i2 second (while the ranking over all other

students are arbitrary) and is subject to the capacity constraint with capacity of 1. Each

student in I1 ∪ I2 prefers s first and s′ second (while preferences on all other schools are

arbitrary), and all other students find all schools unacceptable.

Fix a mechanism ϕ that satisfies feasibility, fairness, unanimity, and strategy-proofness

in (I, S,FS). Under ϕ, i2 is not matched to s. To see this, assume for contradiction that

i2 is matched to s. Then, since s is the most preferred by every student in I1∩ I2, fairness

implies that every student in I1∩I2 is matched to s, so every student in (I1∩I2)∪{i2} = I2

is matched to s. But this is a contradiction to feasibility because I2 6∈ Fs by assumption

and Fs is a general upper-bound.

Because i2 is not matched to s and i2 has higher priority than i1 at s, it follows that

i1 is not matched to s. Given that, it also follows that i2 is not matched to s′ because i1

has higher priority than i2 at s′ and s′ has the capacity of one.

If i2 misreports and declares that only s′ is acceptable to her, then because ϕ satisfies

unanimity, it matches all students in I1 to s and i2 to s′, while leaving all other students

unmatched. Thus, i2 benefits from a misreport, and hence ϕ is not strategy-proof. �

A.5. Proof of Proposition 3.

Proof. Let s̃ be i’s match under �I . Since the cutoff adjustment algorithm implements

the SOFM mechanism and the SOFM is individually rational by definition, s̃ �i ∅ holds.

Together with s �i s̃, we have s ∈ S.

To show ps > p′s, recall the definition of demand:

Ds̄(p) := {i ∈ I|i �s̄ i(s̄,ps) and s̄ �i ∅; i �s′ i(s
′,ps′ ) ⇒ s̄ �i s′}.

First, suppose that s̃ = ∅. Then, i(s,ps) �s i holds by the definition of Ds̄(·) for all

s̄ ∈ S, and i �s i(s,p
′
s) holds by the definition of Ds(·). Thus, we have i(s,ps) �s i(s,p

′
s), and

by the definition of i(s,·), we obtain ps > p′s.
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Second, suppose that s̃ 6= ∅. Letting s̄ = s̃, we have i �s′ i(s
′,ps′ ) ⇒ s̃ �i s′ for any

s′. Since s �i s̃, we have i �s′ i(s
′,ps′ ) ⇒ s �i s′. Since we have already shown s �i ∅, if

i �s i(s,ps) holds then we must have i ∈ Ds(p) by letting s̄ = s. This contradicts s̃ 6= s.

Hence, i(s,ps) �s i must hold. Under (�′i,�I\{i}), i is matched with s, hence i �s i(s,p
′
s)

must hold. Overall, we have i(s,ps) �s i(s,p
′
s), implying ps > p′s. �

A.6. Proof of Proposition 4. This section first states a generalization of Proposition 4

and then provides its proof. For this purpose, consider the same environment as the one

considered in Proposition 4 except that we now suppose s2 has a general upper-bound

constraint that is not necessarily a budget constraint. For each n and i ∈ I, define

ki = max
I′,I′′⊆I
I′∩I′′=∅

{|I ′′| : I ′ 6∈ Fs2 , (I ′ \ {i}) ∪ I ′′ ∈ Fs2} .

Notice that, in the environment as the one considered in Proposition 4, ki ≤ k − 1 holds

for all i ∈ I. The following result is a generalization of Proposition 4.

Proposition 7. In the market described above with n, fix a student i ∈ I arbitrarily. The

probability of the realization of the priority such that there exists a profitable misreporting

for i under the SOFM mechanism is no greater than ki
n

.

Proof. It is clear that the only case in which a misreporting is beneficial is when i is

unmatched under truthtelling while she is matched to s1 under the misreporting, and

the misreported preferences puts s1 as her top choice. Let m and m′ be the numbers

of students matched at s2 under true and misreported preferences, respectively. By the

definition of ki, we have m′ − m ≤ ki. Because i is unmatched under truthtelling but

matched to s1 under the misreporting, the ranking of student i at s1 among students who

are not matched at s2 under truthtelling should be at least n + 1 and at most n + ki.

The probability of such a realization of the priority order is at most ki/(n + 1). Since

ki/(n+ 1) ≤ ki/n, the proof is complete. �

A.7. Proof of Proposition 5.

Proof. (2) ⇒ (1) is straightforward. To show (1) ⇒ (2), define the set of services Σ as

Σ := 2I \ Fs. For each σ ∈ Σ, suppose

νiσ =

1 if i ∈ σ,

0 otherwise,
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and let κsσ = |σ| − 1/2.51 We will show that the conclusion of the proposition holds with

respect to these parameters for multidimensional constraints.

To show the “if” direction, suppose I ′ ∈ Fs. Then, because Fs is a general upper-

bound, it follows that, for any σ ∈ Σ, I ′ 6⊇ σ and hence σ∩ I ′ ≤ |σ| − 1/2. So,
∑

i∈I′ ν
i
σ ≤

|σ| − 1/2 = κsσ. Therefore I ′ is DKT-feasible. To show the “only if” direction, suppose

I ′ 6∈ Fs. Then, the service σ = I ′ is in Σ, and thus
∑

i∈I′ ν
i
σ = |I ′| > |I ′| − 1/2 = κsσ.

Thus, I ′ is not DKT-feasible. �

A.8. Proof of Proposition 6. As mentioned in footnote 48, we will show the following

stronger result: Given a problem with n students from each group as in Proposition 6, let

m ∈ N be the minimum cardinality of the sets of services that describe the constraint.52

Then m = n.

Proof. We first show that in the problem of n students from each group, we need at least

n services. To show this, suppose without loss of generality that each service capacity is

normalized to 1.53 Consider a partition of all students into pairs of students from different

groups. More specifically, label the students from one group as I1 = {i1, i2, . . . , in} and

those from the other group as I2 = {i′1, i′2, . . . , i′n}, and form n pairs by paring two students

of the same index from the two groups, i.e., I =
⋃n
t=1{it, i′t}. For each t, because the pair

{it, i′t} is infeasible at s, there exists σ ∈ Σ for which νitσ + ν
i′t
σ > 1. Choose such a service

arbitrarily and denote it by σt. To prove our claim, it suffices to show σt 6= σt′ if t 6= t′.

For this purpose, assume for contradiction that σt = σt′ =: σ. Then νitσ + ν
i′t
σ > 1 and

ν
it′
σ + ν

i′
t′
σ > 1, so νitσ + ν

i′t
σ + ν

it′
σ + ν

i′
t′
σ > 2. This implies νitσ + ν

it′
σ > 1 or ν

i′t
σ + ν

i′
t′
σ > 1.

Hence {it, it′} 6∈ Fs or {i′t, i′t′} 6∈ Fs holds, a contradiction.

We next show that in the problem with n students from each group, there exist multi-

dimensional constraints with n services that describe the given constraint. To do so, let

Σ = {σ1, . . . , σn} and (as before) I1 = {i1, i2, . . . , in}. Set each service capacity as 1. For

51Note that the requirement κsσ ∈ R++ is satisfied because ∅ ∈ Fs by the assumption that Fs is a

general upper-bound and hence ∅ 6∈ Σ.
52Note that the minimum cardinality exists in N because of the construction of the set of services in

the proof of Proposition 5.
53This is without loss of generality because, given any nonzero service capacity and service demands,

one can normalize that service capacity to one while changing service needs of each student for that

service in the same proportion.
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each t ∈ {1, . . . , n}, the service needs for σt are given by

νiσt =


1 if i = it,

0 if i ∈ I1 \ {it},
1
n

otherwise.

Suppose I ′ ∈ Fs. Then either I ′ ⊆ I1 or I ′ ⊆ I2. In the former case, for any service σt,∑
i∈I′ ν

i
σt ≤

∑
i∈I1 ν

i
σt = 1 + (n − 1) × 0 = 1 = κsσt , so I ′ is DKT-feasible. In the latter

case, for any service σt,
∑

i∈I′ ν
i
σt ≤

∑
i∈I2 ν

i
σt = 1

n
× n = 1 = κsσt , so I ′ is DKT-feasible.

Next suppose I ′ 6∈ Fs. Then I1 ∩ I ′ 6= ∅ and I2 ∩ I ′ 6= ∅. Let it ∈ I1 ∩ I ′ and i′ ∈ I2 ∩ I ′.
Then,

∑
i∈I′ ν

i
σt ≥ νitσt + νi

′
σt = 1 + 1

n
> 1 = κsσt , so I ′ is not DKT-feasible. �

Appendix B. Additional Discussions

B.1. An alternative algorithm. Consider the following generalization of the deferred

acceptance algorithm, called the cumulative offer algorithm:

• Step t ≥ 1: Each student applies to her first choice school among those that have

never rejected anyone whose priority is weakly higher than her if it is accept-

able, while making no application otherwise. For each school s, let {i1, i2, . . . , ik}
be the set of students who have ever applied to it, with i1 �s i2 �s . . . �s ik.
If {i1, i2, . . . , ik} ∈ Fs, then let s temporarily keep {i1, i2, . . . , ik}; otherwise,

let s temporarily keep the set of students of the form {i1, i2, . . . , ik′} such that

{i1, i2, . . . , ik′} ∈ Fs and {i1, i2, . . . , ik′+1} 6∈ Fs.54 School s rejects all the remain-

ing students who have ever applied to it, {ik′+1, . . . , ik}. If no student is rejected

by a new school, then terminate the algorithm and define the outcome as the

matching in which each school is matched to the set of students who it currently

keeps.55 Otherwise, go to Step t+ 1.

The algorithm terminates in a finite number of steps because there is a new rejection in

every step that is not terminal and there are only a finite number of student-school pairs.

Therefore, the outcome of this algorithm is well-defined.

Note that this algorithm has a “cumulative” feature, that is, when a school temporarily

keeps students, it considers all the students who have ever applied to it, even if they were

rejected in an earlier step. Moreover, the school never rejects an applicant i while keeping

another student i′ with lower priority, even if keeping i is infeasible and keeping i′ is

feasible. These features are important for guaranteeing fairness of the resulting matching.

54Because Fs is a general upper-bound, k′ is uniquely defined.
55As will be seen in Proposition 8, the outcome is indeed a matching.
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Proposition 8. The outcome of the cumulative offer algorithm is the SOFM.

Proof. We use the same notations as in the proof of Theorem 2. Suppose that at steps

1, . . . , t of the algorithm, if s has rejected at least one student, let the highest-priority

student s who has been rejected be i(s,l
′) and pts = l′ + 1. Otherwise, let pts = 1. Also, let

p0
s = 1. By definition of pts, the cumulative offer algorithm is equivalent to the following

algorithm:

• Step t ≥ 1: Each student i applies to her first choice school in {s ∈ S|i �s i(s,p
t−1
s )},

while making no application otherwise. Each school s keeps every student i such

that i �s i(s,p
t
s) and rejects all the remaining students who have ever applied to

it. If no student is rejected by a new school, then terminate the algorithm and

define the outcome as the matching in which each school is matched to the set of

students who it currently keeps. Otherwise, go to Step t+ 1.

For a profile p = (ps)s∈S, define T̃ : P → P as follows:

T̃s(p) =

min{p′s|Ds(p
′
s, p−s) ∈ Fs} if Ds(p) 6∈ Fs

ps if Ds(p) ∈ Fs
,

where the minimum exists because P is finite and Ds(|I|+1, p−s) = ∅ ∈ Fs. By inspection,

pts = T̃s(p
t−1) holds for each t. Hence, for each t, pts = T̃ ts(p

0).

Observe that, by the definition of Ds(·) and the above algorithm, the set of students

that each s keeps at the terminal step t is Ds(p
t). Hence, it can be shown that the above

algorithm produces the SOFM by a proof similar to those of Theorem 2 and Proposition 1.

�

A corollary of Propositions 1 and 8 is that the outcomes of the cumulative offer al-

gorithm and the cutoff adjustment algorithm coincide with each other. Given this fact,

one might question the merit of our approach based on Tarski’s fixed point theorem on

the space of cutoffs. Our response is that there are at least two reasons to favor our

approach. First, with our approach, it is easy to show that there exists a SOFM; this

result is based on the well understood structure of fixed points of an increasing function

on a complete lattice. By contrast, while it is possible to establish that the outcome of

the cumulative offer algorithm is the SOFM without reference to this lattice structure,

it would need a specific argument tailored to that particular algorithm.56 Second, and

related, the “right” way to generalize the deferred acceptance algorithm is not clear in

56Delacrétaz, Kominers and Teytelboym (2016) construct an equivalent algorithm to the cumulative

offer algorithm using the language of multidimensional services. See Section 6.5 for detail.
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the absence of the insight from our approach. For example, the “cumulative” nature of

our cumulative offer algorithm, i.e., that each school considers the current and previous

applicants, is not an ex ante obvious feature for the right generalization of the deferred

acceptance algorithm.

B.2. Weak fairness and non-existence: An example. Delacrétaz, Kominers and

Teytelboym (2016) consider a slightly different setting from ours and find an example to

show that their concept of stability may lead to non-existence. The following example,

which is a slight variation of theirs, shows that there does not necessarily exist a matching

that is feasible, individually rational, non-wasteful, and weakly fair.57

Example 4. Suppose that there are three students i1, i2, and i3, and two schools, s1 and

s2. Their preferences and priorities are as follows:

�i1 : s2, s1 �s1 : i1, i2, i3

�i2 : s1, s2 �s2 : i3, i1, i2

�i3 : s1, s2

The feasibility constraints are Fs1 = {∅, {i1}, {i2}, {i3}, {i1, i3}} and Fs2 = {∅, {i1}, {i2}, {i3}}.
Note that the constraint of school s2 is a capacity constraint while the constraint of school

s1 is not, and both are general upper-bounds.

In this market, there is no matching satisfying feasibility, individual rationality, non-

wastefulness, and weak fairness. To see this, consider the following (exhaustive) cases:

(1) Suppose i1 is matched with s2. Then i3 should be matched with s1 because oth-

erwise i3 is unmatched and hence has a feasible justified envy toward i1. Then i2

is unmatched, but this means i2 has feasible justified envy toward i3.

(2) Suppose i1 is matched with s1. Then i3 should be matched to s1 because otherwise

the allocation is wasteful (i3 prefers s1 most and {i1, i3} ∈ Fs1). This implies that

i2 is matched with s2. But then i1 has a feasible justified envy toward i2.

(3) Suppose i1 is unmatched. Then Neither i2 nor i3 can be matched to s1 as otherwise

i1 has a feasible justified envy toward the student who matches with s1. But this

is wasteful because, by letting µ the resulting matching, we have s1 �i1 ∅ = µi1

and µs1 ∪ {i1} ∈ Fs1 . �

57Adapted to our setting, their stability concept is slightly stronger than our requirements of feasibility,

individual rationality, non-wastefulness, and weak fairness.
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Appendix C. Analysis of data from Bunkyo City

In this section, we report our simulations using data on daycare seat allocation from

Bunkyo City, Japan. The numerical analysis we report here suggests that the main

findings for Yamagata are robust to data features.

As explained in Section 5.2, Bunkyo City is one of the 23 special districts of Tokyo, with

about 230,000 residents as of 2018. Bunkyo is much more urban than Yamagata. It has

a population density about 30 times that of Yamagata, has a high concentration of edu-

cational institutions, and attracts many dual-income families investing heavily education

and demanding childcare which, as we will see below, seems to make its daycare allocation

problem more pressing than Yamagata’s.1 Part of our interest in studying Bunkyo’s data

is to investigate whether our numerical findings are robust to demographic features of

different municipalities.

Our data involve the applicants (who are anonymized), usually parents, representing

children who would begin attending the daycare in April of 2018. There were 2114 appli-

cants aged between 0 to 5 as of April 1, 2018 on which they would begin attending the

daycare. For each applicant, the data show her submitted preferences over the daycare

centers and priority ranking (the priorities are common across daycare centers). Regard-

ing submitted preferences, we note that the mechanism in Bunkyo is based on serial

dictatorship but restricts applicants to list at most five daycare centers in their ranking.2

Because of this restriction, Bunkyo’s mechanism is not strategy-proof. This is one of the

main reasons that we focus on Yamagata’s data in our main analysis. Note that, how-

ever, there is a certain sense in which this mechanism is “less manipulable” than other

*Kamada: Haas School of Business, University of California, Berkeley, Berkeley, CA 94720,

y.cam.24@gmail.com. Kojima: Department of Economics, Stanford University, Stanford, CA 94305,

fkojima@stanford.edu.
1Bunkyo, whose literal translation would be “Literature Capital,” is home to many higher education

institutions such as University of Tokyo as well as prestigious elementary and secondary schools.
2There are a few additional differences between Bunkyo’s mechanism and serial dictatorship, i.e., there

are a few special rules, mainly regarding children with siblings. In our numerical analysis, however, this

difference causes only a minor difference between the assignments from serial dictatorship (with limited

length of preference lists) and the actual one.
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mechanisms such as the Boston mechanism with the same length restriction (Pathak and

Sönmez, 2013).

The priority order is based on the applicant characteristics such as parents’ job status

and the number of adults available for care at home (Bunkyo City, 2018). There are 63

daycare centers in our dataset. For each daycare center, the data show how many seats

are supplied for each age.

In our simulation, we made several modeling choices given data limitation. First, as

for Yamagata’s data, Bunkyo’s data we have involve ties although the actual priority

order is strict. This is because our data lack information on some characteristics used

by Bunkyo to determine the strict order, such as whether the child is currently in an

alternative form of childcare and whether the family has a member with disability. As in

our analysis of Yamagata’s data, we randomly break ties using a single tie-breaking (that

is, the tie-broken priorities are common across daycare centers) according to the uniform

distribution. For each mechanism that we consider, we conducted 250 runs of simulations

using such a tie-breaking rule.

The second limitation involves constraints. As is the case for Yamagata’s dataset, for

daycare centers, Bunkyo’s dataset does not tell the entire family of feasible sets of children

or the number of teachers corresponding to the flexible constraints. Instead, it only shows

the number of advertised seats at each daycare center for each age, which is exactly enough

to specify the rigid constraints. To overcome this limitation, we define ms for each s in

the daycare constraints (Equation (5.1)) by ms :=
∑

t∈T rt · qt, where rt and qt are those

in the data (recall that rt is the teacher-child ratio under the national regulation, and qt is

the number of advertised seats for age t at daycare center s). That is, ms is the minimum

of the number of teachers such that the constraint implied by the number of advertised

seats in data is a rigid constraint associated with our daycare constraint.3 This method

is identical to the one we used in our analysis of Yamagata’s data.

We find that the effect of allowing flexibility in constraints is substantial in our data from

Bunkyo, just as is the case of data from Yamagata: the average number of children who

are matched with a strictly preferred daycare center in the flexible SOFM compared to the

rigid SOFM is 1091.76, which amounts to 51.64% of all applicants (Table 3).4 By contrast,

3We set ms as the bare minimum that is consistent with the data on advertised seats so that we

do not overstate our estimate of the gain from removing the rigid constraint. In a similar spirit, we

allow for non-integral values of ms although the number of teachers is an integer in practice. With an

alternative specification setting ms to be the integer rounded up from our present definition, for instance,

our estimate of the gain from removing rigid constraints would be larger.
4This table as well as others also report simulations of other mechanisms we discuss below.
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no applicant is made worse off, as implied by Proposition 2. The number of children who

are unallocated changes from 1710.87 to 875.74, a 48.81% decrease (Figure 3). The average

numbers of children who are matched to their first choice, first two choices, and the first

three choices increase by 517.11%, 159.77% and 104.91%, respectively (Figure 4).5 Our

analysis suggests that substantial efficiency gain from utilizing the flexible nature of the

constraints may be present not only in Yamagata City but more broadly.

From/To rigid SOFM flexible SOFM actual allocation flexible ETSD

rigid SOFM 0 1091.76 (51.64%) 913.72 (43.22%) 1156.84 (54.72%)

flexible SOFM 0 0 287.62 (13.61%) 102.84 (4.86%)

actual allocation 36.05 (1.71%) 534.94 (25.30%) 0 595.42 (28.17%)

flexible ETSD 0 0 266.95 (12.63%) 0

Table 3. The number of applicants who are made strictly better off by a

change of a mechanism.

Next, we compare the rigid and flexible SOFMs with Bunkyo’s actual assignment.

Bunkyo’s mechanism is based on rigid envy-tolerating serial dictatorship (rigid ETSD),

just as is the case with Yamagata (with the limitation on the length of preference list).6

This means that, among other things, there may remain justified envy between two chil-

dren i and i′ if they are of different ages, while by construction there is no justified envy

between children of the same age. Bunkyo’s assignment is expected to have some effi-

ciency advantage over the rigid SOFM since justified envy is tolerated across different

ages, while the comparison with the flexible SOFM is theoretically indeterminate because

Bunkyo’s assignment is based on the rigid constraint, which may or may not overwhelm

the efficiency gain from tolerating justified envy across different ages.

We find that the flexible SOFM outperforms Bunkyo’s assignment not only in terms of

fairness but also in terms of efficiency. Regarding efficiency, all of our efficiency measures

favor the flexible SOFM; the average fraction of unmatched children decreased by 11.18%,

and 25.30% of children are matched with strictly preferred daycare under the flexible

SOFM while only 13.61% are matched with strictly preferred daycare under the actual

5If an applicant lists k daycare centers in her submitted preferences and gets unassigned to any of

them, then we list her as being assigned to her (k + 1)st choice.
6Bunkyo’s assignment mechanism has a few modifications to the serial dictatorship, most notably in

the way it treats siblings. However, deviation of Bunkyo’s assignment from pure serial dictatorship is

very minor in magnitude. Detail is available upon request.
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Figure 3. The fractions of matched applicants under different mechanisms.

allocation. Turning our focus to fairness, Table 2 provides several measures of envy for

Bunkyo’s assignment (note that all measures of envy are zero for the rigid and flexible

SOFM). There are 1622 pairs (i, s) such that i has a justified envy toward some i′ matched

to s under the actual allocations. Also, students involved in at least one of such pairs

and daycares involved are 40.82% and 96.83% of the respective total numbers. As for the

analysis of Yamagata’s data, the amount of envy for Bunkyo’s actual assignment seems

comparable to those in TTC on Boston and New Orleans data (Abdulkadiroglu et al.,

2017).

rigid SOFM flexible SOFM actual allocation flexible ETSD

pairs with envy 0 0 1622 (18.79%) 923.00 (10.70%)

students with envy 0 0 863 (40.82%) 613.79 (29.03%)

daycares with envy 0 0 61 (96.83%) 44.35 (70.40%)

Table 4. Measures of justified envy under different mechanisms. The

percentages for pairs with envies divide the numbers of pairs with envies by

the numbers of pairs (i, s) such that s is acceptable to i.
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Figure 4. Rank distributions under different mechanisms: The graph

reports the average cumulative number of children at each rank, as well as

its range across all 250 simulation runs.

We also study what happens in serial dictatorship if the rigid constraint is removed so

that it is only subject to the daycare constraint. In the induced mechanism, flexible envy-

tolerating serial dictatorship (flexible ETSD), some envy is tolerated while the constraint

is flexible in this mechanism. Thus, its efficiency is expected to be even higher than both

Bunkyo’s actual assignment and SOFM under daycare constraint. Somewhat surprisingly,

however, the magnitude of the improvement of this mechanism over the flexible SOFM

seems rather small; The average number of unmatched children decreases only by 63.83

(7.29%), and the average number of children who become strictly better off under the flex-

ible ETSD is 102.84 (4.86%). This difference is smaller than improvement of the flexible
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SOFM over Bunkyo’s assignment, whose corresponding numbers are 110.26 (11.18%) and

534.94 (25.30%), respectively. Meanwhile, the measures of envy show similar magnitudes

to those for Bunkyo’s assignment. These numbers may suggest that the flexible SOFM

may be a potentially useful mechanism in daycare allocation.

Overall, the numerical analysis we report here suggest that the main findings for Yam-

agata are robust to data features.


