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Introduction

I ML and RCT are the two most important developments for
empirical researchers in the past few years

I ML: A set of constantly evolving prediction tools such as:
I random forests,
I boosted trees,
I lasso,
I ridge,
I deep and standard neural nets,
I gradient boosting,
I their aggregations,
I and cross-hybrids.
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What do they have to do with each other?

I ML is primarily used for prediction across a large number of
variables

I RCT for causal effects for a low dimensional parameter (the
“treatments”)

I It seems they would have different applications. In
development, ML tools have been used for:

I predicting which region or person is poor (Blummenstock et al)
I classifying urban landscapes (Naiak)
I ... and growing
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But they have actually some things in common

I ML tools are developed for causal estimation of a low
dimensional parameter. That can be compared with RCT.

I RCT face some problems which are high dimensional
I What control variables to chose?
I What are the relevant dimensions of heterogeneity?
I Multiple treatments and multiple outcomes.
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Outline

1. Lalonde redux: Comparing RCT to ML estimate of causal
effects

2. Choosing control variables

3. Assessing heterogeneity: method and applications
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RCT as benchmark for ML tools for causal effects
Chernozhukhov at al (2018) “Double Machine learning ...”

I Main goal: Estimate and construct confidence intervals for a
low-dimensional parameter (θ0) in the presence of
high-dimensional nuisance parameter (η0)

I Now we have a causal question, akin to the questions that are
asked by RCT. And the possible suggestion to use a rich array
of control variables.

I Lots of work using double Lasso (e.g. Belloni, Chernozukhov,
Hansen)

I This paper: “double/di-biased” ML or “orthogonalized”
ML and sample splitting that can be used with any tools

I Method has started to be used a lot (by Amazon, Microsoft,
etc) but does it work and when? We need more “Lalonde”
style studies to tell us...
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Inference using Modern Nonlinear Regression Methods

I Inference question: how does the predicted value of Y change
if we increase a regressor D by a unit, holding other regressors
Z fixed?

I We answer this question within the context of the partially
linear model, which reads:

Y = βD + g(Z ) + ε, E[ε | Z ,D] = 0,

where Y is the outcome variable, D is the regressor of
interest, and Z is a high-dimensional vector of other regressors
or features, called “controls”.

I The coefficient β provides the answer to the inference
question.

I (Note) This approach can be extended to ATE in
heterogenous models
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I We can rewrite the model in the partialled-out form as:

Ỹ = βD̃ + ε, E(εD̃) = 0, (1)

where Ỹ and D̃ are the residuals left after predicting Y and D
using Z , namely,

Ỹ := Y − `(Z ), D̃ := D −m(Z ),

where `(Z ) and m(Z ) are defined as conditional expectations
of Y and D given Z :

`(Z ) := E[Y | Z ], m(Z ) := E[D | Z ].
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The equation E(εD̃) = 0 above is the Normal Equation for the
population regression of Ỹ on D̃. This implies the following result:

[Frisch-Waugh-Lovell for Partially Linear Model] The
population regression coefficient β can be recovered from the
population linear regression of Ỹ on D̃:

β = arg min
b

E(Ỹ − bD̃)2 = (ED̃2)−1ED̃Ỹ ,

where β is uniquely defined if D cannot be perfectly predicted
by Z , i.e. ED̃2 > 0.

So β can be interpreted as a regression coefficient of residualized
Y on residualized D, where the residuals are defined by taking-out
the conditional expectation of Y and D given Z , from Y and D.
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Estimation of β: The DML Procedure

I Our estimation procedure for β in the sample will mimic the
partialling out procedure in the population.

I In order to avoid the possibility of overfitting we rely on
sample splitting. We have data (Yi ,Di ,Zi )

n
i=1. We randomly

split the data into two halves: one half will serve as an
auxilliary sample, which will be used to estimate the best
predictors of Y and D, given Z , and then estimate the
residualized Y and residualized D. Another half will serve as
the main sample and will be used to estimate the regression
coefficients.

I Let A denote the set of observation names in the auxiliary
sample, and M the set of observations names in the main
sample.
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Estimation of β via DML Procedure

Step 1: using auxiliary sample, we employ modern nonlinear regression
methods to build estimators ̂̀(Z ) and m̂(Z ) of the best
predictors `(Z ) and m(Z ). Then, using the main sample, we
obtain the estimates of the residualized quantities:

Y̌i = Yi − ̂̀(Zi ), Ďi = Di − m̂(Zi ), for each i ∈ M,

and then using ordinary least squares of Y̌i on Ďi obtain the
estimate of β, denoted by β̂1 and defined by the formula:

β̂1 = arg min
b

∑
i∈M

(Y̌i − bĎi )
2.

Step 2: we reverse the roles of the auxiliary and main samples, repeat
Step 1, and obtain another estimate of β, denoted by β̂2.

Step 3: we take the average of the two estimates from Steps 1 and 2
obtaining the final estimate:

β̂ =
1

2
β̂1 +

1

2
β̂2.
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Point I. Without Othogonalization, “Naive” or
Prediction-Based ML Approach is Bad

I Predict Y using D and Z , and obtain

Dβ̂0 + ĝ0(Z )

I For example, estimate by alternating minimization. Given
initial guesses, run Random Forest of Y − Dβ̂0 on Z to fit
ĝ0(Z ), and then Ordinary Least Squares of Y − ĝ0(Z ) on D
to fit β̂0. Repeat until convergence.

I Excellent prediction performance! BUT the distribution of
β̂0 − β0 looks like this:
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Point II. The “Double” ML Approach is Good
1. Predict Y and D using Z with

Ê[Y |Z ] and Ê[D|Z ],

obtained using the Random Forest or other “best performing
ML” tools.

2. Residualize Ŵ = Y − Ê[Y |Z ] and V̂ = D − Ê[D|Z ]

3. Regress Ŵ on V̂ to get β̂0.
I Frisch-Waugh-Lovell (1930s) style. The distribution of
β̌0 − β0 looks like this:
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Putting the approach to the test

I No magic here: This is just a disciplined way to use a large
number of covariates. Frish-Waugh for the 21st century.

I But the causal estimate is only as good as the covariates.

I To assess the potential of these methods with a potentially
large amount of control variables, need to compare to the
“truth”.
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One example: Secondary education in Ghana
Duflo, Dupas, Kremer

I Ghana. Ongoing longitudinal study started in 2008

I Sampled 2,064 students admitted to local secondary school,
but had not enrolled (mostly due to lack of funds) by end of
Term 1 of school year 2008/2009

I Age 17 on average when start, we follow them until age 26

I 682 (randomly selected) received 4-year scholarships to attend
local secondary school
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The Lalonde exercise

We use DML to estimate (in the control group)

Y = βD + g(Z ) + ε, E[ε | Z ,D] = 0,

where D is secondary education. We compare with IV estimate,
where D is instrumented by T , received scholarship (and “naive”
OLS controlling for some obvious control variables, in particular
JHS score).
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Caveat (1): is IV good measure of treatment effect?

I Direct impact of getting scholarship on outcome:
I Financial (for inframarginals who would have paid anyway)
I Self confidence
I Psychological incentive effects.

I A few children in the control group go to technical institute:
I To the extent that quality is lower, returns to education are

under-estimated.
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Caveat (2): IV estimate returns for compliers

I Solution:
I Use ML to estimate treatment effect heterogeneity in the first

stage (see below)
I Estimate a weighted regression, so that the resulting estimates

represent the effect for people who are (in terms of their Z )
like the compliers
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Test scores

Feb 2018Returns to Secondary Education: GhanaDuflo, Dupas, Kremer

For test scores, ML does OK 
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Fertility

Feb 2018Returns to Secondary Education: GhanaDuflo, Dupas, Kremer

Marriage and Fertility : ML vs OLS (2017)
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Main outcomes, 2016

Feb 2018Returns to Secondary Education: GhanaDuflo, Dupas, Kremer

Comparing OLS, ML and IV (2016)
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Main outcomes, 2017

Feb 2018Returns to Secondary Education: GhanaDuflo, Dupas, Kremer

Comparing OLS, ML and IV (2017)
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Summary

I For many outcomes DML seems to come closer to the IV
estimate, sometimes quite close.

I For some it is still very different.

I It would be very useful to do this in more straightforward
applications when you directly compare the RCT treatment
effect with the DML estimate (for example in our setting,
effect of scholarships in the control group). I could not
immediately find one but there should some...
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Outline

1. Lalonde redux: Comparing RCT to ML estimate of causal
effects

2. Choosing control variables

3. Assessing heterogeneity: method and applications
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Choosing control variables in RCT

I In principle, it would not be necessary to control for anything
while running an RCT

I It may even be problematic (see Athey-Imbens discussion)
(stratify, don’t control)

I And potentially open the way to specification searching.

I But in practice, applied researchers often do, especially when
it happens by chance that some variables are imbalanced
(worry that this may bias the results one way or the other,
concern for precision).

I Unscientific survey of the applied researcher practice: try to
think about what variables may affect the outcomes of
interest. Then include it if it turns out that it is imbalanced.

I It turns out that this ‘method’ formalizes one for one by the
Belloni, Chernozhukhov, and Hansen double lasso approach.
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Post double selection lasso: a primer
Belloni et al

I Lasso: choose from z ’s to predict x in a linear regression

1. Solve the following minimization to obtain β̂:

min
β

En[(xi − z ′i β)2] +
λ

n
||Ψ̂β||1 (2)

2. Use any zij with β̂j 6= 0

I Post double selection lasso: choose from z ’s to control for
when estimating treatment effect of d on y

1. Solve (2) with xi = yi to obtain β̂1

2. Solve (2) with xi = di to obtain β̂2

3. Use any zij with β̂1,j 6= 0 or β̂2,j 6= 0

I Stata command “pdslasso” (Ahrens et al (2018)) implements
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What we do

1. Gather all potential control variables from baseline

2. Apply cleaning procedure to controls, which includes:
I Converting categorical variables into sets of indicators
I Adding the square of each variable

I Optional: adding two-way interactions of all variables

I Creating indicators for each variable =1 if the variable is
missing, then replacing missing values with 0

I Dropping one from any pair of perfectly collinear variables
I Standardizing variables

3. (Re)estimate treatment effects using post double selection
I Partial out strata fixed effects prior to lasso estimation
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Empirical Examples

I Olken et al (2014)

I Duflo et al (2015)
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Olken et al (2014): Health Outcomes

(1) (2) (3) (4) (5) (6) (7) (8)
Prenatal Midwife Postnatal Iron Percent Weight Vitamin Percent

Visits Delivery Visits Tablets Immunize Checks A Malnour
Panel A: Key Treatment Effects from Paper

Block Grants -0.274 0.040 -0.056 0.051 0.012 0.069 0.005 0.011
(0.201) (0.027) (0.120) (0.081) (0.018) (0.049) (0.055) (0.015)

Incentives 0.608*** -0.004 -0.104 0.078 0.015 0.096* -0.013 -0.027*
(0.220) (0.025) (0.140) (0.081) (0.018) (0.053) (0.058) (0.015)

Panel B: Key Treatment Effects with Post Double Selection Lasso
Block Grants -0.245 0.035 -0.096 0.042 0.022 0.081 0.011 0.019

(0.224) (0.027) (0.115) (0.084) (0.018) (0.051) (0.055) (0.015)
Incentives 0.420* 0.005 0.054 0.106 0.013 0.097* -0.014 -0.026

(0.240) (0.025) (0.135) (0.081) (0.018) (0.055) (0.059) (0.016)
N 3840 2763 2763 3791 3521 4804 2758 4749
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Olken et al (2014): Education Outcomes

(1) (2) (3) (4)
Participation Rate Gross Attendance

Age 7-12 Age 13-15 Age 7-12 Age 13-15
Panel A: Key Treatment Effects from Paper

Block Grants 0.004 -0.050** 0.002 -0.065***
(0.006) (0.023) (0.005) (0.024)

Incentives -0.004 0.016 -0.001 0.025
(0.006) (0.024) (0.006) (0.025)

Panel B: Key Treatment Effects with Post Double Selection Lasso
Block Grants 0.003 -0.049** 0.001 -0.064***

(0.006) (0.022) (0.006) (0.022)
Incentives -0.005 0.008 -0.003 0.019

(0.006) (0.022) (0.006) (0.023)
N 4962 1856 4952 1853
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Duflo et al (2015): Boys

(1) (2) (3) (4) (5) (6)
Dropped Attendance Ever Ever Ever Ever

Out Rate Married Pregnant Pregnant, Married,
Never Never

Married Pregnant
Panel A: Key Treatment Effects from Paper

Educ Sub Only -0.024** -0.001 -0.008* -0.002 0.001 -0.004
(0.011) (0.008) (0.004) (0.003) (0.001) (0.003)

HIV Educ Only 0.010 -0.021*** 0.000 -0.002 0.000 0.001
(0.010) (0.008) (0.005) (0.002) (0.001) (0.004)

Both -0.015 0.000 -0.010** -0.006** -0.000 -0.004
(0.010) (0.008) (0.004) (0.002) (0.001) (0.003)

Panel B: Key Treatment Effects with Post Double Selection Lasso
Educ Sub Only -0.021** -0.007 -0.007* -0.002 0.001 -0.003

(0.010) (0.008) (0.004) (0.003) (0.001) (0.003)
HIV Educ Only 0.010 -0.022*** 0.002 -0.002 -0.000 0.003

(0.009) (0.008) (0.004) (0.003) (0.001) (0.003)
Both -0.021** 0.001 -0.009** -0.005** -0.001 -0.004

(0.010) (0.007) (0.004) (0.002) (0.001) (0.003)
N 9461 8985 9393 9433 9382 9382
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Duflo et al (2015): Girls

(1) (2) (3) (4) (5) (6)
Dropped Attendance Ever Ever Ever Ever

Out Rate Married Pregnant Pregnant, Married,
Never Never

Married Pregnant
Panel A: Key Treatment Effects from Paper

Educ Sub Only -0.031** -0.002 -0.026** -0.027** -0.004 -0.002
(0.012) (0.006) (0.010) (0.011) (0.006) (0.003)

HIV Educ Only 0.003 -0.008 0.011 -0.007 -0.014** 0.005*
(0.011) (0.006) (0.009) (0.011) (0.006) (0.003)

Both -0.016 0.000 -0.000 -0.011 -0.013** -0.001
(0.012) (0.006) (0.009) (0.010) (0.006) (0.003)

Panel B: Key Treatment Effects with Post Double Selection Lasso
Educ Sub Only -0.016 -0.001 -0.020** -0.020* -0.003 -0.001

(0.012) (0.006) (0.010) (0.011) (0.006) (0.003)
HIV Educ Only 0.006 -0.007 0.011 0.001 -0.013** 0.003

(0.011) (0.006) (0.009) (0.011) (0.006) (0.003)
Both -0.010 0.002 0.001 -0.007 -0.012** -0.001

(0.011) (0.006) (0.009) (0.011) (0.006) (0.003)
N 9116 8232 9107 9072 9072 9072
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Outline

1. Lalonde redux: Comparing RCT to ML estimate of causal
effects

2. Choosing control variables

3. Assessing heterogeneity: method and applications
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Heterogeneous Effects in Randomized Experiments

I Very often we want to know how effects vary with covariates
I to explore mechanisms
I to predict what the result may be in a specific population

I We often have many potential covariates: again, risk of
specification searching

I Solution 1: pre-register. But that is very unsatisfactory. This
amounts to throwing away lots of data.

I Solution 2: use machine learning to guide prediction. This has
gained traction with empirical researchers:

I Hussam, Rigol and Roth paper you will see later: compare ML
prediction of who should be more affected by a grant with
human prediction.

I Davis and Heller: predicting summer job (both use Wager and
Athey (2017))
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The problem...

I Once again, generically, ML tools are great at prediction but it
is much more difficult to obtain valid inference

I Several papers (e.g. Athey and Wager, Athey and Imbens)
make progress by focusing on some methods (e.g. trees or
forest) or assumptions that guarantee consistency may be
satisfied

I We build on the DML approach above to build tools that can
work with any ML method you like and provide valid
confidence intervals

I The key will be to give up on estimating all the possible
heterogeneity but focus on a limited number of core features
(is there heterogeneity? what are the characteristics of those
with the largest treatment effect?)
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Methodology: the set up

I Let Y (1) and Y (0) be the potential outcomes in the
treatment state 1 and the non-treament state 0. Let Z be a
vector of covariates. The main causal functions are the
baseline conditional average:

b0(Z ) := E[Y (0) | Z ],

and the conditional average treatment effect:

s0(Z ) := E[Y (1) | Z ]− E[Y (0) | Z ].

I Suppose the treatment variable D is randomly assigned
conditional on Z , with probability of assignment depending
only on a subvector of stratifying variables Z1 in Z , namely
D ⊥⊥ (Y (1),Y (0)) | Z , and the propensity score is known and
is given by

p(Z ) := P[D = 1 | Z ] = P[D = 1 | Z1].
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I The observed outcome is given by
Y = DY (1) + (1− D)Y (0). Under the stated assumptions,
the causal functions coincide with the components of the
regression function of Y given D,Z :

Y = b0(Z ) + Ds0(Z ) + U, E[U | Z ,D] = 0,

that is,
b0(Z ) = E[Y | D = 0,Z ]

and
s0(Z ) = E[Y | D = 1,Z ]− E[Y | D = 0,Z ].

I We assume that the propensity score is bounded away from
zero or unity:

p(Z ) ∈ [p0, p1] ⊂ (0, 1).

I We observe Data = (Yi ,Zi ,Di )
N
i=1, consisting of i.i.d. copies

of random vector (Y ,Z ,D) having probability law P.
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Properties of Machine Learning Estimators of s0(Z )

I Work well in practice for prediction purposes, much better
than classical methods in the high-dimensional settings, albeit
many tuning parameters. Real implementations produced by a
huge engineering effort.

I Justification is very often heuristic and practice based.
Theoretical justification is available in some cases, existence
type results. There exist tuning parameters that make some of
these methods work under assumptions that are hard to verify
in practice.

I Often there are not known theoretical guarantees for real
implementations with the real tuning parameters (exception:
Lasso)

I Consequence: We don’t know how to do uniformly valid
confidence bands based on z 7→ ŝ0(z).
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Our (Agnostic) Approach

I We propose two strategies for inference about

key features of s0(Z ) rather than s0(Z ).

I Both rely on the random data splitting into the main sample,
indexed by M, and an auxiliary sample, indexed by A.

I From the auxiliary sample A, we obtain Machine Learning
estimates of the baseline and treatment effects, which we call
proxy scores

z 7→ B(z) = B(z ;DataA)

and
z 7→ S(z) = S(z ;DataA),

which are possibly biased and noisy predictors of b0(z) and
s0(z).

I We condition on the auxiliary sample, so we consider these
maps as frozen.
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Target Parameters

I We target and develop valid inference about key features
of s0(Z ) rather than s0(Z ), which include

(1) Best linear predictor (BLP) of s0(Z ) using S(Z );

(2) Average of s0(Z ) (ATE) by heterogeneity groups induced
by S(Z );

(3) Average characteristics of the most and least affected
units.

I Our approach is generic with respect to the Machine Learning
method being used, and is agnostic about its properties.
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BLP of s0(Z ) on S(Z ): First Strategy

Consider the weighted linear projection:

Y = α′X1+β1(D−p(Z ))+β2(D−p(Z ))(S−ES)+ε, E[w(Z )εX ] = 0,

where S := S(Z ),

w(Z ) = {p(Z )(1− p(Z ))}−1, X := (X1,X2)

X1 := X1(Z ), e.g. X1 = (1,B(Z )),

X2 := (D, (D − p(Z ))S(Z )).

The first main result is

β1 + β2(S(Z )− ES) = BLP[s0(Z ) | S(Z )],

in particular β1 = ES0(Z ) and
β2 = Cov(s0(Z ), S(Z ))/Var(S(Z )).
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Special Cases

I If S(Z ) is a perfect proxy for s0(Z ), then

β2 = 1.

I In general, β2 6= 1, correcting for noise in S(Z ).

I If S(Z ) is complete noise, uncorrelated to s0(Z ), then β2 = 0.

I If there is no heterogeneity, that is s0(Z ) = s, then

β2 = 0.

I Rejecting the hypothesis

β2 = 0

means that there is heterogeneity and S(Z ) is its relevant
predictor.
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Average s0(Z ) by Groups

I The target parameters are

E[s0(Z ) | G ],

where G is an indicator of a group membership.

I We build the groups to explain as much variation in s0(Z ) as
possible

Gk = {S ∈ Ik}, k = 1, ...,K ,

where Ik = [`k−1, `k) are non-overlaping intervals that divide
the support of S into regions [`k−1, `k) with equal or unequal
masses:

−∞ = `0 < `1 < . . . < `K = +∞.

I The parameters of interest are

E[s0(Z ) | Gk ]
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Average s0(Z ) by Groups: First Strategy

I Consider the weighted linear projection:

Y = α′X1+
K∑

k=1

γk ·(D−p(Z ))·1(S ∈ Ik)+ν, E[w(Z )νW ] = 0,

(3)
for B := B(Z ), S := S(Z ),

W = (W ′
1,W

′
2)′ = (X ′1, {(D − p(Z ))1(S ∈ Ik)}Kk=1)′.

I D − p(Z ) in the interaction (D − p(Z ))1(S ∈ Ik)
orthogonalizes this regressor relative to all other regressors
that are functions of Z .

I X1, e.g. B, is included to improve precision, but can be
omitted.

I The second main result is

γk = E[s0(Z ) | Gk ].
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Classification Analysis

I Focus on the “least affected group” G1 and “most affect
group” GK .

I Let g(Y ,Z ) be a vector of characteristics of a unit.

I The parameters of interest are the average characteristics of
the most and least affected groups:

δ1 = E[g(Y ,Z ) | G1] and δK = E[g(Y ,Z ) | GK ].

I Compare δK and δ1 to quantify differences between the most
and least affected groups.

I δK and δ1 are identified because they are directly observed.
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Inference: Target

Let θ denote a generic target parameter or functional, e.g.,

I θ = β2 is the heterogeneity loading parameter;

I θ = β1 + β2(S(z)− ES) is the personalized BLP of s0(Z );

I θ = γk is the expectation of s0(Z ) for the group {S ∈ Ik};

I θ = γK − γ1 is the difference in the expectation of s0(Z )
between the most and least affected groups;

I θ = δK − δ1 is the difference in the expectation of the
characteristics between the most and least affected.
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Quantification of Uncertainty: Two Sources

I Two sources:

(I) Estimation uncertainty regarding the parameter θ, conditional
on the data split;

(II) Uncertainty induced by the data splitting.

I We develop confidence intervals that take both sources into
account
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Application to Morocco Data (Crépon et al (2015))

I The effect of access to microfinance services, experiment from
Morocco.

I 162 villages in rural areas of Morocco are divided into 81 pairs.

I One treatment and one control village were randomly assigned
within each pair.

I In treated villages, a microfinance institution opened branches.

I Introduced in 2006, outcomes from follow-up surveys in 2009.

I Y is financial and non-financial outcomes, D is indicator of
offering access to microfinance services, and Z are 22
household characteristics including the number of household
members, number of adults, head age, and 81 pair dummies.

I We use stratified sample splitting where the strata are village
pairs.
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Application to Morocco Data (Crépon et al (2015))
I For each iteration, split sample into main (M) and auxiliary

(A)
I Tune and train ML method to learn B and S using A
I Estimate the BLP parameters by weighted OLS

Yi = α̂′X1i+β̂1(Di−p(Zi ))+β̂2(Di−p(Zi ))(Si−EN,MSi )+ε̂i , i ∈ M

I Estimate the GATES parameters by weighted OLS

Yi = α̂′X1i +
K∑

k=1

γ̂k · (Di − p(Zi )) · 1(Si ∈ Ik) + ν̂i , i ∈ M,

I Estimate the CLAN parameters by

δ̂1 = EN,M [g(Yi ,Zi ) | Si ∈ I1] and

δ̂K = EN,M [g(Yi ,Zi ) | Si ∈ IK ],

X1i includes a constant, B(Zi ) and S(Zi ), and village pair fixed
effects. Standard errors are clustered at the village level.
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BLP of Conditional Average Treatment Effect

Elastic Net Random Forest

ATE (β1) HET (β2) ATE (β1) HET (β2)

Amount of Loans 1,163 0.238 1,185 0.375
(544,1736) (0.021,0.448) (561,1771) (0.028,0.774)

[0.000] [0.060] [0.000] [0.069]

Output 5,095 0.262 5,027 0.192
(232,10033) (0.085,0.433) (-89,10194) (-0.100,0.508)

[0.079] [0.008] [0.109] [0.391]

Profit 1,553 0.244 1,603 0.279
(-1344,4389) (0.079,0.416) (-1276,4536) (0.046,0.518)

[0.584] [0.008] [0.521] [0.039]

Consumption -59.1 0.157 -58.6 0.196
(-161.5,44.2) (-0.058,0.385) (-166.6, 43.3) (-0.160,0.574)

[0.514] [0.278] [0.508] [0.553]

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.
P-values for the hypothesis that the parameter is equal to zero in brackets.
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Sorted effects: Amount of Loans
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Sorted effects: Output
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Sorted effects: Profit
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Sorted effects: Consumption
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Sorted Group Average Treatment Effects: Microfinance

Table: GATES of 20% Most and Least Affected Groups

Elastic Net Random Forest

20% Most 20% Least Difference 20% Most 20% Least Difference
(γ5) (γ1) (γ5 − γ1) (γ5) (γ1) (γ5 − γ1)

Amount of Loans 2,677 -197 2,995 2,870 94.707 2,814
(1298,4076) (-1835,1307) (945,5103) (1149,4587) (-1663,1723) (503,5193)

[0.000] [1.000] [0.008] [0.002] [1.000] [0.032]

Output 22,367 -3,039 25,088 21,606 626 21,035
(7678,36920) (-12546,6535) (7028,42698) (5862,38022) (-11871,13529) (125,43170)

[0.007] [1.000] [0.015] [0.015] [1.000] [0.097]

Profit 10,644 -1,152.242 11,768 11,540 -2,031 14,037
(2146,19096) (-7250,4952) (1077,22422) (2965,20955.576) (-8721,4796) (2459,25833)

[0.028] [1.000] [0.061] [0.014] [1.000] [0.037]

Consumption 66.4 -333 383 62 -300 332
(-166.2,289.8) (-695.6,23.2) (-38.0,805.6) (-271,346) (-683,66) (-196,835)

[1.000] [0.140] [0.152] [1.000] [0.228] [0.429]

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.
P-values for the hypothesis that the parameter is equal to zero in brackets.
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Classification Analysis: Microfinance

Elastic Net Random Forest

10% Most 10% Least Difference 10% Most 10% Least Difference

(δ10) (δ1) (δ10 − δ1) (δ10) (δ1) (δ10 − δ1)

Amount of Loans

Head Age 29.3 35.2 -6.6 23.0 33.8 -10.4
(26.3,32.4) (32.2,38.2) (-10.9,-2.4) (19.8,26.2) (30.5,36.9) (-14.9,-6.0)

- - [0.004] - - [0.000]
Non-agricultural self-emp. 0.199 0.068 0.123 0.134 0.118 0.022

(0.159,0.238) (0.030,0.108) (0.069,0.178) (0.096,0.173) (0.076,0.156) (-0.033,0.075)
- - [0.000] - - [0.875]

Borrowed from Any Source 0.144 0.169 -0.038 0.109 0.217 -0.107
(0.099,0.189) (0.124,0.212) (-0.101,0.025) (0.064,0.153) (0.175,0.262) (-0.164,-0.050)

- - [0.448] - - [0.001]
Output

Head Age 36.280 36.708 -0.896 29.090 30.831 -1.925
(33.4,39.1) (33.6,39.6) (-5.242,3.432) (25.8,32.3) (27.5,34.1) (-6.648,2.799)

- - [1.000] - - [0.849]
Non-agricultural self-emp. 0.275 0.050 0.226 0.215 0.088 0.130

(0.233,0.315) (0.007,0.093) (0.169,0.285) (0.172,0.257) (0.045,0.129) (0.070,0.190)
- - [0.000] - - [0.000]

Borrowed from Any Source 0.193 0.215 -0.033 0.165 0.189 -0.024
(0.142,0.241) (0.167,0.262) (-0.102,0.034) (0.121,0.208) (0.146,0.234) (-0.086,0.039)

- - [0.687] - - [0.895]
Profit

Head Age 34.1 40.4 -6.5 29.2 33.7 -5.8
(31.2,37.0) (37.5,43.4) (-10.7,-2.5) (25.7,32.6) (30.390,37.108) (-10.566,-1.217)

- - [0.003] - - [0.029]
Non-agricultural self-emp. 0.181 0.108 0.082 0.153 0.099 0.051

(0.140,0.222) (0.068,0.149) (0.022,0.138) (0.113,0.192) (0.058,0.139) (-0.003,0.105)
- - [0.014] - - [0.129]

Borrowed from Any Source 0.180 0.257 -0.091 0.144 0.162 -0.032
(0.130,0.230) (0.207,0.307) (-0.160,-0.022) (0.098,0.190) (0.122,0.206) (-0.095,0.029)

- - [0.020] - - [0.578]

Notes: Medians over 100 splits. 90% confidence interval in parenthesis.
P-values for the hypothesis that the parameter is equal to zero in brackets.
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A second application: comparing two interventions
Cream skimming and the comparison between different interventions.
Bruno Crepon, Esther Dulo, Elise Huillery, William Pariente, Juliette Seban, Paul-Armand
Veillon

I Increasing number of RCT on a same topic: active literature
to explore how results change

I Same intervention in different contexts or populations (Allcott
(2015)) or close to similar interventions (Imbens and Hotz
(2005))

I Many meta-analyses (Meager (2016), Card et al. (2018),
Grimm et al. (2015))

I Sometimes programs are different but selection is also different
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This project compares two interventions with the same goal

I ADIE: launched by a microcredit agency; GC: launched by the
social services “one stop shop” for the youth.

I Both target unemployed youth with a self employment project.

I Both aim to put them back in employment.
I Some differences

I ADIE selects; GC takes everyone
I ADIE really emphasizes the self employment project. GC uses

it as leverage but would be happy to place people with salaried
jobs instead.
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GC is effective, ADIE is not

Figure: Comparison of ITT(ADIE) and ITT(GC)

The error bars display the 95% confidence interval. Details

ADIE=0 GC=0 ADIE=GC

Wald Test 0.94 0.034 0.226
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Is GC really more effective than ADIE?

I Does GC target a different population?

I Or is the content of the program more effective?

I We will compare ADIE and GC populations and evaluate GC
impact on ADIE population

I Matching on the baseline characteristics
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The populations are different on unobservables

I After controlling for observables, ADIE control group still does
much better than the control group in GC (68% of ADIE
control group employed vs 44% in GC)

I ADIE: interviews candidates to explicitly look for motivated
people.

I ADIE: good at selecting people based on their observable and
unobservable variables (non-cognitive and cognitive skills)

I As stressed in Heckman et al. (2002), cream-skimming is
problematic when the impact is heterogeneous and decreases
with the propensity to be enrolled
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Can we do better?

I Limited set of variables available in both data sets (X0).

I However, a broad set of variables in GC initial survey (X1):
cognitive skills, their employment history, their project
progress, their motivation...

⇒ What would have been the effect of the GC program if they had
picked people who were as likely to find a job anyway as the ADIE
population (based on this rich set of variables)?

I Strategy to match participants based on their potential
probability to be employed, E 0:

– We estimate the probability to be employed
Ẽ (0) = E (E (0) | X0,X1,D = 0,TGC = 0) without treatment

– We look at the heterogenity according to Ẽ (0)

– We estimate GC effects in the population with high Ẽ (0) (so
that they are similar to ADIE).
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Steps of our strategy

1. Estimate the heterogeneous component

Ẽ (0) = E (E (0) | X0,X1,D = 0,TGC = 0)

2. Explore heterogeneity of GC impact with respect to Ẽ (0)

3. Estimate and interpret weights computed so that

E (w∗Ẽ (0)|D = 0) = E (E (0)|D = 1,TADIE = 0)

4. Estimate impacts of the GC program using weights w∗, and
compare to ADIE impact and GC impact on full sample
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Prediction of E 0

Three constraints to apply ML methods (Hastie et al. (2008)):

– Only 294 observations in GC control group: cannot train too
complex ML algorithms (NN, boosting..)

– More covariates than observations (curse of dimensionality)

– Cross-folding procedure to avoid overfitting: our prediction
relies on the random partitioning of the sample.

Figure: Cross folding

64 / 71



Prediction of E 0

I Randomly partition our sample in ten splits (stratify by sites)

I For a given split, select the predictors by running a lasso on
the nine other splits (tuning parameter by CV).

I Logit model with nine splits used for the lasso regression to
predict the outcome for the given split (to remove the bias
induced by a direct lasso)

I Repeat this 300 times to get predictions based on different
random splitting

I For a given observation, take the median of the 300
predictions produced for this observation.
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Is there any Heterogeneity?

I ÎTT (GC |ADIE ) differ from what we obtained only if the
treatment is heterogeneous according to Ẽ (0)

I We estimate the following specification (Chernozhukov et al.
(2017))

Y =α + γẼ (0) + β1(Ti − P(Z ))+

β2(Ti − P(Z ))(Ẽ (0)− Ẽ (0)) + ε | E(ω(Z )εẼ (0)) = 0

where P(Z ) = P(T | Z ) and Z a set of covariates,
ωi = 1

p(Z)(1−p(Z) .

I Rejecting the hypothesis β2 = 0 means that there is
heterogeneity according to Ẽ (0).
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There is heterogeneity which is related to predicted
employment

(T − P(Z )) (T − P(Z ))× (Ẽ (0)− Ẽ (0)) Obs.
(1) (2) (3)

Employed 0.18 -0.34 624
(0.08) (0.16)

Wage employed 0.17 -0.18 624
(0.08) (0.16)

Employed (>6 mths) 0.11 -0.12 624
(0.07) (0.16)

Self-employed -0.01 -0.07 624
(0.03) (0.08)

Labour Income 176.92 -141.91 619
(101.15) (219.06)

Wage 156.72 -59.3 619
(100.42) (217.02)

Business Income 20.35 -82.76 623
(22.82) (68.62)

Welfare payments -21.86 -40.79 616
(58.36) (121.9)

The specifications include survey month fixed effects. We display robust stds.
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Impact of different level of ”cream skimming”

Figure: Weighting schemes

Each orange dot shows the treatment effect when picking the X%
applicants predicted to be most likely to get a job anyway.
Each blue dot shows the treatment effect when picking the X% of
applicants predicted to be least likely to get a job anyway.
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Two weighting schemes that make the GC population look
like ADIE’s –in terms of employment

Figure: Weighting schemes
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Table: Average treatment effect on ADIE population

Weighted average Weighted OLS
GC control Binary w Hai. w ITT(GC) ITT(ADIE) Binary w Hai. w

(1) (2) (3) (4) (5) (6)7)
Employed 0.44 0.58 0.58 0.03 -0.04 -0.04 0

(0.04) (0.04) (0.07) (0.11)
Wage employed 0.36 0.48 0.48 0.08 -0.03 0.04 0.07

(0.04) (0.05) (0.07) (0.12)
Employed (>6 mths) 0.28 0.39 0.39 -0.02 0 0.02 0.05

(0.04) (0.05 (0.06) (0.12)
Self-employed 0.07 0.09 0.09 -0.04 0.02 -0.06 -0.04

(0.02) (0.04) (0.04) (0.07)
Labour Income 466.72 637.51 637.51 108.61 -40.09 98.29 73.17

(52.38) (79.33) (94.19) (176.33)
Wage 432.66 584.82 584.82 124.95 -9.3 119.25 109.11

(50.85) (70.09) (91.4) (172.75)
Business Income 33.71 52.52 52.52 -16.16 -11.16 -20.96 -35.91

(16.44) (44.01) (41.02) (80.54)
Welfare payments 225.79 241.34 241.34 -38.89 -4.75 -79.12 -58.46

(26.24) (33.39) (44.92) (84.29)

The specifications include survey month fixed effects. We diplay robust standard errors.
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Thank you!

Find the codes at
https://github.com/demirermert/MLInference
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