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I Gov’t yields experience wild and tranquil periods.

I Not clearly correlated with publicly observed “fundamentals.”

I Why? Does information environment and market structure matter?
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Overview

1. Study role of asymmetric information in gov’t bond auctions.

(a) Obtain clear characterization by studying Walrasian limit

I Many bidders and perfect divisibility.

I Ex-post risk and information acquisition.

(b) Link risk premia to participation and adverse selection.

(c) Find that auction protocol induces equilibrium multiplicity.

Uninformed vs. (multiple) informed equlibria, Pareto-ranked.

2. Compare discriminatory and uniform price auctions.

(a) Strong tradeoff between protocols only if information is asymmetric.

⇒ DPA: higher avg. debt burden, less exposure to demand shocks.

(b) Information is more likely to be asymmetric in DPA.
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Relationship to the Literature

I Fits into the efforts to understand sovereign bond prices.

I Fits into the classic GE discussion ”where do prices and the infor-

mation in them come from?”

I Walras auctioneer, market games, etc.

I Grossman/Stiglitz (1980).

I Auctions are ways of micro founding prices & info. (Milgrom 1981).

I Fits into a particular corner of auction theory.

I Theory: Focus on strategic considerations (few bidders).

I Empirics: Hortacsu and McAdams (2010), Kastl (2011), Gupta

and Lamba (2017).

For us, many bidders + divisible good ≈ price-taking.
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Model

I Government needs to raise D (to rollover debt) by selling bonds.

I Promises to repay 1 per unit of bond, but pays 0 if it defaults.

I If raises D, defaults with probability κθ, where θ ∈ {b, g} with

κb > κg and
∑
θ f(θ) = 1. Otherwise it always defaults.

I Unit mass of risk-averse potential investors with wealth W .

I Access to a risk-free bond with return 1.

I A random share η of investors do not show up to buy bonds, with

η ∈ [0, ηM ], ηM < 1 and
∫
η
g(η) = 1.

I Information structure s ∈ S = {g, b} × [0, ηM ].

I No investor knows demand shock η.

I A fraction n knows θ (i = I). The rest do not (i = U).
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Walrasian Auctions

1. Assume government sells debt at Walrasian auction:

(i) Perfect divisibility + many bidders.

(ii) Investors take set of marginal prices as given.

2. Investors submit bid schedules BI(P |θ) and BU (P ) for all P .

I No short-selling: B ≥ 0 for all P and θ.

I May (and will) choose to bid at multiple prices.

I Bids = commitments to buy if accepted.

(Investors may infer θ from P ∗ ex-post, but cannot revise bids.)

3. Government executes bids in descending order of P

I Stops when Demand ≥ D: Marginal price, P (s). Ration if needed.
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Two Types of Auctions

I Uniform-Price Auction (UP):

I If bid accepted, the bidder pays the lowest accepted bid.

I Discriminatory-Price Auction (DP):

I If bid accepted, the bidder pays his/her bid.

I Marginal price P (s) in state s is the highest price such that

(1− η)

∫ 1

P (s)

[
nBI(P |θ(s)) + (1− n)BU (P )

]
PdP ≥ D

UP: P = P (s) DP: P = P

• In equilibrium, the auction will clear with equality.

6 / 40



Which Bids are Accepted?

Demand
shock η

Marginal
price

ηM

θ = g

θ = b

P (g, η∗g)

η∗gη∗b

•

Bid not accepted

Bid in the money

1. All bids above marginal price accepted ⇒ never bid at non-marginal price

2. Concern: overpaying (DP) and/or buying too much in bad states

3. Bids executed in different θ-states ⇒ need to infer expected default probability.
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Changing the Notation to Walras

Price takers only bid at marginal prices.

Definition

For each state s = (θ, η) ∈ S,

I The marginal price is denoted P (s) and set by P.

I Uninformed investors choose BU (s), # of units bid at P (s).

I Informed investors choose BI(s, θ̂), # of units bid at P (s) when

the realized θ is θ̂.

Bids at two states s and s′ where P (s) = P (s′) are perfect substitutes!

(The bidder buys (or not) the sum of the bids in both states.)
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Auction Equilibrium: Uninformed

The expected payoff to an uninformed investor is given by

∑
θ∈{g,b}

∫
η

 U(BURF ([θ, η]))κθ+

U
(
BURF ([θ, η]) + BUR([θ, η])

)
(1− κθ)

 f(θ)g(η)dη

The total risky bonds purchased BUR(s), is

BUR(s) =
∑

s′:P (s′)≥P (s)

BU (s′),

sum of in-the-money bids. ( Notation abuse warning.)
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Auction Equilibrium: Uninformed

Expenditures on risk-free bonds BURF ([s]) are a residual:

UP auction : BURF (s) = W −

 ∑
s′:P (s′)≥P (s)

BU (s′)

P (s),

DP auction : BURF (s) = W −

 ∑
s′:P (s′)≥P (s)

BU (s′)P (s′)

 .
The investor cannot short-sell or borrow, so nonegativity constraint

BU (s) ≥ 0 and BURF (s) ≥ 0 ∀s ∈ S.
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Auction Equilibrium: Informed

The expected payoff (given θ) to an informed investor is

∫
η

 U(BIRF ([θ, η], θ))κθ+

U
(
BIRF ([θ, η], θ) + BIR([θ, η], θ)

)
(1− κθ)

 g(η)dη ∀θ ∈ {g, b},

where risky bond purchases are

BIR(s, θ) =
∑

s′:P (s′)≥P (s)

BI(s′, θ) ∀θ ∈ {g, b},
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Auction Equilibrium: Informed

Total expenditures on risk-free bonds are a residual:

UP auction : BIRF (s, θ) = W −

 ∑
s′:P (s′)≥P (s)

BI(s′, θ)

P (s),

DP auction : BIRF (s, θ) = W −

 ∑
s′:P (s′)≥P (s)

BI(s′, θ)P (s′)

 ,
and the nonegativity constraints are

BI(s, θ) ≥ 0 and BIRF (s, θ) ≥ 0 ∀s ∈ S and ∀θ ∈ {g, b}.

Trivially, only bid at prices P (θ, η) and not at prices P (θ′, η) (θ′ 6= θ)
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Linear Algebra Structure
E.g. assume 4 states Pj > Pj+1. For the uniform protocol expenditures at auction are

X
i
UP =


P1 0 0 0

P2 P2 0 0

P3 P3 P3 0

P4 P4 P4 P4

 ∗

Bi

1

Bi
2

Bi
3

Bi
4

 = P
UP ∗ ~Bi

and for the discriminating protocol expenditures at auction are

X
i
DP =


P1 0 0 0

P1 P2 0 0

P1 P2 P3 0

P1 P2 P3 P4

 ∗

Bi

1

Bi
2

Bi
3

Bi
4

 = P
DP ∗ ~Bi

.

While the gross return R = 1−P is similar with Pj replaced by 1− Pj in the price

matrix. Auction clearing in all states are

[1− ~η] ·
(
n ∗XI

+ (1− n) ∗XU
)

= D
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Bid-Overhang Constraint

I Recall: Marginal price P (s) = highest price s.t. Demand ≥ D.

I Requirement: For all s, there cannot exist a state s̃ such that:

1. P (s̃) > P (s),

2. Demand given P (s̃) is enough to cover supply in state s.

I This constraint may bind, but only in the UP auction.

I For DP, high price bids reduce remaining supply at low prices.

I Removes source of multiplicity relative to C.Eq.

14 / 40



Auction Equilibrium

Definition

An equilibrium of a Walrasian auction is defined as a price function

P : S → [0, 1], and bidding functions BU : S → [0,∞) and

BI : S × {g, b} → [0,∞), such that

1. each type of investor’s bid function solves their problem,

2. the auction clearing condition is satisfied for all s ∈ S, and

3. the bid-overhand constraint is satisfied at each s ∈ S.
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Property of Price Functions

Proposition

For both auction formats the price function P (θ, η) is decreasing in η.

Hence, a bid at a price P (θ, η̂) is in-the-money for all η ≥ η̂, given θ.

If there are two states such that P (θ̄, η̄) = P (θ, η̂), then the bid is also

in-the-money for all η ≥ η̄ when θ̄.

Proposition

Since the price schedule conditional on θ is bounded and monotonic, it

follows that it is both continuous and differentiable almost everywhere.
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Specialize Model and Solve

We specialize the model to get simple expressions and illustrate forces.

I Preferences are log.

I We assume η is distributed uniformly on [0, ηM ].

Numerical Example:

I κg = 0.15, κb = 0.35 and f(b) = 0.5.

I Wealth of lenders, W = 250. Debt rolled over, D = 60.

I ηM = 0.17

Example chosen so there is perfect revelation ex-post and short sale

constraints do not bind.
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Uniform Price Auction



Symmetric Ignorance (n = 0)

I Prices cannot depend upon θ, P (g, η) = P (b, η) for all η ∈ H.

Hence, write P (η) for prices and B(η) for bond purchases.

I As prices convey no information about θ, the ex-ante probability

of default is κ̃(P ) = κU = f(g)κg + f(b)κb, for all η.

I As P (η) decline in η, B(η) > 0 for all η.
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Two Polar Cases: n = 0 and n = 1

1. Symmetric ignorance (n=0): prices independent of θ.

I Ex-ante default prob = κ̃(P ) = κU = f(g)κg + f(b)κb, for all η.

I Block-recursive problem from the top down. Prices in closed-form:

P (η) = 1− κU

1− D
W

1
1−η

∀η.

2. Symmetric Information (n=1): prices contingent on θ

I Analogous block-recursive construction. Prices in closed-form:

P (θ, η) = 1− κθ

1− D
W

1
1−η

∀η, θ

with state-contingent default probability κ(θ).
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Symmetric Ignorance (n = 0)
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Symmetric Information (n = 1)
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Replication in UP Auction

Proposition. In UP auctions, U-investors can perfectly replicate

the portfolio and payoffs of I-investors if and only if

1. Each marginal price is associated with a unique state in S.

(⇔ bid-overhang constraint does not bind).

2. The short-sale constraints do not bind for the uninformed at the

informed bids. Sufficient condition: BI(g, ηM ) ≤ BI(b, 0).

The bid-overhang constraint binds when the uninformed become too

many (when n < η), which forces price pooling.

Price pooling violates condition 1 and requires belief consistency.
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Uninformed Investors’ Inference

The uninformed investor does not know θ, but can make an inference

about the probability of default given a price, κ̃(P ).

I Easy if P only corresponds to one state: κ̃(P (θ, η)) = κθ

I More difficult if P corresponds to more than one state.

I When P (g, ηg) = P (b, ηb) use mass of η’s in [P (θ, ·)− ε, P (θ, ·) + ε]

to determine relative likelihood of each θ.

I This computation depends on the slope of P w.r.t. η.

A flatter slope in a schedule means more mass of η’s in a given

range 2ε around P , and then such schedule is more likely.

23 / 40



Once Bid-Overhang Forces Pooling

Take any two states s = [g, ηg] and s′ = [b, ηb] with a common price:

n

(
1− κg − P

1− P

)
+ (1− n)

(
1− κ̃− P

1− P

)
=
D

W

1

1− ηg
,

nmax

[(
1− κb − P

1− P

)
, 0

]
+ (1− n)

(
1− κ̃− P

1− P

)
=
D

W

1

1− ηb
. (1)

I Short-sale constraint can bind on informed when quality is κb.

I Cannot bind on the uninformed (of course).
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Prices when changing n
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Prices when changing n
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Prices when changing n
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Prices when changing n
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Convergence at extremes

Proposition

For both UP and DP auctions, price schedules P ([g, η];n) and

P ([b, η];n) converge to each other (for interior η) as n→ 0.

Proof.

For n sufficiently close to 0, η must partially order the price schedules.

If κθ < κθ′ and η > η′ then P ([θ, η];n) < P ([θ′, η′];n) < P ([θ, η′];n).

I Given θ prices are decreasing in η: P ([θ, η];n) < P ([θ, η′];n)

I As n→ 0: P ([θ′, η′];n) → P ([θ, η′];n)
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Multiple Equilibria
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Discriminatory Price Auction



Similar...yet very different

I Now concerned about buying too much and paying too much.

I Bids executed at different prices → price dispersion.

I “Inference” problem replaced by “in-the-money” problem.

(because bids are executed at bid price)

I Impossible to perfectly replicate informed portfolio.
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Symmetric Ignorance (n = 0)

Assuming log preferences. First order conditions in vector matrix form are:

−
(
W −P

DP × ~B
U
)−1

· ~P · κU
+
(
W + [1−P

DP
]× ~B

U
)−1

·
[
1− ~P

]
∗ [1− κU

] = 0.

Auction clearing is simply:

[1− ~η] ·
[
P

DP × ~B
U
]
= D

This is NOT block-recursive and then all prices have to be solved simultaneouly.
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Symmetric Ignorance (n = 0)
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Symmetric Information (n = 1)
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No Replication in DP auction

Proposition

In a DP auction, the uninformed will never be able to replicate the

bids of the informed, and hence their payoffs, so long as

1. κg 6= κb and f(g) and f(b) are both positive

2. Informed investors bid positive amounts for both θ = g and θ = b

for some values of η.
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Prices when changing n

33 / 40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Demand Shocks 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
P

ric
es

Severe adverse selection → U do not bid at g.

n = 0.60



Prices when changing n
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Prices when changing n
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Prices when changing n
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Comparison to Competitive Equilibrium

I In competitive equilibrium (CEq), there is a single realized price

and bids at prices other than the one realized are not binding.

I DP auction is not a CEq (several prices are realized given a state).

I UP auction may be a CEq (single price is realized given a state)

1. When short-sale constraints do not bind anywhere.

In CEq short-sale constraints affect total purchases, not each bid.

2. When the bid-overhang constraint does not bind.

In CEq the marginal investor is always informed.
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Comparing Protocols



Yields and Conditional Variances
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(a) Uniform Price Auction
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(b) Discriminating Price Auction

I With symmetric information (or ignorance) yields are similar.

I With asymmetric information yields are quite different: DP > UP ...

I ...and so is the conditional variance, but DP < UP so risk trade-off.



Endogenous Information Acquisition

I Allow investors to acquire information about θ at utility cost K.

I Then n is endogenous.

V I︷ ︸︸ ︷
V I(g)f(g) + V I(b)f(b)−V U ≥ K if n > 0

V I(g)f(g) + V I(b)f(b)− V U ≤ K if n < 1.

I Solve for V I(θ) and V U for all n. Then obtain n∗.
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Payoffs to Investors
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Equilibrium with Information Acquisition
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(f) Discriminatory Price Auction



Turbulence and Stability

I Sources of Turbulence

I Both in UP and DP: High degree of asymmetry (high n∗)

Price schedules are very different and sensitive to quality shocks.

I Only in UP. Low degree of asymmetry (low n∗).

Price schedules are very sensitive to demand shocks (both in terms

of slopes and multiplicity).

I Only in DP. Switch of informational regimes.

Sometimes prices react to quality shocks, sometimes not.

I Stability is maximized when n∗ = 0 (symmetric ignorance).

I DP auctions are in average more exposed to quality shocks.

I DP auctions may switch their sensitivity to quality shocks.

I UP auctions are in average more exposed to demand shocks.
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Final Remarks

I Novel analysis of auctioning divisible goods to many buyers.

I DP and UP similar under symmetric information or ignorance.

I Surprisingly different under asymmetric information (n ∈ (0, 1)).

I DP auctions may lead to multiple information regimes.

I Asymmetric information regime displays a tradeoff.

I UP auctions: Lower debt burden and exposure to quality shocks.

I DP auctions: Lower exposure to demand shocks.

I In either case, lower welfare (costly information here is a waste).

I Potential application beyond auctions, such as limit-order trading.
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Differences across Auction Protocols

I Starting with n = 1,

I DP: Severe adverse selection → uninformed buy on θ = b schedule only.

I UP: replication implies full participation by the uninformed.

I Shrink n ↓ ηM ,

I DP: Informed forced to hold more risk per-capita: P (g, η) declines.

I UP: no change because of replication.

I Shrink n < ηM ,

I DP: I’s risk exposure + U’s adverse selection drives P (g, η) < PU (η).

I UP: blending at prices close to P (g, η) due to bid overhang.

I Shrink n→ 0,

I DP: prices overlap, less adverse selection: κ̃ = κu so P (θ, η) → PU (η).

I UP: blending everywhere but extremes: κ̃→ κu so P (θ, η) → PU (η).

1 / 2



Expected Probability of Default

I Given P = φ(θ, η), define η = φ−1(P |θ).

I Define the probability of a set of prices, P ⊂ P, as

h(P) =
∑
θ f(θ)

∫
η:P (θ,η)∈P g(η)dη =

∑
θ f(θ)

∫
P̃ :φ−1(P̃ |θ)∈φ−1(P|θ)

∂φ−1(P |θ)
∂P

g(η)dP̃︸ ︷︷ ︸
Pr(P|θ)

I Infer probability from each θ and hence probability of default.

I Shrink P→ P to get expected probability of default given P :

κ̃(P ) =

∑
θ f(θ)Pr(P |θ)κθ

h(P )
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