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Introduction Model Estimation Conclusion

Motivation

A fundamental question in market microstructure is how the
(possible) presence of asymmetric information affects the price and
trading process.

A problem: information asymmetry is generally unobservable.

How can we use theory and the price and/or order flow data to
measure private information?

In Back, Crotty, Li (2018), we develop and estimate a structural
model of informed trading to address this question.

Unexplored question: From what distribution is private
information drawn?
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Back, Crotty, Li (2018)

We develop a structural model of informed trading and an
estimation procedure to identify information asymmetry.

Continuous-time Kyle model with uncertain information event
and magnitude
Propose ML estimation that allows use of intraday
observations
Estimation utilizes the joint distribution of returns and order
flows

For computational reasons, BCL (2018) makes simplifying
assumption that signal is binary in order to facilitate estimation.
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Some possible signal distributions
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Research questions

What types of distributions are private signals drawn from?

Are these distributions systematically linked to firm characteristics?

What explains time-series variation in private signals?

Are private signal distributions related to trading frictions (e.g.,
short-sale costs)?

What are the asset-pricing implications of private information
distributions?
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Computational issues

Estimating the model for non-binary signals involves
optimizing a likelihood function containing numerical
integration (in the pricing function).

Computing Time in Python
Signal Type Single Firm-Year 25-yr panel of 2500 firms
Triangular 15 hrs 1,070 yrs
Exponential 7 hrs 500 yrs
Normal 4 hrs 285 yrs
Lognormal 22 hrs 1,570 yrs
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Model

Continuous-time Kyle model with asset traded on time interval [0, 1]

Liquidity trades: Brownian motion Z with standard deviation σ

Risk-neutral competitive market makers

Information event at beginning with probability α
If there is an information event, a single trader sees a
zero-mean signal S
If there is no information event, the trader is still present in the
market as a value trader.

Public information = martingale V
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Definition of Equilibrium

Let ξ = indicator of information event (1 if yes, 0 if no).
Let Y = X + Z where X = strategic trader’s inventory.
Market makers observe cumulative order imbalances Y and
public information V .

Price must equal the expected value of the asset conditional
on the market makers’ information and given the trading
strategy of the strategic trader:

Pt = Vt + E
[
ξS | FV ,Y

t
]

︸ ︷︷ ︸
p(t,Yt)

Strategic trades must be optimal. The strategic trader
chooses a rate of trade to maximize expected profits.
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Order Imbalances in Equilibrium – Brownian Bridge
Let F denote the distribution function of the normally distributed
variable Z1.
Let G denote the continuous distribution function of the signal S.
Set yL = F−1(αG(0)) and yH = F−1(1− α + αG(0)), so

α prob(S ≤ 0)︸ ︷︷ ︸
Uncond. Prob. of Bad News

= prob(Z1 ≤ yL) ,

and
α prob(S > 0)︸ ︷︷ ︸

Uncond. Prob. of Good News

= prob(Z1 > yH) .

In equilibrium, final cumulative order flows (Y1) satisfy:
Y1 = F−1(αG(S)) < yL when there is a low signal (ξS < 0),
Y1 = F−1(1− α + αG(S)) > yH when there is a high signal
(ξS > 0),
yL ≤ Y1 ≤ yH when there is no info event (ξ = 0).
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Order Imbalance Paths in Equilibrium
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Equilibrium Trades

Equilibrium rate of trade depends on t, Yt , and whether
ξS < 0, ξS = 0, or ξS > 0:

E[Z1 − Zt | Zt = Yt , ξS] =
F −1(αG(s))− Yt if ξS < 0 ,
E[Z1 | Zt = Yt , yL ≤ Z1 ≤ yH ]− Yt if ξ = 0 ,
F −1(1− α + αG(s))− Yt if ξS > 0 .

(1)

divided by 1− t.

Market makers perceive order flows Y as a Brownian motion
with zero drift and std deviation σ.
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Equilibrium Prices (and a computational challenge)
Given the history of Y through time t, the equilibrium price is

p(t,Yt) =
∫ yL

−∞

Signal Value︷ ︸︸ ︷
G−1

(
F (z)
α

) Density of Z1 cond. on Zt = Yt︷ ︸︸ ︷
f (z | t,Yt) dz

+
∫ ∞

yH

G−1
(

F (z)− 1 + α

α

)
f (z | t,Yt) dz .

BCL (2018) makes a simplifying assumption about the signal
distribution - signal is either high or low: L < 0 < H.

Simplified pricing function:

p(t,Yt) = L×

Pr(low info | t, Yt )︷ ︸︸ ︷
N
(

yL − Yt

σ
√

1− t

)
+ H ×

Pr(high info | t, Yt )︷ ︸︸ ︷
N
(

Yt − yH

σ
√

1− t

)
.
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Estimation

Use the joint distribution of intraday prices and order imbalances.
Timing assumptions:

trading period corresponds to a day.
parameters are stable across year.

The gross return through time t is
Pit
Pi0

= Vit
Vi0

+ p(t,Yit) .

Vit is geometric Brownian motion with volatility δ.

Some signal parametrization: BCL (2018) assumes a binary
zero-mean signal with magnitude parameter κ such that

(Hi − Li )/Pi0 = 2κ

.
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Timing of Observations

Observe k + 1 daily prices (Pij) and order-flows (Yij) at t1, . . . , tk+1

tk+1 = 1 being the close
Evenly spaced intraday observations: tj = j∆ for ∆ > 0 and
j ≤ k.
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Day-i likelihood

The log-likelihood of observing day-i sample is:

Li = log
(

f
(

Pi1
Pi0

, . . . ,
Pi,k+1

Pi0
|Yi

)
f (Yi )

)
On each day i , the vector Yi = (Yi,t1 , . . . ,Yi,tk+1 )′ is normally
distributed with mean 0 and covariance matrix σ2∆Σ.

Σ =


1 1 · · · 1 1
1 2 · · · 2 2
...

...
...

...
...

1 2 · · · k k
1 2 · · · k 1/∆

 .
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Day-i likelihood

The density function of (Pi1/Pi0, . . . ,Pi,k+1/Pi0) conditional on Yi
is

f (Ui1, . . .Ui,k+1)e−
∑k+1

j=1
Uij ,

where f denotes the multivariate normal density function with mean
vector −(δ2∆/2)Γ and covariance matrix δ2∆Σ and

Γ =


1
2
...
k

1/∆


and

Uij = log
(

Pij
Pi0
− p(tj ,Yij)

)
(2)
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Intuition
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More general distributions
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Estimating private information distributions from prices and trading
data could provide insights into the information environment in
financial markets.

Thanks for your feedback!
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