	Conclusion

Private Information Distributions in Securities Markets

Kerry Back, Kevin Crotty, Tao Li

Rice University & City University of Hong Kong

July 14, 2018

イロト イボト イヨト イヨト

Introduction	Model	Estimation	Conclusion
●0000	oooooo	000000	O
Motivation			

• A fundamental question in market microstructure is how the (possible) presence of asymmetric information affects the price and trading process.

Introduction	Model	Estimation	Conclusion
●0000	oooooo	000000	O
Motivation			

- A fundamental question in market microstructure is how the (possible) presence of asymmetric information affects the price and trading process.
 - A problem: information asymmetry is generally unobservable.

イロト イヨト イヨト

Introduction	Model	Estimation	Conclusion
●0000	oooooo	000000	O
Motivation			

- A fundamental question in market microstructure is how the (possible) presence of asymmetric information affects the price and trading process.
 - A problem: information asymmetry is generally unobservable.
- How can we use theory and the price and/or order flow data to measure private information?

(日) (日) (日) (日) (日)

Introduction	Model	Estimation	Conclusion
●0000	oooooo	000000	O
Motivation			

- A fundamental question in market microstructure is how the (possible) presence of asymmetric information affects the price and trading process.
 - A problem: information asymmetry is generally unobservable.
- How can we use theory and the price and/or order flow data to measure private information?
- In Back, Crotty, Li (2018), we develop and estimate a structural model of informed trading to address this question.

(日) (日) (日) (日) (日)

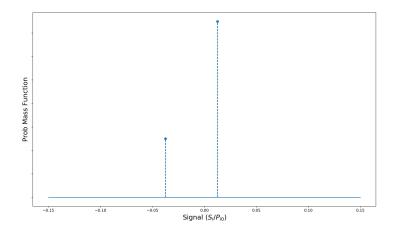
Introduction	Model	Estimation	Conclusion
●0000	oooooo	000000	O
Motivation			

- A fundamental question in market microstructure is how the (possible) presence of asymmetric information affects the price and trading process.
 - A problem: information asymmetry is generally unobservable.
- How can we use theory and the price and/or order flow data to measure private information?
- In Back, Crotty, Li (2018), we develop and estimate a structural model of informed trading to address this question.
- Unexplored question: From what distribution is private information drawn?

- We develop a structural model of informed trading and an estimation procedure to identify information asymmetry.
 - Continuous-time Kyle model with uncertain information event and magnitude
 - Propose ML estimation that allows use of intraday observations
 - Estimation utilizes the joint distribution of returns and order flows
- For computational reasons, BCL (2018) makes simplifying assumption that signal is binary in order to facilitate estimation.

3/19

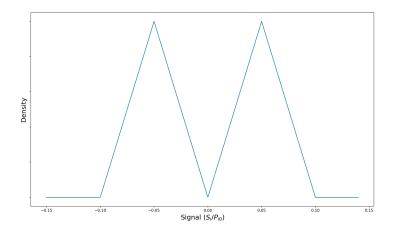
Some possible signal distributions



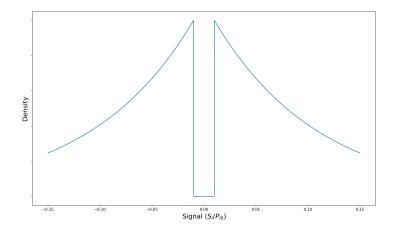
Back-Crotty-Li - Private Info Distributions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

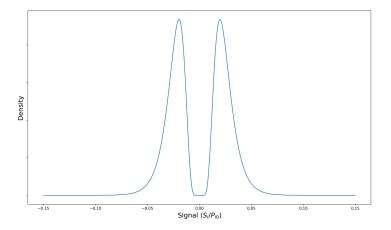
Introduction	Model	Estimation	Conclusion
00000	oooooo	000000	O
<u>^</u>	 1 10 10 10 10		



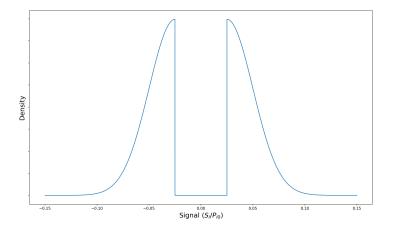
Introduction	Model	Estimation	Conclusion
00●00	000000	000000	O
<u>^</u>	 1 10 1 11 11		



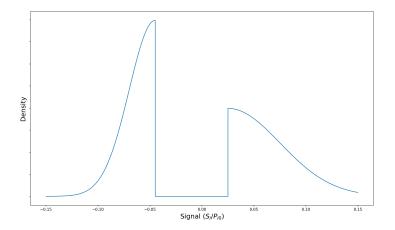
Introduction	Model	Estimation	Conclusion
00000	oooooo	000000	O
C		. :	



Introduction	Model	Estimation	Conclusion
00●00	000000	000000	O
<u>^</u>	 1 10 1 11 11		



Introduction	Model	Estimation	Conclusion
00000	oooooo	000000	O
<u>^</u>			



0

- What types of distributions are private signals drawn from?
- Are these distributions systematically linked to firm characteristics?
- What explains time-series variation in private signals?
- Are private signal distributions related to trading frictions (e.g., short-sale costs)?
- What are the asset-pricing implications of private information distributions?

イロト イヨト イヨト

Introduction		Conclusion
00000		
Computational	issues	

• Estimating the model for non-binary signals involves optimizing a likelihood function containing numerical integration (in the pricing function).

	Computing Time in Python			
Signal Type	Single Firm-Year	25-yr panel of 2500 firms		
Triangular	15 hrs	1,070 yrs		
Exponential	7 hrs	500 yrs		
Normal	4 hrs	285 yrs		
Lognormal	22 hrs	1,570 yrs		

Introduction	Model	Estimation	Conclusion
00000	●ooooo	000000	O
Model			

- Continuous-time Kyle model with asset traded on time interval [0,1]
- Liquidity trades: Brownian motion Z with standard deviation σ
- Risk-neutral competitive market makers

Introduction	Model	Estimation	Conclusion
00000	●00000	000000	O
Model			

- $\bullet\,$ Continuous-time Kyle model with asset traded on time interval [0,1]
- Liquidity trades: Brownian motion Z with standard deviation σ
- Risk-neutral competitive market makers
- $\bullet\,$ Information event at beginning with probability α
 - If there is an information event, a single trader sees a zero-mean signal ${\cal S}$
 - If there is no information event, the trader is still present in the market as a value trader.
- Public information = martingale V

イロト イボト イヨト イヨト

	Model	Conclusion
	00000	
Definition of	Fauilibrium	
	Lyumbhum	

- Let $\xi =$ indicator of information event (1 if yes, 0 if no).
- Let Y = X + Z where X = strategic trader's inventory.
- Market makers observe cumulative order imbalances Y and public information V.

Introduction	Model	Estimation	Conclusion
00000	00000	000000	U
Definition of	Equilibrium		

- Let $\xi =$ indicator of information event (1 if yes, 0 if no).
- Let Y = X + Z where X = strategic trader's inventory.
- Market makers observe cumulative order imbalances Y and public information V.
- Price must equal the expected value of the asset conditional on the market makers' information and given the trading strategy of the strategic trader:

$$P_t = V_t + \mathsf{E}\left[\xi S \mid \mathcal{F}_t^{V,Y}\right]$$

- 4 同 ト 4 三 ト 4 三 ト

Introduction	Model	Estimation	Conclusion
00000	00000	000000	U
Definition of	Equilibrium		

- Let $\xi =$ indicator of information event (1 if yes, 0 if no).
- Let Y = X + Z where X = strategic trader's inventory.
- Market makers observe cumulative order imbalances Y and public information V.
- Price must equal the expected value of the asset conditional on the market makers' information and given the trading strategy of the strategic trader:

$$P_{t} = V_{t} + \underbrace{\mathsf{E}\left[\xi S \mid \mathcal{F}_{t}^{V,Y}\right]}_{p(t,Y_{t})}$$

- 4 同 ト 4 三 ト 4 三 ト

	Model	Conclusion
	00000	
Definition of	Equilibrium	

- Let $\xi =$ indicator of information event (1 if yes, 0 if no).
- Let Y = X + Z where X = strategic trader's inventory.
- Market makers observe cumulative order imbalances Y and public information V.
- Price must equal the expected value of the asset conditional on the market makers' information and given the trading strategy of the strategic trader:

$$P_{t} = V_{t} + \underbrace{\mathsf{E}\left[\xi S \mid \mathcal{F}_{t}^{V,Y}\right]}_{p(t,Y_{t})}$$

• Strategic trades must be optimal. The strategic trader chooses a rate of trade to maximize expected profits.

Back-Crotty-Li - Private Info Distributions

イロト 不得 とくきとくきとう

Order Imbalances in Equilibrium – Brownian Bridge

- Let *F* denote the distribution function of the normally distributed variable *Z*₁.
- Let G denote the continuous distribution function of the signal S.

• Set
$$y_L = F^{-1}(\alpha G(0))$$
 and $y_H = F^{-1}(1 - \alpha + \alpha G(0))$, so
 $\underbrace{\alpha \operatorname{prob}(S \leq 0)}_{\text{Uncond. Prob. of Bad News}} = \operatorname{prob}(Z_1 \leq y_L)$,

and

$$\underbrace{\alpha \operatorname{prob}(S > 0)}_{} = \operatorname{prob}(Z_1 > y_H).$$

Uncond. Prob. of Good News

Back-Crotty-Li - Private Info Distributions

イロト 不得 トイヨト イヨト

Order Imbalances in Equilibrium – Brownian Bridge

- Let F denote the distribution function of the normally distributed variable Z_1 .
- Let G denote the continuous distribution function of the signal S.

• Set
$$y_L = F^{-1}(\alpha G(0))$$
 and $y_H = F^{-1}(1 - \alpha + \alpha G(0))$, so

$$\underbrace{\alpha \operatorname{prob}(S \leq 0)}_{\text{Uncond. Prob. of Bad News}} = \operatorname{prob}(Z_1 \leq y_L),$$

and

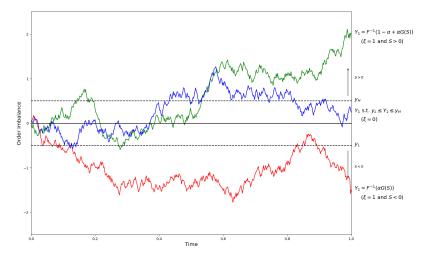
$$\underbrace{\alpha \operatorname{prob}(S > 0)}_{\text{Cond. Prob. of Cood. Nave}} = \operatorname{prob}(Z_1 > y_H).$$

Uncond. Prob. of Good News

- In equilibrium, final cumulative order flows (Y_1) satisfy:
 - $Y_1 = F^{-1}(\alpha G(S)) < y_L$ when there is a low signal $(\xi S < 0)$,
 - $Y_1 = F^{-1}(1 \alpha + \alpha G(S)) > y_H$ when there is a high signal $(\xi S > 0)$,

• $y_L \le Y_1 \le y_H$ when there is no info event $(\xi = 0)$.

Introduction	Model	Estimation	Conclusion
00000	ooo●oo	000000	O
Ordor Imbola	nco Dothe in Equ	ulibrium	



2

イロト イヨト イヨト イヨト

Introduction	Model	Estimation	Conclusion
00000	oooo●o	000000	O
Equilibrium Trade	es		

• Equilibrium rate of trade depends on t, Y_t , and whether $\xi S < 0$, $\xi S = 0$, or $\xi S > 0$:

$$E[Z_{1} - Z_{t} | Z_{t} = Y_{t}, \xi S] = \begin{cases} F^{-1}(\alpha G(s)) - Y_{t} & \text{if } \xi S < 0, \\ E[Z_{1} | Z_{t} = Y_{t}, y_{L} \le Z_{1} \le y_{H}] - Y_{t} & \text{if } \xi = 0, \\ F^{-1}(1 - \alpha + \alpha G(s)) - Y_{t} & \text{if } \xi S > 0. \end{cases}$$
(1)

divided by 1 - t.

Back-Crotty-Li - Private Info Distributions

æ

イロト イロト イヨト イヨト

Introduction	Model	Estimation	Conclusion
00000	oooo●o	000000	O
Equilibrium Trade	es		

• Equilibrium rate of trade depends on t, Y_t , and whether $\xi S < 0$, $\xi S = 0$, or $\xi S > 0$:

$$\mathsf{E}[Z_1 - Z_t \mid Z_t = Y_t, \xi S] =$$

$$\begin{cases} F^{-1}(\alpha G(s)) - Y_t & \text{if } \xi S < 0, \\ \mathsf{E}[Z_1 \mid Z_t = Y_t, y_L \le Z_1 \le y_H] - Y_t & \text{if } \xi = 0, \\ F^{-1}(1 - \alpha + \alpha G(s)) - Y_t & \text{if } \xi S > 0. \end{cases}$$
(1)

divided by 1 - t.

 Market makers perceive order flows Y as a Brownian motion with zero drift and std deviation σ.

イロト 不得 トイヨト イヨト

• Given the history of Y through time t, the equilibrium price is

$$p(t, Y_t) = \int_{-\infty}^{y_L} \underbrace{\overline{G^{-1}\left(\frac{F(z)}{\alpha}\right)}}_{W_H} \underbrace{\text{Density of } Z_1 \text{ cond. on } Z_t = Y_t}_{f(z \mid t, Y_t)} \, \mathrm{d}z$$
$$+ \int_{y_H}^{\infty} G^{-1}\left(\frac{F(z) - 1 + \alpha}{\alpha}\right) f(z \mid t, Y_t) \, \mathrm{d}z.$$

Introduction Conclusion Conclusion Conclusion Conclusion Conclusion Conclusion

• Given the history of Y through time t, the equilibrium price is

$$p(t, Y_t) = \int_{-\infty}^{y_L} \underbrace{G^{-1}\left(\frac{F(z)}{\alpha}\right)}_{W_{H}} \underbrace{\text{Density of } Z_1 \text{ cond. on } Z_t = Y_t}_{f(z \mid t, Y_t)} \, \mathrm{d}z$$
$$+ \int_{y_H}^{\infty} G^{-1}\left(\frac{F(z) - 1 + \alpha}{\alpha}\right) f(z \mid t, Y_t) \, \mathrm{d}z.$$

- BCL (2018) makes a simplifying assumption about the signal distribution signal is either high or low: L < 0 < H.
- Simplified pricing function:

$$p(t, Y_t) = L \times \underbrace{\mathsf{N}\left(\frac{y_L - Y_t}{\sigma\sqrt{1 - t}}\right)}_{\mathsf{Pr}(\mathsf{low info} \mid t, Y_t)} + H \times \underbrace{\mathsf{N}\left(\frac{Y_t - y_H}{\sigma\sqrt{1 - t}}\right)}_{\mathsf{Pr}(\mathsf{high info} \mid t, Y_t)}$$

イロト イポト イヨト イヨト

Introduction	Model	Estimation	Conclusion
00000	oooooo	●00000	O
Estimation			

- Use the joint distribution of intraday prices and order imbalances.
- Timing assumptions:
 - trading period corresponds to a day.
 - parameters are stable across year.
- The gross return through time t is

$$\frac{P_{it}}{P_{i0}}=\frac{V_{it}}{V_{i0}}+p(t,Y_{it}).$$

• V_{it} is geometric Brownian motion with volatility δ .

イロト イボト イヨト イヨト

Introduction	Model	Estimation	Conclusion
00000	oooooo	●00000	O
Estimation			

- Use the joint distribution of intraday prices and order imbalances.
- Timing assumptions:
 - trading period corresponds to a day.
 - parameters are stable across year.
- The gross return through time t is

$$rac{P_{it}}{P_{i0}} = rac{V_{it}}{V_{i0}} + p(t, Y_{it}).$$

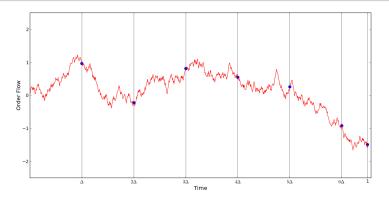
- V_{it} is geometric Brownian motion with volatility δ .
- Some signal parametrization: BCL (2018) assumes a binary zero-mean signal with magnitude parameter κ such that

$$(H_i-L_i)/P_{i0}=2\kappa$$

イロト イボト イヨト イヨト

Introduction	Model	Estimation	Conclusion
00000	000000	0●0000	O
- - - ·			

Timing of Observations



• Observe k + 1 daily prices (P_{ij}) and order-flows (Y_{ij}) at t_1, \ldots, t_{k+1}

- $t_{k+1} = 1$ being the close
- Evenly spaced intraday observations: $t_j = j\Delta$ for $\Delta > 0$ and $j \le k$.

RICE | BUSINESS

イロト イポト イヨト イヨト

Introduction	Model	Estimation	Conclusion
00000	000000	00●000	O
Day- <i>i</i> likelihood			

• The log-likelihood of observing day-*i* sample is:

$$\mathcal{L}_{i} = \log \left(f\left(\frac{P_{i1}}{P_{i0}}, \dots, \frac{P_{i,k+1}}{P_{i0}} | Y_{i}\right) f(Y_{i}) \right)$$

• On each day *i*, the vector $Y_i = (Y_{i,t_1}, \ldots, Y_{i,t_{k+1}})'$ is normally distributed with mean 0 and covariance matrix $\sigma^2 \Delta \Sigma$.

$$\Sigma = egin{pmatrix} 1 & 1 & \cdots & 1 & 1 \ 1 & 2 & \cdots & 2 & 2 \ dots & dots & dots & dots & dots & dots \ dots & dots & dots & dots & dots \ dots & dots & dots \ dots & dots \ dots & dots \ dots & dots \ dots \$$

٠

Introduction	Model	Estimation	Conclusion
00000	000000	000€00	O
Day- <i>i</i> likelihood			

The density function of (P_{i1}/P_{i0},..., P_{i,k+1}/P_{i0}) conditional on Y_i is

$$f(U_{i1},\ldots,U_{i,k+1})e^{-\sum_{j=1}^{k+1}U_{ij}},$$

where f denotes the multivariate normal density function with mean vector $-(\delta^2 \Delta/2)\Gamma$ and covariance matrix $\delta^2 \Delta \Sigma$ and

Г

and

$$U_{ij} = \log\left(\frac{P_{ij}}{P_{i0}} - p(t_j, Y_{ij})\right)$$
(2)

イロト イヨト イヨト ・

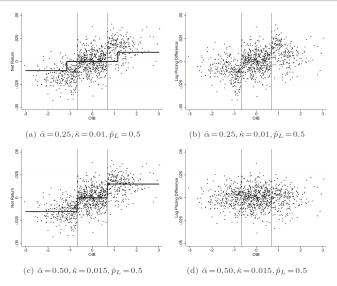
2

Introd	
0000	

Model 000000 Estimation

Conclusion O

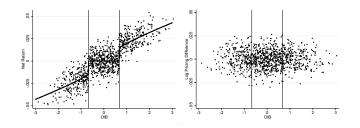
Intuition



< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction	Model	Estimation	Conclusion
00000	oooooo	00000●	O

More general distributions



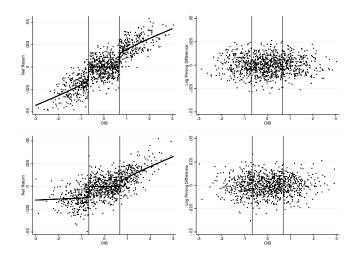
Back-Crotty-Li - Private Info Distributions

・ロト・西・・ヨ・・ヨ・ シック

18/19

Introduction	Model	Estimation	Conclusion
00000	oooooo	00000●	0

More general distributions



Back-Crotty-Li - Private Info Distributions

<□> <⊡> <⊡> <∃> < E> < E> E < 0 Q (~) 18/19

	Conclusion
	•

• Estimating private information distributions from prices and trading data could provide insights into the information environment in financial markets.

Thanks for your feedback!

э

イロト 不得 トイヨト イヨト