Aggregate Nominal Wage Adjustments: New Evidence from Administrative Payroll Data

John Grigsby, Erik Hurst and Ahu Yildirmaz July 2018

Paper is Preliminary and Evolving

• Little movement in aggregate nominal wages during 2009 Recession

- Little movement in aggregate nominal wages during 2009 Recession
- Possible explanation: Downward Nominal Wage Rigidity

- Little movement in aggregate nominal wages during 2009 Recession
- Possible explanation: Downward Nominal Wage Rigidity
- Little work measuring nominal wage adjustments and their response to economic conditions.
- Large and influential literature using micro data to measure output price stickiness.

- Little movement in aggregate nominal wages during 2009 Recession
- Possible explanation: Downward Nominal Wage Rigidity
- Little work measuring nominal wage adjustments and their response to economic conditions.
- Large and influential literature using micro data to measure output price stickiness.
- Reason: Existing data sets not ideal to measure wage adjustment.
 - o Household data sets: Measurement error in both hours and earnings.
 - o Administrative data sets: No measure of hours (and hard to measure hours of salaried individuals).

- New administrative data on worker wages and earnings from ADP
- Three principal contributions:

- New administrative data on worker wages and earnings from ADP
- Three principal contributions:
 - (1) New facts about **nature of compensation** and its adjustment in U.S.

- New administrative data on worker wages and earnings from ADP
- Three principal contributions:
 - (1) New facts about **nature of compensation** and its adjustment in U.S.
 - (2) High quality **measurement** of wage adjustment
 - Job-stayers
 - Job-changers
 - Aggregate
 - Majority of downward adjustments come from job-changers
 - Compare our findings with other measures in the literature

- New administrative data on worker wages and earnings from ADP
- Three principal contributions:
 - (1) New facts about **nature of compensation** and its adjustment in U.S.
 - (2) High quality **measurement** of wage adjustment
 - Job-stayers
 - Job-changers
 - Aggregate
 - Majority of downward adjustments come from job-changers
 - Compare our findings with other measures in the literature
 - (3) Evidence of **state dependence** in wage setting
 - Business cycle, cross-industry, cross-region, and cross-firm variation
 - Much more downward adjustment during recession

- New administrative data on worker wages and earnings from ADP
- Three principal contributions:
 - (1) New facts about **nature of compensation** and its adjustment in U.S.
 - (2) High quality **measurement** of wage adjustment
 - Job-stayers
 - Job-changers
 - Aggregate
 - Majority of downward adjustments come from job-changers
 - Compare our findings with other measures in the literature
 - (3) Evidence of **state dependence** in wage setting
 - Business cycle, cross-industry, cross-region, and cross-firm variation
 - Much more downward adjustment during recession
- Caveat: only discussing **realized adjustment**, not structural parameters

Part 1: Data

 Detailed administrative employer-employee matched data from ADP – a payroll processing company.

- Detailed administrative employer-employee matched data from ADP – a payroll processing company.
- Monthly aggregates of paycheck information
- Contain information on all aspects of HR/paycheck
 - o Hours
 - o Earnings by type (wage, benefits, bonus, etc.)
 - o Worker status (hourly/salaried, monthly vs weekly paid, etc.)
 - o Personal characteristics (Age, tenure, sex, residence location)
 - o Firm 6-digit NAICS, firm location, firm size

- Detailed administrative employer-employee matched data from ADP – a payroll processing company.
- Monthly aggregates of paycheck information
- Contain information on all aspects of HR/paycheck
 - o Hours
 - o Earnings by type (wage, benefits, bonus, etc.)
 - o Worker status (hourly/salaried, monthly vs weekly paid, etc.)
 - o Personal characteristics (Age, tenure, sex, residence location)
 - o Firm 6-digit NAICS, firm location, firm size
- May 2008-December 2016

- Detailed administrative employer-employee matched data from ADP – a payroll processing company.
- Monthly aggregates of paycheck information
- Contain information on all aspects of HR/paycheck
 - o Hours
 - o Earnings by type (wage, benefits, bonus, etc.)
 - o Worker status (hourly/salaried, monthly vs weekly paid, etc.)
 - o Personal characteristics (Age, tenure, sex, residence location)
 - o Firm 6-digit NAICS, firm location, firm size
- May 2008-December 2016
- 15-20 million observations every month (about one-eight of US labor force has their payroll processed by ADP each month)

- Detailed administrative employer-employee matched data from ADP – a payroll processing company.
- Monthly aggregates of paycheck information
- Contain information on all aspects of HR/paycheck
 - o Hours
 - o Earnings by type (wage, benefits, bonus, etc.)
 - o Worker status (hourly/salaried, monthly vs weekly paid, etc.)
 - o Personal characteristics (Age, tenure, sex, residence location)
 - o Firm 6-digit NAICS, firm location, firm size
- May 2008-December 2016
- 15-20 million observations every month (about one-eight of US labor force has their payroll processed by ADP each month)
- Can track individuals across firms (if migrate to another ADP firm)

Sample Representativeness

- ADP has two data products:
 - o One marketed to "firms" with > 50 employees
 - o One marketed to "firms" with < 50 employees
- We have access to the data product for "firms" with > 50 employees.
- As a result, our **data underrepresents small firms.**

Sample Representativeness

- ADP has two data products:
 - o One marketed to "firms" with > 50 employees
 - o One marketed to "firms" with < 50 employees
- We have access to the data product for "firms" with > 50 employees.
- As a result, our **data underrepresents small firms.**
- Note: A "firm" in ADP is an ADP client. This is often at the firm level. But, sometimes this is at the business unit level.

Sample Representativeness

- ADP has two data products:
 - o One marketed to "firms" with > 50 employees
 - o One marketed to "firms" with < 50 employees
- We have access to the data product for "firms" with > 50 employees.
- As a result, our **data underrepresents small firms.**
- Note: A "firm" in ADP is an ADP client. This is often at the firm level. But, sometimes this is at the business unit level.
- Restrict sample to 21-60 year olds (inclusive)
- Draw **random sample of 1 million workers** for tractability

Sample Description, Part 1

	ADP	
	Employee Sample	BDS Data
Number of Employees	1,000,000	
Number of Firms	91,577	
Number of Observations	24,831,244	
% Firm Size: 50-499	37.8	29.5
% Firm Size: 500-999	13.6	7.3
% Firm Size: 1000-4999	25.1	17.5
% Firm Size: 5000+	19.7	45.6

Note: We reweight ADP data so it is representative of BDS industry-size distribution by year. (Industry distribution is pretty representative).

Sample Description, Part 2

- The **demographic composition** of ADP sample similar to CPS
- About 2/3 of ADP sample report being hourly workers
- **57% of CPS** respondents report being **hourly**

Sample Description, Part 2

- The **demographic composition** of ADP sample similar to CPS
- About 2/3 of ADP sample report being hourly workers
- **57% of CPS** respondents report being **hourly**
- Differences stem from two sources:
 - o Our ADP sample **excludes small firms**
 - o Some ADP firms classify workers as "hourly" although they behave as "salaried" in many respects.

Administrative Measure of "Nominal Wage"

- Nominal wage measure: contracted per-period payment rate
 - o Administratively reported (separate field for all employees)
 - o Contracted hourly wage for hourly workers (2/3 of sample)
 - Contracted weekly/bi-weekly/monthly pay rate for salaried workers (~1/3 of sample)
 - o Very little missing data

Administrative Measure of "Nominal Wage"

- Nominal wage measure: **contracted per-period payment rate**
 - o Administratively reported (separate field for all employees)
 - o Contracted hourly wage for hourly workers (2/3 of sample)
 - Contracted weekly/bi-weekly/monthly pay rate for salaried workers (~1/3 of sample)
 - o Very little missing data
- All data is pre-tax and nominal.
- Refer to the per-period contract rate as a workers "base wage" or "contract wage"
- Hourly wage matches CPS in levels and trends

Additionally observe administrative gross earnings

- Additionally observe administrative gross earnings
- Construct Base Pay = Pay Rate x {Hours, # of Paychecks}

- Additionally observe administrative gross earnings
- Construct Base Pay = Pay Rate x {Hours, # of Paychecks}
- Define Residual Earnings = Gross Earnings Base Pay
 - o Bonuses
 - o Overtime
 - o Commissions
 - o Signing bonus/Severance pay
 - o Cashed out vacation days
 - o Other (e.g. tips, contracted performance pay, reimbursements, measurement error)

- Additionally observe administrative gross earnings
- Construct Base Pay = Pay Rate x {Hours, # of Paychecks}
- Define Residual Earnings = Gross Earnings Base Pay
 - o Bonuses
 - o Overtime
 - o Commissions
 - o Signing bonus/Severance pay
 - o Cashed out vacation days
 - o Other (e.g. tips, contracted performance pay, reimbursements, measurement error)

Define bonus to be residual earnings that:

- o Arrives in December, January, February, or March
- o Is at least 1% of annual earnings
- o Paid out 1-3 times per year (Narrow definition: once per year)

Share of Earnings in Base Pay

	All Full-Year Employee		Employees
	Monthly	Monthly	Annual
Share Base pay out of Earnings			
10 th Percentile	78.6%	78.3%	80.3%
25 th Percentile	93.7%	93.6%	90.1%
Median	100%	100%	96.2%
75 th Percentile	100%	100%	99.4%
90 th Percentile	100%	100%	100%

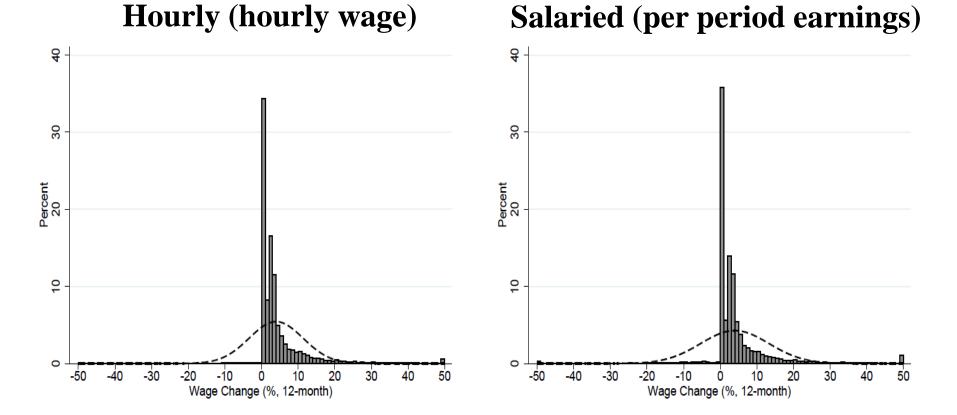
- Majority of earnings are in base pay
- Mass of workers receiving commissions, tips, etc. as large share
- 25-35% of workers receive annual bonus, about 3% of earnings.

Part 2: Nominal Wage Adjustment for Job-Stayers

Wage Setting on-the-Job

- Why focus on job-stayers?
 - (1) Comparison with literature (mostly job-stayers)
 - (2) Provide set of moments to use when relevant measure is on-the-job adjustments

Wage Setting on-the-Job

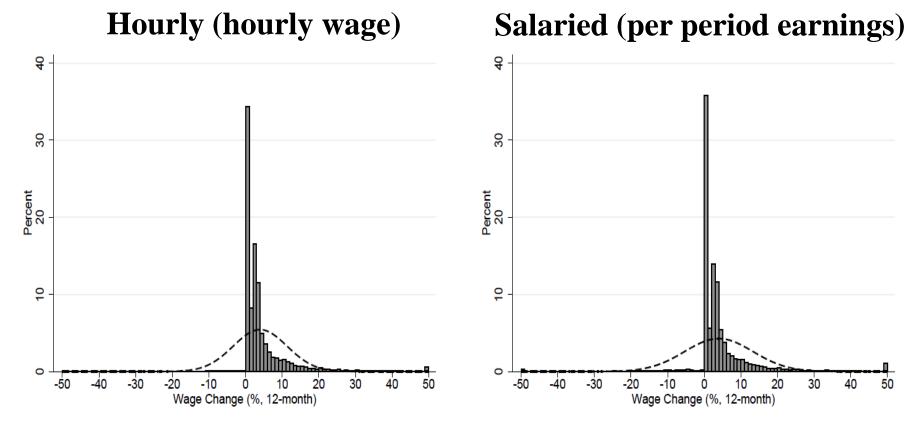

• Why focus on job-stayers?

(1) Comparison with literature (mostly job-stayers)

- (2) Provide set of moments to use when relevant measure is on-the-job adjustments
- Provide summary measures of nominal wage adjustments on-the-job.
- Evidence of **time dependence** in wage adjustment
- Show differences by **industry** and **firm size** (in paper)

Part 2a: Distribution of Wage Changes for Job-Stayers

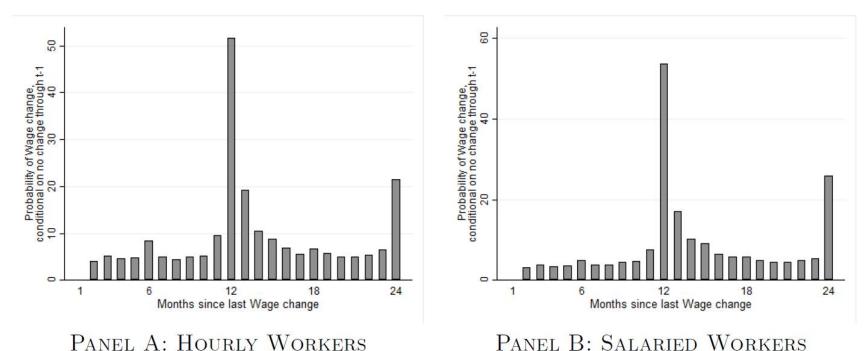
Distribution of 12 month Wage Change, Job Stayers



Distribution of 12 month Wage Change, Job Stayers

- Note: Large mass at zero ~35% of hourly and salaried unchanged
- Note: Hardly any wage cuts ~2% of hourly and salaried

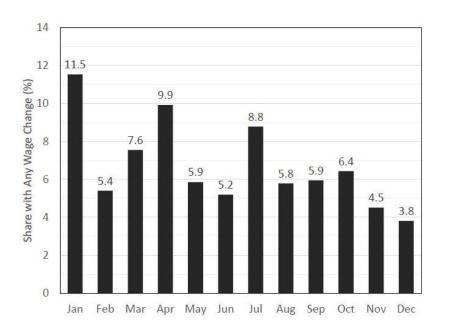
Distribution of 12 month Wage Change, Job Stayers


- Note: Large mass at zero ~35% of hourly and salaried unchanged
- Note: Hardly any wage cuts ~2% of hourly and salaried
- Note: Very few small positive wage changes:
 - o 8.6% of workers received a wage change of 0-2%
 - o 27.1% of workers received a wage change of 2-4%

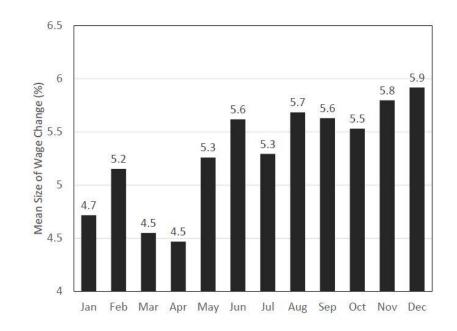
Job-Stayer Adjustment Moments, 2008-2016

	Job Stayers	
Annual		
Probability No Change	33.7%	
Probability of a Wage Cut	2.4%	
Probability of a Wage Increase	63.9%	
Std. Dev. of Wage Change	6.5%	
Conditional Std. Dev.	6.9%	
Quarterly		
Probability No Change	80.6%	
Probability of a Wage Cut	0.9%	
Probability of a Wage Increase	18.5%	
Std. Dev. of Wage Change	3.7%	
Conditional Std. Dev.	6.5%	

Part 2b: Time Dependence in Wage Changes


Figure 6: Hazard Function of Wage Change, Pooled 2008-2016 Sample

Note: Figure shows the hazard rate of a wage change between t - 1 and t conditional on surviving to t. Sample only includes individuals with at least two wage changes.


- Hazard is essentially flat in most months.
- Spikes at 1 year and 2 year (and smaller spikes at 6 months).
- On-cycle wage changes tend to be smaller

Seasonality of Wage Changes, Job-Stayers

PANEL A: PR{CHANGE}

- Monthly seasonality in wage setting.
- Little quarterly seasonality.

PANEL B: MEAN CHANGE SIZE

Summary – Wage Setting on the Job and When to Use Job-Stayer Rigidity

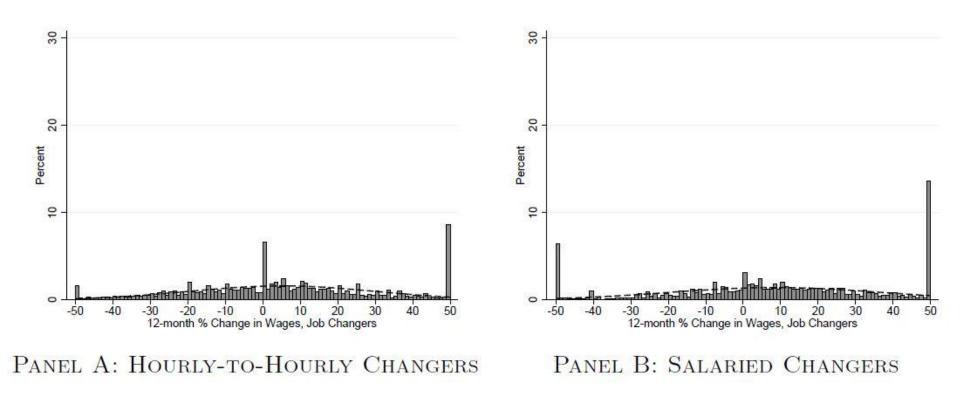
- Clear **time dependence** in data
 - Hazards spike at 12 months
 - Monthly, but not quarterly seasonality
 - Taylor style contracting
- Strong asymmetry for job-stayers
 - 66.3% receive wage change; just 2.4% is downward
- Other results (in paper)
 - Large firms more likely to adjust wages
 - **Manufacturing firms** more likely to adjust wages
 - **Firms synchronize** their wage changes

Part 3: Aggregate Nominal Wage Rigidity

Building an Aggregate Measure of Rigidity

- Many macro models do not have clear notion of a *job*
 - Supply labor to a labor aggregating firm (e.g. CEE, 2005)
- Much wage growth may come from job switching
 - Posted wage rigidity (Hazell and Taska, 2018)
- Challenge is to combine job-stayers and job-switchers into one macroeconomic wage adjustment measure

Building an Aggregate Measure of Rigidity


- Many macro models do not have clear notion of a *job*
 - Supply labor to a labor aggregating firm (e.g. CEE, 2005)
- Much wage growth may come from job switching
 - Posted wage rigidity (Hazell and Taska, 2018)
- Challenge is to combine job-stayers and job-switchers into one macroeconomic wage adjustment measure
- Proceed in two steps:
 - (1) Present wage change distribution for job-changers
 - (2) Aggregate using LEHD Job-to-Job Flows Data

Building an Aggregate Measure of Rigidity

- Many macro models do not have clear notion of a *job*
 - Supply labor to a labor aggregating firm (e.g. CEE, 2005)
- Much wage growth may come from job switching
 - Posted wage rigidity (Hazell and Taska, 2018)
- Challenge is to combine job-stayers and job-switchers into one macroeconomic wage adjustment measure
- Proceed in two steps:
 - (1) Present wage change distribution for job-changers
 - (2) Aggregate using LEHD Job-to-Job Flows Data
- Key takeaway: wages much more flexible for job-changers, and thus in aggregate, than inferred from studies of job-stayers.

Part 3a: Nominal Wage Adjustment for Job-Changers

Wage Change Distribution, Job Changers

- Vast majority of job-changers receive wage change.
- Substantially more downward adjustment
- Much larger variance

Stayer vs Changer Comparison, 2008-2016

	Job Stayers	Job Changers
Annual		
Probability No Change	33.7%	5.2%
Probability of a Wage Cut	2.4%	38.0%
Probability of a Wage Increase	63.9%	56.8%
Std. Dev. of Wage Change	6.5%	30.4%
Conditional Std. Dev.	6.9%	30.8%
Quarterly		
Probability No Change	80.6%	9.7%
Probability of a Wage Cut	0.9%	37.6%
Probability of a Wage Increase	18.5%	52.7%
Std. Dev. of Wage Change	3.7%	27.0%
Conditional Std. Dev.	6.5%	28.2%

Stayer vs Changer Comparison, 2008-2016

	Job Stayers	Job Changers
Annual		
Probability No Change	33.7%	5.2%
Probability of a Wage Cut	2.4%	38.0%
Probability of a Wage Increase	63.9%	56.8%
Std. Dev. of Wage Change	6.5%	30.4%
Conditional Std. Dev.	6.9%	30.8%
Quarterly		
Probability No Change	80.6%	9.7%
Probability of a Wage Cut	0.9%	37.6%
Probability of a Wage Increase	18.5%	52.7%
Std. Dev. of Wage Change	3.7%	27.0%
Conditional Std. Dev.	6.5%	28.2%

Stayer vs Changer Comparison, 2008-2016

	Job Stayers	Job Changers
Annual		
Probability No Change	33.7%	5.2%
Probability of a Wage Cut	2.4%	38.0%
Probability of a Wage Increase	63.9%	56.8%
Std. Dev. of Wage Change	6.5%	30.4%
Conditional Std. Dev.	6.9%	30.8%
Quarterly		
Probability No Change	80.6%	9.7%
Probability of a Wage Cut	0.9%	37.6%
Probability of a Wage Increase	18.5%	52.7%
Std. Dev. of Wage Change	3.7%	27.0%
Conditional Std. Dev.	6.5%	28.2%

Part 3b: Aggregation

Aggregating Job Stayers and Changers

- LEHD Job-to-Job Flows Data shows
 - Quarterly Job Switching Rate: 4.6%
 - Quarterly Job Staying Rate: 88.7%

Aggregating Job Stayers and Changers

- LEHD Job-to-Job Flows Data shows
 - Quarterly Job Switching Rate: 4.6%
 - Quarterly Job Staying Rate: 88.7%
- Approximate annual flows by quadrupling quarterly job switching rate
 - 18.5% of workers switch jobs annually

Aggregating Job Stayers and Changers

- LEHD Job-to-Job Flows Data shows
 - Quarterly Job Switching Rate: 4.6%
 - Quarterly Job Staying Rate: 88.7%
- Approximate annual flows by quadrupling quarterly job switching rate
 - 18.5% of workers switch jobs annually
- Weight ADP data so that job-changers represent 4.8% = 0.046/(1-0.046) of workers quarterly
- Substantially upweight ADP changers
 - We only observe switchers *between ADP firms*

Aggregate Nominal Rigidity, 2008-2016

	Job Stayers	Aggregate
Annual		
Probability No Change	33.7%	27.3%
Probability of a Wage Cut	2.4%	9.9%
Probability of a Wage Increase	63.9%	62.8%
Std. Dev. of Wage Change	6.5%	13.6%
Conditional Std. Dev.	6.9%	15.7%
<u>Quarterly</u>		
Probability No Change	80.6%	74.1%
Probability of a Wage Cut	0.9%	4.1%
Probability of a Wage Increase	18.5%	21.8%
Std. Dev. of Wage Change	3.7%	8.1%
Conditional Std. Dev.	6.5%	15.3%

Aggregate Nominal Rigidity, 2008-2016

	Job Stayers	Aggregate
Annual		
Probability No Change	33.7%	27.3%
Probability of a Wage Cut	2.4%	9.9%
Probability of a Wage Increase	63.9%	62.8%
Std. Dev. of Wage Change	6.5%	13.6%
Conditional Std. Dev.	6.9%	15.7%
Quarterly		
Probability No Change	80.6%	74.1%
Probability of a Wage Cut	0.9%	4.1%
Probability of a Wage Increase	18.5%	21.8%
Std. Dev. of Wage Change	3.7%	8.1%
Conditional Std. Dev.	6.5%	15.3%

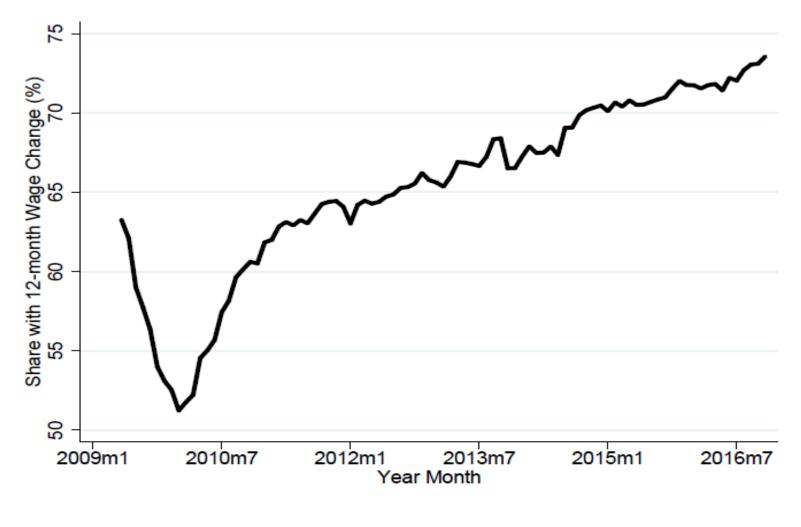
Aggregate Nominal Rigidity, 2008-2016

	Job Stayers	Aggregate
Annual		
Probability No Change	33.7%	27.3%
Probability of a Wage Cut	2.4%	9.9%
Probability of a Wage Increase	63.9%	62.8%
Std. Dev. of Wage Change	6.5%	13.6%
Conditional Std. Dev.	6.9%	15.7%
<u>Quarterly</u>		
Probability No Change	80.6%	74.1%
Probability of a Wage Cut	0.9%	4.1%
Probability of a Wage Increase	18.5%	21.8%
Std. Dev. of Wage Change	3.7%	8.1%
Conditional Std. Dev.	6.5%	15.3%

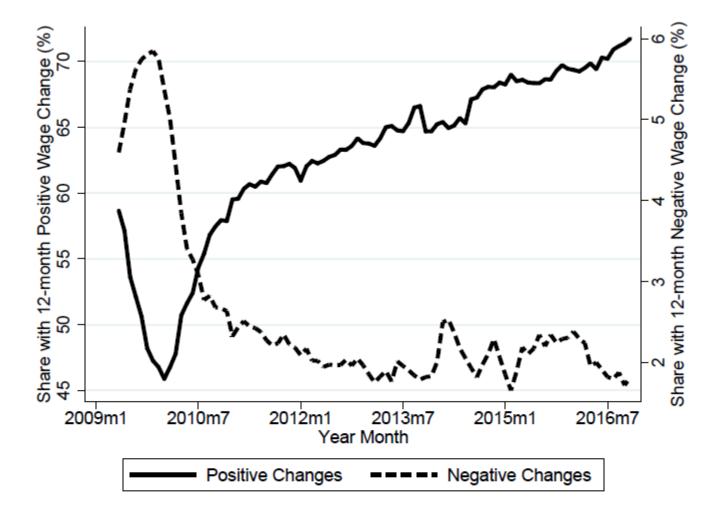
Comparing Aggregate vs Job-Stayer Rigidity

- Job-Changers have much more flexible wages than job stayers
 - 38.0% receive wage cut in given year (vs 2.4%)
 - 56.8% receive wage increase in given year (vs 56.8%)
 - Standard deviation of 30.4% (vs 6.5%)

Comparing Aggregate vs Job-Stayer Rigidity


- Job-Changers have much more flexible wages than job stayers
 - 38.0% receive wage cut in given year (vs 2.4%)
 - 56.8% receive wage increase in given year (vs 56.8%)
 - Standard deviation of 30.4% (vs 6.5%)
- Aggregate wages see much more downward adjustment than jobstayer wages
 - 9.9% of workers receive wage cut in given year

Comparing Aggregate vs Job-Stayer Rigidity


- Job-Changers have much more flexible wages than job stayers
 - 38.0% receive wage cut in given year (vs 2.4%)
 - 56.8% receive wage increase in given year (vs 56.8%)
 - Standard deviation of 30.4% (vs 6.5%)
- Aggregate wages see much more downward adjustment than jobstayer wages
 - 9.9% of workers receive wage cut in given year
- Aggregate rigidity appropriate in models
 - With no clear notion of job
 - With wage growth both on-the-job and through search
- New Keynesian models should generally use aggregate adjustment

Part 4: State Dependence in Wage Changes

Time Series of Wage Changes

PANEL A: HAS WAGE CHANGE

Time Series of Wage Cuts and Increases

PANEL B: HAS WAGE CHANGE: POS. VS NEG.

	May 2009 To Dec 2010	Jan 2012 To Dec 2016	
Job-Stayers			
Probability No Change	43.3%	30.6%	
Probability of Wage Cut	4.2%	2.0%	
Probability of Wage Cut, Salaried	6.6%	2.8%	
Job-Changers			
Probability No Change	6.4%	5.0%	
Probability of a Wage Cut	47.2%	37.0%	
Probability of a Wage Cut, Salaried	56.3%	31.7%	

Cyclicality of Job-Stayer and Job-Changer Wages

	May 2009 To Dec 2010	Jan 2012 To Dec 2016	
<u>Job-Stayers</u>			
Probability No Change	43.3%	30.6%	
Probability of Wage Cut	4.2%	2.0%	
Probability of Wage Cut, Salaried	6.6%	2.8%	
Job-Changers			
Probability No Change	6.4%	5.0%	
Probability of a Wage Cut	47.2%	37.0%	
Probability of a Wage Cut, Salaried	56.3%	31.7%	

Cyclicality of Job-Stayer and Job-Changer Wages

	May 2009 To Dec 2010	Jan 2012 To Dec 2016	
<u>Job-Stayers</u>			
Probability No Change	43.3%	30.6%	
Probability of Wage Cut	4.2%	2.0%	
Probability of Wage Cut, Salaried	6.6%	2.8%	
Job-Changers			
Probability No Change	6.4%	5.0%	
Probability of a Wage Cut	47.2%	37.0%	
Probability of a Wage Cut, Salaried	56.3%	31.7%	

Cyclicality of Job-Stayer and Job-Changer Wages

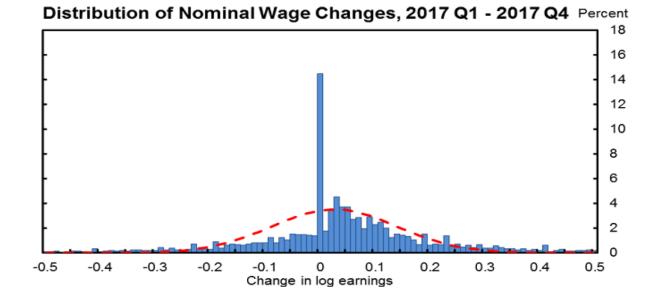
Distribution of <u>Annual</u> Nominal Wage Changes Over Business Cycle, Aggregate

	Quart	erly	Ann	ual
	March 09-	Jan. 12-	March 09-	Jan. 12 -
	Dec. 10	Dec. 16	Dec. 10	Dec. 16
Probability of Wage Change				
Share Positive Wage Change (%)	17.7	23.5	51.2	66.3
Share Negative Wage Change $(\%)$	5.1	3.9	11.8	9.7
Unconditional Size of Wage Change				
Mean Wage Change(%)	0.7	1.6	2.7	5.2
Median Wage Change(%)	0.0	0.0	1.0	2.8
Stan. Deviation of Wage Change $(\%)$	8.1	8.2	12.7	14.2
Conditional Size of Any Wage Change				
Mean Wage Change(%)	3.3	6.0	4.4	6.9
Median Wage Change(%)	3.0	3.3	3.2	3.5
Stan. Deviation of Wage Change $(\%)$	16.8	15.0	15.8	16.0

- Many more wage cuts in aggregate during recession
- Over 1 in 10 workers received cut year-over-year in recession

Summary of State Dependence

- Wage adjustment moves substantively over the business cycle, across regions during the Great Recession, and in response to firm level shocks.
- Additional source of downward flexibility during the recession
- New addition to literature
 - One related recent paper: Sigurdsson and Sigurdardottir (2016) who document some state dependence in wage setting in Iceland.
- Mechanism for state dependence needed in models of wage adjustments.
 - Asymmetries
 - Menu costs


Part 5: Benefits of Payroll Data

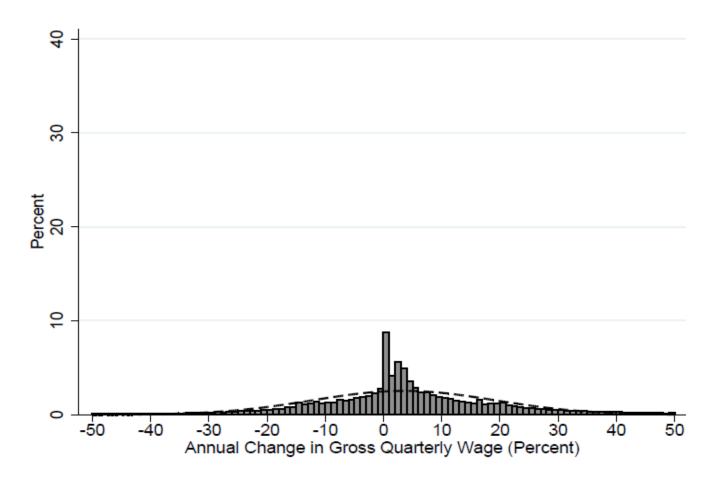
Comparison with Literature – Household Dataset

- Question: How do these results compare with existing literature?
- Answer: Qualitatively similar. Quantitatively very different.

Some recent papers

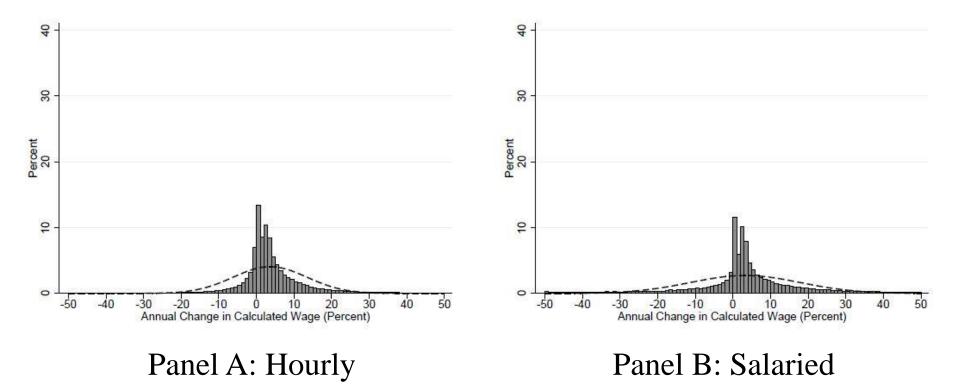
Daly, Hobijn and Lucking (2012) and Daly and Hobijn (2014) - Use matched CPS data. Find roughly 85% of job stayers receive an annual wage change over our entire sample period.

Comparison with Literature – Household Dataset

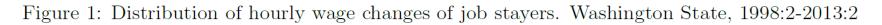

- Question: How do these results compare with existing literature?
- Answer: Qualitatively similar. Quantitatively very different.

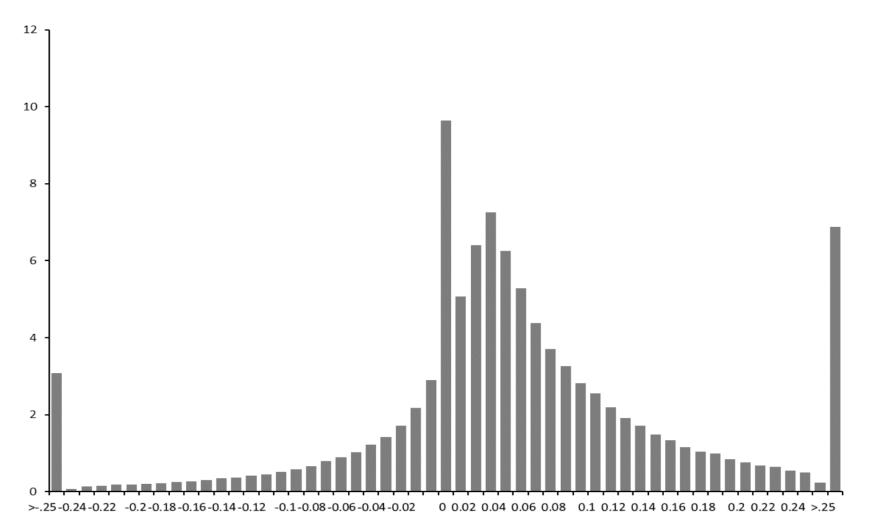
Some recent papers

Barattieri, Basu and Gottschalk (2014) - Use SIPP data. Try to adjust for measurement error using structural breaks.


- Find quarterly frequency of wage adjustment for job stayers of about 15-22% (we get 20%).
- o However, they estimate 12% of all quarterly wage changes for jobstayers are cuts. We estimate that 4.6% (0.9/19.4).
- They find no difference across occupations and industries (and no seasonality).

Quarterly Earnings Change, Job Stayers (akin to some admin data sources)


- Probability of Earnings Cut: 32.2%
- Standard Deviation: 20.0%


Quarterly Earnings Per Hour Change, Job Stayers (akin to some admin data sources with hours data)

- Probability of No Change: 12-15%
- Probability of Cut: 21.2% (Hourly), 25.3% (Salaried)
- Standard Deviation: 15.9% (Hourly), 19.2% (Salaried)

Kurmann and McEntarfer (2017) Two Year Earnings-Per-Hour Change, Washington State, LEHD

Why the Difference

- 1. Workers receive many other forms of compensation in their paychecks.
 - o Overtime earnings (formulaically determined)
 - o Commission/tips (vary with both effort and economic conditions)
 - o Bonuses
 - o Cashed out sick and vacation days (tradeoff with labor supply)
 - o Signing bonus/Severance pay

2. Hours are measured with noise for salaried workers

Quarterly Base Earnings per Base Hour Change, Job Stayers

- Only ~¹/₂ of all salaried workers have reported hours worked
- Salaried worker patterns quite different than our main results because hours are mis-measured for those that do report them.
- Standard Deviation for Salaried: 19.7% (vs 6.5%)

Conclusion

Conclusion

- Exciting new data that allows a careful measurement of wage adjustments over the last decade.
 - Large samples ; Administrative data ; spans recession and non-recession periods ; worker and firm characteristics
- During non-recessionary periods, essentially no nominal wage cuts for job-stayers
- Job-changers have much more wage adjustment
- Thus aggregate flexibility higher than amongst stayers
- Future Work:
 - Heterogeneity
 - Fringe Benefits