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Abstract

We construct a large laboratory of over two million trading strategies, which we
obtain by data-mining the two most commonly used datasets in finance (i.e., CRSP and
COMPUSTAT). We use this very large sample for three purposes. First, we evaluate
the properties of multiple hypothesis testing methods when applied to financial data.
We find that only adaptive methods should be employed in finance applications (i.e.,
FDP-SetpM). Second, we provide an optimal thresholding for applications that evaluate
trading strategies. Third, we quantify the proportion of false discoveries due to the
failure to take into account testing a multitude of hypotheses. Our estimates for the
proportion of lucky discoveries is over 90%, which is considerably larger than previously
reported.
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An increasingly large body of literature studies the profitability of trading strategies

based on signals obtained from publicly available information. Researchers are currently

tracking a number of strategies well in excess of 300 and new papers keep adding to that

list.1 A recent paper by Yan and Zheng (2017) finds that a very large number of trading

signals (more than two thousand) “exhibit genuine predictive power.”

In his presidential address, Harvey (2017) questions the performance of these strategies

due to a number of possible problems with the way in which these strategies are discovered

and evaluated. One particular problem is related to the fact that test procedures are often

evaluated in isolation. Harvey and Liu (2014, 2015) and Harvey, Liu, and Zhu (2015) advo-

cate the use of multiple hypothesis testing (MHT) as one tool that finance researcher should

employ to limit the number of false discoveries. The essential idea is that, when studying the

entire distribution of trading strategies, one has to account for the fact that some strategies’

performance will appear exceptional by luck, thus leading to some false rejections of the null

hypothesis of no outperformance.

Applying MHT, Harvey, Liu, and Zhu (2015) advocate the use of a threshold of three for

t-statistics (as opposed to the traditional 1.96) and find that the abnormal performance of as

many as 50% of the 316 strategies they consider could be due to luck. Applying a threshold

of three, Hou, Xue, and Zhang (2017) also find that as many as 58% of the strategies that

survive their replication effort could be due to failure to account for MHT.

Harvey, Liu, and Zhu (2015) note that optimal thresholding for MHT requires the re-

searcher to have a good sense of the entire distribution of tests, not only those that end up in

the right tail (i.e., the ones for which the null was rejected and made it to a circulated paper).

Yet, virtually all papers on this subject look at the sample of only strategies contained in

published or working papers. In contrast, we construct a very large sample of approximately

two and half million trading strategies obtained by data-mining the information contained

in the two most commonly used datasets in finance, viz. CRSP and COMPUSTAT.

1For example, Harvey, Liu, and Zhu (2015) examine 316 strategies, Green, Hand, and Zhang (2013) study
over 300, and Hou, Xue, and Zhang (2017) study 447.

1



Armed with our very large sample of strategies, we evaluate the ability of MHT to

conform to finance data. Our paper has three main objectives. First, using a data-informed

Monte Carlo analysis, we highlight the properties of several MHT methods. Second, we

provide an optimized threshold of t-statistics for finance applications that rely on CRSP

and COMPUSTAT data. Third, we compute the proportion of false discoveries within our

sample.

The main feature of our study that enables us to achieve our objectives is our procedure

for generating trading signals. Our strategy yields a comprehensive set of trading strategies,

some of which have been studied and published as well as some that have been studied but

not published (likely because they do not surpass traditionally accepted statistical hurdles),

and those that have yet to be studied (likely because their economic foundation is not

immediately justifiable or simply because researchers have not thought about them). By

considering strategies without filtering on their ex-post significance, and by not relying on

published anomalies, our large-scale exercise allows us to avoid data snooping. Our results

are robust to the inclusion of small stocks, various sample definitions, and the application of

different methods and factor models to adjust for the risk of the strategies.

Our paper relies extensively on MHT for conducting tests. The statistics and economics

literature has proposed a variety of ways for controlling the number of null hypothesis that

are erroneously rejected in testing multiple hypotheses. We consider the three most common

approaches: family-wise error rate (FWER), false discovery ratio (FDR), and false discovery

proportion (FDP). FWER controls the probability of making more than one false rejection,

FDP controls the probability of a user-specified proportion of false rejections in a given

sample, while FDR controls the expected (across different samples) proportion of false rejec-

tions. We concentrate on a total of five methods: two that control FWER (i.e., Bonferroni

and Holm); two that control FDR (i.e., BH and BHY); and one that controls FDP (i.e.,

FDP-StepM).2

2The BH procedure is from Benjamini and Hochberg (1995). The BHY procedure is a combination of
Benjamini and Hochberg, and Benjamini and Yekutieli (2001). FDP-StepM was developed by Romano and
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We first perform a Monte Carlo simulation that allows us to highlight the properties of

the various MHT methods applied to financial data. It is important to remember that MHT

methods were developed for applications in different fields. In genomics, for example, after

adjusting for MHT it is not uncommon to reject only strategies with p-values of the order

of 5 × 10−7 (see, The Wellcome Trust Case Control Consortium, 2007). This is not only

dictated by the need to be conservative in the medical profession, but also by the fact that

statistical relations are stronger in other fields than they are in finance and economics. Since

the signal-to-noise ratio is probably very different in financial data, one might expect very

different size and power properties for the various MHT tests.

Our Monte Carlo experiment produces a cross-section of strategies with features matching

those of the actual empirical distribution. We conduct various experiments differing in

the fraction of true alternatives, the strength of abnormal returns under the alternative

distribution, correlation between strategies, number of strategies, and number of simulation.

We find that, while all MHT methods have good size properties, they differ in their power

and their ability to adapt to situations where the proportion of true alternatives might be

high. In particular, we find that only one of the FDR methods (the BH procedure) and

the FDP method (the FDP-StepM procedure) are reliable in terms of power properties; the

other MHT methods have substantially low power (due to very high critical values that they

impose on the data). We also find that the magnitude of critical value (and the corresponding

rejection rates) are primarily dictated by the signal-to-noise ratio (magnitude of true alphas

relative to return volatility) as well as the fraction of true rejections. The BH and FDP

methods are adaptive (but the other MHT methods are not) in the sense that they produce

lower critical values if the true number of rejections in the data is high. Thus, our Monte

Carlo experiment suggests that when dealing with as much variability in the data as that

contained in CRSP and COMPUSTAT, one should be selective about the choice of MHT

methods.

Wolf (2007).
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Our Monte Carlo experiment also allows us to address the concern about the use of our

large sample of over two million strategies in real data. Of course, we do not mean to imply

that researchers are looking at the set of strategies that we use in our experiment. In fact, the

set of strategies that finance researchers look at (or will potentially look at) is much smaller.

This raises the concern about whether there might be statistical biases introduced by our

very large set of strategies. Out Monte Carlo experiment shows that, while the thresholds

do increase mechanically for some MHT methods, the BH and the FDP methods do not

lead to a mechanical increase in statistical thresholds. Therefore, even if researchers will

not consider all the strategies that we study, our results are still of general interest since

our experiment relies on the basic variability of information contained in the CRSP and

COMPUSTAT datasets.

Armed with an understanding of the properties of MHT methods, we move on to analyze

the actual data. We calculate two measures of risk-adjusted performance for each of our

strategies. First, we construct a long-short portfolio based on the top and bottom decile of

each signal’s distribution. We then compute portfolio alphas using the Fama and French

(2015) five factor model augmented with the Carhart (1997) momentum factor. Second, we

calculate the Fama and MacBeth (1973, henceforth FM), coefficient for each signal following

the methodology proposed by Brennan, Chordia, and Subrahmanyam (1998).

We find a relatively large discrepancy in thresholds and rejection rates across the five

models and for different evaluation measures (i.e., alphas and FM coefficients). Following

what we learn from the Monte Carlo simulation we focus on FDR-BH and FDP-StepM

methods. Differently from the simulation, these two methods produce very different results

in the actual data; FDR-BH rejects a higher proportions of nulls than does FDP-StepM.

Besides the conceptual distinction in what they are trying to control, the FDR and

FDP methods also differ in their underlying assumptions. For our purposes, an important

assumption is that of non-zero correlation between strategies. Trading strategies are not

independent of each other, as there is cross-correlation in stock returns across different firms
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and in the information used to construct the signals, not only across different firms but also

within a particular firm (i.e., total assets and profitability are not independent). The FDR

methods make strong assumptions about the correlation structure of strategies whereas the

FDP method delivers statistical cutoffs that account for the cross-correlations present in the

data. Therefore, we rely on the FDP method more heavily.

Imposing a tolerance of 5% of false discoveries (false discovery proportion) and a signifi-

cance level of 5%, we find that the critical value for alpha t-statistic (tα) is 3.79 while that

for FM coefficient t-statistic (tλ) is 3.12. While these critical values are quite a bit higher

than the conventional levels, they are not far from the suggestion of Harvey, Liu, and Zhu

(2015) to use a critical value of three. Our higher thresholds are due to our choice of a

different MHT method, our sample of over two million strategies vis-à-vis 316 strategies in

Harvey, Liu, and Zhu, and the fact that we fully account for dependence in the data. At

these thresholds, 2.67% of strategies have significant alphas and 16.31% have significant FM

coefficients. The smaller critical values for tλ than those for tα are due to the fact that the

cross-strategy distribution of the former has longer tails (i.e., the standard deviation of the

distribution of tλ is equal to 1.93, while the standard deviation of tα is 1.82).

Comparing the rejection rates obtained from MHT to the rejection rates obtained from

classical single hypothesis testing (CHT), which rejects any hypothesis with a t-statistic

higher than 1.96, gives a lower bound for the magnitude of false discoveries (i.e., MHT

methods also allow for some false discoveries to happen). Under CHT we reject the null

hypothesis in about 30% of the cases for both alpha and FM coefficient t-statistics.

We conclude that, in our experiment, the great majority of the discoveries (i.e., rejections

of the null of no predictability) that are made by relying on CHT and without accounting for

the very large number of strategies that are never made public, are very likely false. In the

case of alphas, that percentage can be as high as 91% (= 1− 2.67/30.36), while the problem

is less severe for FM coefficients, although it could still be as high as 59%(= 1−16.31/39.33).

In order to gauge some consistency between performance measures we ask of a trading
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signal to not only generate a high long-short portfolio alpha but also to explain the broader

cross-section of returns in a regression setting. Eliminating strategies that have statistically

significant tα but insignificant tλ, or vice-versa, drastically reduces the number of successful

strategies to 806 (i.e., 0.04% of the total) under MHT and to 33,881 (i.e., 1.62% of the total)

under CHT. The lower bound on the proportion of false discoveries remains very high, north

of 95%. Notably, the very large proportion of lucky discoveries is constant across many

ways of classifying the trading strategies according to their strength: average return, alpha,

Sharpe ratio or information ratio.

The very high proportion of false discoveries (relative to classical hypothesis testing) is

also persistent across many experimental and modeling choices: use of different factor models

to adjust the strategies returns; different combinations of controls in the FM regression;

inclusion of small stocks; and number of strategies that we consider. This robustness across

many specification lends credibility to the idea that our results should generalize to different

sets of trading strategies that are constructed using different datasets.

Our paper echoes the increasing skepticism about the validity of many research findings

in a variety of fields. While the findings on the lack of replicability in medical research

by Ioannidis (2005) are widely cited, the economics profession has also made an effort to

tackle this problem. Leamer (1978, 1983) famously complains about specification searches

in empirical research and asks researchers to take the ‘con’ out of econometrics. Dewald,

Thursby, and Anderson (1986), McCullogh and Vinod (2003), and Chang and Li (2017) also

report disappointing results from replication of economics papers. The use of replication in

finance is less widespread with Hou, Xue, and Zhang (2017) being a notable recent exception.

Our paper also joins the list of the growing finance literature that studies the prolifera-

tion of discoveries of abnormally profitable trading strategies and/or pricing factors and its

relation to data-snooping biases in finance. See Lo and MacKinlay (1990) and MacKinlay

(1995) for early work emphasizing statistical biases in hypothesis testing. The question of

whether the profitability of published strategies survives the test of time is studied in Schwert
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(2003), Chordia, Subrahmanyam, and Tong (2014), McLean and Pontiff (2015), Linnainmaa

and Roberts (2016), and Hou, Xue, and Zhang (2017). Towards the turn of the century,

more formal statistical approaches were developed and applied to the problem of evaluat-

ing multiple strategies (see, for example, Sullivan, Timmermann, and White (1999), White

(2000), and Romano and Wolf (2005)). The MHT approach has been more recently applied

to financial settings in Barras, Scaillet, and Wermers (2010), Harvey, Liu, and Zhu (2015),

and emphasized in the presidential address of Harvey (2017).

Our paper is also closely related to Yan and Zheng (2017). Both papers share the goal of

evaluating a broader universe of strategies than just the published ones. Despite inevitable

differences in sample construction etc., we find very similar results in our sample of two

million strategies that Yan and Zheng find in their sample of around 18,000 strategies. In

particular, using the same bootstrap experiment that Yand and Zheng use, we reject all per-

centiles of t-statistics below 40 and above 60. Such a large rejection rate suggests substantial

miss-pricing in the market, a viewpoint adopted by Yan and Zheng. Our conclusions about

market efficiency differ markedly from theirs for two main reasons. First is our use of formal

statistical approaches to MHT rather than the heuristic-based bootstrapped approach. In

fact, we show through simulation that bootstrap-based methods tend to substantially over-

reject the null hypothesis while the size and power properties of MHT methods are markedly

better. Second, we show that economic and statistical considerations play a large role in

restricting the set of statistically significant strategies.

1 Data and trading strategies

Monthly returns and prices are obtained from CRSP. Annual accounting data come from

the merged CRSP/COMPUSTAT files. We collect all items included in the balance sheet,

the income statement, the cash-flow statement, and other miscellaneous items for the years

1972 to 2015. We choose 1972 as the beginning of our sample as it corresponds to the first

7



year of trading on Nasdaq that dramatically increased the number of stocks in the CRSP

dataset. All our results are robust to beginning the sample in 1963, which is the first date

on which the COMPUSTAT data are not affected by backfilling bias. Following convention,

we set a six-month lag between the end of the fiscal year and the availability of accounting

information.

We impose several filters on the data to obtain our basic sample. First, we include only

common stocks with CRSP share codes of 10 or 11. Second, we require that data for each

variable be available for at least 300 firms each month for at least 30 years during the sample

period. Third, in FM (1973) regressions described later, we require that data be available

for all independent variables (including the variable of interest) for at least 300 firms each

month for at least 30 years during the sample period. Fourth, at portfolio formation at the

end of June of each year (exact procedure described later), we require stocks to have a price

higher than three dollars and market capitalization to be higher than the bottom twentieth

percent of the NYSE capitalization. The last filter ensures that we eliminate micro-cap

stocks alleviating concerns about transaction costs as well those about generalizability and

relevance (Novy-Marx and Velikov (2016) and Hou, Xue, and Zhang (2017)).

There are 156 variables that clear our filters and can be used to develop trading signals.

The list of these variables is provided in Appendix Table A1. We refer to these variables

as Levels. We also construct Growth rates from one year to the next for these variables.

Since it is common in the literature to construct ratios of different variables we also compute

all possible combinations of ratios of two levels, denoted Ratios of two, and ratios of any

two growth rates, denoted Ratios of growth rates. Finally, we also compute all possible

combinations that can be expressed as a ratio between the difference of two variables to a

third variable (i.e., (x1 − x2)/x3). We refer to this last group as Ratios of three. We obtain

a total of 2,385,778 possible signals.

We evaluate trading signals by estimating abnormal performance of the hedge portfolios

using a factor model and by evaluating the ability of the signal in explaining the cross-section
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of firms’ abnormal returns.

1.1 Hedge portfolios

We sort firms into value-weighted deciles on June 30 of each year and rebalance these portfo-

lios annually. The first portfolio formation is June 1973 and the last formation date is June

2015. We require a minimum of 30 stocks in each decile (300 stocks in total) in a month

to consider that month as having a valid return. The signal is considered to have generated

a valid portfolio if there are at least 360 months of valid returns. We consider long-short

portfolios only. Thus, we compute a hedge portfolio return that is long in decile ten and

short in decile one. Since we do not know ex-ante which of the two extreme portfolios has

the largest average return, our hedge portfolios can have either positive or negative average

returns. Obviously, it is always possible to obtain a positive average return for a hedge port-

folio that has a negative average return by taking the opposite positions. For expositional

convenience, we decide not to force average returns to be positive.

Our benchmark evaluation factor model is composed of the five factors in Fama and

French (2015) plus the momentum factor. The five factors are the market, size, value, in-

vestment, and profitability factors. For each trading strategy, we run a time-series regression

of the corresponding hedge portfolio returns on the six factors and obtain the alpha as well

as its heteroskedasticty-adjusted t-statistic, tα.

1.2 Fama-MacBeth regressions

Given that the alphas of the long-short portfolio effectively consider the efficacy of the

strategy in only 20% of the sample, we also evaluate a signal’s ability to predict returns in

the cross-section of stocks using FM regressions. In particular, we evaluate the ability of

the signal to explain stock returns by estimating the following cross-sectional regression each

month:

Rit − β̂iFt = λ0t + λ1tXit−1 + λ2tZit−1 + eit, (1)
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where X is the variable that represents the signal and Z’s are control variables. We use the

most commonly used control variables, namely size (i.e., the natural logarithm of the firm’s

market capitalization), natural logarithm of the book-to-market ratio, past one-month and

11-month return (skipping the most recent month), asset growth, and profitability ratio.

Book-to-market is calculated following Fama and French (1992) while asset growth and

profitability are calculated following Fama and French (2015). We risk-adjust the returns on

the left-hand-side of equation (1) following Brennan, Chordia, and Subrahmanyam (1998).

We use the same six-factor model used to calculate hedge portfolio alphas, and calculate full-

sample betas β̂ for each stock. We require at least 60 months of valid returns to estimate

the time-series regression. All right-hand-side variables are winsorized at the 1st and 99th

percentile in FM regressions.

In estimating the cross-sectional regressions, we require a minimum of 300 stocks in a

month. Finally, we require a minimum of 360 valid monthly cross-sectional estimates during

the sample period to calculate a valid λ1 coefficient for a signal. Thus, we calculate the FM

coefficient λ1 as well its heteroskedasticty-adjusted t-statistic (tλ). Given that we require a

valid beta for each stock and data on additional control variables, the data requirements for

the FM regressions are slightly more stringent than those for portfolio formation.

2 Strategy performance

In this section we discuss the statistical properties of the signals and the trading strategy

returns. We analyze raw returns and Sharpe ratios in Section 2.1, and abnormal returns and

regression coefficients in Section 2.2.

2.1 Raw returns and Sharpe ratios

Table 1 reports summary statistics of raw returns on the hedge portfolios. We report cross-

sectional means, medians, standard deviation, minimum, and maximum across portfolios.
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These statistics are reported for the sample of all portfolios as well as the sub-sample of

portfolios formed by the different trading signals (i.e., ratio of two, ratio of three, etc.). We

report monthly average returns, t-statistics for returns, and monthly Sharpe ratios in Panel

C. We also report the number and percentage of portfolios that cross specific thresholds.

We report these results for two different samples of stocks. Panel A uses only the stocks

filtered by size and price as described in the previous section while Panel B uses all stocks.

We report results for different kinds of strategies in each panel but Panel B does not include

strategies ‘Ratios of three.’3

Panel A shows that the cross-sectional mean and median average return of the portfolios

are close to zero. The cross-sectional standard deviation of returns at 0.17% coupled with

the fact that we have over two million portfolios implies that there are many portfolios with

very large absolute returns. For example, there are 20,34 portfolios with absolute average

monthly return greater than 0.5%. A large number of portfolios also have average return

t-statistics that exceed conventional statistical significance levels. 129,689 (26,800) portfo-

lios have average return t-statistics larger than 1.96 (2.57) (in absolute value); although, as

expected, this represents only about 5% (1%) of the total number of portfolios. The eco-

nomic importance of these portfolios is also very impressive as many portfolios have monthly

Sharpe ratios higher than the historical market Sharpe ratio (approximately 0.116), with one

portfolio having a Sharpe ratio higher than 0.232. These facts, while not perhaps surprising,

are, nevertheless, interesting because they are obtained despite the stringent rules that affect

the composition of our universe of stocks and signals (e.g., we eliminate stocks that are in

the bottom quintile of the NYSE size distribution and that have prices below three dollars).

As is to be expected, the dispersion in the performance of strategies is largest in the subset

of strategies ‘Ratios of three.’ The most profitable and statistically significant returns come

from this group. The largest absolute average return is 1.07 per cent per month, and the

largest absolute t-statistic is 5.41.

3The reason for excluding the large set of strategies for the sample of all stocks is computational time.
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In order to examine the tails of the distribution, we list the top 50 strategies by average

returns, return t-statistic, and Sharpe ratio in Tables ??, ??, and ??, respectively. Most of

the strategies in the tails are new and appear unrelated to existing anomalies (as it should

be, since we control for the well-known anomalies in the factor models and regressions).

For example, the most profitable strategy in terms of raw returns is the ratio of the differ-

ence between Capital surplus-share premium reserve (CAPS) and Cash and cash equivalent

increase/decrease (CHECH) to advertising expense (XAD). This strategy has an average

return of −1.07 per cent per month with a t-statistic of −4.40.

Panel B considers the sample of all stocks and reports results only for the subset of 12,239

strategies. Thus, while we use fewer strategies than those in Panel A, we use more stocks

including small stocks. Fama and French (2008) show that anomalies are more pronounced

amongst these stocks. Therefore, the net effect of these two opposing forces on the cross-

sectional distribution of returns is not clear a priori. Looking at results in Panel B, we

find that the extremes of returns and t-statistics are slightly lower in Panel B than those in

Panel A. 1,197 (500) strategies have average return t-statistics higher than 1.96 (2.57); this

represents 10% (4%) of the total number of strategies. Thus, this sample of strategies and

stocks indicates more rejections of null for average return judged by conventional thresholds.

2.2 Abnormal returns and Fama-MacBeth regression coefficients

We next compute abnormal returns for our strategies using various factor models. We use

five different factor models: CAPM, FF3, FF6, BS, and HXZ. CAPM one-factor model uses

the market factor. FF3 is the Fama and French (2015) three-factor model. FF6 is the

Fama and French (2015) five-factor model augmented with the momentum factor. BS is

the Barillas and Shanken (2015) six-factor model. HXZ is the Hou, Xue and Zhang (2015)

q-model augmented with the momentum factor. We calculate alphas corresponding to each

factor model. We also run corresponding FM regressions where the betas on the left-hand-

side and the additional control variables Z on the right-hand-side of equation (1) correspond
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to the factor model used. Thus, we do not include any other control when risk adjusting

stock returns CAPM. We include size and book-to-market when adjusting stock returns

using the FF3 model. In all the other cases, we include size, book-to-market, profitability,

asset growth, and one- and twelve-month lagged returns. We report t-statistics on alphas

and FM coefficients in Table 2.

We also calculate these statistics for different sample of stocks and different subsample

of strategies. Panels A and B show results for the subset of strategies that does not include

‘Ratios of three’ (there are 12,239 such strategies) while Panel C uses all strategies. Panels

A and C use only stocks filtered by size and price, as described in Section 1, while Panel B

includes all stocks (including stocks that have prices below three dollars).

The distribution of alpha and FM t-statistics in Table 2 reveals even more exceptional

performance of strategies than that in raw returns of Table 1. For example, Panel A shows

that 29.59% (16.44%) of FF6 model alpha t-statistics are higher than 1.96 (2.57). The frac-

tion of FM t-statistics (in the lower half of Panel A) that cross these conventional statistical

thresholds is also high. For example, 13.65% (6.12%) of FM coefficient t-statistics when

risk-adjusting using FF6 model are higher than 1.96 (2.57).

Looking at alpha t-statistics, amongst different factor models, CAPM generates the fewest

rejections while BS model generates the highest rejections of null of zero alpha. Rejection

rates for FM t-statistics are relatively similar across different factor models except for CAPM

that, in contrast to alpha t-statistics, generates the highest number of rejections. This is

partly due to the fact that the right-hand-side control variables are the same (size, book-to-

market, profitability, asset growth, and one- and twelve-month lagged returns) in FF6, BS,

and HXZ specification, and even the FF3 specification uses two of these controls (size and

book-to-market). The CAPM specification uses no control and generates the most rejections

of the null for the FM coefficients.

Panel B expands the sample to all stocks. The extremes of t-statistics are higher in the

sample of all stocks than those in the sample of stocks filtered by size and price. However,
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the fraction of alpha t-statistics that cross the conventional thresholds is relatively similar

to that in Panel A. The fraction of FM t-statistics that cross the threshold of 1.96 or 2.57 is

slightly higher in Panel B than that in Panel A. Once again, CAPM generates the fewest (the

highest) rejections of alpha (FM) t-statistics while BS model generates the highest rejections

of alpha t-statistics. The relative similarity of results in Panels A and B suggests that our

results later in the paper are not going to be overly sensitive to the sample of stocks that we

use in our experiment.

In Panel C of Table 2 we report on all strategies. Unsurprisingly, the extremes of the

distribution of t-statistics are higher than those in Panel A. At the same time, the fraction

of alpha t-statistics that cross the thresholds is similar to all other panels. In contrast, the

fraction of FM t-statistics that cross the thresholds is much higher in Panel C than that in

the other two panels. This is partly due to higher cross-sectional standard deviation of these

t-statistics in the sample of all strategies. This means that we expect to see differences later

in the paper when looking at FM t-statistics across different sets of strategies.

Figure 1 depicts the histograms for the average return, six-factor alpha, the Sharpe ratio

and the t-statistics for the average return, the six-factor alpha and the FM coefficients.4

The distributions are generally centered around zero and seem normally distributed. The

support for the distributions is consistent with the standard deviations in Tables 1 and 2. For

instance, the Sharpe ratio has the lowest standard deviation of 0.04 while the FM coefficient

tλ has the highest standard deviation and this is reflected in the empirical distributions of

Figure 1. Note that the distributions of tα and tλ are fat-tailed, consistent with the large

number of rejections of the null in Panel A of Table 2.

It is not too surprising that, among a sample of around 12,00 strategies or in the sample

of two and a half million strategies, we uncover some strategies in the tails that appear

exceptional. However, the fact that we find almost 30% of the strategies to appear exceptional

casts some doubt on rejection rates based on CHT. We start addressing these doubts in the

4Note that the x-axis is different for the different histograms.
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next section, where we present the bootstrap approach of Yan and Zheng (2017).

3 Bootstrap approach

Recently, Yan and Zheng (2017) use a bootstrap approach to analyze multiple trading strate-

gies generated through a procedure similar to ours. This approach, inspired by Kosowski,

Timmermann, Wermers, and White (2006) and Fama and French (2010), relies on bootstrap-

ping the cross-section of fund returns through time thereby preserving the cross-sectional

dependence structure in strategy returns and ultimately their alpha estimates.

In this section we present the results of the bootstrap approach (i.e., YZ bootstrap,

henceforth) to our set of trading strategies. We follow Yan and Zheng (2017) and construct

bootstrap distributions of the alphas and their t-statistics under the null hypothesis that

the alphas are zero. To bootstrap under the null, we first subtract the six-factor alpha (i.e.,

FF6) from the monthly portfolio returns. Each bootstrap run is a random sample (with

replacement) of the alpha-adjusted returns and the factors over 522 months of the sample

period 1972 to 2015. To preserve the cross-sectional correlation we apply the same bootstrap

draw to all portfolios and to the factors. To preserve possible autocorrelation in the return

structure, we construct the stationary bootstrap of Politis and Romano (1994) by drawing

random blocks with an average length of six months. Due to the computational constraints

imposed by the large scale of our exercise we limit the exercise to 1,000 bootstrap samples

as opposed to the 10,000 runs implemented by Yan and Zheng.

For each bootstrap run we obtain the portfolio alphas and their t-statistics under the

null of zero alpha. Following Yan and Zheng (2017), we then compare the percentiles of

the t-statistics from the actual data sample to the corresponding percentiles in the boot-

strap samples (i.e., the collection of xth percentile from each bootstrap run). We focus on

t-statistics rather than on the coefficients themselves because t-statistics control for the pre-

cision of coefficients and are advocated by, for example, Romano, Shaikh, and Wolf (2008).
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Table 3 documents selected percentiles of the t-statistics from the actual distribution

(Data). We also report the fraction of iterations where the bootstrapped percentile is bigger

than the actual t-statistic for that percentile (% Boot) for percentiles above 50 and the

fraction of iterations where the bootstrapped percentile is smaller than the actual t-statistic

for that percentile for percentiles below 50. Yan and Zheng (2017) refer to this fraction as

the p-value of the selected pereentile while Fama and French (2010) refer to this fraction as

the likelihood.

Consider the 99th percentile. The actual alpha tα from the data is 4.03 while the average

(across iterations) bootstrap tα under the null is 2.35 (not reported in the table). In the

the collection of 99th percentiles from each bootstrap run, we do not find any bootstrapped

tα larger than 4.03. Similar observations apply to other percentiles implying that, relative

to bootstrap distribution under the null of zero alpha, the extreme of the distributions of

actual t-statistics in the data are atypical.

We conduct a similar experiment for FM coefficients (i.e., again using the FF6 factor

to compute the risk-adjusted return, and all six controls on the right hand side of the

regressions). In particular, for each signal variable we start by subtracting the average from

the time-series of λ1t coefficients from equation (1), thus obtaining a time-series of adjusted

coefficients under the null of no explanatory power. We then bootstrap 1,000 times the

time-series of pseudo coefficients and calculate the means and t-statistics for each bootstrap

iteration. Finally, for each percentile of interest we collect the corresponding quantity from

each bootstrap cross-sectional distribution of FM coefficients. We then compare the tλ based

on the data to the corresponding bootstrap quantities in the same way as we do for the tα.

We report the comparisons in the right panel of Table 3. We find very similar patterns than

those observed for alphas. Consider, for example, the 95th percentile of the actual tλ, which

is equal to 3.77. The distribution of the corresponding bootstrap percentiles has an average

of 1.64 (not reported in the table). No bootstrapped 95th percentile of tλ is larger than 3.77.

Therefore, the very large values of tλ observed in the data appear atypical when compared
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to their bootstrap distributions.

Overall, we find that actual t-statistics of percentiles in the tails do not appear to be drawn

from the same percentile’s distribution generated from zero alpha or zero FM coefficients.

Yan and Zheng (2017) obtain very similar results based on their sample of 18,000 strategies.

It is a little surprising that the bootstrap method “rejects” so many strategies — we find

that the likelihood/p-value of t-statistics appearing from the null is close to zero for all

percentiles below 40 and above 60. These rejection rates are even higher than those reported

using classical thresholds. For example, Panel A of Table 2 shows rejection rates of only

16.44% for tα and 25.19% for tλ at the high threshold of 2.57 for a significance level of 1%.

We conduct a Monte Carlo study in Section 5 to to shed some light on the properties

of the YZ bootstrap method, as well as of the MHT techniques that we present in the next

section.

Alessio: We should get rid of the following. However, it is important at this

stage to recognize some important limitations of the bootstrap method. Although the cross-

section of alphas does provide some information about luck versus skill (i.e., true versus

false null hypotheses), it does not inform us about the relative proportion of true versus

false rejections of the null. As illustrated by Barras, Scaillet, and Wermers (2010), this is

particularly true of the tails of the distribution. For example, if one observes that 16% of

the t-statistics are above the threshold for a significance level of 1% in a two tailed test, then

one can infer that there are some strategies that do beat the benchmark. However, one still

cannot infer how many of these strategies represents a true discovery (i.e., for which the null

should be rejected) without knowing the proportion of strategies that have truly no alpha but

were lucky in generating abnormal performance in the sample (i.e., false positives). In other

words, comparing the data to the bootstrap is a useful first diagnostic but one needs a formal

MHT approach to the problem of assessing the proportion of outperforming strategies.
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4 Multiple hypotheses testing

Classical single hypothesis testing (CHT) uses a significance level α to control Type I error

(discovery of false positives). In multiple hypothesis testing (MHT), using α to test each

individual hypothesis does not control the overall probability of false positives.5 For instance,

consider a number test statistics which are true under the null and independent of each other.

If we set the significance level at 5%, the rate of Type I error (i.e., the probability of making

at least one false discovery) is 1 − 0.9510 = 40% in testing ten hypotheses and over 99% in

testing 100 hypotheses.

There are three broad approaches in the statistics literature to deal with this problem:

family-wise error rate (FWER), false discovery rate (FDR), and false discovery proportion

(FDP). In this section, we describe these approaches and provide details on their implemen-

tation.

We are interested in testing the performance of trading strategies by analyzing the ab-

normal returns generated by M signals. The test statistic is either tα or tλ (equivalently the

p-values). The null hypothesis corresponding to each strategy is labeled as Hm. For ease

of notation, we will relabel the strategies and order them from the best (highest t-statistic)

to the worst (lowest t-statistic). In other words, it is assumed that t1 ≥ t2 ≥ . . . ≥ tM , or

equivalently the p-values p1 ≤ p2 ≤ . . . ≤ pM . Some of the methods used in this section use

a bootstrap procedure which is the same as that described in the previous section.

4.1 FWER

The strictest idea in MHT is to try to avoid any false rejections. This translates to control-

ling the FWER, which is defined as the probability of rejecting even one of the true null

hypotheses:

FWER = Prob{Reject even one true null hypothesis}.

5The use of symbol α to denote both the significance level as well as the abnormal returns from a factor
model is standard. We hope that this does not cause any confusion and the usage is clear from the context.
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Thus, FWER measures the probability of even one false discovery, i.e., rejecting even one

true null hypothesis (type I error). A testing method is said to control the FWER at a

significance level α if FWER ≤ α. There are many approaches to controlling FWER.

4.1.1 Bonferroni method

The Bonferroni method, at level α, rejects Hm if pm ≤ α/M . The Bonferroni method is a

single-step procedure because all p-values are compared to a single critical value. This critical

p-value is equal to α/M . For a very large number of strategies, this leads to an extremely

small (large) critical p-value (t-statistic). While widely used for its simplicity, the biggest

disadvantage of the Bonferroni method is that it is very conservative and leads to a loss of

power. One of the main reasons for the lack of power is that the Bonferroni method implicitly

treats all test statistics as independent and, consequently, ignores the cross-correlations that

are bound to be present in most financial applications.

4.1.2 Holm method

This is a stepwise method based on Holm (1979) and works as follows. The null hypothesis

Hi is rejected at level α if pi ≤ α/(M − i + 1) for i = 1, . . . ,M . In comparison with the

Bonferroni method, the criterion for the smallest p-value is equally strict at α/M but it

becomes less and less strict for larger p-values. Thus, the Holm method will typically reject

more hypotheses and is more powerful than the Bonferroni method. However, because it also

does not take into account the dependence structure of the individual p-values, the Holm

method is also very conservative.

4.1.3 Bootstrap reality check

Bootstrap reality check (BRC) is based on White (2000). The idea is to estimate the sampling

distribution of the largest test statistic taking into account the dependence structure of the

individual test statistics, thereby asymptotically controlling FWER.

19



The implementation of the method proceeds as follows. Bootstrap the data using pro-

cedure described in Section 3. For each bootstrapped iteration b, calculate the highest

(absolute) t-statistic across all strategies and call it t
(b)
max, where the superscript b is used to

clarify that these t-statistics come from the bootstrap. The critical value is computed as the

(1− α) empirical percentile of B bootstrap iterations values t
(1)
max, t

(2)
max, . . . , t

(B)
max.

Statistically speaking, BRC can be viewed as a method that improves upon Bonferroni by

using the bootstrap to get a less conservative critical value. From an economic point of view,

BRC addresses the question of whether the strategy that appears the best in the observed

data really beats the benchmark. However, BRC method does not attempt to identify as

many outperforming strategies as possible.

4.1.4 StepM method

This method, based on Romano and Wolf (2005) addresses the problem of detecting as

many out-performing strategies as possible. The stepwise StepM method is an improvement

over the single-step BRC method in very much the same way as the stepwise Holm method

improves upon the single-step Bonferroni method. The implementation of this procedure

proceeds as follows:

1. Consider the set of all M strategies. For each cross-sectional bootstrap iteration,

compute the maximum t-statistic, thus obtaining the set t
(1)
max, t

(2)
max, . . . , t

(B)
max. Then

compute the critical value c1 as the (1− α) empirical percentile of the set of maximal

t-statistics, as in BRC method. Apply now the c1 threshold to the set of original t-

statistics and determine the number of strategies for which the null can be rejected.

Say that there are M1 strategies, for which tm ≥ c1. We have now M −M1 strategies

remaining with t-statistics ordered as tM1+1, tM1+2, . . . , tM .

2. Consider the set of remaining M − M1 strategies. For each bootstrapped iteration

b, calculate the highest (absolute) t-statistic across all remaining strategies. To avoid
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cluttering up the notation, we will use the same symbols as before and call the maximal

t-statistics of the b bootstrap iteration across the M −M1 remaining strategies as t
(b)
max.

The critical value c2 is computed as the (1 − α) empirical percentile of B bootstrap

iterations values t
(1)
max, t

(2)
max, . . . , t

(B)
max. Say that there are M2 strategies, for which tm ≥

c2, and are, therefore, rejected in this step. After this step, M −M1 −M2 strategies

remain with t-statistics ordered as tM1+M2+1, tM1+M2+2, . . . , tM .

3. Repeat the procedure until there are no further strategies that are rejected. The StepM

critical value for the entire procedure is equal to the critical value of the last step and

the number of strategies that are rejected is equal to the sum of the number of strategies

that are rejected in each step.

Like the Holm method, the StepM method is a stepdown method that starts by examining

the most significant strategies. The main advantage of the method is that, because it relies

on bootstrap, it is valid under arbitrary correlation structure of the test statistics. As

mentioned before, this method will detect many more out-performing strategies than the

Bonferroni method or the BRC approach.

It is easy to see that the BRC approach amounts to only step one of the above procedure,

namely computing only the critical value c1. By continuing the method after the first step,

more false null hypotheses can be rejected. Moreover, since typically c1 > c2 > . . ., the

critical value in StepM method is less conservative than that in BRC approach. Nevertheless,

the StepM procedure still asymptotically controls FWER at significance level α.

4.2 k-FWER

By relaxing the strict FWER criterion, one can reject more false hypotheses. For instance,

k-FWER is defined as the probability of rejecting at least k of the true null hypotheses:

k-FWER = Prob{Reject at least k of the true null hypothesis}.
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A testing method is said to control for k-FWER at a significance level α if k-FWER ≤ α.

Testing methods such as Bonferroni and Holm, discussed earlier, can be generalized for k-

FWER testing. Please refer to Romano, Shaikh, and Wolf (2008) for further details. Here

we discuss only the extension of the StepM method which is known as the k-StepM method.

4.2.1 k-StepM method

The implementation of this procedure proceeds as follows:

1. Consider the set of all M strategies. For each bootstrapped iteration b, calculate

the k-highest (absolute) t-statistic across all strategies and call it t
(b)
k-max, where the

superscript b is used to clarify that these t-statistics come from the bootstrap. Compute

the critical value c1 as the (1−α) empirical percentile of B bootstrap iterations values

t
(1)
k-max, t

(2)
k-max, . . . , t

(B)
k-max. Say that there are M1 strategies, for which tm ≥ c1, and are,

therefore, rejected in this step. After this step, M − M1 strategies remain with t-

statistics ordered as tM1+1, tM1+2, . . . , tM . Apart from the use of k-max instead of max,

this step is identical to the first step of StepM procedure.

2. Consider the set of remaining M −M1 strategies. Call this set Remain. Also consider

a number k − 1 of strategies from the set of already rejected strategies. Call this set

Reject. Now consider the union of these two sets, Consider = Remain ∪ Reject.

For each bootstrapped iteration b, calculate the k-highest (absolute) t-statistic across

all strategies in the set Consider and call it t
(b)
k-max. Compute the (1 − α) empirical

percentile of B bootstrap iterations values t
(1)
k-max, t

(2)
k-max, . . . , t

(B)
k-max. This empirical per-

centile will depend on which k − 1 strategies were included in the set Reject. Given

that there are
(
M1

k−1

)
possible ways of choosing k− 1 strategies from a set of M1 strate-

gies, the critical value c2 is computed as the maximum across all these permutations.

Say that there are M2 strategies, for which tm ≥ c2, and are, therefore, rejected in

this step. After this step, M −M1 −M2 strategies remain with t-statistics ordered as

tM2+1, tM2+2, . . . , tM .
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3. Repeat the procedure until there are no further strategies that are rejected. The critical

value of the procedure is equal to the critical value of the last step and the number

of strategies that are rejected is equal to the sum of the number of strategies that are

rejected in each step.

The key innovation in the k-StepM procedure is in the inclusion of (some of the) rejected

strategies while calculating subsequent critical values (c2 and thereafter). The intuition is

as follows. Remember that ideally we want to calculate the empirical critical value from the

set of strategies that are true under the null hypothesis. This set is unknown in practice.

However, we can use the results of the first step to arrive at this set. The set Remain of

remaining strategies that have not (yet) been rejected is an obvious candidate for strategies

that are true under the null. If we are in the second step of the procedure, it stands to reason

that the first step was not able to control k-FWER. In other words, less than k true null

hypotheses were rejected in the first step. Let’s say that number is in fact k− 1. Obviously,

we do not know with precision which k − 1 true nulls have been rejected among the many

strategies rejected in the first step. Therefore, to be cautious, Romano, Shaikh, and Wolf

(2008) suggest looking at all possible combinations of k− 1 rejected hypotheses from the set

Reject.

4.3 False Discovery Ratio (FDR)

In many applications, we are willing to tolerate a larger number of false rejections if there are

a large number of total rejections. In other words, rather than controlling for the “number” of

false rejections, one can control for the “proportion” of false rejections or the False Discovery

Proportion (FDP). FDR measures and controls the expected FDP among all discoveries.

More formally, a multiple testing method is said to control FDR at level δ if FDR ≡ E(FDP)

≤ δ. The level δ is a user-defined parameter which should not be confused with a significance

level α. Since FDR is already an expectation, controlling for FDR does not need additional

specification of probabilistic significance level. Nevertheless, the literature often uses δ and
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α interchangeably. It is to be noted though that choosing false discovery ratio δ in FDR

methods to be the same as the significance level α in FWER methods would imply that the

FDR methods are more lenient than the FWER methods as FDR tolerates a larger number

of false rejections. Harvey, Liu, and Zhu (2016) explore δ of both 5% and 1%.

One of the earliest methods to controlling FDR is by Benjamini and Hochberg (1995) and

proceeds in a stepwise fashion as follows. Assuming as before that the individual p-values

are ordered from the smallest to largest, and defining:

j∗ = max

{
j : pj ≤

j × δ

M

}
,

one rejects all hypotheses H1, H2, . . . , Hj∗ (i.e., j∗ is the index of the largest p-value among

all hypotheses that are rejected). This is a step-up method that starts with examining the

least significant hypothesis and moves up to more significant test statistics. We label this

method as BH method in the rest of the paper.

Benjamini and Hochberg (1995) show that their method controls FDR if the p-values are

mutually independent. Benjamini and Yekutieli (2001) show that a more general control of

FDR under a more arbitrary dependence structure of p-values can be achieved by replacing

the definition of j∗ with:

j∗ = max

{
j : pj ≤

j × δ

M × CM

}
,

where the constant CM =
∑M

i=1 1/i ≈ log(M) + 0.5. However, the Benjamini and Yekutieli

method is less powerful than that of Benjamini and Hochberg. We label this method as

BHY method in the rest of the paper.

4.4 False Discovery Proportion (FDP)

One caveat with FDR is that it is designed to control only the central tendency of the

sampling distribution of FDP. In a given application, the realized FDP could still be far away

from the level δ. Therefore, FDR’s application is better suited for cases where a researcher
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can analyze a large number of data sets thus allowing one to make confidence statements

about the realized average FDP across the various data sets. Since our application of MHT

is based on a single dataset, it is more appropriate to use a method that directly controls

the FDP.6

A multiple testing method is said to control FDP at proportion γ and level α if Prob(FDP

> γ) ≤ α. Lehman and Romano (2005) and Romano and Shaikh (2006) develop extensions

of the Holm method for FDP control. Here we discuss only the extension of the StepM

procedure developed by Romano and Wolf (2007).

4.4.1 FDP-StepM method

The StepM procedure for control of FDP is as follows:

1. Let j = 1 and k1 = 1.

2. Apply the kj-StepM method and denote by Mj the number of hypotheses rejected.

3. If Mj < kj/γ − 1, then stop. Else let j = j + 1, kj = kj−1 + 1, and return to step 2.

The FDP-StepM method is, thus, a sequence of k-StepM procedures. The intuition of

applying an increasing series of k’s is as follows. Consider controlling FDP at proportion

γ = 10%. We start by applying the 1-StepM method. Denote by M1 the number of strategies

rejected at this stage. Since the basic 1-StepM procedure controls for FWER, we can be

confident that no false rejections have occurred so far, which in turn also implies that FDP

has also been controlled. Consider now the issue of rejecting the strategy HM1+1, the next

most significant strategy (recall that StepM is a stepdown procedure).

Rejection of HM1+1, if the null of this strategy is true, renders the false discovery pro-

portion to be equal to 1/(M1 + 1). Since we are willing to tolerate 10% of false rejections,

we would be willing to tolerate rejecting this strategy if 1/(M1 + 1) < 0.1 which is true if

M1 > 9. Thus if M1 < 9 the procedure would stop at the first step. Alternatively, if M1 > 9,

6We thank Michael Wolf for explaining this important difference to us.
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the procedure would continue with the 2-StepM method, which by design should not reject

more than one true hypothesis.

Besides the fact that the FDP-StepM method allows the researcher to directly control

FDP, one other big advantage of this method for us is that it accounts for generalized

correlation structure in the data and, therefore, in the individual p-values. Such cross-

correlation arises from two sources. First, different trading strategies rely on firm level data

that are economically related through the balance sheet, the income statement, or market

assessment of such data. Therefore, the trading signals are not independent. Second, even

if the signals were truly independent, they are still applied to a common set of stock returns

that co-move in time because of aggregate forces.

Thus, it is important to use methods that do not rely on restrictive assumptions about

cross-correlations but are able to take into account the actual cross-correlations present in

the data to deliver more precise critical values. For these reasons (and for reasons discussed

earlier regarding appropriateness to our setting), we dedicate more attention to the FDP

method.

5 Monte Carlo simulations

In this section we perform a Monte Carlo simulation to assess the performance of various

MHT methods as well as the relative performance of the YZ bootstrap method of Yan and

Zheng (2017). We simulate time-series of returns for T = 500 periods (i.e., months) for

N = 10, 000 strategies based on the empirical distribution of factors, factor sensitivities, and

time-series residuals obtained from our sample.

The data generating process for returns to strategy p is as follows:

Rpt = αp + β ′

pFt + ǫpt.

We simulate a six-factor model, as in the actual data, that mimics the statistical properties
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of the five Fama and French (2015) factors augmented with the momentum factor.

Each month, we draw the factor returns, Ft, from a multivariate normal distribution

with means and covariance matrix matched to that from the actual distribution of factor

returns. For each strategy p, we draw the 6 × 1 vector of betas, βp, from a multivariate

normal distribution with means and covariance matrix matched to that of the cross-sectional

distribution of betas from the actual data. The N × 1 vector α is populated by zeros and

by a fraction f of non-zero values. To better represent the actual data, we inject into each

simulation, non-zero α strategies of different magnitudes. In particular, f/2 of the strategies

are assigned a negative α and the other f/2 are assigned a positive value. Non-zero αs

are equal to either 0.5% or 1.0%. The residuals ǫt are drawn from a multivariate normal

distribution with mean zero and a N × N covariance matrix Σǫ. The diagonal variance

elements of Σǫ are drawn from a normal distribution with mean and standard deviation

matched to that of the cross-sectional distribution of variances of residuals from the actual

data (to avoid negative values we winsorize the variances at the minimum value in the

empirical distribution). The average monthly standard deviation of residuals in the data is

approximately 2.8%, with minimum and maximum values of 1.2% and 7.2%, respectively.

The off-diagonal covariance elements of Σǫ are obtained by imposing a constant correlation

ρ. Given that the average pairwise correlation between strategy returns in the real data is

3%, we report simulation results for ρ equal to 0%, 3%, and 6%.

For each simulation run, we generate the data, estimate alphas, and calculate rejection

rates from the YZ bootstrap and the MHT methods. We simulate the economy S = 1, 000

times and within each simulation run we resample B = 1, 000 times (i.e., used to determine

the YZ bootstrap and the FDP-StepM method).

5.1 Results for YZ bootstrap method

We start by discussing simulation results of the bootstrap method of Yan and Zheng (2017).

In order to simplify exposition we convert the simulated population and bootstrap distri-
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butions by taking the absolute value of the t-statistics. Note that this is equivalent to

considering the distribution of p-values. For each percentile between 65 and 99, we tabulate

the average across simulations of the frequency of cases in which the bootstrap t-statistics is

larger than the corresponding population t-statistic. Yan and Zheng refer to this quantity as

the percentile p-value. Since there is no formal statistical control in the bootstrap method,

we assume that a t-statistic at a percentile will be “rejected” if this p-value is lower than

0.05.

With this definition in mind, we observe in Table 4 that the bootstrap method has very

good size properties when the alphas across all the strategies are zero. In other words, one

would not reject the null hypothesis of zero at any percentile of the distribution when the

actual alpha is indeed zero. However, when 5% of the strategies have non-zero alphas, the

inference changes substantially. The bootstrap method tends to over-reject. For example,

with the non-zero alpha set to 0.5% and with zero correlation in residuals, the p-value is

lower than 0.05 for all percentiles from 68 and higher.

The degree of over-rejection decreases with an increase in correlation due to an increase

in the standard errors. It can be shown that the standard deviation of the distribution of any

percentile’s t-statistic increases proportionally to the square root of correlation (see Owen

and Steck (1962)). Rejections also increase as the magnitude of alpha increases. This is to

be expected as higher alphas are easier to detect and reject. The fewest rejections occur with

alpha set to 0.5% and correlation to 6%, when only percentiles 86 and higher have p-values

lower than 0.05.

The implied overall “rejection rate” is calculated as the lowest percentile that gets rejected

with p-value lower than 0.05. Table 4, thus, implies a rejection rate of 32% with α =

0.5%/ρ = 0 and 15% with α = 1%/ρ = 6% from the bootstrap method versus the true

rejection rates of only 5%. We conclude that the YZ bootstrap method has very poor power

properties and substantially over-rejects in a wide variety of scenarios.
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5.2 Results for MHT methods

We next turn our attention to size and power properties of MHT methods. It is useful to

remember that MHT methods were developed for applications in different fields. In genomics,

for example, after adjusting for MHT it is not uncommon to reject only strategies with p-

values of the order of 5 × 10−7 (see, The Wellcome Trust Case Control Consortium, 2007).

The American Association for the Advancement of Science writing about the discovery of

Higgs boson (2012) notes that “in particle physics, the 5σ criterion has become a convention

to claim discovery but should not be interpreted literally.” Indeed, the motivation of the 5σ

detection threshold is not to keep the false detection rate below 1 in 3.4 million tests. Rather

it is an attempt to account for concerns associated with multiple testing, calibration, and/or

systematic errors, and statistical error rates that are not well calibrated due to general model

misspecification.

These very high thresholds in other fields are not only dictated by the need to be con-

servative, but also by the fact that underlying relations (natural/biological) are stronger in

other fields than they are in finance and economics. Since the signal-to-noise ratio is proba-

bly very different in financial data than in the data from natural sciences, one might expect

very different size and power properties for the various MHT tests applied to finance.

Table 5 presents the rejection rates for the MHT methods including Bonferroni and Holm

for FWER, BH and BHY for FDR, and FDP-StepM method. The results are presented for

different values of f , α and ρ. We adopt a 5% statistical significant level, and when necessary

a 5% ratio or proportion of false discoveries. We present the statistical thresholds as well as

rejection rates for each experiment.

Panel A presents the basic size and power properties. We fix the number N of strategies at

10,000. Consider the scenario where all alphas are equal to zero. We expect zero rejections for

all MHT methods and the simulation results confirm this. The thresholds are also similar for

all methods. Thus, all MHT methods considered in this paper have very good size properties.

In the second and third part of Panel A of Table 5, we keep the fraction f of non-zero
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alphas at 5% but progressively increase the magnitude of alpha. In interpreting the rejection

rates in these panels, it is important to bear in mind the statistical uncertainty regarding the

“estimated” alphas. Even though the population alpha for some strategies may be non-zero,

the estimated alpha will have a sampling distribution. For instance, in the case where the

true alpha is 0.5%, given the choice of the standard deviation of residuals and the number of

months, the average t-statistic of the estimated alpha should be 3.7. However, the estimated

alpha t-statistic will have a distribution around (about) 3.7. It is possible that t-statistics

of estimated alphas are too low to cross the statistical thresholds. In other words, if the

signal is not high enough, then the noise in returns might make it difficult to detect true

out-performance. Thus, the power of the tests will depend on the signal-to-noise ratio.

Consider now the case where we keep the population α at 0.5%. The thresholds from

FWER methods are high at around 4.4 (and higher than the case where f = 0). Correspond-

ingly, the rejection rates are low at around 1.8% regardless of the correlation in residuals.

This is to be expected as FWER methods have low power as they enforce a strict control of

even one false discovery. FDR methods have lower thresholds (and correspondingly higher

rejection rates). But, there is a disparity in the results for BH and BHY methods. Thresh-

olds for BH and BHY are around 3.1 and 3.8, and rejection rates are around 3.5% and

2.4%, respectively. Thus, while FDR methods are better than FWER methods, the BHY

method has much lower power than the BH method. The power properties of FDP method

are somewhere in between those of BHY and BH methods as FDP method rejects around

2.9% of strategies. At the same time, none of the MHT methods reach the maximum power

(rejection rates of 5%) because the signal (magnitude of α) is not strong enough.

When we increase the magnitude of α to 1.0%, all methods display improved power. The

thresholds for FWER methods barely change (the threshold for Bonferroni depends only on

the number of strategies) but interestingly, the thresholds for FDR and FDP decline a bit

vis-à-vis the case for α = 0.5% suggesting that these methods are adaptive to the properties

of the data. The FDP method is the most powerful method reaching rejection rates of close
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to 5%. The BH method slightly overshoots but, nevertheless, maintains rejection rates of

close to 5.2%. Overall, we conclude from Panel A that some MHT methods (BH and FDP)

have better power properties than the other methods.

In subsequent panels of Table 5, we explore whether the MHT methods are adaptive to

the properties of the data. In Panel B, we vary the proportion f of non-zero alphas from 5%

to 50%. We keep N at 10,000 and also fix ρ = 0 and α = 0.5%. The goal is not only to check

the power of the MHT tests but also to analyze the statistical thresholds. For instance, in the

extreme case of f = 100% with zero correlation, simulating many different strategies is akin

to simulating one strategy many times. In that case, MHT is the same as single hypothesis

testing and the thresholds should converge to the conventional threshold of 1.96. More

generally, we expect to see a decline in thresholds as f increases. Panel B shows that this is

the case for the FDR and the FDP method but not for the other methods. For example, the

thresholds decline from 3.46 to 2.21 (from 3.14 to 2.30) for FDP (BH) method as f increases

from 5% to 50%. In contrast, the thresholds barely move for FWER methods (obviously,

they are not expected to change at all for Bonferroni). The corresponding rejection rates

are very low for FWER and BHY methods but similar for BH and FDP methods. This

experiment, therefore, informs us that the BH and FDP methods are adaptive to the data.

If the data have many true rejections, these methods will ‘discover’ this fact and impose

lower statistical thresholds. In other words, one of the main determinants of the statistical

threshold is the fraction of true rejections of the null. Echoing the results from Panel A, some

MHT methods (BH and FDP) have much better power properties than the other methods.

In Panel C of Table 5, we increase the number of strategies N up to one million. We fix

f = 5%, ρ = 0 and α = 0.5%. The goal here is to check whether thresholds and rejection

rates depend on the number of strategies. We find, as expected, that the thresholds are

dependent on the number of strategies for the FWER methods (with correspondingly low

rejection rates as N increases). However, the thresholds are not very dependent on N for

FDR and FDP methods. The threshold and the rejection rates stabilize as soon as we
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have around 50,000 strategies. Recall that all MHT methods’ (indeed any method’s) power

depends on the signal-to-noise ratio. While increasing N does not directly translate into

increase in this ratio, nevertheless, increasing N reduces the sampling error resulting in

slight improvement in power. Therefore, we conclude from this panel that (a) having a large

number of strategies does not impose any bias on MHT tests conducted with FDR and FDP

procedures, and (b) there is slight power advantage to having more strategies than fewer

strategies.

We conduct several other robustness checks and report only the results of two experiments

here (without corresponding numbers in a table). First, we increase the number of time

periods from 500 to 5,000. While such a long sample period is unrealistic, our goal is to

assess whether abstracting from potential small sample issues leads to better performance

of the MHT methods. We find that all rejection rates for MHT go towards 5% even for the

case when the population value of α = 0.5%. For instance, the rejection rate of the FDP

method increases from 2.87% with T = 500 to 4.62% with T = 5, 000 (for the case when

α = 0.5%/ρ = 6%). Therefore, the fact that rejection rates of MHT methods are sometimes

lower than 5% is driven by a low signal-to-noise ratio. Second, we increased the number

of bootstrap runs from 1,000 to 10,000. We conduct this experiment to check whether the

choice of B = 1, 000, which we will adopt in the actual empirical implementation, leads to

any biases. We find that the rejection rates for the FDP method that relies on bootstrapped

samples are fairly unchanged regardless of the number of bootstraps.

To summarize, we find that BH and FDP methods have much better power properties

than other MHT methods. We also find that the main determinants of thresholds are the

signal-to-noise ratio in the data (the magnitude of α relative to volatility of returns) and

the ‘quality’ of the data (the fraction of true rejections). The ‘quantity’ of data (number of

strategies analyzed) has not only a minimal impact on rejection rates but also leads to no

statistical bias in inferences.
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6 Statistical and economic hurdles

6.1 Adjusted confidence levels

As detailed in Section 4, all MHT methods essentially consist of adjustments to the threshold

p-value or t-statistic associated with a desired level of significance. We use significance level

of 5% and 5% for the ratio and proportions of false discoveries. We tabulate the t-statistic

thresholds and the fraction of rejections corresponding to this threshold in Table 6. Even

though the previous section documents the difference in power properties for different MHT

methods, we continue to report the results for all MHT methods in this table.

Consider Panel A where we use few strategies (excluding strategies ‘Ratios of three’)

and stocks filtered by size and price. The FWER thresholds for both alpha and FM are

high at 4.61 and the rejection rates are also low. For instance, only 0.20% percent of FF6

alphas have t-statistic higher than 4.61. Thresholds are also high for FDR-BHY and FDP-

StepM methods but the rejection rates are a bit higher than those for FWER methods. For

example, the threshold for FF6 alpha is 3.91 under FDP-StepM and 1.94% of alphas cross

this threshold. As expected, by construction, FDR-BH method imposes lower thresholds,

and rejects more, than the FDR-BHY method.

There are also differences across factor models. Focusing on the FDP-StepM method,

surprisingly CAPM generates the least rejections while the BS model generates more than

28% rejections of the null (recall from Table 2 that cross-sectional standard deviation of

BS alphas is the highest amongst all factor models). The rejection rates are more uniform

across FM t-statistics. As discussed earlier in Section 2, this is partly due to the fact that

the right-hand-side control variables are the same (size, book-to-market, profitability, asset

growth, and one- and twelve-month lagged returns) in FF6, BS, and HXZ specification,

and even the FF3 specification uses two of these controls (size and book-to-market). The

CAPM specification uses no control and generates the most rejections of the null for the FM

coefficients.
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It is also interesting to note the contrast between the simulation results in Section 5.2

and the results here using real data. The simulation results pointed to FDR-BHY method as

being more strict (and having poorer power properties) than the FDP-StepM method. We

see in Table 6, however, that sometimes the thresholds are higher for the FDP-StepM method

in the real data. This is partly explained by the more complicated correlation structure of

return residuals in the real data (than in the data generating process in the simulation).

The FDP-StepM method ‘utilizes’ these correlations, thereby reaching the same thresholds

as the FDR-BHY method in some instances.

Panel B of Table 6 uses the same set of strategies as Panel A but we now use all stocks.

It is widely known that anomalies are stronger in small-cap stocks (see, Fama and French

(2008)). We, therefore, expect to see more rejections in this panel than those in Panel A. The

results support this prior. For instance, rejection rate for FF6 alpha using the FDP-StepM

method is 3.25% in Panel B vis-à-vis 1.94% in Panel A. As we had noted in the previous

section on Monte Carlo experiments, some of the MHT methods (in particular the FDR and

FDP methods) are adaptive. In particular, the rejection rates are higher and thresholds are

lower if the fraction of true rejections is higher in the data. The results in Panel B reiterate

this adaptive feature of our MHT tests. The thresholds are lower and rejection rates are

higher in Panel B than those in Panel A. While, obviously, the fraction of true rejections is

unknown to us in the real data, the results do suggest that there are more rejections of the

null when we include all stocks in our analysis, consistent with our prior intuition.

Panel C expands the set of strategies to all strategies but keeps only the stocks filtered by

size and price. We expect the FWER thresholds to increase mechanically. Our Monte Carlo

experiments have shown that increasing N per se does not lead to an increase in threshold

and/or loss of power (as long as the fraction of true rejections is kept constant). In other

words, there is no statistical bias introduced by the use of a larger set of strategies. We find

that ...
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6.2 Economic hurdles

It is possible that some of the strategies that pass even the stricter statistical thresholds are

just lucky. Although our MHT procedures are designed to guard against luck in the discovery

process, some false discoveries may still slip through the net. In fact, both the FDR and

the FDP methods tolerate a certain fraction of false discoveries. We would, therefore, like

to consider strategies that are not only statistically significant but are also economically

meaningful and relevant.

We impose additional consistency requirements and economic restrictions on the strate-

gies that survive statistical thresholds. First, we require consistency between results obtained

by studying portfolio returns and those derived from FM regressions. As discussed in Sec-

tion 1.2, there are advantages and disadvantages to both portfolio sorts and regressions. We

would like a trading signal to not only generate a high long-short portfolio alpha but also

to explain the broader cross-section of returns in a regression setting. Therefore, we reject

strategies that have statistically significant tα but insignificant tλ or vice-versa. Imposing

this filter drastically reduces the number of strategies (we report exact numbers in the next

subsection).

Second, we consider the economic magnitudes of these remaining strategies. Recall that

our statistical hurdles are based on t-statistics. Since, there is a close relation between the

magnitude of alpha and its t-statistic, the strategies that survive our statistical hurdles are

also invariably strategies that have large alphas. For example, strategies for which both alpha

and FM t-statistics are above the FDP-StepM critical values at five per cent significance and

proportion have an average alpha of 0.72% per month (in absolute value). The use of alpha

as an absolute indication of performance presents some difficulties. First, any value chosen

as the threshold to define whether a risk-adjusted return is large enough would be largely

subjective. Second, alphas do not reflect the actual trading profits realized by the strategy.

For this reason, we opt for another metric that is often used in performance evaluation, that

of Sharpe ratio.
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The motivation for the choice comes from MacKinlay (1995), who argues that risk-based

explanations for the rejections of the null hypothesis result in Sharpe ratios that are bounded

while non-risk explanations would result in unbounded Sharpe ratios. MacKinlay (1995)

suggests that a reference value for the bounds that separate trading strategies (between risk

and non-risk based) could be taken as a multiple of the market Sharpe ratio. Following his

suggestion, we relate the strategy’s Sharpe ratio to the Sharpe ratio of the market (SRM).

We use various cutoffs from half to 1.5× the SRM. For the entire sample, the monthly SRM

is 0.116, corresponding to an annualized SRM of 0.4.

6.3 Lucky rejections

Comparing rejection rates using single and multiple hypothesis testing gives us an idea of

lucky rejections. For example, consider the set of few strategies on stocks filtered by size and

price. Panel A of Table 2 showed that 1,882 strategies have CAPM alpha t-statistic greater

than 1.96. Table 6 showed that 1.04% (=127) of the strategies have t-statistic greater than

3.47, the threshold imposed by FDP-BH. This means that 93% (= 1 − 127/1, 882) of the

rejections using CHT are likely false/lucky. We tabulate these proportions of lucky rejections

in Table 7.

Each panel of Table 7 is divided into three parts. The first part shows the number of

strategies that cross the conventional 1.96 threshold from CHT. We report these numbers

separately for strategies that cross the threshold for alpha, FM, and both alpha and FM

(the number of strategies that cross the threshold for only alpha or FM is the same as that

reported in Table 2). As discussed in previous subsection, the strategies that cross both the

thresholds are further stratified based on their Sharpe ratio. The second and third parts of

each panel show the proportion of false rejections using FDR-BH and FDP-StepM methods,

respectively. We choose to focus only on these two MHT methods based on their better

power properties (inferences are not different when using the other FDR-BHY method).

We start by discussing Panel A which presents the results for few strategies for stocks
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filtered by size and price. Consider first the intersection of the set of strategies that cross

the threshold for both alpha and FM. For example, 1,882 (3,502) strategies have CAPM

alpha (FM) t-statistic greater than 1.96. The intersection of these two sets gives us only 864

strategies (7.06% of the total number of strategies). Thus, economic considerations play an

important role in restricting the set of statistically significant strategies to an economically

feasible set even using CHT. However, only 63 of these strategies have Sharpe ratios larger

than the market in the full sample, further showing the economic limitations of statistically

significant strategies.

The second part of Panel A shows the proportion of lucky rejections using the thresholds

from FDR-BH. Focusing only on rejections of alpha and/or FM, we find that these propor-

tions range from 51% to 98%. Imposing the economic constraint of consistency between

alpha and FM coefficients, the proportion of lucky rejections ranges from 77% (for the BS

model) to 98% (for the FF3 model). Imposing the additional economic constraint of Sharpe

ratio at least that of the market, the lucky rejections range from 62% to 100%.

The last part of Panel A shows the proportion of lucky rejections using the FDP-StepM

method. Since this method is more stringent (has a higher threshold) than the FDR-BH

method, the fraction of rejections is lower, and correspondingly the fraction of lucky rejections

is higher than that in the FDR-BH method. The proportion of lucky rejections ranges from

77% to 100%. In fact, imposing consistency between alpha and FM coefficient gives the

proportion of lucky rejections to be close to 100% for CAPM, FF3, FF6, and HXZ models

(and 93% for the remaining BS model). Hardly any strategy that has Sharpe ratio higher

than that of the market is classified as ‘true’ rejection using our MHT methods.

Panel B considers the same set of strategies but expands the sample to all stocks. Recall

from Table 2 and Table 6 that the number of rejections in this scenario is higher for both

CHT and MHT. The top half of Panel B shows that imposing the consistency of alpha and

FM again shrinks the set of feasible strategies. For example, considering the FF6 model,

the intersection of 3,532 alpha rejections and 2,127 FM coefficient rejections is a set of 703
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strategies, out of which 48 strategies have Sharpe ratio higher than that of the market.

The second and the third part of Panel B shows that the proportion of lucky rejections

is similar to that in Panel A. Depending on the MHT method and the factor model, the

proportion of lucky rejections ranges from 74% to 98%. The proportion is high even amongst

strategies with Sharpe ratio higher than that of the market. To summarize, even though

the absolute number of rejections (both CHT and MHT) using all stocks is higher than that

using filtered stocks, the proportion of lucky rejections does not depend on the sample of

stocks.

Panel C expands the set of strategies to all strategies. We find that ...

In summary, we find that between 75% and 99% of discoveries using CHT are probably

lucky. The proportion of lucky discoveries is lower using the less stringent FDR-BH method

and higher using the more stringent FDP-StepM method. It is also useful to recall that the

FDP-StepM relies on less assumptions about the correlations across residuals (in fact, uses

the correlations in the data in deriving the statistics) and also has better power properties

than the FDR-BH method. Thus, if we properly account for the statistical properties of

the data-generating process and use the FDP-StepM approach, the proportion of lucky

discoveries is close to 98% and, thus, much higher than that reported by Harvey, Liu, and

Zhu (2015) and Hou, Xue, and Zhang (2017).

7 Conclusion

We consider all firm-level accounting variables from Compustat with sufficient data along

with market variables from CRSP and constructs almost two and a half million trading

strategies from these variables. We examine alphas from the long-short decile portfolios as

well as the FM coefficients on these variables. The traditional statistics show a large number

of rejections of the null of no profitability. However, using the proper statistical hurdles

based on multiple hypothesis testing, we find far fewer rejections of the null.
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More importantly, we focus on the economic significance of the strategies that survive

the statistical hurdles. We require the strategy to not only have a significant alpha but also

a significant FM coefficient. In addition, we require that the Sharpe ratio of the strategy

exceed that of the market. With these additional economic hurdles we are left with only a

handful of significant strategies. The proportion of lucky rejections is close to 98% meaning

that a vast majority of findings reported in the literature are likely false. Our results also

suggest that markets are quite efficient after all.
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Figure 1: Empirical distributions of portfolios returns
We construct trading strategies as described in the text. The figure shows cross-sectional histograms for average returns, alphas, Sharpe
ratios, average return t-statistics, alpha t-statistics, and Fama-MacBeth regression coefficients. Alphas are computed relative to the Fama
and French (2015) five-factor model augmented with a momentum factor. All returns and alphas are reported in monthly percentages.
The sample period is 1972 to 2015.
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Table 1: Descriptive statistics of portfolio raw returns on trading strategies
We construct trading strategies as described in the text. This table reports the cross-sectional
mean, median, standard deviation, minimum, and maximum of the monthly average return, t-
statistic, and monthly Sharpe ratio. Panel A uses stocks that pass the size and price filters (please
see text for details) while Pane; B uses all stocks. All returns are reported in percentages. We also
report the number and percentage of strategies that cross specific thresholds in each panel. The
sample period is 1972 to 2015.

Panel A: Stocks filtered by size and price

Average return

N Mean Median Std Min Max |ret| > 0.5% |ret| > 1.0%

# % # %

Levels 168 −0.03 −0.05 0.15 −0.34 0.62 3 1.79 0 0.00
Growth rates 142 −0.16 −0.15 0.21 −0.68 0.48 7 4.93 0 0.00
Ratios of two 11,929 −0.02 −0.02 0.17 −0.78 0.77 103 0.86 0 0.00
Ratios of three 2,373,539 −0.03 −0.03 0.17 −1.07 0.99 19,050 0.80 4 0.00

Average return t-statistic

N Mean Median Std Min Max |tµ| > 1.96 |tµ| > 2.57

# % # %

Levels 168 −0.31 −0.33 0.87 −2.69 2.46 10 5.95 3 1.79
Growth rates 142 −1.07 −1.08 1.35 −4.14 3.58 43 30.28 23 16.20
Ratios of two 11,929 −0.10 −0.13 0.98 −4.31 3.77 552 4.63 118 0.99
Ratios of three 2,373,539 −0.16 −0.18 0.98 −5.41 5.26 119,883 5.05 24,879 1.05

Sharpe ratio

N Mean Median Std Min Max |SR| > 0.116 |SR| > 0.232

# % # %

Levels 168 −0.01 −0.01 0.04 −0.12 0.11 2 1.19 0 0.00
Growth rates 142 −0.05 −0.05 0.06 −0.18 0.19 22 15.49 0 0.00
Ratios of two 11,929 −0.00 −0.01 0.04 −0.19 0.17 148 1.24 0 0.00
Ratios of three 2,373,539 −0.01 −0.01 0.04 −0.24 0.23 26,900 1.13 1 0.00
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Panel B: All stocks

Average return

N Mean Median Std Min Max |ret| > 0.5% |ret| > 1.0%

# % # %

Levels 168 0.06 −0.02 0.30 −0.79 1.11 18 10.71 2 1.19
Growth rates 142 −0.19 −0.21 0.21 −0.67 0.43 13 9.15 0 0.00
Ratios of two 11,929 0.01 −0.01 0.24 −1.03 1.22 627 5.26 25 0.21

Average return t-statistic

N Mean Median Std Min Max |tµ| > 1.96 |tµ| > 2.57

# % # %

Levels 168 0.08 −0.12 1.36 −2.64 4.00 29 17.26 14 8.33
Growth rates 142 −1.22 −1.20 1.36 −4.81 3.34 37 26.06 26 18.31
Ratios of two 11,929 −0.01 −0.08 1.20 −4.97 4.72 1,131 9.48 460 3.86

Sharpe ratio

N Mean Median Std Min Max |SR| > 0.116 |SR| > 0.232

# % # %

Levels 168 0.00 −0.01 0.06 −0.12 0.18 12 7.14 0 0.00
Growth rates 142 −0.05 −0.05 0.06 −0.21 0.17 26 18.31 0 0.00
Ratios of two 11,929 −0.00 −0.00 0.05 −0.23 0.21 460 3.86 0 0.00
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Table 2: Descriptive statistics of abnormal returns and regression coefficients
t-statistics

This table reports the cross-sectional mean, median, standard deviation, minimum, and maximum
of alpha and Fama-MacBeth t-statistics for different samples and different factor models. Panels A
and B exclude the strategies denoted ‘Ratios of three’ and use 12,239 strategies only while Panel
C uses all 2,385,778 strategies. Panels A and C use only stocks filtered by size and price (please
see text for exact description of filters) while Panel B uses all stocks. The CAPM uses the market
factor. FF3 is the Fama and French (1993) three-factor model. FF6 is the Fama and French (2015)
five-factor model augmented with the momentum factor. BS is the Barillas and Shanken (2015)
six-factor model. HXZ is the Hou, Xue and Zhang (2015) q-model augmented with the momentum
factor. Each panel shows alpha t-statistics in the top half and Fama-MacBeth t-statistics in the
bottom half. In Fama-MacBeth regressions, we do not include any other control when risk adjusting
stock returns CAPM. We include size and book-to-market when adjusting stock returns using the
FF3 model. In all the other cases, we include size, book-to-market, profitability, asset growth,
and one- and twelve-month lagged returns. All right-hand-side variables are winsorized at the 1st
and 99th percentile in Fama-MacBeth regressions. We also report the number and percentage of
strategies that cross specific thresholds in each panel. The sample period is 1972 to 2015.

Mean Median Std Min Max |t| > 1.96 |t| > 2.57

# % # %

Panel A: Few strategies, Stocks filtered by size and price

Alpha t-statistics

CAPM −0.08 −0.05 1.37 −5.46 4.15 1,882 15.38 780 6.37
FF3 −0.36 −0.39 1.54 −5.30 4.86 2,701 22.07 1,195 9.76
FF6 −0.58 −0.65 1.71 −4.96 5.71 3,621 29.59 2,012 16.44
BS −0.79 −0.84 2.27 −6.51 7.43 6,122 44.16 4,316 31.13
HXZ −0.56 −0.60 1.68 −5.05 5.02 4,089 29.50 2,215 15.98

Fama-MacBeth t-statistics

CAPM 0.24 0.33 1.81 −7.33 5.79 3,502 28.61 1,948 15.92
FF3 0.31 0.34 1.30 −6.45 5.45 1,631 13.33 696 5.69
FF6 0.34 0.38 1.31 −6.40 5.78 1,671 13.65 749 6.12
BS 0.34 0.36 1.33 −6.66 6.25 1,935 14.00 894 6.47
HXZ 0.30 0.33 1.25 −6.69 5.62 1,696 12.27 683 4.94
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Mean Median Std Min Max |t| > 1.96 |t| > 2.57

# % # %

Panel B: Few strategies, All stocks

Alpha t-statistics

CAPM 0.08 −0.01 1.62 −6.07 5.43 2,616 22.18 1,414 11.99
FF3 −0.14 −0.24 1.84 −6.03 7.53 3,561 30.20 1,982 16.81
FF6 −0.38 −0.33 1.77 −5.47 6.06 3,532 29.95 1,995 16.92
BS −0.66 −0.65 2.27 −6.74 7.87 4,968 42.13 3,529 29.93
HXZ −0.43 −0.37 1.77 −5.83 5.49 3,607 30.59 2,098 17.79

Fama-MacBeth t-statistics

CAPM −0.21 −0.21 1.81 −11.26 10.36 2,545 21.58 1,516 12.86
FF3 0.21 0.19 1.48 −10.53 6.33 2,051 17.39 1,033 8.76
FF6 0.26 0.24 1.49 −10.78 6.58 2,127 18.04 1,080 9.16
BS 0.25 0.22 1.52 −11.03 6.60 2,230 18.91 1,160 9.84
HXZ 0.20 0.18 1.49 −11.03 6.20 2,091 17.73 1,062 9.01

Panel C: All strategies, Stocks filtered by size and price

Alpha t-statistics

CAPM −0.37 −0.45 1.40 −5.74 6.78 434,302 18.20 163,436 6.85
FF3 −0.41 −0.44 1.46 −6.09 6.85 485,426 20.34 213,577 8.95
FF6 −0.05 −0.08 1.82 −6.75 7.36 724,442 30.36 401,271 16.82
BS −0.09 −0.12 2.41 −7.94 7.73 1,085,859 45.51 760,742 31.88
HXZ −0.15 −0.14 1.72 −6.33 6.51 659,498 27.64 342,001 14.33

Fama-MacBeth t-statistics

CAPM 0.04 0.06 1.82 −7.55 6.93 686,718 28.78 382,160 16.02
FF3 −0.03 −0.02 1.56 −7.68 7.81 478,836 20.07 248,639 10.42
FF6 0.17 0.18 2.25 −11.68 10.93 938,357 39.33 623,755 26.15
BS 0.17 0.18 2.43 −11.27 11.35 999,646 41.90 693,572 29.07
HXZ 0.17 0.18 2.42 −12.50 11.06 997,478 41.81 693,143 29.05
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Table 3: Bootstraped distributions of t-statistics
The table reports results of the bootstrap method of Yan and Zheng (2017) described in Section 3.
We use stocks filtered by size and price, consider all 2,385,778 strategies, and use only the FF6
model ((Fama and French (2015) five-factor model augmented with the momentum factor) for
calculating alphas and in Fama-MacBeth regressions. We run 1,000 bootstraps preserving cross-
correlation between strategy returns and factors (please see the text for further details). For each
percentile (i.e., each row in the table), we report the percentile of the actual t-statistics (Data) and
the percentage of times when the t-statistics in the bootstrap distribution are below the actual t-
statistic for percentiles one to 50, and the percentage of times when the t-statistics in the bootstrap
distribution are above the actual t-statistic for percentiles 51 to 100 (% Boot). We report results
for both alpha t-statistic (tα) and Fama-MacBeth t-statistic (tλ). The sample period is 1972 to
2015.

tα tλ

Percentile Data % Boot Data % Boot

0.5 −4.15 0.00 −5.49 0.00
1.0 −3.85 0.00 −4.97 0.00
2.5 −3.38 0.00 −4.20 0.00
5.0 −2.94 0.00 −3.52 0.00
10.0 −2.38 0.00 −2.72 0.00
20.0 −1.63 0.00 −1.71 0.10
30.0 −1.05 0.10 −0.99 0.60
40.0 −0.55 2.50 −0.39 6.20
50.0 −0.08 26.50 0.17 0.00
60.0 0.41 15.90 0.73 0.00
70.0 0.92 2.20 1.34 0.00
80.0 1.53 0.10 2.05 0.00
90.0 2.36 0.00 3.01 0.00
95.0 3.00 0.00 3.77 0.00
97.5 3.50 0.00 4.44 0.00
99.0 4.03 0.00 5.27 0.00
99.5 4.36 0.00 5.81 0.00
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Table 4: Simulations for the bootstrap of Yan and Zheng (2017)
Data are generated as described in the text. We show the results from S = 1, 000 simulations of
N = 10, 000 strategies and T = 500 months. Each strategy is bootstrapped B = 1, 000 times. f is
the fraction of non-zero alphas, α is the absolute value of alpha (in percent per month), and ρ is
the constant (percent) correlation amongst residuals. Since the distribution of alpha is symmetric,
we focus on the absolute value of the t-statistics. For each percentile, we report the average (across
simulations) of the frequency of cases in which the bootstrapped t-statistics are larger than the
corresponding t-statistic in that simulation.

f 0 0 0 5 5 5 5 5 5
α 0.0 0.0 0.0 0.5 0.5 0.5 1.0 1.0 1.0
ρ 0 3 6 0 3 6 0 3 6

Prct. Fraction of bootstrapped t-statistics above the actual t-statistic

65 49.19 49.41 49.69 5.70 9.06 14.63 5.15 8.44 14.00
66 49.22 49.35 49.72 5.52 8.82 14.31 4.92 8.15 13.65
67 49.01 49.31 49.78 5.25 8.45 14.02 4.68 7.79 13.34
68 49.05 49.36 49.82 4.99 8.13 13.65 4.41 7.46 12.96
69 49.19 49.43 49.78 4.67 7.77 13.28 4.11 7.11 12.57
70 49.22 49.36 49.85 4.39 7.46 12.87 3.82 6.75 12.15
71 49.28 49.21 49.90 4.07 7.16 12.53 3.50 6.46 11.80
72 49.38 49.23 49.88 3.78 6.83 12.16 3.23 6.12 11.40
73 49.31 49.24 49.76 3.48 6.47 11.75 2.93 5.73 10.95
74 49.18 49.36 49.71 3.22 6.07 11.37 2.67 5.33 10.54
75 48.94 49.44 49.83 2.94 5.69 10.88 2.39 4.95 10.01
76 48.92 49.44 49.79 2.66 5.31 10.37 2.13 4.56 9.51
77 48.81 49.40 49.80 2.41 4.89 9.88 1.90 4.15 8.99
78 48.83 49.35 49.85 2.12 4.46 9.38 1.64 3.75 8.46
79 48.82 49.19 49.71 1.86 4.09 8.84 1.38 3.38 7.92
80 48.71 49.13 49.67 1.60 3.71 8.27 1.17 3.00 7.33
81 48.82 49.03 49.67 1.36 3.31 7.76 0.95 2.64 6.79
82 48.71 48.97 49.61 1.13 2.95 7.16 0.75 2.29 6.21
83 48.63 49.00 49.47 0.92 2.57 6.58 0.58 1.92 5.61
84 48.63 49.00 49.33 0.73 2.18 5.96 0.43 1.58 5.01
85 48.65 48.92 49.45 0.55 1.82 5.33 0.30 1.25 4.38
86 48.61 48.88 49.41 0.39 1.47 4.71 0.19 0.96 3.76
87 48.57 48.84 49.36 0.27 1.14 4.09 0.12 0.70 3.14
88 48.51 48.84 49.36 0.17 0.86 3.46 0.06 0.47 2.54
89 48.58 48.65 49.21 0.10 0.60 2.82 0.02 0.29 1.93
90 48.43 48.59 49.14 0.05 0.39 2.19 0.01 0.16 1.36
91 48.30 48.54 49.09 0.02 0.22 1.58 0.00 0.07 0.84
92 48.30 48.82 49.17 0.00 0.11 1.03 0.00 0.02 0.43
93 48.23 48.68 49.17 0.00 0.04 0.57 0.00 0.00 0.14
94 48.05 48.58 49.11 0.00 0.01 0.23 0.00 0.00 0.01
95 47.94 48.34 49.02 0.00 0.00 0.05 0.00 0.00 0.00
96 47.73 48.17 48.70 0.00 0.00 0.00 0.00 0.00 0.00
97 47.69 48.12 48.73 0.00 0.00 0.00 0.00 0.00 0.00
98 47.30 47.71 48.20 0.00 0.00 0.00 0.00 0.00 0.00
99 47.75 47.62 48.40 0.00 0.00 0.00 0.00 0.00 0.00
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Table 5: MHT properties in simulations
Data are generated as described in the text. We show the results from S = 1, 000 simulations of N
strategies and T = 500 months. If required by the statistical method, each strategy is bootstrapped
B = 1, 000 times. f is the fraction of non-zero alphas, α is the absolute value of alpha, and ρ is the
constant correlation amongst residuals. Bonf(erroni) and Holm control for FWER; BH and BHY
control for FDR; and StepM controls for FDP. Panel A describes the basic size and power properties
for different values of f, α, and ρ (keeping N fixed at 10,000). Panel B describes the adaptive
properties by varying f (keeping N,α, and ρ fixed). Panel C describes the adaptive properties by
varying N (keeping f, α, and ρ fixed). We use 5% for the ratio and proportions of false discoveries
in the FDR and FDP methods. All rejection rates are for a significance level of 5%.

Panel A: Basic properties (N = 10,000)

FWER FDR FDP

f α ρ Bonf Holm BH BHY StepM

Thresholds

0 0.0 0 3.88 3.88 3.88 3.88 3.87
0 0.0 3 3.87 3.87 3.88 3.87 3.86
0 0.0 6 3.85 3.85 3.86 3.85 3.84

5 0.5 0 4.44 4.43 3.14 3.83 3.46
5 0.5 3 4.44 4.43 3.14 3.83 3.47
5 0.5 6 4.44 4.43 3.14 3.83 3.50

5 1.0 0 4.46 4.45 3.03 3.71 3.26
5 1.0 3 4.46 4.45 3.04 3.71 3.27
5 1.0 6 4.46 4.45 3.04 3.71 3.30

Rejections rates

0 0.0 0 0.00 0.00 0.00 0.00 0.00
0 0.0 3 0.00 0.00 0.00 0.00 0.00
0 0.0 6 0.00 0.00 0.00 0.00 0.00

5 0.5 0 1.76 1.77 3.45 2.44 2.94
5 0.5 3 1.76 1.77 3.45 2.44 2.92
5 0.5 6 1.77 1.77 3.46 2.44 2.87

5 1.0 0 4.59 4.60 5.19 4.86 5.04
5 1.0 3 4.59 4.60 5.20 4.86 5.03
5 1.0 6 4.59 4.60 5.19 4.86 5.01
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FWER FDR FDP

Bonf Holm BH BHY StepM

Panel B: Adaptive properties by varying f
(N = 10,000, ρ = 0, α = 0.5%)

f Thresholds

5 4.44 4.43 3.14 3.83 3.46
10 4.43 4.42 3.63 2.87 3.15
15 4.42 4.41 2.76 3.50 2.96
25 4.42 4.40 2.57 3.34 2.70
50 4.42 4.38 2.30 3.12 2.21

Rejection rates

5 1.76 1.77 3.45 2.44 2.94
10 3.54 3.56 5.37 7.61 6.69
15 5.33 5.36 11.71 8.51 10.77
25 8.89 8.99 20.49 15.20 19.57
50 17.81 18.24 43.20 33.15 44.23

Panel C: Adaptive properties by varying N
(f = 5%, ρ = 0, α = 0.5%)

N Thresholds

1,000 4.14 4.14 3.19 3.84 3.63
10,000 4.44 4.43 3.14 3.83 3.46
50,000 4.89 4.89 3.13 3.88 3.38
100,000 5.03 5.03 3.13 3.90 3.37
500,000 5.33 5.33 3.13 3.93 3.37

1,000,000 5.45 5.45 3.13 3.94 3.37
Rejections rates

1,000 2.08 2.09 3.41 2.44 2.71
10,000 1.76 1.77 3.45 2.44 2.94
50,000 1.37 1.37 3.47 2.38 3.06
100,000 1.27 1.27 3.46 2.36 3.07
500,000 1.08 1.08 3.47 2.32 3.08

1,000,000 1.00 1.00 3.47 2.31 3.08
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Table 6: MHT thresholds and rejection rates
The table shows alpha and Fama-MacBeth statistical thresholds adjusted for multiple hypothesis
testing, as well as the percent of strategies rejected. We report FWER (Bonferroni and Holm),
FDR (BH and BHY), and FDP (StepM) adjusted thresholds (‘Thresh’) and rejections (‘%’). The
numbers are reported for significance level of 5% and we use 5% for the ratio and proportions of
false discoveries. Panels A and B exclude the strategies denoted ‘Ratios of three’ and use 12,239
strategies only while Panel C uses all 2,385,778 strategies. Panels A and C use only stocks filtered
by size and price (please see text for exact description of filters) while Panel B uses all stocks. The
CAPM uses the market factor. FF3 is the Fama and French (1993) three-factor model. FF6 is
the Fama and French (2015) five-factor model augmented with the momentum factor. BS is the
Barillas and Shanken (2015) six-factor model. HXZ is the Hou, Xue and Zhang (2015) q-model
augmented with the momentum factor. Each panel shows alpha t-statistics in the top half and
Fama-MacBeth t-statistics in the bottom half. The sample period is 1972 to 2015.

FWER FDR FDP

Bonferroni Holm BH BHY StepM

Thresh % Thresh % Thresh % Thresh % Thresh %

Panel A: Few strategies, Stocks filtered by size and price

Alpha t-statistic

CAPM 4.61 0.04 4.90 0.04 3.47 1.04 4.90 0.04 4.53 0.06
FF3 4.61 0.14 4.61 0.14 3.02 5.08 4.27 0.41 3.54 4.03
FF6 4.61 0.20 4.63 0.20 2.69 14.45 3.89 1.99 3.91 1.94
BS 4.61 5.04 4.60 5.11 2.35 37.48 3.30 19.33 2.81 28.14
HXZ 4.61 0.24 4.61 0.24 2.68 14.83 3.96 1.47 4.73 0.11

Fama-MacBeth t-statistic

CAPM 4.61 1.16 4.61 1.17 2.70 13.80 3.72 3.95 3.32 6.46
FF3 4.61 0.20 4.62 0.20 3.31 1.86 4.25 0.44 4.34 0.35
FF6 4.61 0.27 4.61 0.27 3.25 2.34 4.20 0.53 4.34 0.42
BS 4.61 0.40 4.61 0.40 3.19 2.88 4.11 0.85 4.04 0.88
HXZ 4.61 0.11 4.61 0.11 3.40 1.36 4.60 0.14 4.61 0.12
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FWER FDR FDP

Bonferroni Holm BH BHY StepM

Thresh % Thresh % Thresh % Thresh % Thresh %

Panel B: Few strategies, All stocks

Alpha t-statistic

CAPM 4.61 0.41 4.62 0.41 2.86 8.56 3.93 1.75 3.57 3.15
FF3 4.61 0.77 4.61 0.77 2.69 14.40 3.76 3.39 3.52 4.54
FF6 4.61 0.27 4.62 0.27 2.69 14.49 3.83 2.62 3.70 3.25
BS 4.61 4.62 4.60 4.64 2.41 31.55 3.33 17.07 2.94 22.80
HXZ 4.61 0.33 4.61 0.33 2.66 15.43 3.85 2.35 3.91 2.11

Fama-MacBeth t-statistic

CAPM 4.61 2.39 4.61 2.39 2.81 9.92 3.68 4.65 3.43 5.83
FF3 4.61 0.47 4.61 0.47 3.01 5.18 4.02 1.19 3.79 1.76
FF6 4.61 0.56 4.61 0.56 2.99 5.60 3.95 1.58 3.60 2.68
BS 4.61 0.57 4.61 0.57 2.97 6.01 3.94 1.67 3.61 2.70
HXZ 4.61 0.41 4.61 0.41 3.01 5.19 3.97 1.42 3.72 2.07

Panel C: All strategies, Stocks filtered by size and price

Alpha t-statistic

CAPM 5.62 0.000 5.62 0.000 3.66 0.503 6.04 0.000 4.35 0.052
FF3 5.62 0.002 5.61 0.002 3.12 3.579 4.83 0.042 4.28 0.232
FF6 5.62 0.022 5.60 0.022 2.69 14.393 4.05 1.572 3.79 2.675
BS 5.62 0.917 5.60 0.920 2.36 36.411 3.47 15.916 2.76 27.609
HXZ 5.62 0.002 5.61 0.002 2.78 10.995 4.27 0.584 3.85 1.647

Fama-MacBeth t-statistic

CAPM 5.62 0.085 5.62 0.085 2.72 13.146 3.92 2.760 4.11 2.056
FF3 5.62 0.064 5.62 0.064 2.96 6.214 4.10 1.250 3.95 1.598
FF6 5.62 1.059 5.61 1.062 2.47 27.148 3.57 10.755 3.12 16.312
BS 5.62 2.206 5.60 2.214 2.41 32.225 3.48 15.495 3.08 19.950
HXZ 5.62 2.035 5.60 2.043 2.41 32.172 3.48 15.293 3.08 19.884
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Table 7: Proportion of lucky rejections
The table reports the number of strategies that cross statistical thresholds from classical hypothesis
testing as well as proportion of lucky rejections out of these rejections accounted for multiple
hypothesis testing. The thresholds are 1.96 for classical hypothesis testing and those given by
Table 6 for multiple hypothesis testing methods. We use only FDR-BH and FDP-StepM methods
of multiple hypothesis testing. For example, in the sample of few stratgies on stocks filtered by size
and price, 1,882 strategies have CAPM alpha t-statistic greater than 1.96; 127 (= 1.04%× 12, 239)
strategies have this alpha larger than 3.47 threshold for FDR-BH (numbers from Table 6); and,
therefore, the proportion of lucky rejections is 1 − 127/1, 882 = 0.93. The columns under the
heading ‘Both Alpha and FM’ show the number/proportion of strategies that cross the statistical
threshold for both alpha and Fama-MacBeth t-statistic. These strategies are further classified for
various levels of economic significance which are determined by comparing the level of the absolute
value of the strategy’s Sharpe ratio to various targets determined by the market Sharpe ratio (SRM,
the market Sharpe ratio for the entire sample is 0.116). These strategies are stratified into four
groups: between 0 and SRM/2; between SRM/2 and SRM; between SRM and 1.5×SRM; and more
than 1.5×SRM. Panels A and B exclude the strategies denoted ‘Ratios of three’ and use 12,239
strategies only while Panel C uses all 2,385,778 strategies. Panels A and C use only stocks filtered
by size and price (please see text for exact description of filters) while Panel B uses all stocks. The
CAPM uses the market factor. FF3 is the Fama and French (1993) three-factor model. FF6 is
the Fama and French (2015) five-factor model augmented with the momentum factor. BS is the
Barillas and Shanken (2015) six-factor model. HXZ is the Hou, Xue and Zhang (2015) q-model
augmented with the momentum factor. Each panel shows alpha t-statistics in the top half and
Fama-MacBeth t-statistics in the bottom half. The sample period is 1972 to 2015.

Alpha FM Both Alpha and FM

All 0 to SRM/2 to SRM to More than
SRM/2 SRM 1.5×SRM 1.5×SRM

Panel A: Few strategies, Stocks filtered by size and price

Number of rejections by classical hypothesis testing

CAPM 1,882 3,502 864 333 468 58 5
FF3 2,701 1,631 371 200 136 32 3
FF6 3,621 1,671 568 514 39 15 0
BS 5,652 1,760 961 827 113 21 0
HXZ 3,777 1,551 537 474 45 17 1

Proportion of lucky rejections after controlling FDR-BH

CAPM 0.93 0.52 0.94 1.00 0.94 0.62 0.20
FF3 0.77 0.86 0.98 0.99 0.97 0.94 0.67
FF6 0.51 0.83 0.88 0.87 0.92 1.00 —
BS 0.19 0.80 0.77 0.74 0.93 1.00 —
HXZ 0.52 0.89 0.94 0.93 0.96 1.00 1.00

Proportion of lucky rejections after controlling FDP-StepM

CAPM 1.00 0.77 1.00 1.00 1.00 1.00 0.20
FF3 0.91 0.97 1.00 1.00 1.00 1.00 1.00
FF6 0.93 0.97 0.99 0.99 1.00 1.00 —
BS 0.39 0.94 0.93 0.93 0.98 1.00 —
HXZ 1.00 0.99 1.00 1.00 1.00 1.00 1.00
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Alpha FM Both Alpha and FM

All 0 to SRM/2 to SRM to More than
SRM/2 SRM 1.5×SRM 1.5×SRM

Panel B: Few strategies, All stocks

Number of rejections by classical hypothesis testing

CAPM 2,616 2,545 900 209 567 116 8
FF3 3,561 2,051 691 374 211 95 11
FF6 3,532 2,127 703 541 114 43 5
BS 4,968 2,230 990 821 141 24 4
HXZ 3,607 2,091 643 492 101 42 8

Proportion of lucky rejections after controlling FDR-BH

CAPM 0.60 0.52 0.75 0.92 0.73 0.53 0.50
FF3 0.51 0.69 0.83 0.91 0.74 0.71 0.82
FF6 0.50 0.67 0.84 0.86 0.82 0.65 0.80
BS 0.22 0.67 0.74 0.73 0.83 0.62 0.75
HXZ 0.48 0.70 0.83 0.86 0.78 0.60 0.88

Proportion of lucky rejections after controlling FDP-StepM

CAPM 0.84 0.71 0.93 1.00 0.95 0.77 0.75
FF3 0.83 0.89 0.97 0.98 0.95 0.94 0.91
FF6 0.88 0.84 0.98 0.99 0.99 0.91 0.80
BS 0.44 0.85 0.91 0.91 0.94 0.92 0.75
HXZ 0.93 0.88 0.98 0.99 0.99 0.93 0.88

Panel C: All strategies, Stocks filtered by size and price

Number of rejections by classical hypothesis testing

CAPM 434,302 686,718 184,325 79,855 94,293 9,988 189
FF3 485,426 478,836 108,533 48,189 52,522 7,646 176
FF6 724,442 938,357 300,275 253,787 43,130 3,217 141
BS 1,085,859 999,646 476,018 403,408 68,984 3,507 119
HXZ 659,498 997,478 285,210 238,656 42,866 3,534 154

Proportion of lucky rejections after controlling FDR-BH

CAPM 0.97 0.53 0.98 1.00 0.97 0.85 0.45
FF3 0.82 0.67 0.94 0.97 0.93 0.84 0.56
FF6 0.51 0.28 0.65 0.65 0.64 0.63 0.59
BS 0.20 0.23 0.37 0.36 0.40 0.45 0.35
HXZ 0.60 0.23 0.70 0.71 0.65 0.60 0.63

Proportion of lucky rejections after controlling FDP-StepM

CAPM 1.00 0.92 1.00 1.00 1.00 0.99 0.84
FF3 0.99 0.92 1.00 1.00 1.00 0.99 0.84
FF6 0.91 0.59 0.96 0.97 0.94 0.93 0.96
BS 0.38 0.50 0.68 0.67 0.71 0.75 0.69
HXZ 0.94 0.51 0.98 0.98 0.94 0.94 0.97

55



Table A1: Basic variables used to construct trading strategies
# Short Long # Short Long

1 aco Current Assets Other Total 61 esub Equity in Earnings Unconsolidated Subsidiaries
2 acox Current Assets Other Sundry 62 esubc Equity in Net Loss Earnings
3 act Current Assets Total 63 fca Foreign Exchange Income (Loss)
4 ao Assets Other 64 fopo Funds from Operations Other
5 aox Assets Other Sundry 65 gp Gross Profit (Loss)
6 ap Accounts Payable Trade 66 ib Income Before Extraordinary Items
7 aqc Acquisitions 67 ibadj Income Before Extraordinary Items Adjusted for Common Stock Equivalents
8 aqi Acquisitions Income Contribution 68 ibc Income Before Extraordinary Items (Cash Flow)
9 aqs Acquisitions Sales Contribution 69 ibcom Income Before Extraordinary Items Available for Common
10 at Assets Total 70 icapt Invested Capital Total
11 caps Capital Surplus-Share Premium Reserve 71 idit Interest and Related Income Total
12 capx Capital Expenditures 72 intan Intangible Assets Total
13 capxv Capital Expend Property, Plant and Equipment Schd V 73 intc Interest Capitalized
14 ceq Common-Ordinary Equity Total 74 invfg Inventories Finished Goods
15 ceql Common Equity Liquidation Value 75 invrm Inventories Raw Materials
16 ceqt Common Equity Tangible 76 invt Inventories Total
17 ch Cash 77 invwip Inventories Work In Process
18 che Cash and Short-Term Investments 78 itcb Investment Tax Credit (Balance Sheet)
19 chech Cash and Cash Equivalents Increase-(Decrease) 79 itci Investment Tax Credit (Income Account)
20 cogs Cost of Goods Sold 80 ivaeq Investment and Advances Equity
21 cshfd Common Shares Used to Calc Earnings Per Share Fully Diluted 81 ivao Investment and Advances Other
22 csho Common Shares Outstanding 82 ivch Increase in Investments
23 cshpri Common Shares Used to Calculate Earnings Per Share Basic 83 ivst Short-Term Investments Total
24 cshr Common-Ordinary Shareholders 84 lco Current Liabilities Other Total
25 cstk Common-Ordinary Stock (Capital) 85 lcox Current Liabilities Other Sundry
26 cstkcv Common Stock-Carrying Value 86 lct Current Liabilities Total
27 dc Deferred Charges 87 lifr LIFO Reserve
28 dclo Debt Capitalized Lease Obligations 88 lifrp LIFO Reserve Prior
29 dcpstk Convertible Debt and Preferred Stock 89 lo Liabilities Other Total
30 dcvsr Debt Senior Convertible 90 lse Liabilities and Stockholders Equity Total
31 dcvsub Debt Subordinated Convertible 91 lt Liabilities Total
32 dcvt Debt Convertible 92 mib Noncontrolling Interest (Balance Sheet)
33 dd Debt Debentures 93 mibt Noncontrolling Interests Total Balance Sheet
34 dd1 Long-Term Debt Due in One Year 94 mii Noncontrolling Interest (Income Account)
35 dd2 Debt Due in 2nd Year 95 mrc1 Rental Commitments Minimum 1st Year
36 dd3 Debt Due in 3rd Year 96 mrc2 Rental Commitments Minimum 2nd Year
37 dd4 Debt Due in 4th Year 97 mrc3 Rental Commitments Minimum 3rd Year
38 dd5 Debt Due in 5th Year 98 mrc4 Rental Commitments Minimum 4th Year
39 dlc Debt in Current Liabilities Total 99 mrc5 Rental Commitments Minimum 5th Year
40 dltis Long-Term Debt Issuance 100 mrct Rental Commitments Minimum 5 Year Total
41 dlto Other Long-term Debt 101 msa Marketable Securities Adjustment
42 dltp Long-Term Debt Tied to Prime 102 ni Net Income (Loss)
43 dltt Long-Term Debt Total 103 niadj Net Income Adjusted for Common-Ordinary Stock (Capital) Equivalents
44 dm Debt Mortgages Other Secured 104 nopi Nonoperating Income (Expense)
45 dn Debt Notes 105 nopio Nonoperating Income (Expense) Other
46 do Discontinued Operations 106 np Notes Payable Short-Term Borrowings
47 dp Depreciation and Amortization 107 ob Order Backlog
48 dpact Depreciation, Depletion and Amortization (Accumulated) 108 oiadp Operating Income After Depreciation
49 dpc Depreciation and Amortization (Cash Flow) 109 oibdp Operating Income Before Depreciation
50 dpvieb Depreciation (Accumulated) Ending Balance (Schedule VI) 110 pi Pretax Income
51 ds Debt-Subordinated 111 ppegt Property, Plant and Equipment Total (Gross)
52 dv Cash Dividends (Cash Flow) 112 ppent Property, Plant and Equipment Total (Net)
53 dvc Dividends Common-Ordinary 113 ppeveb Property, Plant, and Equipment Ending Balance (Schedule V)
54 dvp Dividends Preferred-Preference 114 prstkc Purchase of Common and Preferred Stock
55 dvt Dividends Total 115 pstkc Preferred Stock Convertible
56 ebit Earnings Before Interest and Taxes 116 pstkl Preferred Stock Liquidating Value
57 ebitda Earnings Before Interest 117 pstkn Preferred-Preference Stock Nonredeemable
58 emp Employees 118 pstkr Preferred-Preference Stock Redeemable
59 epsfx Earnings Per Share (Diluted) Excluding Extraordinary Items 119 pstkrv Preferred Stock Redemption Value
60 epspx Earnings Per Share (Basic) Excluding Extraordinary Items 120 rea Retained Earnings Restatement
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# Short Long # Short Long

121 reajo Retained Earnings Other Adjustments 145 txs Income Taxes State
122 recco Receivables Current Other 146 txt Income Taxes Total
123 recd Receivables Estimated Doubtful 147 txw Excise Taxes
124 rect Receivables Total 148 wcap Working Capital (Balance Sheet)
125 recta Retained Earnings Cumulative Translation Adjustment 149 xacc Accrued Expenses
126 rectr Receivables Trade 150 xad Advertising Expense
127 reuna Retained Earnings Unadjusted 151 xido Extraordinary Items and Discontinued Operations
128 revt Revenue Total 152 xidoc Extraordinary Items and Discontinued Operations (Cash Flow)
129 sale Sales-Turnover (Net) 153 xint Interest and Related Expense Total
130 seq Stockholders Equity Parent 154 xlr Staff Expense Total
131 sppe Sale of Property 155 xopr Operating Expenses Total
132 sstk Sale of Common and Preferred Stock 156 xpp Prepaid Expenses
133 tlcf Tax Loss Carry Forward 157 xpr Pension and Retirement Expense
134 tstk Treasury Stock Total (All Capital) 158 xrd Research and Development Expense
135 tstkc Treasury Stock Common 159 xrdp Research Development Prior
136 tstkn Treasury Stock Number of Common Shares 160 xrent Rental Expense
137 txc Income Taxes Current 161 xsga Selling, General and Administrative Expense
138 txdb Deferred Taxes (Balance Sheet) 162 ret3 3m Past Return
139 txdi Income Taxes Deferred 163 ret6 6m Past Return
140 txditc Deferred Taxes and Investment Tax Credit 164 ret9 9m Past Return
141 txfed Income Taxes Federal 165 ret12 1y Past Return
142 txfo Income Taxes Foreign 166 price Price
143 txp Income Taxes Payable 167 turn Turnover
144 txr Income Tax Refund 168 vol 1y Return Volatility
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