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1 Introduction

In most developed countries and in many developing ones, commitments to make transfer
payments and collect receipts represent the lion’s share of government obligations and re-
sources. Often referred to as implicit liabilities and assets, they typically are either ignored
in assessing fiscal sustainability or valued on a piecemeal basis using ad hoc techniques. The
justification for this practice generally offered is twofold. First, implicit fiscal commitments
do not represent legal liabilities. Second, implicit commitments are difficult to value given
their uncertain and extended nature.

This rationale may assuage accountants, but it offers little comfort to economists or,
indeed, to anyone concerned with economic policy. The immense gulf between countries’
true indebtedness and what’s being measured means countries are largely driving blind with
respect to their fiscal affairs. Generational accounting, developed by Auerbach, Gokhale,
and Kotlikoff (1991), attempts to remedy this situation. Its framework is the government’s
intertemporal budget constraint, and it treats all government commitments on a consistent
basis regardless of their legal status.

These advantages notwithstanding, a major shortcoming of generational accounting as
well as related measurements1 is the failure to adjust future government flows properly for
risk. Generational accountants usually value the government’s future payments and receipts
by adding a risk premium to the risk-free discount rate. But their choice of risk premiums
has no clear theoretical or empirical basis.

This paper presents a method for properly valuing implicit government debt. It treats
government benefit obligations and tax claims as non-traded financial assets and applies
what are now standard asset-pricing techniques to their valuation. In particular, we use
Arbitrage Pricing Theory (APT) from Ross (1976b) and Ross (1976a) and its associated
risk-neutral, derivative-pricing and process-free pricing theories (see Cox and Ross (1976)
and Ross (1978)). Our method treats future government payments and receipts as securities
whose returns comprise two components – a market component, which is spanned by traded
securities, and an idiosyncratic component, which can be fully diversified.

We apply our pricing method (henceforth referenced as APT) to value Social Security’s
net retirement benefit liability to working-age Americans (those aged 26 to 60).2 Our valua-
tion determines how much the U.S. government would have to pay private parties or foreign
governments to retire this liability. Marking this implicit debt to market makes a big differ-
ence – an 86 percent difference to be precise. The 2015 (our benchmark year) liability equals
48.0 trillion when marked to market, but $25.8 trillion when valued using Social Security
Administration (SSA) methodology.

Finding such a large discrepancy could be expected. The Social Security Trustees’ un-
funded liability calculation, reported in their annual Trustees Report, makes no adjustment
for uncertain future economy-wide average wage growth, which is so determinative of work-
ers’ future benefits and taxes.3 The Trustees also make no attempt to mark their risk-free
benefit obligations to market notwithstanding the availability of risk-free securities to do such
pricing. These obligations include retirement benefits being made to current retirees as well
as retirement benefits that will be made to current workers once their initial benefit level is

1See, for example, the 75-year and infinite horizon liability calculations reported in the annual OASDI Trustees
Reports.

2Net retirement liability refers to Social Security’s obligation to pay OAI retirement benefits net of OAI taxes.
3The trustees do examine the sensitivity of their liability measures to alternative economic and demographic
assumptions. But this is no substitute for proper risk adjustment.
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determined.
Social Security’s failure to adjust formally for uncertainty in average real-wage growth is

surprising given that a) this growth rate has been highly variable and b) Social Security’s
benefit obligations and tax receipts represent, in large part, wage-growth financial derivatives.

Figure 1 documents annual swings in average real wage growth rates between 1951 and
2015. Over this period, the average real wage has grown by as much as 6.2 percent in a single
year and declined by as much as 5.5 percent.

Figure 1

Growth Rates of the Average U.S. Real Wage, 1951-2016

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−6

−3

0

3

6

1960 1980 2000 2020

Year

Y
−

Y
 P

er
ce

nt
 G

ro
w

th

Source: https://www.ssa.gov/oact/cola/AWI.html

The variability of real wage growth suggests there could be risk here to price, but it tells
us nothing about the degree to which implicit claims to growth in the real wage are valued in
the market. For it is the covariance of real wage growth and market returns, together with
the mean real-wage growth rate that determines the current price of an implicit wage-growth
security.

As we show, a one-year, $1 investment in the wage-growth security is worth $0.999 ac-
cording to APT. Social Security’s valuation of such a claim is quite similar – $0.985.4 But the
APT and SSA valuations of multi-year wage growth securities (and the associated valuations
of out-year benefits and taxes) diverge to an increasing degree the longer the duration of the
relevant wage-growth security. In the case of a 35-year wage growth security, the APT and
SSA valuations are $1.03 and $0.598, respectively.

Since the benefits to be paid to current workers postdate the taxes to be collected from
them, the duration-dependent divergence of APT and SSA wage-growth valuations and the
dependence of benefits and taxes on wage growth suggest that Social Security is system-
atically understating its net liability to current workers. But the trustees make a second
valuation mistake that more than offsets the first.

This second mistake involves the valuation of the benefits beyond those received in the
first year of eligibility. These benefits are paid out as inflation-indexed annuities and should

4Social Security assumes real wages will grow, on average, by 1.2 percent and discounts, as indicated, at a 2.7
percent rate.
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be actuarially priced using the prevailing Treasury Inflation Protected Securities (TIPS) term
structure.5 In 2018 the average annual real yields on TIPS was 0.75 percent, 0.76 percent,
0.78 percent, 0.85, and 0.92 percent for 5, 7, 10, 20, and 30 year maturities, respectively.
Each of these yields is considerably lower than the 2.7 percent real yield used by SSA in its
2018 unfunded liability calculation. Using the TIPS term structure, the value of a $1 dollar
single-life real annuity for a 62 year-old woman in 2017 is $22.02. This is 24.8 percent higher
than SSA’s $17.64 valuation.6

Thus, Social Security’s trustees appear, in part, to be undervaluing benefits relative to
taxes and, in part, overvaluing benefits relative to taxes, with the latter mistake outweighing
the former.7

Our paper proceeds in section 2 with a literature review. Section 3 observes, following
Baxter (2001) and Baxter and King (2001), that a household’s future Social Security ben-
efits and, by extension, its future Social Security taxes, can be viewed as financial assets,
albeit ones with special market and idiosyncratic return properties. We clarify these return
properties and show how to value Social Security net retirement benefits using risk-neutral
pricing and arbitrage-pricing theory.

Section 4 presents our wage-growth valuation regressions and compares APT valuation of
a $1 wage-growth security with SSA valuation. Section 5 describes our use of the Panel Study
of Income Dynamics (PSID) data to estimate a random effects model of individuals’ annual
relative earnings – their annual earnings relative to Social Security’s measure of economy-
wide, average annual earnings. We use this model to determine the predictable, idiosyncratic
component of future relative earnings and, thus, of future benefit claims and tax obligations.
When it comes to taxes, we treat 8.5 percentage points of the 10.6 percentage point combined
employer and employee OASI (Old Age Survivor Insurance) payroll tax rate as the tax used
to finance OAI retirement benefits.8 We then combine market-pricing and idiosyncratic-
pricing elements to calculate the average value of benefit claims and tax obligations by age,
sex, and education. Finally, we apply age-, sex-, and education-specific population weights
to determine, using both APT and SSA methodologies, the aggregate values of future Social
Security net benefits payable to working-age Americans.

Since our main focus is on market-pricing differences in valuing Social Security, we in-
corporate the same idiosyncratic component in both our SSA and APT valuations. Thus,
the aforementioned 86 percent difference in aggregate APT and SSA net liability measures
is purely attributable to differences in market pricing, specifically how APT and SSA value
wage growth and inflation-indexed annuities.

Section 6 illustrates section 5’s analysis by comparing APT and SSA 2015 benefit, tax,
and net retirement-liability valuations for selected demographic groups. We then present the
aggregate valuations under the APT and SSA methodologies, decomposing the 86 percent net
liability difference into benefit and tax components. Section 7 responds to potential criticisms

5See www.federalreserve.gov/release/h15.data.htm
6Inflation-indexed annuities are sold on the market. Indeed, Principal Financial Group’s price for this annuity is
$24.36, which is 28 percent higher than our valuation (and 56 percent higher than Social Security’s). Using these
market prices for real annuities, while tempting, would, we think be inappropriate given that adverse selection
surely explains much of the 28 percent differential and doesn’t come into play in valuing annuities provided to all
members of particular cohorts.

7The former mistake involves failing to account for risk with respect to initial benefit awards and tax payments,
whereas the latter mistake involves failure to account for safety with respect to benefit payments once they
commence.

8This is 10.6 percent times .797, which is the 2015 ratio of retiree benefits to total OASI benefits as reported in
the 2016 OASDI Trustees Report.
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of our approach. And section 8 concludes by pointing out that the valuation methods used
here can be applied to other government implicit claims and obligations.

2 Literature Review

There are two approaches to pricing risky government promises, whether positive or negative.
One illustrated by Hasanhodzic and Kotlikoff (2018a) is to specify and simulate a full CGE
model and then use consumption-asset pricing to value government promises. Their findings
suggest using prevailing safe bond rates to discount short as well as long-term promises even
when those promises can be far larger or far smaller than expected.

Unfortunately, simulating highly detailed, large scaled CGE models runs afoul of the
Curse of Dimensionality. Although recent computational breakthroughs by Marcet (1988);
Marcet and Marshall (1994); Judd, Maliar, and Maliar (2009, 2011); Brumm and Scheidegger
(2017) are permitting the inclusion of up to 300 state variables (Hasanhodzic and Kotlikoff
(2018a) use 80), these may still fall far short of what’s needed to handle highly detailed
specifications. Moreover, there is no guarantee that a necessarily parsimonious CGE model
is capturing all the key salient factors underlying the valuation of unpriced promises.

The alternative to structurally pricing government promises is reduced-form, empirical
pricing based on Arbitrage Pricing Theory (APT) (Ross (1976b, 1976a) and its associated
risk-neutral, derivative-pricing and process-free pricing theories.9 Lucas and Zeldes (2006) is
an early paper that applies modern asset-pricing theory and APT techniques to value pension
promises in a realistic setting. Their focus is on private-sector defined benefit pensions. But
their approach extends automatically to government-provided pensions.

In their APT approach, Lucas and Zeldes (2006) posit a diffusion process for wages and
stock values. This process produces a significant long-term correlation between earnings
growth and stock returns a là Goetzmann (2005). Geanakoplos and Zeldes (2010, 2011) also
value Social Security promises using a diffusion process, pointing to Benzoni et al. (2007)
to support their assumption of a low short-run, but high long-run correlation between wage
growth rates and stock returns. Geanakoplos and Zeldes (2011) provide an interesting Lucas
tree-type model involving the early revelation of news about future productivity shocks.
This information acquisition process does indeed produce small short-run but high long-run
correlation between wage growth and stock returns.

Yet, as Hasanhodzic and Kotlikoff (2018b) show, OLG models with significant ergodic
properties can evince correlations between current economic activity and economic outcomes
in the distant past. This can arise in models in which agents do not learn ahead of time
about future productivity shocks, i.e., they do not learn from past (current) outcomes about
current (future) shocks.

Our study takes a different tack from those of Geanakoplos and Zeldes. We relate the
growth rate of wage rates to either to current only or to one-period-only lagged asset returns.
We find very similar pricing of wage growth0rate securities regardless of the choice of con-
temporaneous or lagged regressors. And, unlike Geanakoplos and Zeldes (2011), we find a
major understatement of Social Security’s unfunded retirement benefit liability.

The different approaches generate quite different assessments of Social Security’s unfunded

9See Cox and Ross (1976), Cox, Ingersoll, and Ross (1977), Ross (1978), and Cox, Ross, and Rubinstein (1979).
We say “reduced form” because the operationalization of this pricing method requires positing and estimating
how government promises co-vary with either marketed assets or a subset of economic factors meant to capture
undiversifiable economic risk.
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liabilities. We find a very significant understatement of these liabilities. Social Security’s
mistake, in our view, is not its failure to adjust for risk, but its failure to adjust for safety.
Social Security’s actuaries discount benefits, once they’ve been received and become sure
liabilities, at a rate far above the market rate on long-term TIPS (Treasury Inflation Protected
Securities). Although Geanakoplos and Zeldes (2010, 2011) report that Social Security’s
liabilities are significantly overstated, they adopt Social Security’s overly high safe discount
rate. Hence, their measure of Social Security’s liabilities appears biased upward.

3 Valuing Social Security Retirement Benefits and

Taxes

Let bi stand for the full retirement benefit or Primary Insurance Amount (PIA) available
to worker i10. This benefit is a concave function of the worker’s Average Indexed Monthly
Earnings (AIME). The AIME is, in turn, calculated by first accumulating worker i’s past
covered earnings in each year starting from the year the worker was age 16 and continuing to
the year the worker reaches age 60. The accumulation factor is based on the economy-wide
growth in average total (uncovered as well as covered) monthly earnings. Next the 35 largest
values of these indexed earnings plus worker i’s nominal earnings received after age 60 are
averaged to form the AIME.

The rate of accumulation is determined by the real growth in economy-wide averaged
earnings. For simplicity, we assume that workers’ 35 years of highest earnings occur between
ages 26 through 60 and that the worker retires at age 60.

The PIA is inflation-adjusted to ensure the same real PIA is used regardless of when the
worker elects to start collecting benefits. Workers can begin collecting benefits as early as
age 62 and as late as age 70. Deviations in workers’ initial collection ages from their ages of
full retirement trigger actuarial reductions or increases in the retirement benefit. We assume
that all current workers begin collecting their benefits at age 62.11

In (1), wi,j denotes the covered (up to the Social Security earnings ceiling) wage earned
by worker i in year j, τi references worker i’s year of birth, gk stands for the growth rate of
average real earnings in year k, and 420 refers to 35 years times 12 months.

bi = fτi+60

(∑τi+60
j=τi+25wi,j

∏τi+60
k=j (1 + gk)

420

)
, (1)

where fτi+60 captures the PIA benefit formula and its argument is worker i’s AIME.
Let w̄j stand for the level of economy-wide, real average earnings in year j. Define the

ratio of worker i’s covered earnings in year j to w̄j by zi,j , i.e.,

wi,j ≡ zi,jw̄j . (2)

10The PIA formula is described in detail at https://www.ssa.gov/oact/cola/piaformula.html
11Assuming that Social Security’s actuarial adjustment is based on the same real interest rate as used in its unfunded

liability valuation, SSA valuation of its net liability to current workers should be independent of when workers
collect their benefits. On the other hand, the APT valuation of this net liability will be larger the later workers
collect because Social Security will provide larger benefit increases in return for delaying benefit collection that the
market indicates is actuarially fair. Thus, in assuming that current workers begin collecting retirement benefits
at age 62, we are biasing down our estimate of Social Security’s understatement of its net liability to current
workers.
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Substituting (2) into (1) yields

bi = fτi+60

(∑τi+60
j=τi+25 zi,jw̄j

∏τi+60
k=j (1 + gk)

420

)
= fτi+60(z̄iw̄τi+60),

(3)

where z̄i is one twelfth the average annual value of zi,j .
Social Security indexes not just a worker’s past earnings to economy-wide average covered

earnings; it also indexes the brackets in its year-t benefit function ft(). Thus, other things
equal, if w̄τi+60 is twice as large, the value of bi will be twice as large; i.e.,

fτi+60(z̄iw̄τi+60) = f(z̄iw̄τi+60, w̄τi+60), (4)

where f(, ) is homogeneous of degree one in the second argument. Using this property, we
can write

bi = h(z̄i)w̄τi+60, (5)

where
h(z̄i) = f(z̄i, 1). (6)

In what follows, we assume that h(z̄i) and w̄τi+60 are independently distributed.
Note that for someone born in year τ , the current (year t) average covered wage, w̄t , is

related to the average covered wage in year τ + 60 according to

w̄τ+60 = w̄t

τ+60∏
k=t

(1 + gk). (7)

Equations (5) and (7) imply

bi = h(z̄i)w̄t

τi+60∏
k=t

(1 + gk). (8)

According to (8), worker i’s full retirement benefit, bi, is equivalent to what would be
earned by investing the amount h(z̄i)w̄t at time t and holding it until time τi + 60 in a wage-
growth security, i.e., a security that compounds at the rate of growth of average real wages.
Of course, as with any time-t risky investment, the ultimate value of h(z̄i) at time τi + 60 is
unknown. Yet enough is known at time t to determine the value of bi.

Note that the cross-sectional average of z̄i is 1. We assume that the terms z̄i − 1 have no
value much like the deviations of individual insurance claims from the industry average have
no value. What matters for value, then, is simply the expected value of h(z̄i), E[h(z̄i)].

Given that h(z̄i) is independent of w̄τi+60 and that the valuation operator is linear, we
can write the value of the benefit claim as

Vt(bi) = V

(
w̄th(z̄i)

[
τi+60∏
k=t

(1 + gk)

])
, (9)

and further as

Vt(bi) = w̄tE(h(z̄i))V

(
τi+60∏
k=t

(1 + gk)

)
, (10)

where V () stands for the valuation function.

7



A straightforward argument, laid out in the appendix and motivated by financial pricing
theory, lets us determine the current value of

∏τi+60
k=1 (1 + gk), which we refer to as a $1 wage-

growth security with maturity τi+60–t. To form the valuation, all we need find is a portfolio
of traded securities whose payoff mimics the final real wage up to some idiosyncratic terms.
These terms are assumed not to matter for valuation because they are uncorrelated with the
returns to marketed securities.

Assume that the annual growth rate, gt, of the real wage has the following structure where
fi,t denotes the time-t value of marketed asset i, and εt is an unpriced, idiosyncratic shock:

gt = α+
∑
i

βi
∆fi,t
fi,t−1

+ εt. (11)

The appendix demonstrates that the final real-wage payment can be replicated by a
portfolio of the (real) bond and the assets, fi,t, that is rebalanced every year. The cost of
doing so is the value of the terminal real wage, which the appendix shows is

V

(
τi+60∏
k=t

(1 + gk)

)
=

(
1 + α+ r

∑
i βi

1 + r

)τi+60−t
, (12)

where r denotes the real rate of interest, which we assume is constant. If there is a term
structure of real rates available from, say, inflation-protected bonds, then the formula be-
comes:

V

(
τi+60∏
k=t

(1 + gk)

)
=

τi+60∏
t

(
1 + α+ rs

∑
i βi

1 + rs

)
. (13)

Combining (10) and (13) gives:

Vt(bi) = w̄tEth(z̄i)

τi+60∏
t

(
1 + α+ rs

∑
i βs

1 + rs

)
. (14)

These formulas assume that only contemporaneous asset returns price the wage growth
security. As also shown in the Appendix, the formulas are more complex if lagged as well
as contemporaneous asset returns predict current wage growth. The complexity involves the
need to adjust for the fact that lagged returns predict current and future wage growth. While
the case of multiple lags is quite complex, the formulas follow quite naturally in the case of
a single lag:

V (bi) = w̄tEth(z̄i)

1 + α+
∑

j βj
∆fj,t−1

fj,t−1

1 + rt−1

 T−1∏
s=t

(
1 + α+ rs

∑
j βj

1 + rs

)
, (15)

where the differences between equations (14) and (15) reflect the impact of lagged asset
returns on expected future wage growth. To be more precise, the βjs are the loadings on
one-year lagged returns in the following modification of (10).

gt = α+
∑
j

βj
∆fj,t−1

fj,t−2
+ εt. (16)
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3.1 Incorporating Survival to Age 62 and Annuity Valuation

The above treats Social Security benefits as a one-year payoff of a wage-growth security
derivative, with the payoff occurring in the year the worker reaches age 60. This is inap-
propriate for four reasons. First, under our assumption that workers take early retirement
benefits, benefits commence at 62. Second, the worker may not survive from her current
age to age 62. Third, receiving benefits at age 62, rather than full retirement age, triggers
an actuarial reduction, the size of which depends on the worker’s year of birth. Fourth, the
benefit starting at age 62 is not a one-year payment, but continues each year in the future
conditional on the worker’s survival.

Equation (17) modifies (15) to arrive at Vt(Bi) – the time-t APT value of worker i’s
lifetime benefits, Bi. In the formula, we multiply Vt(bi) by a) c – a two year real discount
factor that discounts, at the market’s safe real rate, for the fact that benefits don’t begin
at age 60, but rather at age 62, b) qi,t,τi,62 – the time-t probability that worker i, who was
born at time τi, survives to age 62, c) µτi – the early-retirement benefit reduction factor for
workers born in year τi who begin benefit receipt at age 62, and d) δi,τi – the actuarially
discounted present value of a $1 real annuity beginning at age 62 payable to worker i who is
born in year τi, where the discounting is at the market’s safe real term structure and goes
back to age 62.

Vt(Bi) = cqi,t,τi,62µτiδi,τiw̄tEt(h(z̄i))

1 + α+
∑

j βj
∆fj,t−1

fj,t−1

1 + rt−1

 T−1∏
t

(
1 + α+ rt

∑
j βj

1 + rt

)
.

(17)

3.2 SSA’s Benefit Valuation Formula

The corresponding SSA valuation, V̂t(Bi) , is given by (

V̂t(Bi) = ĉqi,t,τi,62µτi δ̂i,τiw̄tEt(h(z̄i))

(
1 + ḡ

1 + r̄

)τi+60−t
, (18)

where r̄ and ḡ reference, respectively, Social Security’s assumed 2.7 percent real discount rate
and 1.2 percent real-wage growth rate. Clearly the final terms in equations (17) and (18)
differ, which reflects differences in APT and SSA valuations of real wage growth. But the
two-year discount factor, ĉ , and the actuarial value of the annuity, δ̂i,τi , also differ from
their equation (17) counterparts because they too incorporate SSA’s assumed 2.7 percent
discount rate rather than the prevailing TIPS term structure.

3.3 Measuring the Idiosyncratic Component of Benefit Valu-
ation

The value of w̄t for our base year, t=2015, is reported by the Social Security administration,
so the remaining question is how to determine the value of the idiosyncratic component,
Eth(z̄i) . Our method is to use our aforementioned random- effects model of relative earnings
to simulate the average value of h(z̄i) by individual age in 2015, sex, and education group.
The education groups are less than high school, high school, and college or more.
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Our random effects model, which we estimate separately for each of the six education and
sex groups, is given by

zit = φi + θ0 + θ1b1 + θ2ait + θ3aitbi + θ4a
2
it + θ5a

2
itbi + θ6a

3
it + θ7a

3
itbi + εit,

θi ∼ N(0, σ2
α), εit ∼ N(0, σ2

ε ),
(19)

where φi is the random effect, and ait and bt reference, respectively, worker i’s age in year t
and her year of birth (i.e., t− ait). The term εit is a transitory error.

To determine the average value of h(z̄i) for agents in 2015 of a given sex and education
group who were born in year bi (who were a given age in 2005), we draw 100,000 values of
αi ; i.e., we consider 100,000 agents with specific random effects. For each agent we draw 35
values of εit – starting for the year the agent was age 26 and continuing through the year the
agent will be age 60. For each year, m, of these 35 years, we evaluate the right-hand-side of
(19) using the values of the agent’s αi and bi as well as the value of εit drawn for that year.
In this evaluation, aim is set to m − bi. Next we form the average over the 35 simulated
values of zit to form the value the agent’s z̄i . This value of z̄i is then run through Social
Security’s benefit formula to calculate the value of h(z̄i).

12 The average of the h(z̄i) values
across all 100 agents provides our sex-, education-, and cohort-specific estimates of Eth(z̄i).

3.4 Calculating the Aggregate Value of Benefits

The total value of benefits for Americans age 26 through 60 is calculated by forming

N∑
i=1

ωiVt(Bi), (20)

where ωi is the CPS population weight for sex-, education-, and cohort-population cell i.

3.5 Valuing Taxes

Taxes, Ti,l, paid by worker i in year l equal the tax rate in year l, νl, multiplied by worker
i’s covered wages in year l, zi,lw̄l .

Ti,l = νlzi,lw̄l. (21)

Following the above lines of argument, we can write the time-t value of taxes paid in year
l as

Vt(Ti,l) = qνlEt(zi,l)w̄t

1 + α+
∑

j βj
∆fj,t−1

fj,t−1

1 + rt−1

 l∏
t

(
1 + α+ rt

∑
j βj

1 + rt

)
. (22)

To determine the value of Etzit in (22), we again resort to averaging draws generated
from our random-effects model within each sex-, education-, and cohort-specific cell. Letting
Ti stand for the remaining lifetime OAI taxes of worker i and Vt(Ti) stand for the market
value of these taxes,

Vt(Ti) =

τi+60∑
t

Vt(Ti,l). (23)

12This function includes the early retirement reduction factor since we are computing reduced benefits assumed to
be taken at age 62.
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3.6 Calculating the Aggregate Value of Taxes

The total value of taxes for Americans age 26 through 60 is calculated by forming

S∑
i=1

ωiVt(Ti), (24)

where, again, ωi is the CPS weight for sex-, education-, and cohort-cell i.

4 Valuing the Wage-Growth Security

The first step in valuing the real wage-growth security is estimating the parameters of (11)
on data covering 1952 through 2015. We consider two sets of APT-factor regressions for
estimating our intercept α and the factor loadings (the β coefficients). The first set of
regressions, reported in table 1, incorporate contemporaneous and lagged nominal equity
returns of indexes of large and small cap stocks as well as of short- and long-term government
nominal bond returns.13 The second set, reported in table 2, substitute contemporaneous
and lagged Fama-French factors for the asset-index returns.

When lagged regressors are included, the adjusted R2s are quite high, ranging from .217
to .314 across the two tables. Omitting lagged regressors lowers these values dramatically.
The table 1 regressions with lagged returns provide better fits than the corresponding table
2 regressions based on Fama-French factors.

For each regression, we used the estimated parameters to calculate the implied present
value of $1 invested in the wage growth security for 1 and 35 year horizons based on the
appendix formula (a13). These valuations are provided in the tables. Consider the results in
table 1, which include lagged regressors and provide the best fits to the data. For a 1-year, $1
wage-growth security, our valuations range from 99.8 cents to 1.01 cents. SSA’s valuation is
1.012 divided by 1.027, or 98.5 cents, based on SSA’s assumed 1.2 percent average real-wage
growth rate and 2.7 percent real discount rate. In the case of the 35-year, $1 wage-growth
security, our table 1 lagged regression valuations range from 95.2 cents to 133 cents. The
corresponding SSA valuation is (1.012/1.027)35 or 59.8 cents.

Clearly the discrepancy between the SSA and APT valuations grows the farther out is
the wage-growth security’s duration. This is clear from the third model in table 1. Its 1-
year wage-growth security valuation is almost identical to Social Security’s. But its 35-year
valuation of 133.1 cents is 123 percent higher than SSA’s 59.8 cent figure. The reason the
APT and SSA valuations diverge more for longer duration wage-growth securities is due to
the fact that contemporaneous and past real market returns affect future expected real wage
growth differently through time in the APT valuation. This is clear from considering how
the security’s duration enters into equations (17) and (18).

We base our APT valuations on the regression appearing in the last column in table
1 (Restricted 2). This model values the $1, one-year wage-growth security at 99.9 cents
and the $1, 35-year wage-growth security at 103.0 cents. Our selection of this model was
guided by the Bayesian information criterion (BIC, also known as Schwartz’s Criterion) and
Akaike’s information criterion (AIC) as well as Akaike’s criterion corrected for small-sample
bias (AICc).14

13Regressing a real growth rate against nominal returns may seem surprising, but the short-term nominal bond
return is highly correlated with, and thus controls for, the inflation rate.

14See Andrews and Monahan (1992), Hurvich and Tsai (1989), and Schwarz (1978). These criteria represent ways to
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5 Modeling Relative Earnings

Table 4 presents parameter estimates by demographic group for our random-effects model.
The dependent variable is the natural logarithm of relative earnings (z). The table’s es-
timated coefficients were used to simulate lifetime paths for relative covered earnings as
described above. Our data come from the Panel Survey of Income Dynamics (PSID) for
the years 1968 through 2015. We include observations reporting educational attainment and
positive labor income.15

Figures 2 and 3 shows the average age-relative earnings profiles for different cohorts
holding sex and education constant as predicted by table 4’s results. The profiles tell some
interesting stories. First, all the profiles peak between ages 35 and 50 with the exception of
females with high school educations; their profiles increase monotonically. Second, the female
(male) profiles are significantly higher (lower) for younger cohorts, indicating that successive
cohorts have experienced a smaller gender gap in earnings. Third, females with college or
more education experience relative limited declines in their relative earnings after age forty.
Each of the other groups experience very sharp declines.

6 Benefit and Tax Valuations

Tables 5 through 13 show the results of our calculations of benefit and tax values for individ-
uals aged 26, 40, and 55 in 2005. The APT and SSA benefit values are calculated based on
(17) and (18), respectively. The APT tax value is calculated based on (23), and the SSA tax
values are calculated using wage-growth security values analogous to those in (18). Table 14
presents aggregate values of tax and benefits based on (20) and (24).

The values in tables 5 through 13 make sense. The market values of benefit obligations
are larger for those with more education, but so are the market values of tax obligations.
The net liabilities are smaller for those with more education in the case of 26 year olds, but
larger for the better educated in the case of 40 and 55 year olds. This simply reflects the fact
that older workers have all their benefits coming, but only a portion of their lifetime taxes
left to pay.

The differences in SSA and APT valuations of net liabilities to particular groups can
be quite sizeable. Take 40 year-old females with a high school education. SSA’s methodol-
ogy places Social Security’s average liability to these women at $166,055, whereas the APT
valuation is 2.1 times higher at $347,481.

trade-off model complexity and goodness-of-fit in model selection. All three criteria are increasing in the number
of parameters in the model and decreasing in the maximized log-likelihood. In the case of normal errors, the latter
can be recast as increasing in the sum of squared residuals. Hence, minimization of these criteria is a logical guide
for model selection. Furthermore, the use of model selection criteria avoids the problems of multiple testing and
non-nested model comparison that are commonly seen with other approaches. The criteria have similar forms
(see Schwarz (1978) and Hurvich and Tsai (1989)), although each behaves somewhat differently. AIC and AICc
are based on an information- theoretic derivation and are asymptotically equivalent to likelihood-based selection.
BIC is based on Bayesian as well as minimum-description-length arguments and is not asymptotically equivalent
to selection based purely upon maximized likelihood. This is because BIC penalizes the addition of parameters
more heavily than AIC (the coefficient on the number of parameters is 2 for AIC vs. log(n) for BIC). Hence,
BIC tends to select more parsimonious models than AIC.

15Selecting observations in this manner excluded over half of potential observations depending on the year in
question. This selection results in an unbalanced panel and raises the issue of coefficient bias, although it’s not
clear how such bias, were it to exist, would cut with respect to our comparison of APT and SSA valuations.
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A final point concerns the absolute size of the benefit obligations to older workers. As
table 11 shows, whether one uses APT or SSA valuations, the amounts are sizeable when set
against the relatively small values of financial wealth held by typical older workers.

Table 14 reports our main finding, namely that Social Security’s valuation method appears
to understate the market value of the net liability to working-age Americans by approximately
$22 trillion or 86 percent. The main source of this undervaluation involves the valuation of
benefits. SSA-based valuation leads to a $35.3 trillion figure, whereas APT valuation puts
the figure at $59.5 trillion. This is a $24.1 trillion differential. In contrast, the APT value of
taxes owed by working-age Americans is only $1.9 trillion larger than the SSA value.

Were we to value benefits by simply marking annuities to market (using TIPS rates),
but retaining SSA’s wage-growth security valuation, we’d arrive at an SSA aggregate benefit
valuation of $45.7 trillion. Since doing so would leave the SSA valuation of taxes unchanged,
it would increase the SSA valuation of net liabilities to $36.1 trillion. Hence, proper annuity
valuation would, by itself, eliminate approximately 47 percent of the difference in APT and
SSA valuations. Social Security Trustees could, therefore, significantly improve their net
liability measure simply by using TIPs returns to value the system’s promised annuities.

7 Critiquing the Approach

There are at least five objections to the approach taken here. The first is that, given their
size, any actual attempt to market Social Security’s net liabilities would dwarf the financial
markets. Our response is that valuation is a marginal exercise; we routinely establish values
for total stocks of financial and real assets as well as financial liabilities based on the going
price in the market. Take, for example, the Federal Reserve’s Flow of Funds valuation of
owner-occupied homes. All of these homes are all carried at marginal market price even
though the immediate sale of all U.S. homes could greatly alter values. Like most homes,
Social Security liabilities are currently being held, rather than actively traded. Moreover,
although Social Security’s net liabilities are large relative to U.S. net worth, they are a small
component of total world net worth.

The second objection involves what we take to be the idiosyncratic component of real
wage growth. Does the market value this component, which accounts for about half of
wage growth variability? Arguably not. If this risk were significant to investors it would,
presumably, be marketed and priced by the major financial securities we’ve included in our
analysis. The opposite view must maintain that financial markets are profoundly incomplete
and fail to span aggregate risks of major importance to investors. Were the opposite view
correct, our results would be incomplete and potentially biased. But the direction of such
bias cannot be determined a priori.

This second objection is reminiscent of the old debate in international trade about whether
there are more factors of production or goods being produced; it is fundamentally unresolv-
able. Our position, though, should be clear. We have a practical problem, and we offer a
consistent and robust practical solution that closely aligns with decades of research in modern
asset pricing. The alternative of relying on economic projections of real wages many years in
the future is similar to relying on analysts’ forecasts of a company’s earnings and the using
the resulting discounted cash flow to determine the value of the company’s stock rather than
simply using its trading price. Such practice bets against the market and represents a highly
questionable foundation on which to base generational and fiscal policy.

The third objection is our failure to take account of potential future policy changes; i.e.,
changes to the h() function. Here we plead guilty; but determining which policy changes are
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likely to arise and the impact on different parties of such changes is not our objective. Our
objective is valuing Social Security’s net claims taking current policy as given and determining
whether that policy is sustainable. Were we instead to incorporate future policy changes, our
valuation exercise would be trivial; we’d necessarily find the government to be intertemporally
balanced. The reason is that along any path the economy travels government spending will
necessarily be financed by the private sector. From this perspective, the government can
never be intertemporally insolvent. That said, many of these paths, all of which entail ex-
post satisfaction of the government’s intertemporal budget constraint, will entail terrible
economic and fiscal conditions, including policy changes described as explicit or implicit
defaults.

A fourth objection is that the sum of workers’ valuations of their net Social Security’s
benefit claims may differ dramatically from the valuation we measure. As demonstrated in
Liu, Rettenmaier, and Saving (2007), individual valuations are based on wealth- equivalent
changes in expected utility and take into account workers’ idiosyncratic risks. Admittedly,
how much today’s workers would be willing to pay to keep Social Security is an interesting
question. But that amount is potentially quite different from what the market would be
willing to pay.16

Finally, there is the question of relevance. Does it matter if the market thinks a country
is financially troubled, while its government proclaims its solvency? The answer is surely
yes. Over the years, scores of countries have experienced abrupt runs on their currencies and
financial instruments because the market made a decision that their policies were unsustain-
able. Argentina’s 2002 fiscal/financial meltdown, following a decade of excellent economic
growth, is a good example. This crisis came as a shock to its leaders who had forecasts
aplenty for how the government was going to reverse its prolonged fiscal slide and pay its
bills.

8 Conclusion

No one would suggest that the prices of explicit financial securities are independent of their
risk properties. Such a proposition would deny fact, let alone theory. But the same financial
laws that determine the prices of marketed securities govern the pricing of non- marketed
assets and liabilities; they cannot be priced by treating their variable returns as sure things
and discounting at safe rates.17 Nor can safe government payments and receipts be valued
using discount factors that differ from the discounts associated with safe marketed securities.
This, however, has been standard U.S. practice since our government began considering its
implicit debts.

Were marking to market implicit government liabilities and assets of minor import, the

16The consumption of grapefruit provides a useful analogy. What workers are willing to pay to have access
to grapefruit, if the alternative is never eating another grapefruit, is the sum of their consumer surplus from
grapefruit. This is not the same as the cost of buying, at market prices, the grapefruit the workers intend to
consume.

17Fortunately, government officials aren’t asked to value the stock market. Were they to do so, they’d badly misprice
the market. Indeed, were Social Security’s valuation method applied to the S&P, its price- earnings ratio would
equal 34.5 – more than twice the ratio observed at our writing. To see this, note that Social Security uses an
assumed safe 2.7 percent discount rate for its liability valuations. Let e stand for the expected earnings on the
S&P per dollar invested. Then Social Security would value the S&P by setting P , the price per dollar invested,
equal to the e/.027; i.e., the value of a perpetual safe stream e discounted at 2.9 percent. Since P = e/.027,
P/e = 1/.027 = 37.0.
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government’s ad-hoc valuation methods would be of little concern. But the example consid-
ered here – the valuation of Social Security’s net retirement liability to working- age Ameri-
cans – suggests the opposite. Proper asset pricing delivers a measure of this net liability that
exceeds SSA’s valuation by 86 percent.

Of course, Social Security’s net retirement liability to working-age Americans is only part
of its overall implicit debt. And Social Security is only one part of a much broader set of
future U.S. government receipts and payments, whose market values need to be assessed.
The ultimate goal, in this regard, is valuing all components of the government’s intertem-
poral budget to determine whether its overall current policy is sustainable, i.e., whether the
government’s entire fiscal enterprise breaks even as a matter of present valuation. Answering
this broader question is a much bigger task, but one that can surely be approached using
techniques similar to those considered here.
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Appendix A Calculations

Suppose that the real wage follows the growth process:

dw

w
= αdt+

∑
i

βi
dfi
fi

+ σεdε, (A.1)

where f is the vector of priced assets, e.g., the S&P 500, and ε is the process for the residual
and unpriced component. The symbol df/f denotes the total returns (dividends included)
on the priced assets.

Assuming w and fi all follow a geometric Brownian motion (allowing non-zero covariance
between asset prices) and converting this into logs we have:

d(lnw) =
dw

w
− 1

2
σ2
wdt

d(ln fi) =
dfi
fi
− 1

2
σ2
i dt,

(A.2)

where σ2 denotes the appropriately subscripted instantaneous variance.18

For reference, letting Ω denote the instantaneous variance covariance matrix for the re-
turns on the priced assets we have:

σ2
w = β′Ωβ + σ2

ε . (A.3)

Now we integrate to obtain the stochastic wage at time T :

wT = w0 exp

(
αT − 1

2
σ2
wT +

1

2

(∑
i

βiσ
2
i

)
T + σε

∫ T

0
dε

)∏
i

(
fiT
fi0

)βi
. (A.4)

In other words, the terminal real wage is an exponential in some time terms multiplied by
power functions of the total accumulated values of the priced assets.

To obtain the current value of the wage at time T , we take the expected discounted value
under the martingale measure, i.e., we take the expectation of the discounted value assuming
that all of the priced assets have an expected growth rate equal to the risk free rate.

V = E∗(e−rTwT )

= w0 exp

(
−rT + αT − 1

2
σ2
wT +

(
1

2

∑
i

βiσ
2
i

)
T +

1

2
σ2
εT +

(∑
i

rβi

)
T −

(
1

2

∑
i

βiσ
2
i

)
T +

1

2
(β′Ωβ)T

)

= w0 exp

(
−rT + αT + r

(∑
i

βi

)
T

)
.

(A.5)

In the valuation all of the variance terms have dropped out and only the betas and the
alpha remain. The easiest way to understand this is to build it up. Suppose first that there
were no betas or they were all zero. Then the wage will grow at the rate α to T and be
discounted back at the rate r. Now suppose there is only one marketed asset and its beta is
1. Then the wage is just the same as something that has the terminal value, w0e

αT , invested
in the asset. In that case the value is just the invested value, w0e

αT , which is precisely what
the formula gives. If beta isn’t one, then the formula just corrects for the difference.

18Note, the second term in the log derivatives arises because the process instantaneously has infinite movement
and its variance is of order dt. Since log is concave, we have the second order negative correction.
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A.1 A Discrete Time Approach

While the above analysis is somewhat formal, the result indicates that a simpler intuitive
approach applies. Furthermore, while the above may appear to depend on distributional
assumptions, an elementary discrete time analysis will verify that it is in fact independent of
any such assumptions.

In discrete time, we have

wt+1

wt
= 1 + gt = 1 + α+

∑
i

βifi,t + εt. (A.6)

To value the future payment of wt+1 we can ask how much we would have to invest in
marketed assets to replicate it. Consider investing At in the risky asset and Bt in the riskless
asset. The return on that portfolio will be∑

i

Ait(1 + fi,t) +Bt(1 + r) = 1 + gt = 1 + α+
∑
i

βifi,t + εt. (A.7)

This will replicate the priced portion for any realization of the returns, fi,t, if

Ai,t = βi,

Bt =
1 + α−

∑
i βi

1 + r
,

(A.8)

for a total expenditure of

V1 =
∑
i

Ai,t +Bt =
1 + α+ r

∑
i βi

1 + r
. (A.9)

The above expression tells us that a claim to one dollar invested in the wage-growth
security for one year has an immediate and, therefore, sure value of V1. At the end of one
year the expected value of this claim is just V1(1 + r). Having this amount for sure in a year
also has this same expected value. The value after one period of investing one dollar for two
years in the wage-growth security is V 2

1 (1 + r) . Discounted to the present, the value is just
V 2

1 . In general, the value, V T , of a dollar invested in the wage-growth security for T years is
V T

1 ; hence we can write

V T = w0

(
1 + α+ r

∑
i βi

1 + r

)T
→ w0e

T(α+r(
∑

i βi−1)), (A.10)

which is the continuous time formula.
Some care should be exercised in interpreting formulas a9 and a10. They would appear

to imply that a riskier wage, i.e., one with a higher beta would actually be more valuable
than a less risky one. This apparently anomalous result comes about because the return on
the asset in a6 has not been demeaned. As a consequence, the intercept, α, is actually the
intercept from a demeaned regression, γ, less β times the expected return on the asset,

a = γ − βEf = γ − β(r + π),

where π is the risk premium on the asset. Substituting this result into a9 gives

V1 =
∑
i

Ai,t +Bt =
1 + α+ r

∑
i βi

1 + r
=

1 + γ − r
∑

i βiπi
1 + r

,

which clearly reflects the decline in value with increasing risk.
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A.2 An Extension to Lagged Variable

Suppose the regression is in discrete terms (e.g., yearly), and we have only lagged variables:

∆wt
wt

= α+
∑
j

βj
∆fj,t−1

fj,t−1
+ εt. (A.11)

A similar analysis produces the amended formula:

V (wt) = w0

1 + α+
∑

j βj
∆fj,−1

fj,−1

1 + r

(1 + α+ r
∑

j βj

1 + r

)T−1

, (A.12)

which is the same as when the returns are contemporaneous but with the addition of the
multiplying term containing the past year’s returns. Without concerning ourselves with the
issues of a stochastic interest rate, using the term structure of interest rates this formula
becomes:

V (wT ) = w0

1 + α+
∑

j βj
∆fj,−1

fj,−1

1 + r−1

 T−1∏
t=0

(
1 + α+ rt

∑
j βj

1 + rt

)
. (A.13)

Extending this analysis to multiple lags is more difficult and explicitly involves the covari-
ance structure of the returns. As an alternative we could change to a different formulation
in terms of the unit root process:

wT = w0

(1 + α)T +
∑
j

k∑
s=0

βjfj,T−s + εT

 . (A.14)

While this is more difficult to estimate that the usual sort of regression, it allows for a
simple valuation equation:

V (wT ) =

(
1 + α

1 + r

)T
+
∑
j

fj,0

k∑
s=0

βj
(1 + r)s

. (A.15)

We won’t make use of this formulation since our estimations involve a single lag.
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Appendix B Tables and Figures

Table 1

Regression of Average Wage Growth on Nominal Returns

Dependent variable:

Real Average Wage Growth
Unrestricted Contemp. only Lagged only Restricted 1 Restricted 2

(1) (2) (3) (4) (5)

Constant 0.008 0.019∗∗∗ 0.008 0.009∗ 0.010∗∗

(0.005) (0.007) (0.006) (0.005) (0.005)

STGovtBond −0.309 −0.139 −0.372∗∗∗

(0.243) (0.314) (0.122)

LTGovtBond −0.245 −0.076
(0.333) (0.296)

SmallCapStock 0.004 −0.017
(0.014) (0.015)

LargeCapStock 0.019 0.036
(0.032) (0.028)

L.STGovtBond 0.210 −0.165 0.147
(0.141) (0.207) (0.153)

L.LTGovtBond 0.140 0.024 0.039 −0.145
(0.211) (0.202) (0.209) (0.101)

L.SmallCapStock 0.005 −0.006
(0.013) (0.013)

L.LargeCapStock 0.062∗∗∗ 0.068∗∗∗ 0.066∗∗∗ 0.060∗∗∗

(0.020) (0.019) (0.011) (0.010)

1 yr. Valuation 1.008 0.998 0.999
35 yr. Valuation 1.331 0.952 1.03
AIC -320.8 -307 -317.8 -324.4 -320.7
AICc -317.4 -306 -316.8 -323.3 -320.3
BIC -299.3 -294.1 -305 -311.5 -312.1
R2 0.401 0.122 0.287 0.358 0.275
Adjusted R2 0.312 0.062 0.238 0.314 0.251
Residual Std. Error 0.017 (df = 54) 0.021 (df = 59) 0.018 (df = 58) 0.017 (df = 58) 0.018 (df = 60)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 2

Regression of Average Wage Growth on Fama-French Factors

Dependent variable:

Real Average Wage Growth
Unrestricted Contemp. only Lagged only Restricted 1 Restricted 2

(1) (2) (3) (4) (5)

Constant 0.004 0.009∗∗ 0.006∗∗ 0.006∗∗ 0.005∗∗

(0.003) (0.004) (0.003) (0.003) (0.003)

MktRF 0.020 0.022
(0.024) (0.023)

HML 0.007 0.003
(0.027) (0.023)

SMB −0.005 −0.038∗

(0.019) (0.023)

L.MktRF 0.064∗∗∗ 0.063∗∗∗ 0.064∗∗∗ 0.059∗∗∗

(0.010) (0.011) (0.010) (0.010)

L.HML −0.008 −0.009
(0.019) (0.018)

L.SMB −0.026 −0.028 −0.028
(0.031) (0.031) (0.029)

1 yr. Valuation 1 1.012 1.011 1.008
35 yr. Valuation 1.017 0.94 0.926 0.922
AIC -318.9 -306.7 -322.5 -324.2 -324.1
AICc -316.9 -306 -321.8 -323.8 -323.9
BIC -301.5 -295.8 -311.6 -315.5 -317.5
R2 0.290 0.061 0.264 0.261 0.236
Adjusted R2 0.217 0.015 0.228 0.237 0.224
Residual Std. Error 0.019 (df = 58) 0.022 (df = 61) 0.019 (df = 61) 0.019 (df = 62) 0.019 (df = 63)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3

Social Security Valuation Elements
Valuation Annuity Factor (δ) Early Retirement Discount for 2015 Average

for F, b. 1955 Factor (µ) waiting to 62 (c) Wage (w̄)
APT 22.02 0.733 0.983 $48,099
SSA 17.64 0.733 0.948 $48,099
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Table 5

Social Security Benefit Obligations to 26 Year-Olds

Sex Valuation <HS HS Col
Male APT 226,483 278,290 486,923
Male SSA 103,342 126,981 222,178
Female APT 320,663 591,113 613,816
Female SSA 144,162 265,750 275,957

Table 6

Social Security’s Tax Claims on 26 Year-Olds

Sex Valuation <HS HS Col
Male APT 61,105 88,485 213,677
Male SSA 48,005 71,422 161,967
Female APT 77,983 211,030 210,108
Female SSA 58,794 154,537 159,357

Table 7

Social Security’s Net Liability to 26 Year-Olds

Sex Valuation <HS HS Col
Male APT 165,378 189,805 273,247
Male SSA 55,336 55,559 60,211
Female APT 242,680 380,083 403,708
Female SSA 85,369 111,213 116,600
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Table 8

Social Security Benefit Obligations to 40 Year-Olds

Sex Valuation <HS HS Col
Male APT 240,720 293,898 478,645
Male SSA 137,448 167,812 273,301
Female APT 270,305 450,018 499,327
Female SSA 151,940 252,957 280,674

Table 9

Social Security’s Tax Claims on 40 Year-Olds

Sex Valuation <HS HS Col
Male APT 38,709 48,460 139,640
Male SSA 33,937 42,437 120,576
Female APT 41,210 102,537 103,829
Female SSA 35,637 86,902 89,082

Table 10

Social Security’s Net Liability to 40 Year-Olds

Sex Valuation <HS HS Col
Male APT 202,010 245,438 339,004
Male SSA 103,511 125,376 152,724
Female APT 229,095 347,481 395,498
Female SSA 116,303 166,055 191,593
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Table 11

Social Security Benefit Obligations to 55 Year-Olds

Sex Valuation <HS HS Col
Male APT 264,392 322,601 483,241
Male SSA 192,121 234,418 351,148
Female APT 230,962 347,802 413,263
Female SSA 165,074 248,583 295,369

Table 12

Social Security’s Tax Claims on 55 Year-Olds

Sex Valuation <HS HS Col
Male APT 6,953 10,354 27,962
Male SSA 6,666 9,913 26,778
Female APT 6,259 18,073 18,743
Female SSA 5,998 17,280 17,930

Table 13

Social Security’s Net Liability to 55 Year-Olds

Sex Valuation <HS HS Col
Male APT 257,439 312,247 455,280
Male SSA 185,454 224,505 324,370
Female APT 224,703 329,729 394,520
Female SSA 159,076 231,303 277,439

27



Table 14

SSA’s Aggregate Net Liability to Working-Age Americans

APT SSA
Aggregate Benefits Owed by SSA 59.450 Trillion 35.335 Trillion
Aggregate Tax Obligations Owed to SSA 11.480 Trillion 9.558 Trillion
SSA’s Aggregate Net Liability 47.970 Trillion 25.777 Trillion
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Figure 2

Earnings Profiles for Males
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Figure 3

Earnings Profiles for Females

0.2

0.3

0.4

0.5

0.6

30 40 50 60

Age

R
el

at
iv

e 
E

ar
ni

ng
s 

(z
)

as.factor(b)

1945

1965

1980
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