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Motivation

Governments spend billions on environmental enforcement.

- Plants also spend substantial time and money on compliance.

The design of effective enforcement is complicated:

- Perfect monitoring of plants is impossible.
- Investment in pollution abatement is costly and takes time.
- Penalties are limited by bankruptcy and political pressure.
- Plant investment costs may be heterogeneous.

These complications have led to dynamic regulation where repeat
offenders are punished more severely than one-time offenders.

- In enforcing the Clean Air Act and Amendments, the U.S. EPA
designates repeat offenders as high priority violators (HPVs).
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Regulatory Actions by Lagged Plant Status
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Note: Authors’ calculations for plants covered by Clean Air Act, 2007-13.

HPVs face more inspections, higher fines, and more violations.
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Goals of this Paper

1 Estimate the cost to plants of compliance with the EPA’s current
dynamic enforcement approach.

2 Simulate the value of alternative enforcement regimes in affecting
pollution and ensuring compliance.
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Our Approach

Develop and estimate a dynamic game between a plant and a regulator
enforcing environmental laws.

- Recover regulator’s conditional choice probabilities (CCPs).
- Estimate random coefficient model of plants’ costs.

Use the structural model to simulate counterfactuals that change the
non-linearity of fines and plants’ cost of regulation.

- Counterfactuals focus on optimal dynamic plant behavior, not
dynamic equilibrium.

Why a dynamic model?

- Previous empirical research largely focused on documenting the
response of plants, not estimating the costs of compliance.

- Estimating costs requires accounting for how investment decreases
future penalties and moves plants between regulatory states.

- Requires a model that formally accounts for dynamic, optimizing
behavior of plants.
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Relation to the Literature

1 Empirical studies of dynamic enforcement.

- Landsberger and Meilijson, 1982; Earnhart, 2004; Eckert, 2004;
Shimshack and Ward, 2005; Ko et al., 2010; Shinkuma and
Shunsuke, 2012; Telle, 2013; Blondiau et al., 2015; Evans, 2017;
Blundell, 2017.

2 Structural evaluations of environmental regulatory policy.

- Timmins, 2002; Ryan, 2012; Lim and Yurukoglu, 2015; Fowlie et
al., 2016; Duflo et al. 2018; Houde, 2018; Kang and Silveira 2018.

- Most closely related to Duflo et al. 2018; Kang and Silveira 2018.
3 Dynamic discrete choice models with random coefficients.

- Arcidiacono and Miller 2011; Fox et al, 2011; Gowrisankaran and
Rysman 2012; Fox et al., 2016; Nevo, Turner, and Williams, 2016;
Connault, 2017.

- Our fixed grid model is similar to the Fox/Nevo et al. approaches.
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Regulatory Setting

The Clean Air Act and Amendments (CAAA) are enforced by the EPA
using a system of inspections, violations, fines, and classification into
different regulatory states.

- Being in violator status subjects a plant to additional inspections,
which might uncover additional violations and yield greater fines.

Plants in that are substantially or persistently out of compliance may be
designated high priority violators.

- HPVs face increased scrutiny from federal, state, and potentially
local authorities.

Much of the enforcement activity occurs at the state and regional level.

- Regional EPA offices oversee states and incorporate different
regional preferences in enforcement: provide identifying variation.
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Data Sources

Our study primarily uses two CAAA monitoring and enforcement databases:
1 Environmental Compliance History Online (ECHO) database.

- EPA Actions: inspections, violations, and fines.
- Investments inferred from permits and resolution codes.
- Historical compliance: regular and high priority violator.

2 National Emissions Inventory (NEI) database.

- Data are every 3 years.
- Only used to understand pollution effects of counterfactual policies.

We create a quarterly unbalanced panel from Q1:2007 to Q3:2013.

- Period of consistent policy and record-keeping.

- Unit of observation is the plant-quarter.

- We keep seven industrial sectors with high pollution levels.
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Summary Statistics on Estimation Sample

Status: Compliance Regular violator HPV

Regulator actions:
Inspection (%) 7.87 22.45 39.71
Fine amount (thousands of $) 1.58 14.03 154.74

(60.85) (190.59) (645.19)
1{Fine> 0} (%) 0.16 2.92 13.39

Regulatory outcomes:
Violation (%) 0.29 3.08 9.29
Entrance into HPV status (%) 0.12 1.54 0.00

Plant actions:
Investment (%) 0.00 4.58 17.21

Plant / quarter observations 2,823,738 79,310 41,109
Note: authors’ calculations based on estimation sample. Regulatory actions and outcomes are
based on lagged status. Plant actions are based on current status.
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Summary Statistics on Criteria Air Pollutants

Table: Summary Statistics on Criteria Air Pollutants

Industrial Observations Mean Mean level Mean
sector in analysis level in as regular level

data compliance violator as HPV
Mining & extraction 758,792 138.0 383.8 1,117.0
Manufacturing:
wood/petro/pharma

679,137 289.3 782.5 2,483.2

Manufacturing: metal 568,682 101.7 176.4 1,240.0
Transportation 166,202 190.7 202.5 207.5
Manufacturing: food/textiles 147,433 117.3 393.1 338.7
Educational services 147,161 67.3 169.8 186.3
Utilities 120,536 1,885.0 5,242.3 12,546.5
Note: table reports summary statistics on total criteria air pollutant levels in tons for plant / quarter
observations in our analysis data, matched to the NEI data based on EPA region, industrial sector,
and compliance, regular violator, or HPV status.



Introduction Background Data Empirical Foundations Model & Estimation Results & Counterfactuals Conclusions

What Underlies Our Structural Model?

For our model, we need to define a tractable regulatory state.

We show results from reduced-form analysis that motivates how our
state space reflects:

1 Investments.
2 Violations.
3 Industry and EPA region.
4 Heterogeneity.

Already made case for HPV status affecting regulatory actions.
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Investments and Resolution of Violations

Dependent variable: return to compliance
Current investment −0.117∗∗∗ (0.002)
One quarter lag of investment 0.381∗∗∗ (0.006)
Two quarters lag of investment 0.082∗∗∗ (0.006)
Three quarters lag of investment −0.012∗∗ (0.005)
Four quarters lag of investment −0.051∗∗∗ (0.005)
Number of observations 120,419
Note: regressions include fixed effects for 2-digit NAICS industrial sector and EPA region. Re-
gression uses the estimation sample restricted to plants not in compliance in the previous quarter.
Standard errors, which are clustered at the plant level, are in parentheses. ∗∗∗, ∗∗, and ∗ indi-
cates statistical significance at the 1%, 5%, and 10% levels, respectively.

We allow for two lags of investment to affect transitions.

Timing assumption: investment occurs at end of period.
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Effect of Investment on Regulatory State
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Investment predicts return to compliance but only stochastically.
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Depreciated Accumulated Violations
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Defined as sum of the discounted violations, from the previous quarter
back to the quarter the plant most recently left compliance.
Use 10% quarterly discount factor here.
Very predictive of regulatory actions and outcomes.
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Heterogeneity in Regulatory Actions: EPA Regions
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Serial Correlation In Investment
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Figure: Further Investments After Initial Investment

Strong serial correlation suggests heterogeneity in costs.

One set of moments tries to match this serial correlation.
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Overview of Model

Discrete-time two-player dynamic game with discount factor β.

- Data reflect the Markov Perfect Equilibrium of the game.

Each (quarter) period t , the plant starts with some regulatory state Ωt .

Timing each period is as follows:
1 The regulator chooses whether to inspect, Ins(Ω).

- Inspection probability I(Ω).
2 Regulator obtains a signal e (based on inspection and state).

- Signal indicates whether a violation Vio(Ω, e) should be issued.
- Signal also indicates transition to Ω′ ≡ T (Ω, e).
- Regulator assesses fines with policy Fine(Ω, e).

3 The plant chooses whether to invest, using Ω′.
- Investment helps return plant to compliance in next two periods.
- Idiosyncratic logit shocks to costs of investment/not investment.



Introduction Background Data Empirical Foundations Model & Estimation Results & Counterfactuals Conclusions

Assumption on State Evolution

Assumption

The environmental compliance signal at time t, et , is a function only of the
regulatory state Ωt , inspection decision Inst , and regulator CCPs I.

Rules out the possibility that an investment that is not in the regulatory
state could change the compliance signal.

- e.g. investment more than two periods ago.
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Plant’s Utility and Investment

Flow (dis)utility of plant from regulatory actions is:

U(Ω, e) = θI Ins(Ω) + θV Vio(Ω, e) + θF Fine(Ω, e) + θHHPV (T (Ω, e)).

where θI , θF , θV , θH are parameters.

If Ω′ indicates non-compliance, plant chooses whether to invest, X = 1,
or not, X = 0.

- Flow (dis)utility from action X at this point is: XθX + εX .

Plants in compliance obtain only ε0 at this point.

The (fixed) structural parameters for any plant are
θ ≡ (θI , θF , θV , θH , θX ).

- We model random coefficients: θ can vary across plants.
- Regulator cannot condition its monitoring and enforcement on θ.
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Estimation Overview

We estimate regulator’s policy as conditional choice probabilities (CCP).

Model 1: Quasi-maximum likelihood with one θ value.

Model 2: GMM with random coefficients over fixed grid of θs.
- Assumes that θ takes one of a finite number of values, (θ1, . . . , θJ ).

- Large number of grid points, J=10,001.

- Each plant i gets a draw from the distribution of potential θ values.
- Point of estimation is to recover ηj , ∀j , population prevalence of θj .
- GMM estimator takes form:

Gk (η) = md
k −

J∑
j=1

ηjmk (θj )

where mk
d are moments in data and mk (θj ) are moments predicted

by model with parameters θj .



Introduction Background Data Empirical Foundations Model & Estimation Results & Counterfactuals Conclusions

Details for Random Coefficients Model

Assumption

The data reflect plants at the steady state distribution of variable states, Ω′1

(e.g. compliance status), conditional on fixed states, Ω′2 (e.g. industry).

We use the following mk (θj ) for moments:
1 Long-run probability of state Ω′1.
2 Long-run probability of state Ω′1 times investment.
3 Long-run probability of state Ω′1 times investment times sum of

investments in next six quarters (as in Figure).

Two step estimator where moments are weighted by V̂ar(G(η))−1.
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Identification

Homogeneous cost model:

Differences in regulatory actions that the plant could expect from
investing vs not investing

Useful variation across region and industrial sector.

Random coefficients model:

The spread of plants across regulatory states in equilibrium.

The level of within plant correlation in investment over time.
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Coefficient Estimates

QML GMM random coefficient estimates
estimates (1) (2) (3) (4) (5)

Investment utility (θX ) −2.95∗∗∗ −2.95 −1.40 −2.19 −0.56 0.55
(0.04)

Inspection utility (θI ) −0.02 −0.02 0.48 0.42 −0.74 0.51
(0.05)

Violation utility (θV ) −0.30 −0.30 −0.10 1.03 2.13 −1.78
(0.24)

Fine utility (million $, θF ) −0.11∗∗∗ −0.11 −0.21 −0.32 −0.19 −0.03
(0.03)

HPV status utility (θH ) −0.05∗∗ −0.05 −0.22 −0.14 0.03 −0.11
(0.02)

Weight on param. vector 1 0.42 0.33 0.18 0.04 0.03
Note: standard errors for maximum likelihood estimates, which are bootstrapped with resampling
at the plant level, are in parentheses. For GMM estimates, we report weights on all types j with
probability ηj > 0.001.

Investment, fines, and HPV status are costly for most plants.

Heterogeneity in ratio of investment costs to fine costs.

42%: $26 million, 51% ≈$7 million.
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Random Coefficients Generate a Better Fit to the Data

Figure: Further Investments After Initial Investment, in Steady State
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Counterfactuals

How would long-run averages of plant actions and outcomes and air
pollution change if:

1 Non-linearity of fines changed.
2 Plants’ utility from regulatory actions changed.

Limitations of counterfactuals:
Policy rules on inspections, violations, and transitions are
unchanged.

- Following Assumption 1, the same distribution of signals, e, will occur.

Consistent with plant optimization but not necessarily with an
equilibrium of the dynamic game.

We only present counterfactuals with GMM estimates here.
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Counterfactuals: Changing Fine Structure

Using GMM random coefficient estimates:
Baseline Same fines for HPV fines HPV fines

all violators halved doubled
Compliance (%) 95.07 (0.07)
Regular violator (%) 3.59 (0.07)
HPV (%) 1.34 (0.04)
Inspection rate (%) 9.19 (0.05)
Mean fines (1000$) 16.23 (2.08)
Mean CAP (tons) 294.4 (1.6)
Mean pollution cost (1000$) 2,579 (11.5) 3,751 (454.9) 2,756 (44.5) 2,520 (10.2)
Note: all statistics report the weighted average of the long-run equilibrium mean, weighting with the
number of plants by industry and region in our data. CAP are criteria air pollutants. Pollution cost
only includes the cost of NOX, SO2, PM2.5, and VOCs.
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Counterfactuals: Changing Fine Structure
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Counterfactuals: Changing Fine Structure

Using GMM random coefficient estimates:
Baseline Same fines for HPV fines HPV fines

all violators halved doubled
Compliance (%) 95.07 (0.07) 87.14 (3.24) 94.16 (0.20) 95.40 (0.10)
Regular violator (%) 3.59 (0.07) 3.31 (0.11) 3.58 (0.07) 3.58 (0.07)
HPV (%) 1.34 (0.04) 9.55 (3.32) 2.26 (0.20) 1.01 (0.07)
Inspection rate (%) 9.19 (0.05) 12.76 (1.49) 9.55 (0.11) 9.09 (0.05)
Mean fines (1000$) 16.23 (2.08) 16.23 (2.08) 16.74 (2.52) 23.50 (6.09)
Mean CAP (tons) 294.4 (1.6) 463.8 (67.2) 321.4 (7.0) 285.5 (1.3)
Mean pollution cost (1000$) 2,579 (11.5) 3,751 (454.9) 2,756 (44.5) 2,520 (10.2)
Note: all statistics report the weighted average of the long-run equilibrium mean, weighting with the
number of plants by industry and region in our data. CAP are criteria air pollutants. Pollution cost
only includes the cost of NOX, SO2, PM2.5, and VOCs.
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Counterfactuals: Changing Plants’ Cost Structure

Using GMM random coefficient estimates:
Baseline No enforce/ No HPV HPV Cost

HPV cost cost doubled
Compliance (%) 95.07 (0.07)
Regular violator (%) 3.59 (0.07)
HPV (%) 1.34 (0.04)
Inspection rate (%) 9.19 (0.05)
Mean fines (1000$) 16.23 (2.08) 24.09 (15.89)
Mean CAP (tons) 294.4 (1.6)
Mean pollution cost (1000$) 2, 579 (11.5) 2, 670 (50.8) 2, 972 (168.0) 2, 531 (15.6)
Note: all statistics report the weighted average of the long-run equilibrium mean, weighting with the
number of plants by industry and region in our data. CAP are criteria air pollutants. Pollution cost
only includes the cost of NOX, SO2, PM2.5, and VOCs.
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Counterfactuals: Changing Plants’ Cost Structure

Using GMM random coefficient estimates:
Baseline No enforce/ No HPV HPV Cost

HPV cost cost doubled
Compliance (%) 95.07 (0.07) 94.50 (0.39)
Regular violator (%) 3.59 (0.07) 3.53 (0.08)
HPV (%) 1.34 (0.04) 1.97 (0.39)
Inspection rate (%) 9.19 (0.05) 9.38 (0.16)
Mean fines (1000$) 16.23 (2.08) 24.09 (15.89)
Mean CAP (tons) 294.4 (1.6) 308.7 (6.7)
Mean pollution cost (1000$) 2, 579 (11.5) 2, 670 (50.8) 2, 972 (168.0) 2, 531 (15.6)
Note: all statistics report the weighted average of the long-run equilibrium mean, weighting with the
number of plants by industry and region in our data. CAP are criteria air pollutants. Pollution cost
only includes the cost of NOX, SO2, PM2.5, and VOCs.
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Counterfactuals: Changing Plants’ Cost Structure

Using GMM random coefficient estimates:
Baseline No enforce/ No HPV HPV Cost

HPV cost cost doubled
Compliance (%) 95.07 (0.07) 94.50 (0.39) 92.16 (1.44)
Regular violator (%) 3.59 (0.07) 3.53 (0.08) 3.56 (0.08)
HPV (%) 1.34 (0.04) 1.97 (0.39) 4.28 (1.48)
Inspection rate (%) 9.19 (0.05) 9.38 (0.16) 10.25 (0.61)
Mean fines (1000$) 16.23 (2.08) 24.09 (15.89) 35.35 (10.30)
Mean CAP (tons) 294.4 (1.6) 308.7 (6.7) 366.7 (30.4)
Mean pollution cost (1000$) 2, 579 (11.5) 2, 670 (50.8) 2, 972 (168.0)
Note: all statistics report the weighted average of the long-run equilibrium mean, weighting with the
number of plants by industry and region in our data. CAP are criteria air pollutants. Pollution cost
only includes the cost of NOX, SO2, PM2.5, and VOCs.
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Counterfactuals: Changing Plants’ Cost Structure

Using GMM random coefficient estimates:
Baseline No enforce/ No HPV HPV Cost

HPV cost cost doubled
Compliance (%) 95.07 (0.07) 94.50 (0.39) 92.16 (1.44) 95.31 (0.18)
Regular violator (%) 3.59 (0.07) 3.53 (0.08) 3.56 (0.08) 3.59 (0.07)
HPV (%) 1.34 (0.04) 1.97 (0.39) 4.28 (1.48) 1.10 (0.16)
Inspection rate (%) 9.19 (0.05) 9.38 (0.16) 10.25 (0.61) 9.12 (0.06)
Mean fines (1000$) 16.23 (2.08) 24.09 (15.89) 35.35 (10.30) 14.34 (3.18)
Mean CAP (tons) 294.4 (1.6) 308.7 (6.7) 366.7 (30.4) 287.0 (2.4)
Mean pollution cost (1000$) 2, 579 (11.5) 2, 670 (50.8) 2, 972 (168.0) 2, 531 (15.6)
Note: all statistics report the weighted average of the long-run equilibrium mean, weighting with the
number of plants by industry and region in our data. CAP are criteria air pollutants. Pollution cost
only includes the cost of NOX, SO2, PM2.5, and VOCs.
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Conclusion

CAAA regulators utilize dynamic enforcement with inspections,
violations, and fines.

Dynamic enforcement increases compliance through plant investment in
environmental remediation.

Effects are large, particularly in random coefficients model:

- Linear fines would result in >6X increase in high priority violators.
- Criteria air pollutants would rise 58%.

We provide a structural framework for evaluating dynamic enforcement
in alternative contexts beyond CAAA regulation.

Extend fixed grid approach for estimating random coefficients.
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