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Abstract

“Big data” financial technology grew concurrently with data-intensive trading strategies, that are

blamed for market inefficiency. A key cause for concern is that better data processing technology might

induce traders to extract others’ information, rather than produce information themselves. We allow

agents to choose how much to learn about future asset values or about others’ demands, and explore

how improvements in data processing shape these information choices, trading strategies and market

outcomes. Our main insight is that unbiased technological change can explain a market-wide shift in data

collection and trading strategies. The efficiency results that follow upend common wisdom. They offer

a new take on what makes prices informative and whether trades typically deemed liquidity-providing

actually make markets more resilient, in the long run.
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In most sectors, technological progress boosts efficiency. But in finance, more efficient data processing

and the new data-intensive trading strategies it has spawned have been blamed for market volatility,

illiquidity and inefficiency. One reason financial technology is suspect is that its rise has been accompanied

by a shift in the nature of financial analysis and trading. Instead of “kicking the tires” of a firm, investigating

its business model or forecasting its profitability, many traders today engage in statistical arbitrage: They

search for “dumb money,” or mine order flow data and develop algorithms to profit from patterns in

others’ trades. Why might investors choose one strategy versus the other and why are these incentives

to process each type of data changing over time? Answering these questions requires a model. Just like

past investment rates are unreliable forecasts for economies in transition, empirically extrapolating past

financial trends is dubious in the midst of a technological transformation.

To make sense of current and future long-run trends requires a growth model of structural change in

the financial economy. Since much of the technological progress is in the realm of data processing, we use

an information choice model to explore how unbiased technological progress changes what data investors

choose to process, what investment strategies they adopt, and how the changing strategies alter financial

market efficiency and real economic outcomes. Structural change in the financial sector arises because

improvements in data processing trigger a shift in the type of data investors process. Instead of processing

data about firm fundamentals, firms choose to processing more and more data about other investors’

demand. Each data choice gives rise to an optimal trading strategy. The resulting shift in strategies

resembles an abandonment of value investing and a rise in a strategy that is part statistical arbitrage, part

retail market making, and part strategies designed to extract what others know. Just like the shift from

agriculture to industry, some of our data-processing shift takes place because growing efficiency interacts

with decreasing returns. But unlike physical production, information leaks out through equilibrium prices,

producing externalities, and a region of endogenous increasing returns, that do not arise in standard growth

models.

The consequences of this shift in strategy upend some common thinking. Contrary to popular wis-

dom, the abandonment of fundamentals-based investing does not necessarily compromise financial market

efficiency. Efficiency, as measured by price informativeness, continues to rise, even as fundamental data

gathering falls. Our results can inform measurement. They lend support to the common practice of using

price informativeness to proxy for total information processing. But they call into question the interpre-

tation that price informativeness is a measure information acquired specifically about firm fundamentals.

Our second surprise is that the price impact of an uninformative trade (liquidity) stagnates. Even though

demand data allows investors to identify uninformed trades, and even though investors use this information

to “make markets” for demand-driven trades, market-wide liquidity may not improve.

There are many aspects to the financial technology revolution and many details of modern trading

strategies that our analysis misses. But before developing a new framework that casts aside decades of

accumulated knowledge, it is useful to first ask what existing tools can explain, if only to better identify

where new thinking is needed. The most obvious and simplest tool for thinking about choices related to

information and their equilibrium effects is the noisy rational expectations framework. To this framework,

we add three ingredients. First, we add a continuous choice between firm fundamental information and

investor demand information. We model data processing in a way that draws on the information processing
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literatures in macroeconomics and finance.1 But the idea that processing data on demand might trade off

with fundamental information processing is central to modern concerns, is essential for our main results,

and is new to this literature. Second, we add long-run technological progress. It is straightforward to

grow the feasible signal set. But doing so points this tool in a new direction, to answer a different set of

questions. Third, we use long-lived assets, as in Wang (1993), because ignoring the truth, that equity is

a long-lived claim, fundamentally changes our results. The long-lived asset assumption is essential for our

long-run balanced growth path, the stagnation of liquidity, and the model’s modest predicted decline in

the equity premium. A traditional model with one-period-lived assets would reverse all three results.

The key to our results is understanding what makes each type of data valuable. Fundamental data is

always valuable. It allows investors to predict future dividends and future prices. Demand data contains

no information about any future cash flows. It has value because it enables an investor to trade against

demand shocks – sometimes referred to as searching for “dumb money.” By buying when demand shocks are

low and selling when demand shocks are high, an investor can systematically buy low, sell high and profit.

This is the sense in which the demand-data trading strategy looks like market making for uninformed retail

investors. Demand-data processors stand ready to trade against – make markets for – uninformed orders.

The mathematics of the model suggest another, complementary interpretation of the rise in demand-based

strategies. Demand shocks are the noise in prices. Knowing something about this noise allows investors to

remove that known component and reduce the noise in prices. Since prices summarize what other investors

know, removing price noise is a way of extracting others’ fundamental information. Seen in this way,

the demand-driven trading strategy shares some of the hallmarks of automated trading strategies, largely

based on order flow data, that are also designed to extract the information of other market participants.

Our main results in Section 2 describe the evolution of data processing in three phases. Phase one:

technology is poor and fundamental data processing dominates. In this phase, fundamental data is preferred

because demand data has little value. To see why, suppose no investors have any fundamental information.

In such an environment, all trades are uninformed. No signals are necessary to distinguish informed and

uninformed trades. As technology progresses and more trades are information-driven, it becomes more

valuable to identify and trade against the remaining non-informational trades. Phase two: moderate tech-

nology generates increasing returns to demand data processing. Most physical production as well as most

information choices in financial markets exhibit decreasing returns, also called strategic substitutability.

Returns decrease because acquiring the same information as others, leads one to buy the same assets as

others, and the assets others buy are expensive. Our increasing returns come from an externality specific

to data: Information leaks through the equilibrium price. When more investors process demand data,

they extract more fundamental information from equilibrium prices, and trade on that information. More

trading on fundamental information, even if extracted, makes the price more informative, which encour-

ages more demand data processing, to enable more information extraction from the equilibrium price.

Phase three: high technology restores balanced data processing growth. As technology progresses, both

types of data become more abundant. In the high-technology limit, they grow in fixed proportion to each

other. When information is abundant, the natural substitutability force in asset markets strengthens and

1See e.g., Caplin, Leahy, and Matejka (2016), Maćkowiak and Wiederholt (2012), Nimark (2008), Briggs, Caplin, Martin,
and Tonetti (2017), Kacperczyk, Nosal, and Stevens (2015), Barlevy and Veronesi (2000), Goldstein, Ozdenoren, and Yuan
(2013), Blanchard, L’Huillier, and Lorenzoni (2013), Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017), Angeletos and
La’O (2014), Atkeson and Lucas (1992), Chien, Cole, and Lustig (2016), Basetto and Galli (2017), Abis (2017).
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overtakes complementarity. Information production in this region comes to resemble physical production.

A key force behind many of our results, including balanced data processing, is rising future information

risk. It exists only when assets are long-lived. No matter how much data processing one does, there are

some events, not yet conceived of, that can only be learned about in the future. If tomorrow, we learn

something about one of these events, that knowledge will affect tomorrow’s asset price. Since part of the

payoff of an asset purchased today is its price tomorrow, events that will be learned about tomorrow, but

are not knowable today, make an asset purchased today riskier. This is future information risk. If more

data will be processed tomorrow, then tomorrow’s price will respond more to that information, raising

future information risk. Data processing today reduces uncertainty about future dividends. Expected

data processing tomorrow increases risk today. This idea, that long-run growth in information may create

as much risk as it resolves, is the source of balanced growth, stagnating liquidity, and modest long-run

changes in equity premia. These basic economic forces – decreasing returns, increasing returns, and future

information risk – appear whether technology is unbiased, or biased, demand is persistent or not, and for

most standard formulations of data constraints.

The consequences of this shift in data analysis and trading strategies involve competing forces. We

identify these forces theoretically. However, to know which force is likely to dominate, we need to put some

plausible numbers to the model. Section 3 calibrates the model to financial market data so that we can

explore the growth transition path and its consequences for market efficiency numerically.

The market efficiency results upend some common wisdom. First, even as demand analysis crowds

out fundamental analysis and reduces the discovery of information about the future asset value, price

informativeness continues to rise. The reason is that demand information allows demand traders to extract

fundamental information from prices. That makes the demand traders, and thus the average trader,

better informed about future asset fundamentals. When the average trader is better informed, prices are

more informative. According to this commonly-used measure, market efficiency continues to improve as

technology progresses.

Second, even though demand traders systematically take the opposite side of uninformed trades, the rise

of demand trading does not enhance market liquidity. This is surprising because taking the opposite side of

uninformed trades is often referred to as “providing liquidity.” This is one of the strongest arguments that

proponents of activities such as high-frequency trading use to defend their methods. But if by providing

liquidity, we really mean reducing the price impact of an uninformed trade, the rise of demand trading may

not accomplish that. The problem is not demand trading today, but the expectation of future informed

trading of any kind – fundamental or demand – creating future information risk. So future data processing

raises the risk of investing in assets today. More risk per share of asset today is what causes the sale of one

share of the asset to have a larger effect on the price. Finally, the rise in demand-driven trading strategies,

while it arises concurrently with worrying market trends, is not causing those trends. The rise in return

uncertainty, and the stagnation of liquidity, emerge as concurrent trends with financial data technology as

their common cause.

Finally, Section 4 explores suggestive evidence in support of the model and derives testable predictions

that an econometrician might take to data.

Contribution to the existing literature Our model combines features from a few disparate literatures.

Long run trends in finance are featured in Asriyan and Vanasco (2014), Biais, Foucault, and Moinas (2015),
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Glode, Green, and Lowery (2012), and Lowery and Landvoigt (2016), who model growth in fundamental

analysis or an increase in its speed. Davila and Parlatore (2016) explore a decline in trading costs. The idea

of long-run growth in information processing is supported by the rise in price informativeness documented

by Bai, Philippon, and Savov (2016).

A small, growing literature examines demand information in equilibrium models. In Yang and Ganguli

(2009), agents can choose whether or not to purchase a fixed bundle of fundamental and demand informa-

tion. In Yang and Zhu (2016) and Manzano and Vives (2010), the precision of fundamental and demand

information is exogenous. Babus and Parlatore (2015) examine intermediaries who observe the demands of

their customers. Our demand signals also resemble Angeletos and La’O (2014)’s sentiment signals about

other firms’ production, Banerjee and Green (2015)’s signals about motives for trade, the signaling by He

(2009)’s intermediaries, and the noise in government’s market interventions in Brunnermeier, Sockin, and

Xiong (2017). But none of these papers examines the choice that is central to this paper: The choice of

whether to process more about asset payoffs or to analyze more demand data. Without that trade-off,

these papers cannot explore how trading strategies change as productivity improves. Furthermore, this

paper adds a long-lived asset in a style of model that has traditionally been static,2 because assets are not

static and assuming they are reverses many of our results.

One interpretation of our demand information is that it is what high-frequency traders learn by observ-

ing order flow. Like high-frequency traders, our traders use data on asset demand to distinguish information

from uninformed trades, and they stand ready to trade against uninformed order flow. While our model

has no high frequency, making this a loose interpretation, our model does contribute a perspective on this

broad class of strategies. As such, it complements work by Du and Zhu (2017), Crouzet, Dew-Becker, and

Nathanson (2016) on the theory side, as well as empirical work, such as Hendershott, Jones, and Menkveld

(2011), which measures how fundamental and algorithmic trading affects liquidity. At the same time, if

many high frequency trades are made for the purpose of obscuring price information, that is not captured

by this model, and could work in the opposite direction.

Another, more theoretical, interpretation of demand signals is that they make a public signal, the price,

less conditionally correlated. The choice between private, correlated or public information in strategic

settings arises in work by Myatt and Wallace (2012), Chahrour (2014) and Amador and Weill (2010),

among others.

1 Model

To explore growth and structural change in the financial economy, we use a noisy rational expectations

model with three key ingredients: a choice between fundamental and demand data, long-lived assets, and

unbiased technological progress in data processing. A key question is how to model structural change. The

types of activities, the way in which investors earn profits has changed. A hallmark of that change is the rise

in information extraction from demand. In practice, demand-based trading takes many forms. Demand-

based trading might take the form of high-frequency trading, where the information of an imminent trade

is used to trade before the new price is realized. It could be mining tweets or Facebook posts to gauge

sentiment. Extraction could take the form of “partnering,” a practice where brokers sell their demand

2Exceptions include 2- and 3-period models, such as Cespa and Vives (2012).
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information (order flow) to hedge funds, who systematically trade against, what are presumed to be

uninformed traders.3 Finally, it may mean looking at price trends, often referred to as technical analysis,

in order to discern what information others may be trading on. All of these practices have in common that

they are not uncovering original information about the future payoff of an asset. Instead, they are using

public information, in conjunction with private analysis, to profit from what others already know (or don’t

know). We capture this general strategy, while abstracting from many of its details, by allowing investors

to observe a signal about the non-informational trades of other traders. This demand signal allows our

traders to profit in three ways. 1) They can identify and then trade against uninformed order flow; 2)

they can remove noise from the equilibrium price to uncover more of what others know; or 3) they can

exploit the mean-reversion of demand shocks to buy before price rises and sell before it falls. These three

strategies have an equivalent representation in the model and collectively cover many of the ways in which

modern investment strategies profit from information technology.

Static models have been very useful in this literature to explain many forces and trade-offs in a simple

and transparent way. However, when the assumption of one-period-lived assets reverses the prediction of

the more realistic dynamic model, the static assumption is no longer appropriate. That is the case here.

Long-run growth means not only more data processing today, but even more tomorrow. In many instances,

the increase today and the further increase tomorrow have competing effects. That competition is a central

theme of the paper. Without the long-lived asset assumption, the long-run balanced growth, stagnating

liquidity and flat equity premium results would all be overturned.

Finally, technological progress takes the form of allowing investors access to a larger set of feasible

signals, over time. While there are many possible frameworks that one might use to investigate financial

growth, this ends up being a useful lens, because it explains many facts about the evolution of financial

analysis, can forecast future changes that empirical extrapolation alone would miss, and offers surprising,

logical insights about the financial and real consequences of the structural change. One could go further

and argue that some types of data have become relatively easier to collect over time. That may well be

true. But changes in relative costs could explain any pattern. We would not know what results came

from relative cost changes and what comes from the fundamental economic forces created by technological

change. Our simple problem is designed to elucidate economic forces, at the expense of many realistic

features one might add.

1.1 Setup

Investors At the start of each date t, a measure-one continuum of overlapping generations investors is

born. Each investor i born at date t has constant absolute risk aversion utility over total, end of period t

consumption c̃it:

U(c̃it) = −e−ρc̃it (1)

where ρ is absolute risk aversion. We adopt the convention of using tildes to indicate t-subscripted variables

that are not in the agents’ information set when they make time-t investment decisions.

3Market evidence suggests that hedge funds value the opportunity to trade against the uninformed, as noted by Goldstein
in a 2009 Reuters article: “Right now, ETrade sends about 40% of its customer trades to Citadels market-maker division
. . . Indeed, the deal is so potentially lucrative for Citadel that the hedge fund is willing to make an upfront $100 million cash
payment to the financially-strapped online broker.”
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Each investor is endowed with an exogenous income that is eit units of consumption goods. At the

start of each period, investors decide how much of their income to eat now and how much to spend on

risky assets that pay off at the end of the period.

There is a single tradeable asset.4 Its supply is one unit per capita. It is a claim to an infinite stream

of dividend payments {dt}:
d̃t = µ+G(dt−1 − µ) + ỹt. (2)

where µ and G < 1 are known parameters. The innovation ỹt ∼ N(0, τ−1
0 ) is revealed and d̃t is paid

out at the end of each period t. d̃t and dt−1 both refer to dividends, only dt−1 is already realized at time

t, while d̃t has not due to innovation ỹt. We use ∼ to denote t-dated variables that are random for the

t-cohort (not t measurable).

In order to disentangle static and dynamic results, we introduce a parameter π ε{0, 1}. When π = 1, a

time-t asset pays pt+1 + d̃t, the future price of the long-lived asset, plus its dividend. When π = 0, the asset

is not long-lived. It’s payoff is only the dividend d̃t. We call the π = 0 model the “static” model because

current information choices do not depend on future or past choices. It is a repeated static problem with

an information constraint that changes over time.

An investor born at date t, collects dividends d̃t per share, sells his assets at price pt+1 to the t + 1

generation of investors if π = 1, combines the proceeds with the endowment that is left (eit − qitpt), times

the rate of time preference r > 1, and consumes all those resources.5 Thus the cohort-t investor’s budget

constraint is

c̃it = r(eit − qitpt) + qit(πpt+1 + d̃t) (3)

where qit is the shares of the risky asset that investor i purchases at time t and d̃t are the dividends paid

out at the start of period t+ 1. Since we do not prohibit ct < 0, all pledges to pay income for risky assets

are riskless.

Demand shocks The economy is also populated by a unit measure of noise traders in each period.

These traders trade for non-informational reasons. For example, they could be hedgers, who are endowed

with non-financial income risk that is correlated with the asset payoff.6 Each noise trader sells x̃t shares

of the asset, where x̃t ∼ N(0, τ−1
x ) is independent of other shocks in the model. For information to have

value, prices must not perfectly aggregate asset payoff information. This is our source of noise in prices.

Equivalently, x̃t could also be interpreted as sentiment. For now, we assume that x̃t is independent over

time. We discuss the possibility of autocorrelated x̃t in Section 2.3.

Information Choice If we want to examine how the nature of financial analysis has changed over time,

we need to have at least two types of analysis to choose between. Financial analysis in this model means

signal acquisition. Our constraint on acquisition could represent the limited research time for uncovering

new information. But it could also represent the time required to process and compute optimal trades

4We describe a market with a single risky asset because our main effects do not require multiple assets.
5Cohort t consumption can only be realized in t+ 1, after assets are sold to the next cohort. To avoid the double subscript

ct+1,t, and avoid confusing this with the consumption of the t+ 1 cohort, we use the c̃it notation instead.
6In previous versions of this paper, we micro-founded heterogenous investor hedging demand, spelling out the endowment

shocks that would rationalize this trading behavior. These foundations involved additional complexity, obfuscated key effects,
and offered no additional economic insight. But they would matter if were did utility calculations.
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based on information that is readily available from public sources.

Investors choose how much information to acquire or process about the next-period dividend innovation

ỹt, and also about the noisy demand shocks, x̃t. We call ηfit = ỹt + ε̃fit a fundamental signal and

ηxit = x̃t + ε̃xit a demand signal. What investors are choosing is the precision of these signals. In other

words, if the signal errors are distributed ε̃fit ∼ N(0,Ω−1
fit) and ε̃xit ∼ N(0,Ω−1

xit), then the precisions Ωfit

and Ωxit are choice variables for investor i.

Next, we recursively define two information sets. The first is all the variables that are known at the end

of period t− 1 to agent i. This information is {It−1, yt−1, dt−1, xt−1} ≡ I+
t−1. This is what investors know

when they choose what signals to acquire. The second information set is {It−1, yt−1, dt−1, xt−1, ηfit, ηxit, pt} ≡
Iit. This includes the two signals the investor chooses to see, and the information contained in equilibrium

prices. This is the information set the investor has when they make investment decisions. The time-0

information set includes the entire sequence of information capacity: I0 ≡ Ii0 ∀i ⊃ {Kt}∞t=0.

When choosing information (Ωfit ≥ 0 and Ωxit ≥ 0), investors maximize

E[U(c̃it)|I+
t−1] (4)

s.t. Ω2
fit + χxΩ2

xit ≤ Kt. (5)

The data constraint (5) represents the idea that getting more and more precise information about a

given variable is tougher and tougher. But acquiring information about a different variable is a separate

task, whose shadow cost is additive.

The main force in the model is technological progress in information analysis. Specifically, we assume

that Kt is a deterministic, increasing process.

Equilibrium An equilibrium is a sequence of information choices {Ωfit}, {Ωxit}, prices {pt} and portfolio

choices {qit} by investors such that

1. Investors choose signal precisions Ωfit and Ωxit to maximize (4), taking the choices of other agents

as given.This choice is subject to (5), Ωfit ≥ 0 and Ωxit ≥ 0.

2. Investors choose their risky asset investment qit to maximize E[U(c̃it)|ηfit, ηxit, pt], taking the asset

price and the actions of other agents as given, subject to the budget constraint (3).

3. At each date t, the risky asset price equates demand, minus demand shocks (sales) and one unit of

supply: ∫
i
qitdi− xt = 1 ∀t. (6)

1.2 Solving the Model

There are four main steps to solve the model.

Step 1: Solve for the optimal portfolios, given information sets. Each investor i at date t chooses a

number of shares qit of the risky asset to maximize expected utility (1), subject to the budget constraint
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(3). The first-order condition of that problem is

qit =
E[πpt+1 + d̃t|Iit]− rpt
ρV ar[πpt+1 + d̃t|Iit]

(7)

When using the term “investor,” we do not include noise trades.

Step 2: Clear the asset market. Let Īt denote the information set of the average investor. Given the

optimal investment choice, we can impose market clearing (6) and obtain a price function that is linear in

past dividends dt−1, the t-period dividend innovation ỹt, and the aggregate component of the noisy demand

shocks x̃t:

pt = At +B(dt−1 − µ) + Ctỹt +Dtx̃t (8)

Where At governs the equity premium, B is the time-invariant effect of past dividends, Ct governs the

information content of prices about current dividend innovations (price informativeness) and Dt regulates

the amount of demand noise in prices:

At =
1

r

[
πAt+1 + µ− ρV ar[πpt+1 + d̃t|Īt]

]
. (9)

B =
G

r − πG
(10)

Ct =
1

r − πG
(
1− τ0V ar[ỹt|Īt]

)
(11)

rDt = −ρV ar[πpt+1 + d̃t|Īt] +
r

r − πG
V ar[ỹt|Īt]

Ct
Dt
τx (12)

where Ωpit is the precision of the information about d̃t, extracted jointly from prices and demand signals,

and

V ar[ỹt|Īt] = (τ0 + Ωfit + Ωpit)
−1 (13)

is the posterior uncertainty about next-period dividend innovations and the resulting uncertainty about

asset returns is proportional to

V ar[πpt+1 + d̃t|Īt] = π
(
C2
t+1τ

−1
0 +D2

t+1τ
−1
x

)
+ (1 + πB)2V ar[ỹt|Īt]. (14)

Step 3: Compute ex-ante expected utility. When choosing information to observe, investors do not

know what signal realizations will be, nor do they know what the equilibrium price will be. The relevant

information set for this information choice is I+
t−1.

We substitute the optimal portfolio choice (7) and the equilibrium price rule (8) into utility (1), and take

logs and then the beginning of time-t expectation (−E[E[exp(ρcit)|ηfit, ηxit, pt]|I+
t−1]). Appendix A shows

that time-1 expected utility is similar to most CARA-normal models: ρ r eit+(1/2)w2V ar[πpt+1 + d̃t|Īt]−1,

where w is a function of time-2 equilibrium pricing coefficients and model parameters, all of which the

investor knows or deduces from the environment.

The key feature of this solution is that the agent’s choice variables Ωfit and Ωxit show up only through
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the conditional precision of payoffs, V ar[πpt+1 + d̃t|Īt]−1. The reason for this is that the first-moment

terms in asset demand – V ar[πpt+1 + d̃t|Īt] and pt – have ex-ante expected values that do not depend on

the precision of any given investor’s information choices. In other words, choosing to get more data of

either type does not, by itself, lead one to believe that payoffs or prices will be particularly high or low.

So, information choices amount to minimizing the payoff variance V ar[πpt+1 + d̃t|Īt], subject to the data

constraint. The payoff variance, in turn, has a bunch of terms the investor takes as given, plus a term that

depends on dividend variance, V ar[ỹt|Īt].
So, the information choice problem boils down to: What information minimizes dividend uncertainty

V ar[ỹt|Īt]? According to Bayes’ Law, V ar[ỹt|Īt] depends on the sum of fundamental precision Ωfit and

price information Ωpit. Price information precision is Ωpit = (Ct/Dt)
2(τx + Ωxit), which is linear in Ωxit.

Thus expected utility is a function of the sum of Ωfit and (Ct/Dt)
2Ωxit (eq. 13).

Thus, optimal information choices maximize the weighted sum of fundamental and demand precisions:

maxΩfit,Ωxit Ωfit +

(
Ct
Dt

)2

Ωxit (15)

s.t. Ω2
fit + χxΩ2

xit ≤ Kt, Ωfit ≥ 0, and Ωxit ≥ 0.

The fact that fundamental and demand information are combined in this way comes from the linear

price equation (8) and Bayes’ law. This would be true in any information choice objective function that

is a decreasing function of dividend or payoff uncertainty. Appendix A shows that the same information

objectives arise with a different utility function, where investors have a preference for early resolution of

uncertainty.

Step 4: Solve for information choices. The first order conditions yield

Ωxit =
1

χx

(
Ct
Dt

)2

Ωfit (16)

This solution implies that information choices as symmetric. Therefore, in what follows, we drop the i

subscript to denote an agent’s data processing choice. Moreover, the information set of the average investor

is the same as information set of each investor, Īt = Iit = It.
The information choices are a function of pricing coefficients, like C and D, which are in turn functions

of information choices. To determine the evolution of analysis and its effect on asset markets, we need to

compute a fixed point to a highly non-linear set of equations. After substituting in the first order conditions

for Ωft and Ωxt, we can write the problem as two non-linear equations in two unknowns.

Since this is an overlapping generations model, one would expect there to be multiple equilibria. For

some parameter values, multiple real solutions to this problem do arise. In some models, multiple equilibria

can complicate predictions. In this model, they are not problematic for three reasons: 1) the calibrated

model has a unique solution; 2) the theoretical results hold for any equilibrium; and 3) there is a clear

selection criterion. One equilibrium typically converges to the Ωxt = 0 solution, as demand data becomes

scarce. The other has price coefficients that become infinite. The solution with a continuous limit is an

obvious choice.
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1.3 Interpreting Demand Data Trading

Why are demand signals useful? They don’t predict future dividends or future prices. They only provide

information about current demand. The reason that information is valuable is that it tells the investor

something about the difference between price and expected asset value. One can see this by looking at

the signal extracted from prices. Price is a noisy signal about dividends. To extract the price signal, we

subtract the expected value of all the terms besides the dividend, and divide by the dividend coefficient

Ct. The resulting signal extracted from prices is(
pt −At −B(dt−1 − µ)−DtE[x̃t|Īt]

)
Ct

= ỹt +
Dt

Ct
(x̃t − E[x̃t|Īt])︸ ︷︷ ︸
signal noise

. (17)

Notice how demand shocks x̃t are the noise in the price signal. So information about this demand reduce

noises in the price signal. In this way, the demand signal can be used to better extract others’ dividend

information from the price. This is the sense in which demand analysis is information extraction.

Of course, real demand traders are not taking their orders, and then inverting an equilibrium pricing

model to infer future dividends. But another way to interpret the demand trading strategy is that it

is identifying non-information trades to trade against. In equation (17), notice that when x̃t is high,

noise trades are mostly sales. Since (Dt/Ct) < 0, high x̃t makes the expected dividend minus price

high, which leads those with demand information to buy. Thus, demand trading amounts to finding the

non-informational trades and systematically taking the opposite side. This trading strategy of trading

against uninformed trades is commonly referred to as trading against “dumb money.” An alternative way

of interpreting the choice between fundamental data and demand data is that agents are choosing between

decoding private or public signals. Fundamental signals have noise that is independent across agents.

These are private. But demand data, although its noise is independent, is used in conjunction with the

price, a public signal. The resulting inference about the shock ỹt, conditional on the price and the x̃t signal,

is conditionally correlated across agents, like a public signal would be.

The key to the main results that follow is that reducing the noise in x̃t reduces price noise variance

in proportion to (Dt/Ct)
2. Put conversely, increasing precision of information about x̃t (the reciprocal of

variance) increases the precision of dividend information, in proportion to (Ct/Dt)
2. What causes the long-

run shifts is that the marginal rate of substitution of demand signals for fundamental signals, (Ct/Dt)
2,

changes as technology grows.

If we interpret demand trading as finding dumb money, it is easy to see why it becomes more valuable

over time. If there is very little information, everyone is “dumb,” and finding dumb money is pointless.

But when informed traders become sufficiently informed, distinguishing dumb from smart money, before

taking the other side of a trade, becomes essential.

1.4 Measuring Financial Market Efficiency

To study the effects of financial technology on market efficiency, we assess efficiency in two ways. One

measure of efficiency is price informativeness. The asset price is informative about the unknown future

dividend innovation ỹt. The coefficient Ct on the dividend innovation ỹt in the equilibrium price equation

(8) measures price informativeness. Ct governs the extent to which price reacts to a dividend innovation.
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It corresponds to the price informativeness measure of Bai, Philippon, and Savov (2016).

The other measure of market efficiency is liquidity. Liquidity is the price impact of an uninformed noise

trade. That impact is the price coefficient Dt. Note that Dt is negative because a high endowment of risk

correlated with dividends makes an investor less willing to hold risky assets; the reduced demand lowers

the price. So, a more negative Dt represents a higher price impact and a less liquid market. Increasing

(less negative) Dt is an improvement in liquidity.

1.5 Existence

One issue with the static (π = 0) model is that, for any set of parameters, if K > K̄ = ρ2

2

√
χ there is no

solution to the model. Since our main point is to understand what happens as technology grows, this lack

of equilibrium existence at high levels of technology is particularly problematic. A key reason for using

a model of long-lived assets is that under the appropriate parameter restriction (101), its equilibrium for

every level of K exists. This allows us to explore information choices both when information is scarce, and

when it is abundant.

The reason equilibrium is preserved is that the unlearnable risk, introduced by future price fluctuations

that cannot be known today, keeps prices from being too informative. Because the unlearnable risk grows

as technology progresses, the asset never becomes nearly riskless and demand for it never explores.

For the static results that follow, we ensure existence by assuming that whenever π = 0, information is

not too abundant: K ≤ ρ2

2

√
χ.

2 Main Results: A Secular Shift in Financial Analysis

So far, we’ve shown how to incorporate technological progress in information processing in a cannonical

model of financial markets with asymmetric information. Because many of the concerns about data pro-

cessing involve non-fundamental data, we augmented the standard framework to allow investors to choose

whether to process fundamental on non-fundamental data. This section explores what are the logical con-

sequences of growth in information (data) processing technology. How does such growth affect financial

analysis choices, trading strategies, and market efficiency? In order to understand what forces produce

these results, we first explore the static trade-offs involved in processing fundamental or demand data. In

Section 2.1, we consider the effect of an incremental technological change in a setting where the payoff of an

asset is only its exogenous dividend. When π = 0, future choices or outcomes have no bearing on today’s

decisions. This is obviously false: By its nature, equity is a long-lived claim. But this setting allows us

to clearly derive forces also present in the dyanmic model and to distinguish the static from the dynamic

forces.

The main results center around the model’s dynamics. When assets are long-lived (π = 1, Section 2.2),

future information risk arises. The risk posed by shocks that will be realized in the future governs long-run

market convergence. We find that as data technology becomes more and more productive, fundamental

and demand data processing grow proportionately, price informativeness is high, and there are competing

forces in liquidity.

11



2.1 Short Run Data Trade-offs

This section investigates the within period trade-offs in our model. First, we explore what happens in the

neighborhood near no information processing, K ≈ 0. We show that all investors prefer to acquire only

fundamental information in this region. Thus, at the start of the growth trajectory, investors primarily

investigate firm fundamentals. Next, we prove that an increase in aggregate information processing in-

creases the value of demand information, relative to fundamental information. Fundamental information

has diminishing relative returns. But in some regions, demand information has increasing returns. What

does this mean for the evolution of analysis? The economy starts out doing fundamental analysis and then

rapidly shifts to demand analysis. We explore this mechanism, as well as its market efficiency effects, in

the following propositions.

In order to understand why investors with little information capacity use it all on fundamental informa-

tion, we start by thinking about what makes each type of information valuable. Fundamental information

is valuable because it informs an investor about whether the asset is likely to have a high dividend payoff

tomorrow. Since prices are linked to current dividends, this also predicts a high asset price tomorrow and

thus a high return. Knowing this allows the investor to buy more of the asset in times when its return will

be high and less when return is likely to be low.

In contrast, demand information is not directly relevant to future payoff or future price. But one can

still profit from trading on demand. An investor who knows that noisy demands are high will systematically

profit by selling the asset because high demand will make the price higher than the fundamental value, on

average. In other words, demand signals allow one to trade against dumb money The next result proves

that if the price has very little information embedded in it, because information is scarce (Kt is low), then

getting demand data to extract price information is not very valuable. In other words, if all trades are

“dumb,” then identifying the uninformed trades has no value.

Result 1 When information is scarce, demand analysis has zero marginal value (dynamic

or static):

As Kt → 0, for π = 0 or 1, dU1/dΩxt → 0.

The proof in Appendix B, which holds for static and dynamic models (π = 0 or 1), establishes two key

claims: 1) that when K ≈ 0, there is no information in the price: Ct = 0 and 2) that the marginal rate of

substitution of demand information for fundamental information is proportional to (Ct/Dt)
2. In particular,

dU1/dΩxt = (CD )2dU1/dΩft. Thus, when the price contains no information about future dividends (Ct =

0), then analyzing demand is has no marginal value ((Ct/Dt)
2 = 0). Demand data is only valuable

in conjunction with the current price pt because it allows one to extract more information from price.

Demand data trading when Kt = 0 is like removing noise from a signal that has no information content.

Put differently, when there is no fundamental information, the price perfectly reveals noise trading. There

is no need to process data on noisy demand if it can be perfectly inferred from the price.

This result explains why analysts focus on fundamentals when financial analysis productivity is low.

In contrast, when prices are highly informative, demand information is like gold because it allows one to

identify exactly the price fluctuations that are not informative and are therefore profitable to trade on. The

next results explain why demand analysis increases with productivity growth and why it may eventually

start to crowd out fundamental analysis.
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Next we turn to understanding how technological growth affect prices. We start with the static economy

where we can characterize analytically how an improvement in information processing affects signal-to-

noise-ratio, Ct/Dt, price informativeness, Ct, and (il)liquidity, Dt.

We characterize the general equilibrium effect of an increase in information technology K on price

coefficients, d
dK . These technology improvements affect price coefficients through two channels: a change

in fundamental analysis and a change in demand analysis. Using the chain rule, we can describe what

portion of the total effect of a change in K works through each channel.

Result 2 Price response to technological growth (static). For π = 0,

(a) d|Ct/Dt|
dKt

> 0
Ωft

2Kt(2ξtΩxt+ρ) > 0 of this effect comes through changes in fundamental information Ωft;

− ξtρ+Ωft
2Kt(2ξtΩxt+ρ) > 0 of this effect comes through changes in demand information Ωxt.

(b) dCt
dKt

> 0,

(c) d|Dt|
dKt

> 0 iff Kt < K̄D, where K̄D solves equation (90).

Note that in equilibrium, an increase in Kt affects price coefficient through changes in both fundamental

and demand analysis, both directly and indirectly. Keeping the signal-to-noise ratio, i.e. the marginal rate

of transformation across the two types of analysis, constant constitutes the direct effect. Moreover, the

change in the type of analysis, in turn, affects the signal-to-noise ratio, which then affects the information

choices (indirect effect). However, using envelope theorem, the indirect effect is zero, and the decomposition

comes solely through the direct effect.

The concern with the deleterious effects of financial technology on market efficiency stemmed from the

concern that technology will deter the research and discovery of new fundamental information. This concern

is not unwarranted. Not only does more fundamental information encourage extraction of information from

demand, but once demand analysis starts, it feeds on itself. The next corollary shows that when π = 0,

aggregate demand analysis increases an individual’s incentive to learn about demand. The mechanism is

that aggregate demand analysis increases the ratio of the information content C to the noise D. This

increases the marginal value of demand information, relative to fundamental information. Thus, demand

information complements and thus feeds on itself.

For most of our results, we use Ωxt to mean the demand of every investor, because all are symmetric.

At this point, it is useful to distinguish between one particular investor’s choice Ωxit and the aggregate

symmetric choice Ωxt.
7

Result 3 Complementarity in demand analysis (static). For π = 0, ∂Ωxit
∂Ωxt

≥ 0.

Fundamental information, Ωft, exhibits strategic substitutability in information, just like in Grossman

and Stiglitz (1980). But for demand information, the effect is the opposite. More precise average demand

information (higher Ωxt) can increase (Ct/Dt)
2, which is the marginal rate of substitution of demand

7This is like a big-K, little-k distinction frequently made in macro. The idea of taking a derivative with respect to the
actions of others, while common in game theory and central to monotone comparative statics, is somewhat unorthodox in
macro and finance. But this is no different from a bank run model where others’ willingness to run on the bank increases
one’s own value of doing so.
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information for fundamental information. The rise in the relative value of demand data is what makes

investors shift data analysis from fundamental to demand when others do more demand analysis. That is

complementarity. It holds in the static model and the dynamic model, with conditions (π = 0 or 1, see

Appendix A).

Complementarity comes from a rise in the price signal-to-noise ratio. From (11), we know that Ct is

proportional to 1− τ0V ar[ỹt|It]. As either type of information precision (Ωft or Ωxt) improves, the uncer-

tainty about next period’s dividend innovation V ar[ỹt|It] declines, and Ct increases. Dt is the coefficient

on noise x̃t. The price impact of uninformative trades |Dt| may also increase with information, as we

explain below. But conditions (1) and (2) guarantee that |Dt| does not rise at a rate faster than Ct so that

the ratio Ct/|Dt|, which is the signal-to-noise ratio of prices, and the marginal value of demand precision,

increases with more information.

Intuitively, higher signal-to-noise (more informative) prices encourage demand trading because the

value of demand analysis comes from the ability to better extract the signal from prices. In this model (as

in most information processing problems), it is easier to clear up relatively clear signals than very noisy

ones. So the aggregate level of demand analysis improves the signal clarity of prices, which makes demand

analysis more valuable.

The final result of this section characterizes how different types of analysis change as there is techno-

logical progress, in a world with one-period-lived assets.

Result 4 Fundamental and demand analysis response to technological growth (static). For

π = 0,

(a) fundamental analysis initially grows and then declines,
dΩft
dKt

> 0 iff Kt < K̄f =
√

3
2 K̄,

(b) demand analysis is monotonically increasing, dΩxt
dKt

> 0.

As technology improves, initially, both types of information analysis grow. However, for fundamental

analysis there are two competing forces. On one hand, more available capacity increases fundamental

analysis. On the other hand, the higher marginal rate of substitution between demand and fundamental

analysis (higher signal-to-noise ratio) dampens the level of fundamental analysis. When there is not a lot

of information available, the first force dominates. Once the information processing capacity grows beyond

a threshold, substitution towards demand analysis takes over and fundamental analysis falls. As we show

later in our calibrated model, this intuition carries over to the dynamic economy as well.

Appendix B shows how the value of information changes in the dynamic economy (π = 1), in response

to marginal changes in fundamental and demand analysis. To do so, we endow investors with fixed amount

of data which they cannot change, and let them do the portfolio choice. Then we consider exogenous

changes in the data endowment, and characterize the conditions under which signal-to-noise ration and

price informativeness, and liquidity improve (Result 7). Moreover, demand analysis complementarity also

survives. As long as price information is low or demand analysis is not too large, aggregate demand analysis

increases an individual’s incentive to learn about demand.

2.2 Dynamic Results

Next, we explore the model’s dynamic forces. By assuming π = 1, the asset’s payoff is pt+1 + d̃t, like

a traditional equity payoff. This introduces one new concept, future information risk: Knowing that
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tomorrow’s investors will get more information makes it harder to predict what those future investors will

believe; this makes future demand and future prices more uncertain. Since the future price is part of the

payoff to today’s asset, future information risk makes this payoff more uncertain. Assets look riskier to

investors. The result that future information creates risk is central to the main finding of long-run balanced

data processing. Without long-lived assets, information learned tomorrow cannot affect payoff risk today.

Long-lived assets are integral to all the results that depend on future information risk, including the main

result of the paper, the long run balanced growth of data processing.

Definition 1 Future Information Risk Future information risk is the part of payoff risk V ar[pt+1 +

d̃t|It] that comes from shocks that are unlearnable today and will be realized tomorrow. It is

C2
t+1τ

−1
0 +D2

t+1τ
−1
x

Future information creates risk because, if tomorrow, many investors will trade on precise (t + 1)

information, then tomorrow’s price will be very sensitive to tomorrow’s dividend information yt+1 and

tomorrow’s demand information xt+1. But investors today do not know what will be learned tomorrow.

Therefore, tomorrow’s analysis makes tomorrow’s price (pt+1) more sensitive to shocks that today’s in-

vestors are uninformed about. Since future information has no effect on today’s dividend uncertainty

V ar[ỹt|It] and it raises future price uncertainty, the net effect of future information is to raise today’s

payoff variance. That is what creates risk today.

Mathematically, the relationship between tomorrow’s price coefficients and future information risk is

evident in the Ct+1 and Dt+1 coefficients in the formula for future information risk. We know that time-t

information increases period-t information content Ct. Similarly, time t + 1 information increases Ct+1.

Future information may increase or decrease Dt+1. But as long as Ct+1/Dt+1 is large enough, the net

effect of t+ 1 information is to increase C2
t+1τ

−1
0 +D2

t+1τ
−1
x .

One reason future information risk is important is that it can reduce today’s liquidity. It makes future

price pt+1 more sensitive to future information and thus harder to forecast today. That rises the time-t

asset payoff risk (V ar[pt+1 + d̃t|It] = C2
t+1τ

−1
0 +D2

t+1τ
−1
x + (1 +B)2V ar[ỹt|It]). A riskier asset has a less

liquid market. We can see this relationship in the formula for Dt (eq 12) where V ar[pt+1 + d̃t|It] shows up

in the first term. Thus, future information reduces today’s liquidity.

Technology growth improves information today and then improves it again tomorrow. That means the

static effect and dynamic effect are competing.8 The net effect of the two is sometimes positive, sometimes

negative. But it is never as clear-cut as what a static information model would suggest. What we learn is

that information technology efficiency and liquidity are not synonymous. If fact, because it makes prices

more informative, financial technology can also make markets function in a less liquid way.

The static result that demand analysis feeds on itself suggests that in the long run, demand analysis

will completely crowd out fundamental analysis. But that does not happen. When demand precision

(Ωxt) is high, the conditions for Proposition 3 break down. The next result tells us that, in the long run

as information becomes abundant, growth in fundamental and demand analysis becomes balanced. This

result for the long-lived asset contrasts with the static asset Result 4, where fundamental and demand

analysis diverge.

8This variance argument is similar to part of an argument made for information complementarity in Cai (2016), an
information choice model with only fundamental information.
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Result 5 High-Information Limit (dynamic only) If π = 1 and Kt →∞, both analysis choices Ωft

and Ωxt tend to ∞ such that

(a) Ωft/Ωxt does not converge to 0;

(b) Ωft/Ωxt does not converge to ∞; and

(c) if τ0 is sufficiently large, there exists an equilibrium where Ωft/Ωxt converges to finite, positive constant.

(d) No perfect liquidity: There is no equilibrium, for any date t, with Dt = 0.

See Appendix B for the proof and an expression (101) for the lower bound on τ0.

It is not surprising that fundamental analysis will not push demand analysis to zero (part (a)). We

know that more fundamental analysis lowers the value of additional fundamental analysis and raises the

value of demand analysis by increasing Ct/Dt. This is the force that prompts demand analysis to explode

at lower levels of information K.

But what force restrains the growth of demand analysis? It’s the same force that keeps liquidity in

check: information today, competing with the risk of future information that will be learned tomorrow.

The first order condition tells us that the ratio of fundamental and demand analysis is proportional to

the squared signal-to-noise ratio, (Ct/Dt)
2. If this ratio converges to a constant, the two types of analysis

remain in fixed proportion. Recall from Result 5 that information acquired tomorrow reduces Dt. That is,

Dt becomes more negative, but larger in absolute value. As data observed today becomes more abundant,

price informativeness (Ct) grows and liquidity improves – Dt falls in absolute value. As data processing

grows, the upward force of current information and downward force of future information bring (Ct/Dt)
2

to rest, at a constant, finite limit. In the Appendix, Lemma 4 explores this limit. It shows formally that

(Ct/Dt)
2 is bounded above by the inverse of future information risk. When assets are not long-lived, their

payoffs are exogenous, future information risk is zero, and (Ct/Dt)
2 can grow without bound. Without a

long-lived asset, the limit on (Ct/Dt)
2 is infinite. Data processing would not be balanced.

2.3 Persistent Demand or Information about Future Events

A key to many of our results is that the growth of financial technology creates more and more future

information risk. This is the risk that arises because shocks that affect tomorrow’s prices are not learnable

today. This raises the question: What if information about future dividend or demand shocks were

available today? Similarly, what if demand shocks were persistent so that demand signals today had future

relevance? Would future information processing still increase risk?

Yes, as long as there is still some uncertainty and thus something to be learned in the future, future

information will still create risk for returns today. Tomorrow’s price would depend on the new information,

learned tomorrow about shocks that will materialize in t+2 or t+3. That new information observed in t+1

will affect t+1 prices. That new future information, only released in t+1 cannot be known at time t. This

future information becomes a new source of unlearnable risk. The general point is this: New information

is constantly arriving; it creates risk. The risk is that before the information arrives, one does not know it

and can not know it, no matter how much analysis is done. And whether it is about tomorrow, the next

day or the far future, this information, yet to arrive, will affect future prices in an uncertain way. When

information processing technology is poor, the poorly-processed information has little price effect. Thus
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future information poses little risk. When information processing improves, the risk of unknown future

information grows.

Of course, if demand were persistent, then signals about x̃t would be payoff relevant. The x̃t signal

would be informative about x̃t+1, which affects the price pt+1 and thus the payoff of a time t risky asset.

Learning directly about asset future asset payoffs is fundamentally different than learning about demand

shocks that only affect the interpretation of the current price. In such a model, agents would attempt to

distinguish the persistent and transitory components of demand. The persistent, payoff-relevant component

would play the role of dividend information in this model. The transitory component of demand would

play the role of the i.i.d. x̃t shock in this setting.

3 Illustrating Financial Technology Growth: A Numerical Example

Our main results revealed that low-tech investors process fundamental data. As financial technology

develops, demand data analysis takes off and feeds on itself; and eventually, with advanced technology,

both types of data processing grow proportionately. These results raise auxiliary questions: How does

this trend affect financial market outcomes? Data processing is not directly observable. What testable

predictions are consistent with this theory? Since equilibrium effects inevitably involve multiple forces

moving in opposite directions, it is useful to quantify the model, in order to have some understanding of

which effect is likely to dominate.

The equilibrium effects we focus on are price informativeness and liquidity. A common concern is

that, as financial technology improves, the extraction of information from demand will crowd out original

research, and in so doing, will reduce the informativeness of market prices. On the flip side, if technology

allows investors to identify uninformed trades and take the other side of those trades, such activity is

thought to improve market liquidity. Finally, some argue that if data is much more abundant, then risk

and risk premia must fall an price volatility must rise. Since we have not observed a large decline in the risk

premium, the financial sector must not be processing data or using it in the way we describe. While each

argument has some grain of truth, countervailing equilibrium effects mean that none of these conjectures

is correct.

We begin by revisiting the forces that make demand information more valuable over time, this time,

assigning a magnitude to the effect. Then, we explore why the change from information production to

extraction does not harm price informativeness. Next, we use our numerical model to tease out the reasons

for stagnating market liquidity, despite a surge in activity that looks like liquidity provision. Finally, we

ask whether the model contradicts the long-run trends in equity premia and price volatility and explore

the possibility of biased technological change.

3.1 Calibration

Our calibration strategy is to measure the growth of computer processor speed directly to discipline technol-

ogy K and then estimate our equilibrium price equation on recent asset price and dividend data, assuming

assets are long-lived. By choosing model parameters that match the pricing coefficients, we ensure that we

have the right average price, average dividend, volatility and dividend-price covariance at the calibration

date. What we do not calibrate to is the evolution of these moments over time. The time path of price
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and price coefficients are over-identifying moments that we can use to evaluate model performance.

First, we describe the data used for model calibration. Next, we describe moments of the data and

model that we match to identify model parameters. Most of these moments comes from estimating a

version of our price equation (8) and choosing parameters to match the price coefficients in the model with

the data. In the next section, we report the results.

Measuring Data Growth Investors can acquire information about asset payoffs ỹt or demand x̃t, by

processing digital data. Digital data is coded in binary code. So one approach to calibrating the growth

rate of data technology is to choose a sequence of K such that the implied length of the bit string grows

at the same rate as computer processor speed or cloud computing capacity.

How can we map the economic measure of data K, into a binary string length? For this, we use a

concept from information theory called the Gaussian channel. In a Gaussian channel, all data processing

is subject to noise (error).9

The number of bits required to transmit a message is related to the signal-to-noise ratio of the channel.

Clearer signals can be transmitted through the channel, but they require more bits. The relationship

between bits and signal precision for a Gaussian channel is bits = 1/2log(1 + signal-to-noise) (Cover and

Thomas (1991), theorem 10.1.1). The signal-to-noise is the ratio of posterior precision to prior precision.

In the notation of this model, if the prior precision is τ , the number of bits b̃ required to transmit Ω units

of precision in a signal is b̃ = 1
2 ln
(
1 + Ω

τ

)
.

If this is true both for fundamental precision Ωft and for demand precision Ωxt, and presumably, each

data is transmitted separately, then the total number of bits processed b is the sum of fundamental and

demand bits:

b =
1

2
ln

(
1 +

Ωft

τ

)
+

1

2
ln

(
1 +

Ωxt

τ

)
(18)

Using this mapping, we choose a growth rate of K, such that the equilibrium choices of Ωft and Ωxt

imply a growth rate of bits that matches the data.

We calibrate bit processing growth to 20% per year, which is 1.67% per month in our monthly calibra-

tion. Data to support this growth rate comes from multiple sources, which paint a consistent picture of

20% growth. One source is hardware improvement: the speed of frontier processors has grown by 27% since

the 1980’s, and more recently slowed to 20% growth per year Hennessy and Patterson (2009). Another

fact that supports this rate of growth is the 19% growth rate of workloads in data centers (22% for cloud

data centers), where most banks are processing their data Cisco (2018).

The Kt path is:

Kt = 0.01× 20.28(t−1) for t = 1, . . . , T. (19)

The multiplier 0.01 is just a normalization to keep units from becoming too large. The choice of 0.28 in the

exponent ensures that Kt grows at around 20% per year, just like processing speed and cloud computing.

9As Cover and Thomas (1991) explain, “The additive noise in such channels may be due to a variety of causes. However,
by the central limit theorem, the cumulative effect of a large number of small random effects will be approximately normal,
so the Gaussian assumption is valid in a large number of situations.”
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Asset Data The data was obtained from Compustat covering S&P500 firms over the period 1962 - 2015.

For each firm i and year t, lmai,t is the log of market capitalisation over total assets.10 eai,t is earnings

before interest and taxes (EBIT) over total assets. Both ratio variables are winsorised at 1%.

To create the time series of price coefficients, We run the following cross-sectional regression for each

year t = 1, . . . , T ,

lmai,t = Ât + B̂t(eai,t−1 − µ) + Ĉt(eai,t − eai,t−1) + Ĥi,tYi,t + ε̂i,t, (20)

where Yi,t is a collection of dummies at the SIC3 industry level.

We set µ equal to the mean of earnings, eai,t, averaged over firms and dates.

This first step results in a time series of estimated coefficients that are imperfect measures of At, Bt, Ct

in the model. In addition, the squared residuals ε̂i,t correspond to the model’s D2
t τ
−1
x . We drop At because

it turns out not to be useful. For B̂t, Ĉt, and 1/N
∑N

i=1 ε̂
2
i,t, we remove their high-frequency time-series

fluctuations. To do this, we simply we regress each one on a constant and a time trend. If the estimated

coefficient is xt, we estimate a and b in xt = a+ bt+ νt. Then, we construct smoothed series as x̃t = â+ b̂t,

where â and b̂ are the estimates of a and b. This procedure results in three series B̃, C̃, and D̃2
t τ
−1
x , each

of which grows (or falls) linearly with time. This allows us to calibrate to the average rate of coefficient

change in the last 50 years.

Estimation Three parameters and the sequence of information capacities Kt are set directly. µ is the

average earnings, described above. The riskless rate r = 1.03 is set to match a 3% annual net return. The

last parameter is risk aversion. Risk aversion clearly matters for the level of the risky asset price. But it

is not well identified. Doubling variance and halving risk aversion mostly just redefines units of risk. In

practice, the difficulty is that if we change risk aversion, and then re-calibrate the mean, persistence and

variance parameters to match price coefficients and variance at the new risk aversion level, the predictions

of the model are remarkably stable. Therefore, we use the risk aversion ρ = 0.10, which implies a relative

risk aversion of 0.65, not particularly high. Appendix C describes an alternative parameterization, with

even lower risk aversion. It shows how the other parameters change to yield similar results. Appendix C

explores variations in other parameters as well.

Four parameters remain to be estimated. We describe four moments derived from the model. Using

these four moment conditions, we estimate each by generalized method of moments. Let θ = (G, τ0, τx, χx)

be the parameter vector we estimate. The theory constrains θ ∈ [0, 1)× (0,∞)3. Let X ∈ RT−1×5 be the

sequences B̃, C̃, ˜D2
t τ
−1
x , and Kt.

11 The first three moments below are the equilibrium solution for the price

coefficients Bt, Ct and Dt. The are simply re-arrangements of (46), (47) and (48). The fourth equation

uses the information budget constraint and the pricing solutions to characterize the signal-to-noise ratio

10That is, if M is market capitalisation and A total assets, log(M/A).
11The last observation has to be dropped, due to the presence of t+ 1 parameters in the time-t moment conditions.
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in prices Ct/Dt. It comes from ((77)).

g1,t(θ, r, ρ,X) :=
1

r
(1 +Bt+1)G−Bt (21)

g2,t(θ, r, ρ,X) :=
1

r −G

(
1− τ0

(
τ0 + Ωft +

(
Ct
Dt

)2

(τx + Ωft/χx

(
Ct
Dt

)2

)
)−1

)
− Ct (22)

g3,t(θ, r, ρ,X) :=

(
τx

r −G
Ct
Dt
− ρr

(r −G)2

)(
τ0 + Ωft +

(
Ct
Dt

)2

(τx + Ωft/χx

(
Ct
Dt

)2

)

)−1

(23)

− ρ

r

(
C2
t+1τ

−1
0 +D2

t+1τ
−1
x

)
−Dt

g4,t(θ, r, ρ,X) :=

(
Ct
Dt

)3

Ztτx +
Ct
Dt

(
ρr

r −G
+ Ztτ0

)
+ (1 +

Ct
Dt
Zt)

Kt

Ωft
. (24)

where Zt captures future information risk, and the equilibrium demand for fundamental information Ωft

comes from combining the information capacity constraint (5) with the first order condition (16):

Zt :=
πρ

r
(r − πG)(C2

t+1τ
−1
0 +D2

t+1τ
−1
x )

Ωft :=

(
Kχx

χx + (Ct/Dt)
4

)1/2

.

According to the theory, each of these four moments g1,t − g4,t should be zero, at each date t. To

estimate the four parameters θ = (G, τ0, τx, χx) from these four moment equations, we compute the actual

value of g1,t − g4,t, at each date t, for a candidate set of parameters θ′, average those values (errors) over

time, square them and sum over the four moments. Formally, let g(θ) be the time-series mean of the matrix

(g1,t(θ, r, ρ,X)′, g2,t(θ, r, ρ,X)′, g3,t(θ, r, ρ,X)′, g4,t(θ, r, ρ,X)′) and let I be the 4× 4 identity matrix. The

estimated parameter vector θ̂ solves

θ̂ := arg min
θ∈[0,1]×(0,∞)3

g(θ)′Ig(θ),

We first optimize without constraints and then check that the estimated values lie within their admissible

range (all positive, G between [0,1)). This procedure produces the following parameter values:

Table 1: Parameters

ρ r µ G τ0 τx χx
0.1 1.03 0.12 0.92 90.76 44.91 4.95

Computation and equilibrium selection The one thing that changes at each date is the total infor-

mation capacity Kt. We choose T = 150 and create the path Kt according to equation (19). Knowing

time-t price coefficients allows us to numerically find the root of equation (77) to obtain ξt−1, from which

we can solve for the information choices and price function coefficients in period t− 1. We solve the model

backwards in this manner, setting ξT to the smaller solution to the quadratic equation (100).

The non-linear equation in Ct
Dt

that characterizes the solution can have multiple solutions. It turns out

that for the parameter values we explore, this equation has only one real root.
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3.2 Result: the Transition from Fundamental to Demand Analysis

Figure 1: Evolution of fundamental analysis and demand analysis. What is driving the change over time is an increase
in total information processing K. Fundamental information is the choice variable Ωft, scaled by fundamental variance τ−1

0 .
Demand information is the choice variable Ωxt, scaled by non-fundamental demand variance τ−1

x .

Figure 1 shows that demand analysis is scarce initially. Consistent with Result 1, we see that when

information processing ability is limited, almost all of that ability is allocated to processing fundamental

information. But once fundamental information is sufficiently abundant, demand analysis takes off. Not

only does demand processing surge, but it increases by so much that, the amount of fundamental informa-

tion declines, even though the total ability to process information has improved. Once it takes off, demand

trading quickly comes to dominate fundamentals-based trading.

3.3 Price Informativeness

Price informativeness measures financial market efficiency in the sense that efficient prices aggregate all

the information known to market participants about future firm fundamentals. Informative prices are

important because they can inform firm managers’ investment decisions and make equity compensation a

useful incentive tool by aligning firm value and equity compensation. Finally, informative prices allocate

new capital to the most productive firms.

Prices are informative if a change in future dividends is reflected in the price. Our equilibrium price

solution (8) reveals that this marginal price impact dpt/dỹt is Ct. As the productivity of financial analysis

rises, and more information is acquired and processed, the informativeness of the price (Ct) rises. Both

fundamental analysis and demand analysis have the same objective, to help investors better discern the

true value of the asset. Thus both raise price informativeness.

The dashed line labeled Ct in Figure 2 confirms that as financial analysis becomes more productive,

informativeness rises. The effect of a one-unit change in the dividend innovation, which is about 2 standard

deviations, increases the price by between 0 and 8 units. Since the average price level is about 80, this 2

standard deviation shock to dividends produces a negligible price change for very low levels of technology

and a 10% price rise when financial technology becomes more advanced.
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Figure 2: Price Informativeness (Ct) Rises and Price Impact of Trades (|Dt|) Stagnates. Ct is the impact
of future dividend innovations on price. (|Dt|) is the price impact of a one-unit uninformed trade. This illiquidity measure is
flat, despite the rise of market-making (demand driven) trades. (Ct/Dt)

2 tells us the marginal value of demand information,
relative to fundamental information. The x-axis is time in years.

3.4 Price Impact of Trades (Illiquidity)

Market liquidity is an important object of study in finance (Hasbrouck, 2007). Liquidity is particularly

important in the debate on financial technology because it is one of the most common arguments in defense

of demand based trading strategies. The claim is that traders who identify uninformed demand and offer

to take the other side of those orders provide market liquidity.

A common metric of market liquidity is the sensitivity of an asset’s price to a buy or sell order. If a buy

order causes a large increase in the asset price and conversely a sell order causes a large fall, then buying

and selling this asset is costly. In such a market, trading strategies that require frequent or large trades

would have a harder time generating a profit. In our model, price impact is the impact of a one-unit noise

trade (dpt/d(−x̃t)).12 The linear price solution (8) reveals that price impact is dpt/d(−x̃t) = |Dt|.
Looking at the thin line in Figure 2, we see that the price impact of noise trades, |Dt|, rises in the early

periods when only Ωft is increasing and then declines as information becomes more abundant. But what

is striking about this result is that the changes are quite small. A noise trade that is the size of 1% of all

outstanding asset shares would increase the price by 0.05 − 0.06 units. Since the average price is 80, this

amounts to a 0.6% − 0.7% (60 - 70 basis point) increase in the price. Exploring different parameters, we

see that the dynamics of market liquidity can vary. But what is consistent is that the changes are small

compared to the change in price informativeness.

Flat liquidity is a result of two competing forces. Recall from Section 2 that the liquidity of a risky asset

is determined by the riskiness (uncertainty) of its payoff. Purchases or sales of assets with more uncertain

payoffs have larger price effects. Result 4 tells us that more information today reduces uncertainty about

dividends d̃t, which in turn reduces the price impact of non-fundamental trades, improving liquidity. But

Result 5 tells us that if information technology is advanced tomorrow, then tomorrow’s shocks will have a

12We consider a noise trade because the alternative is considering an information-based trade. The impact of an information-
based trade would reflect the fundamental (future dividend) which must have moved to change the information. That question
of how much a change in the fundamental changes price is one we already explored. That is price informativeness.

22



large effect on tomorrow’s price, which makes today’s payoff risky and today’s liquidity low. The reason

liquidity changes so little is that the static force (r/(r − G))V ar[ỹt|It](Ct/Dt) and the dynamic force

−ρV ar[pt+1 + d̃t|It] are nearly cancelling each other out.13

Liquidity is fragile in response to other shocks as well. A similar exercise where the cost of demand

processing (χx) surges for one period produces similar outcomes. See appendix for detailed results.

3.5 Trends in the Equity Premium and Return Volatility

Our focus is on how technological change affects trading strategies and market efficiency, not on asset price

movements. But it is useful to know whether this mechanism is at odds with long-run trends in the equity

premium and in price volatility, or not. The idea that information reduces risk, which lowers the return

on risky assets is an old one. However, exploring the magnitude of that decline in our setting offers some

insight about the magnitude of the information trend in the model. If the model’s equity premium needed

to fall by some outrageous amount, in order to see any effect on price informativeness or liquidity, it would

diminish the relevance of our mechanism.

Figure 3: Technological Progress Reduces the Risk Premium Modestly. The risk premium is
E[pt+1+dt]

E[pt]
− r,

where the expectations are unconditional. The x-axis is time.

Instead, Figure 3 shows that the decline in the risk premium predicted by the model is quite modest.

The risk premium falls from a maximum of around 6% to 5% by the end. Of course, replicating the level

of the risk premium is not a success. That is nearly a by-product of calibrating the model to match the

end-of-sample price regression coefficients in (8). This calibration approach implies that the model matches

the price-dividend ratio, and by extension, comes close to matching the equity premium. However, the

decline in the premium is related to the growth in information processing.

As for equity premium trends in data, Jones (2002) documents that the equity premium is 1% lower

in the 2000’s than it was in the early 1900’s. Our results are also a similar magnitude to those of Lettau,

Ludvigson, and Wachter (2008) who report that the price-dividend ratio rose from 3 to 4 in the late 20th

century. They estimate a structural asset pricing model with regime switches in volatility and conclude

that the equity premium shifted down by 1.5%. Taken together, these findings tell us that the amount

of information needed to explain the declining equity premium is consistent with the amount needed to

explain growing price informativeness and flat liquidity. This is an over-identifying moment that lends

support to our modeling and calibration approach.

13A version of this effect can arise in a dynamic model with only fundamental analysis (see Cai (2016)).
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When we examine the volatility of returns, we find no significant time trend, in either the model or

the data. We simulate prices from the model, inflate them with a CPI price index, and then construct

a return series that is a log difference in price (ln(pt+1 + dt+1) − ln(pt)S). We then compare this model

return to an empirical return series, derived from the monthly S& P 500 price index (1980-2015). For

both model and data, we calculate a volatility for each month, using the relevant return series to estimate

a GARCH model.14 When we regress this GARCH-implied return variance σt on time (monthly), the

average variance is 0.005, but the coefficient on time is zero out to 5 digits. Because of the large number

of observations that we can simulate, this number is statistically different from zero. But its economic

magnitude is trivial. Variance of the S& P 500 returns has a time trend that is 0.00001. That coefficient

is statistically indistinguishable from zero. In short, return variance in both the model and the data seems

to be stable over time.

3.6 What is robust? What is fragile?

The numerical results are simply examples. Some of the features they illustrate are robust to other

parameter values, others are not. The appendix explores results with different risk aversions, variances of

dividends and demand shocks, and rates of time preference. What is consistent is the trends proven in

the propositions: Demand analysis always rises; price informativeness always rises, and the marginal value

of demand information (C/D)2 always rises as well. Quantitatively, Ωxt consistently surpasses Ωft once

Ct/Dt crosses
√
χx. However, the trajectory of liquidity, and the rate of growth of fundamental information

processing are fragile. (See Appendix C for details.)

Unbalanced Technological Change We have modeled technological progress that increases the po-

tential precision of fundamental or demand information equally. But it is quite possible that technological

progress has not been balanced. The concern is that the productivity of demand analysis has grown faster

than fundamental analysis, because fundamental information tends to be more textual or qualitative. To

explore this possibility, we take an extreme view of the imbalance and consider a world where the only

efficiency growth is in demand data processing. The truth is likely somewhere between this unbalanced

growth model and the balanced growth model we analyzed before.

When only demand data processing improves, a few things change. First, fundamental information

analysis falls monotonically, rather than rising and then falling. This is simply because when demand

analysis becomes more productive, it makes fundamental information processing strictly less attractive.

Also, the marginal value of demand data (Ct/|Dt|) is mostly flat. In contrast, with balanced growth, it

was steadily increasing. The trajectory of Ct/|Dt| is flatter: While both types of information processing

make prices clearer signals, fundamental information processing, which was more prevalent in the previous

exercise, improved signal quality by more.

What is surprising is that Ct/|Dt| does not fall. Even Ct alone does not fall. Even though the discovery

of new information about future dividends Ωft falls precipitously, dividend information is still more heavily

weighted (Ct) and more clearly reflected (Ct/|Dt|) in prices. Demand traders are adept at inferring what

others know from prices. This inference makes them well-informed about ỹt, albeit indirectly. If many

14The dividends are imputed, as described in the calibration section. The equation we estimate is a TGARCH(1,1), which
takes the form, σ2

t|t−1 = ω + (α+ γ · 1(rt−1<0))r
2
t−1 + βσ2

t−1|t−2. It allows for positive and negative returns to affect volatility
differently. We estimated the coefficients by maximum likelihood.

24



traders have precise knowledge of demand, the average trader ends up being well-informed about ỹt, even

if less research on ỹt was done by the market. The net result of less research but more learning through

prices is an increase in total information. This shows up in prices as a higher price impact Ct of changes

in dividend innovations. (See Figure 12 in the Appendix.)

In short, our main conclusions are unaltered. Liquidity is still flat. Market efficiency does not plummet,

by either measure, even through demand analysis crowds out fundamental analysis. The unbalanced change

simply affects the rate at which market efficiency evolves.

3.7 Price Informativeness, Liquidity, Welfare and Real Economic Output

Why are price informativeness and liquidity sensible measures of market efficiency? In this setting, all

dividends are exogenous. No amount of information changes the firms’ real output. Data just facilitates

reallocation of these goods from one trader to another. In fact, the social optimum is achieved with full

risk-sharing, which arises when there is no data and beliefs are therefore symmetric.

Does all this mean that data is bad for society? Not necessarily. One way to approach social welfare

is to take as given that maximizing price informativeness is a social objective, are data choices socially

efficient? It turns out that they do indeed maximize price informativeness.

Result 6 Social Efficiency (static). For π = 0, the equilibrium attention allocation maximizes price-

informativeness |Ct/Dt|.

The proof considers the possibility that every investor, collectively marginally increases their use of

demand data, and decreases fundamental data, to respect the data technology constraint. We find that

the marginal effect on Ct/Dt is zero, and the second derivative is negative. Thus if social welfare depends

on price informativeness Ct/Dt, then the social and private incentives to process data are aligned.

An alternative approach is to relate financial markets and the real economy. This model is stripped to

its barest essentials to make its logic most transparent. For that reason, it has no link between financial

and real economic outcomes. If one adds that link back in, liquid and information-rich financial markets

can have real benefits.

Appendices B.2 and B.3 sketch two models of real economic production where the amount produced

by a firm depends on price informativeness or liquidity. In the first model, a manager exerts costly effort

to increase the future value of the firm and is compensated with equity. When the equity price is more

informative, that means the price reacts more to effort and the associated output. That makes equity a

better incentive for providing effort and raises firm output. In the second model, a firm needs to issue

equity to raise funds for additional real investment. When markets are illiquid, issuing equity exerts strong

downward pressure on the equity price. This reduces the firm’s ability raise revenue, reduces the size of the

capital investment, and depresses output. While these models are just caricatures of well-known effects,

they illustrate why the objects that are the central focus of analysis in this paper: price informativeness

and liquidity, are such important objects of interest.

25



4 Evidence and Testable Predictions

We have taken a standard noisy rational expectations information choice model, augmented it with two

types of information to choose and grown technology to see what are the logical consequences. This

all leaves open the question of whether this mechanism is at work in the economy. A careful empirical

treatment of that question is beyond the scope of this project. However, this section first summarizes

pieces of evidence that are consistent with the theory, but by no means conclusive. Then, it lays out a new

measurement strategy for using the model to infer information choices. The end of the section describes

how to use these new information measures to test this model or other related theories.

4.1 Suggestive Evidence

The shift from fundamental to demand analysis in our model should show up empirically as a change in

investment strategies. Indeed, there is some evidence that funds have shifted their strategies, in a way

that is consistent with our predictions. In the TASS database, many hedge funds report that their fund

has a “fundamental”, “mixture,” or “quantitative” strategy. In Since 2000, assets under management of

fundamental funds, whether measured by fund or in total, is waning in recent years. Instead, strategies

based on market data are surging.15

Figure 4: Hedge Funds are Shifting Away from Fundamental Analysis.
Source: Lipper TASS. Data is monthly assets under management per fund, from 1994-2015. Database reports on 17,534 live
and defunct funds.
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Related trends in data Another quite different indicator that points to the growing importance of

demand data comes from the frequency of web searches. From 2004 to 2016, the frequency of Google

searches for information about “order flow” has risen roughly 3-fold.16 This is not an overall increase

in attention to asset market information. In contrast, the frequency of searches for information about

“fundamental analysis” fell by about one-half over the same time period.

The demand data analysis in the model resembles a combination of current statistical arbitrage, retail

market making, and order flow trading, all strategies we see surging in practice. Much of the trade against

order flow takes the form of algorithmic trading. This happens for a couple of reasons. First, while firm

fundamentals are slow-moving, demand can reverse rapidly. Therefore, mechanisms that allow traders to

15Source: Lipper TASS. Data is monthly from 1994-2015. Database reports on 17,534 live and defunct funds.
16Google trends. Data is the weekly fraction of searches involving these search terms. Series is normalized to make the

highest data point equal to 100.
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trade quickly are more valuable for fast-moving demand based strategies. Second, while fundamental infor-

mation is more likely to be textual, partly qualitative, and varied in nature, demand is more consistently

data-oriented and therefore more amenable to algorithmic analysis.

Hendershott, Jones, and Menkveld (2011) measure algorithmic trading and find that it has increased,

but it increased most rapidly during the period between the start of 2001 and the end of 2005. During

this six-year window, average trade size fell and algorithmic trading increased, about seven-fold, consistent

with model predictions for demand-based trading strategies.

The evidence of asset market trends is not inconsistent with our predictions. Bai, Philippon, and Savov

(2016) measure a long-run rise in equity price informativeness. They measure price informativeness using a

coefficient from a regression of future earnings (at 1-year, 3-year and 5-year horizons) on the current ratio

of market value to book value. Over the period 1960-2010, they find a 60% rise in

three-year price informativeness and an 80% rise in five year price informativeness, both of which are

highly statistically significant.

Similarly, many empirical researchers have found little in the way of long-run trends in market liquidity.

Studying liquidity over the last century, Jones (2002) finds lots of cyclical variation, but little trend in bid-

ask spreads.17

Our claim is not that our model explains all of this phenomenon, or that we can match the timing or

magnitude of the increases or decreases. We only wish to suggest that our predictions are not obviously

at odds with other long-run trends in financial markets.

4.2 Testable Predictions

The previous evidence is encouraging, but far from conclusive. Two predictions are central to the main

point of this paper. We first lay out the predictions and then describe how one might infer information

choices, in order to test them.

Prediction 1 Demand Data Grew, Relative to Fundamental Data

The implied measure of Ωxt has grown at a faster rate than the measure of Ωft.

The model calibration points to the current regime as being one where demand data is rising, relative to

fundamental data (Figure 1). With the implied data measures, this would be simple to test by constructing

growth rates and testing for differences in means. One could also examine whether demand data growth

is speeding up, suggesting complementarity.

Prediction 2 Price Informativeness Predicts Demand Data Usage

When prices are highly informative (large Ct/Dt), investors use more demand data (high Ωxt).

The key insight of the information choice part of the model is that the marginal rate of substitution

of demand for fundamental data is proportional to Ct/Dt. One could test whether, controlling for other

17However, recent work by Koijen and Yogo (2016) however, measures a large fall in the price impact of institutional
traders. This may not be inconsistent with our results for two reasons. First, our liquidity measure is the price impact of
a non-informational trade. That is not the same as the price impact of an institutional trader who will often be trading
on information. Second, in many cases, the way institutional traders have reduced their price impact is to find uninformed
demand to trade against. To the extent that reduced price impact reflects more market making and less direct trading on
information, this reduced impact is consistent with our long-run demand analysis trend.
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factors, highly informative prices coincide with or predict demand data increases. This could also be

implemented as a cross-sectional test. With multiple independent assets, the covariace of holdings of each

asset with that asset’s shocks should imply the same Ωft and Ωxt data for that asset. In a world where

asset returns are correlated, a simple principal components analysis would allow a researcher to construct

linear combinations of assets that are independent, impute the about of data processed for each synthetic

assets (or risk factor), and then run this covariance test on the cross-section of synthetic assets.

4.3 Extending the Model to Facilitate Empirical Testing

The key barrier to testing this theory is that one cannot observe investors’ data choices. However, these

choices do show up in observable variables, particularly in portfolio choice. The reason investors value

data of one kind or another, is that it allows them to trade in way that is correlated with what they

observe. They can buy when dividends are likely to be high or sell when the price appears high for non-

fundamental reasons. These strategies are not feasible – not measurable in theory parlance – without

observing the relevant data. If many investors systematically buy when payouts are going to be high, this

is conclusive evidence of information. But not all investors can buy at one time. This violates the market

clearing condition. In order to test this hypothesis, we need to consider a simple extension of the model

to incorporate informed and uninformed traders.

We now extend the model to two groups of investors. A measure λ of investors, each endowed with

capacity K to acquire information, and the complementary measure who do not acquire information but

submit demand optimally based on their prior information, which is common to all investors (informed

and uninformed).

We denote all variables corresponding with uninformed investors (individual and aggregate) with a

prime symbol (′). From the adjusted first order condition, uninformed agents’ average expected value of

the dividend innovation is:∫
E[ỹt|Ī ′t] di′ = (1− τ0V ar[ỹt|Ī ′t])

1

Ct
(pt −At −B(dt−1 − µ)) (25)

These investors learn from prices. Their expectation of dividend innovations depends on the unexpected

component of the price, pt − At − B(dt−1 − µ). But their expectations and demand do not react to the

shocks ỹt and x̃t beyond the reaction induced by price changes. This allows informed investors to react

more, and still have the market clear.

In this heterogeneous agent economy, the price informativeness and (il)liquidity are

Ct =
1

r − πG

(
1− τ0

¯̂
Vt

)
(26)

Dt =
1

r − πG

[(
τx
Ct
Dt
− rρ

r − πG

)
¯̂
Vt − Zt

]
(27)

where λIt = λΩt/Ω̄t and
¯̂
Vt = (λItV̂t + (1− λIt)V̂ ′t ). Future information risk is the same for both types of

investors. By definition it is the risk posed by the realization of information that is unlearnable, by any

agent, today.

Next, we use this extended model to infer information choices. We derive measures of fundamental

information and demand information. Both are based on equilibrium prices and the covariance of an
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informed investor’s portfolio q with the shocks x and y.

We start by constructing the portfolio covariances needed to measure information. We take the portfolio

first order condition (7), and then substitute in the definition of signals, the equilibrium price (8) and the

conditional expectations and variances (34) and (35) to express q as a function of the shocks x̃t, ỹt and

the signal noise terms (εx, εy). This formulation of q allows us to compute the covariances, cov(qit, x̃t) and

cov(qit, ỹt), in terms of Ct, Dt and Ωt, which are in turn functions of the the data precision terms Ωft and

Ωxt:
18

Cov(qt, x̃t) =
Ωt

λΩt + (1− λ)Ω′t
τ−1
x −

rΩt

ρ(r − πG)

Ct
Dt

(1− λIt)(V̂ ′t − V̂t) (28)

Cov(qt, ỹt) =
r

ρ(r − πG)
(πC2

t+1τ
−1
0 + πD2

t+1τ
−1
x + (

r

r − πG
)2V̂t)

−1(1− λIt)(V̂ ′t − V̂t). (29)

We can thus use equations (28), (29), and an equilibrium pricing equation (74) to measure the amount of

information processed in the economy, Ωft and Ωxt, along with the fraction of financial sector who actively

produce information, λ, in a fully dynamic setting.

4.4 Measuring Information

To construct these measures, an empiricist needs to estimate the variance and persistence of dividends,

but also the variance of demand shocks and the pricing equation coefficients. Section 3.1 describes one way

to estimate these objects from publicly available financial data. To compute the covariance itself requires

a time series of portfolio holdings of some informed investors. Using all investors together cannot work

because total demand must equal supply, not q. But the model is about sophisticated traders. Mutual

funds or hedge fund portfolio holdings might make a good data set. Then for each fund, one would compute

the covariance over a window of a year, or first half and second half of the sample, depending on the data

frequency. The cross-section of implied information might be interesting for questions pertaining to the

distribution of skill or financial income inequality. But for questions about the long-run trend, averaging

the implied precisions (Ωft, Ωxt) of various investors is consistent with the model because, in an equivalent

representative agent representation of a model with heterogeneous information quality, the representative

agent has information precision that is the average of all investors’ precisions.

These measures are theory-dependent. Specifically, they depend on the form of the first-order condition,

which has a very standard form in portfolio problems. The measures also depend on the way in which

the model assumes agents form expectations and conditional variances, using Bayes law and extracting

information from linear prices. But these measures do not depend on the information choice part of the

model. They do not assume that agents optimally allocate data. These measures infer what data must be

present, in order for agents to be making the portfolio choices they make and for prices to be reflecting

the information they contain. As such, they offer meaningful ways of testing this model, as well as others.

For example, one could use these measures and the model structure to infer a series for χ, the relative

shadow cost of processing demand versus fundamental data. That would inform the debate about the role

of technological change in high frequency trading.

18The details of the derivation are in the appendix.
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5 Conclusion

Technological progress is the driving force behind most models of long-run economic growth. Yet it is

surprisingly absent in models of the financial economy. We explore the consequences of a simple deter-

ministic increase in the productivity of information processing in the financial sector. While studies have

documented an increase in price informativeness (Bai, Philippon, and Savov, 2016), we know of no theories

that explore the consequences of such changes for market equilibrium or efficiency.

We find that when the financial sector becomes more efficient at processing information, it changes the

incentives to acquire information about future dividends (fundamentals) versus demand (non fundamental

shocks to price). Thus a simple rise in information processing productivity can explain a transformation

of financial analysis from a sector that primarily investigates the fundamental profitability of firms to a

sector that does a little fundamental analysis but mostly concentrates on acquiring and processing client

demand. This is consistent with suggestive evidence that the nature of financial analysis and associated

trading strategies have changed.

Many feared that this technological transformation was harming market efficiency, while others argued

that markets are more liquid/efficient than ever before. The concern was that the decline of fundamental

analysis would compromise price informativeness. We do not find that to be the case. Although funda-

mental analysis declines, price informativeness continues to rise. The reason is that even if many traders

are extracting others’ information, this still makes the average trader better informed and the price more

informative. But the benefits of the technological transformation may also be overstated. The promise

that traders standing ready to take the other side of uninformed traders would improve market liquidity

is only half the story. What this narrative misses is that more informed traders in the future make prices

react more strongly to new information, which makes future asset values riskier. This increase in risk

makes traders move market prices by more and pushes market liquidity back down. The net effect could

go either way and is likely to be small.

Of course, there are many other features one might want to add to this model to speak to other

related trends in financial markets. One might make fundamental changes more persistent than demand

innovations so that different styles of trade were associated with different trading volumes. Another

possibility is to explore regions in this model where the equilibrium does not exist and use the non-

existence as the basis for a theory of market breakdowns or freezes. Another extension might ask where

demand signals come from. In practice, people observe demand data because they intermediate trades.

Thus, the value of the demand information might form the basis for a new theory of intermediation. In

such a world, more trading might well generate more information for intermediaries and faster or stronger

responses of markets to changes in market conditions. Finally, one might regard this theory as a prescriptive

theory of optimal investment, compare it to investment practice, and compute expected losses from sub-

optimal information and portfolio choices. For example, a common practice now is to blend fundamental

and demand trading by first selecting good fundamental investment opportunities and then using demand

information to time the trade. One could construct such a strategy in this model, compare it to the optimal

blend of trading strategies, and see if the optimal strategy performs better on market data.

While this project with its one simple driving force leaves many questions unanswered, it also provides

a tractable foundation on which to build, to continue exploring how and why asset markets are evolving,

as financial technology improves.
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A Model Solution Details

A.1 Bayesian Updating

To form the conditional expectation, E[fit|Iit], we need to use Bayes’ law. But first, we need to know what signal investors

extract from price, given their observed endowment exposure ht and their demand signal ηx. We can rearrange the the linear

price equation (8) to write a function of the price is the dividend innovation plus mean zero noise: ηpit = ỹt + (Dt/Ct)(x̃t −
E[x̃t|ηxit]), where the price signal and the signal precision are

ηpit ≡ (pt −At −B(dt−1 − µ)−DtE[x|ηxit])/Ct (30)

Ωpt ≡ (Ct/Dt)
2(τx + Ωxt) (31)

For the simple case of an investor who learned nothing about demand (E[x] = 0) the information contained in prices is

(pt−At−B(dt−1−µ))/Ct, which is equal to ỹt+Dt/Ctx̃t. Since x̃t is a mean-zero random variable, this is an unbiased signal

of the asset dividend innovation ỹt. The variance of the signal noise is V ar[D/Cx] = (D/C)2τ−1
x . The price signal precision

Ωpt is the inverse of this variance.

But conditional on ηxit, x̃t is typically not a mean-zero random variable. Instead, investors use Bayes’ law to combine

their prior that x̃t = 0, with precision τx with their demand signals: ηxit with precision Ωxit. The posterior mean and variance

are

E[x|ηxit] =
Ωxitηxit
τx + Ωxit

(32)

V [x|ηxit] =
1

τx + Ωxit
(33)

Since that is equal to ỹt + Dt/Ct(x̃t − E[x̃t|ηxit]), the variance of price signal noise is (Dt/Ct)
2V ar[x̃t|ηxit]. In other words,

the precision of the price signal for agent i (and therefore for every agent since we are looking at symmetric information choice

equilibria) is Ωpit ≡ (Ct/Dt)
2(τx + Ωxit).

Now, we can use Bayes’ law for normal variables again to form beliefs about the asset payoff. We combine the prior µ,

the price/demand information ηpit, and the fundamental signal ηfit into a posterior mean and variance:

E[ỹt|Iit] = (τ0 + Ωpit + Ωfit)
−1 (Ωpitηpit + Ωfitηfit) (34)

V [ỹt|Iit] = (τ0 + Ωpit + Ωfit)
−1 (35)

Average expectations and precisions: Next, we integrate over investors i to get the average conditional expectations. Begin

by considering average price information. The price informativeness is Ωpit ≡ (Ct/Dt)
2(τx + Ωxit). In principle, this can vary

across investors. But since all are ex-ante identical, they make identical information decisions. Thus, Ωpit = Ωpt for all

investors i. Since this precision is identical for all investors, we drop the i subscript in what follows. But the realized price

signal still differs because signal realizations are heterogeneous. Since the signal precisions are the same for all agents, we can

just integrate over signals to get the average signal:
∫
ηpitdi = (1/Ct)(pt−At−B(dt−1−µ))− (Dt/Ct)V ar(x̃t|It)Ωxtx̃t. Since

Ω−1
pt = (D/C)2V ar(x|I), we can rewrite this as∫

ηpitdi =
1

Ct
(pt −At −B(dt−1 − µ))− Ct

Dt
Ω−1
pt Ωxtx̃t (36)

Next, let’s define some conditional variance / precision terms that simplify notation. The first term, Ωt, is the precision

of future price plus dividend (the asset payoff). It comes from taking the variance of the pricing equation (8). It turns out

that the variance Ω−1
t can be decomposed into a sum of two terms. The first, V̂ , is the variance of the dividend innovation.

This variance depends on information choices Ωft and Ωxt. The other term Zt depends on future information choices through

t+ 1 price coefficients.

V̂t ≡ V ar(ỹt|It) = (τ0 + Ωft + Ωpt)
−1 = (τ0 + Ωft + (C/D)2(τx + Ωxt))

−1 (37)

Ω−1
t ≡ V ar[πpt+1 + d̃t|It] = πC2

t+1τ
−1
0 + πD2

t+1τ
−1
x + (1 + πBt+1)2V̂t (38)

Zt =
πρ

r
(r − πG)(C2

t+1τ
−1
0 +D2

t+1τ
−1
x ) (39)
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Ω−1
t =

r

ρ(r − πG)
Zt + (

r

r − πG )2V̂t (40)

Thus Zt = 0 if π = 0.

The last equation (40) shows the relationship between Ω, V̂ and Zt. This decomposition is helpful because we will

repeatedly take derivatives where we take future choices (Zt) as given and vary current information choices (V̂ ).

Next, we can compute the average expectations∫
E[ỹt|Īt] di = V̂t

[
Ωftỹt + Ωpt

(
1

C
(pt −At −B(dt−1 − µ))− Ct

Dt
Ω−1
pt Ωxtx̃t

)]
(41)

= V̂t

[
Ωftỹt + Ωpt

1

C
(pt −At −B(dt−1 − µ))− Ct

Dt
Ωxtx̃t

]
(42)

∫
E[πpt+1 + d̃t|Īt] di = At + (1 + πB)E[d̃t|Īt] = At + (1 + πB)

(
µ+G(dt−1 − µ) + E[ỹt|Īt]

)
. (43)

A.2 Solving for Equilibrium Prices

The price conjecture is

pt = At +Bt(dt−1 − µ) + Ctỹt +Dtx̃t (44)

We will solve for the prices for general supply of asset, x̄, although in the main text it is normalized to one unit.

The price coefficients solve the system of recursive equations

At =
1

r

[
πAt+1 + µ (45)

− ρx̄

(
πC2

t+1τ
−1
0 + πD2

t+1τ
−1
x + (1 + πBt+1)2

(
τ0 +

( K

χf
(
1 +

χf

χx
ξ4
)) 1

2 + ξ2(τx +
ξ2χf
χx

( K

χf
(
1 +

χf

χx
ξ4
)) 1

2
))−1

)]

Bt =
1

r
(1 + πBt+1)G =

G

r − πG (46)

Ct =
1

r − πG

(
1− τ0

(
τ0 +

( K

χf
(
1 +

χf

χx
ξ4
)) 1

2 + ξ2(τx +
ξ2χf
χx

( K

χf
(
1 +

χf

χx
ξ4
)) 1

2
))−1

)
(47)

Dt =
( τx
r − πGξ −

ρr

(r − πG)2

)(
τ0 +

( K

χf
(
1 +

χf

χx
ξ4
)) 1

2 + ξ4(τx +
ξ2χf
χx

( K

χf
(
1 +

χf

χx
ξ4
)) 1

2
))−1

− π ρ
r

(
C2
t+1τ

−1
0 +D2

t+1τ
−1
x

)
(48)

where ξ = Ct
Dt

denotes date-t signal to noise ratio which is the solution to equation (78). The steady state pricing

coefficients are the fixed point of the above system.

The sequence of pricing coefficients is known at every date. The signals ηfit and ηxit are the same as before, except that

their precisions Ωft and Ωxt may change over time if that is the solution to the information choice problem.

The conditional expectation and variance of ỹt (34) and (35) are the same, except that the Ωpt term gets a t subscript now

because Ωpt ≡ (Ct/Dt)
2(τx + Ωxt). Likewise the mean and variance of x̃t (32) and (33) are the same with a time-subscripted

Ωxt. Thus, the average signals are the same with t-subscripts:∫
ηpitdi =

1

Ct
(pt −At −Bt(dt−1 − µ))− Dt

Ct
V ar(xt|It)Ωxtx̃t (49)

Since Ω−1
pt = (Dt/Ct)

2V ar(xt|It), we can rewrite this as∫
ηpitdi =

1

Ct
(pt −At −Bt(dt−1 − µ))− Ct

Dt
Ω−1
pt Ωxtx̃t (50)

Solving for non-stationary equilibrium prices To solve for equilibrium prices, start from the portfolio first-order

condition for investors (7) and equate total demand with total supply. The total risky asset demand (excluding noisy demand)
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is∫
qitdi =

1

ρ
Ωt

[
πAt+1 + (1 + πBt+1)

(
µ+G(dt−1 − µ) + V̂t

[
Ωftỹt + Ωpt

1

Ct
(pt −At −Bt(dt−1 − µ))− Ct

Dt
Ωxtx̃t

])
− πBt+1µ− ptr

]
.

(51)

The market clearing condition equates the expression above to the residual asset supply x̄+ x̃t. The model assumes the

asset supply is 1. We use the notation x̄ here for more generality because then we can apply the result to the model with

issuance costs where asset supply is a choice variable. Rearranging the market clearing condition (just multiplying through

by ρΩ−1
t and bringing p terms to the left) yields

[r − (1 + πBt+1)V̂tΩpt
1

Ct
]pt = −ρΩ−1

t (x̄+ x̃t) + πAt+1 (52)

+(1+πBt+1)(µ+G(dt−1−µ))+(1+πBt+1)V̂tΩftỹt−(1+πBt+1)V̂tΩpt
1

Ct
(At+Bt(dt−1−µ)−(1+πBt+1)

Ct
Dt

V̂tΩxtx̃t−πBt+1µ

Solve for p to get(
r − (1 + πBt+1)V̂tΩpt

1

Ct

)
(At +Bt(dt−1 − µ) + Ctỹt +Dtx̃t)

=− ρΩ−1
t (x̄+ x̃t) + πAt+1 + (1 + πBt+1)(µ+G(dt−1 − µ))

+ (1 + πBt+1)V̂tΩftỹt − (1 + πBt+1)V̂tΩpt
1

Ct
(At +Bt(dt−1 − µ))− (1 + πBt+1)

Ct
Dt

V̂tΩxtx̃t − πBt+1µ

Multiply both sides by the first term on the left hand side and match the coefficients to get

At = [r − (1 + πBt+1)V̂tΩpt
1

Ct
]−1

(
−ρΩ−1

t x̄+ πAt+1 + (1 + πBt+1)µ− (1 +Bt+1)V̂tΩpt
1

Ct
At − πBt+1µ

)
(53)

Multiplying both sides by the inverse term:

rAt − (1 + πBt+1)V̂tΩpt
1

Ct
At = −ρΩ−1

t x̄+ πAt+1 + (1 + πBt+1)µ− (1 +Bt+1)V̂tΩpt
1

Ct
At − πBt+1µ

and canceling the (1 + πBt+1)V̂tΩpt
1
Ct
At term on both sides leaves

rAt = −ρΩ−1
t x̄+ πAt+1 + (1 + πBt+1)µ− πBt+1µ

At =
1

r

[
π(At+1 −Bt+1µ) + (1 + πBt+1)µ− ρΩ−1

t x̄
]

=
1

r

[
πAt+1 + µ− ρΩ−1

t x̄
]

(54)

Risk Premium. The risk premium is defined as

rpt =
E[pt+1 + dt]

E[pt]
− r (55)

The risk premium can be written as

rpt =
At+1 + µ

At
− r =

r(At+1 + µ)

At+1 + µ− ρΩ−1
t x̄
− r =

rρx̄Ω−1
t

At+1 + µ− ρΩ−1
t x̄

where the first equality takes the unconditional expectation, recognizing that E[dt] = µ, and the second equation uses the

derivation of At in equation (54). Note that if all the variance goes to zero, Ω−1
t → 0, the risk premium also goes to zero.

Note that for the main model x̄ = 1, so in the main text, equation (9) is with x̄ set to 1.

Matching coefficients on dt yields:

Bt = [r − (1 + πBt+1)V̂tΩpt
1

Ct
]−1

[
(1 + πBt+1)G− (1 + πBt+1)V̂tΩpt

Bt
Ct

]
(56)
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Multiplying on both sides by the inverse term

rBt − (1 + πBt+1)V̂tΩpt
1

Ct
Bt = (1 + πBt+1)G− (1 + πBt+1)V̂tΩpt

Bt
Ct

(57)

and canceling the last term on both sides yields

Bt =
1

r
(1 + πBt+1)G (58)

As long as r and G don’t vary over time, a stationary solution for B exists. That stationary solution would be (10).

Next, collecting all the terms in ỹt

Ct = [r − (1 + πBt+1)V̂tΩpt
1

Ct
]−1(1 + πBt+1)V̂tΩft (59)

multiplying both sides by the first term inverse yields rCt−(1+πBt+1)V̂tΩpt = (1+πBt+1)V̂tΩft. Then dividing through by r

and collecting terms in V̂ (1+πBt+1) yields Ct = (1/r)(1+πBt+1)V̂t(Ωpt+Ωft). Next, using the fact that V̂ −1 = τ0 +Ωpt+Ωf ,

we get Ct = 1/r(1 + πBt+1)(1− τ0V̂t). Of course the V̂ term has Ct and Dt in it. If we use the stationary solution for B (if r

and G don’t vary) then we can simplify to get

Ct =
1

r − πG (1− τ0V̂t). (60)

Finally, we collect terms in x̃t.

Dt = [r − (1 + πBt+1)V̂tΩpt
1

Ct
]−1[−ρΩ−1

t − (1 + πBt+1)
Ct
Dt

V̂tΩxt] (61)

multiply by the inverse term, and the use Ωpt = (Ct/Dt)
2(τx + Ωxt) to get

rDt − (1 + πBt+1)V̂t
Ct
Dt

(τx + Ωxt) = −ρΩ−1
t − (1 + πBt+1)

Ct
Dt

V̂tΩxt (62)

Then, adding (1 +B)Ct
Dt
V̂tΩxt to both sides, and substituting in B (stationary solution), we get

Dt =
1

r − πGV̂tτx
Ct
Dt
− ρ

r
Ω−1
t

Dt =
1

r − πG

[(
τx
Ct
Dt
− rρ

r − πG

)
V̂t − Zt

]
(63)

Of course, Dt still shows up quadratically, and also in V̂t. The future coefficient values Ct+1 and Dt+1 show up in Ωt.

A.3 Solving Information Choices

Details of Step 3: Compute ex-ante expected utility. Note that the expected excess return (E[πpt+1 + d̃t|Iit]− ptr) depends on

fundamental and supply signals, and prices, all of which are unknown at time t = 0. Because asset prices are linear functions

of normally distributed shocks, E[πpt+1 + d̃t|Iit]− ptr, is normally distributed as well.

With E ln E preferences, (E[πpt+1 + d̃t|Iit] − ptr)Ω(E[πpt+1 + d̃t|Iit] − ptr) is a non-central χ2-distributed variable.

Computing its mean yields ρ r eit + ρE[qit(E[πpt+1 + d̃t|Iit] − ptr)|I+
t−1] − ρ

2

2
E[q2

itV ar[πpt+1 + d̃t|Īt]−1|I+
t−1]. As argued in

the main text, V ar[πpt+1 + d̃t|Īt] depends only on posterior variance Ω−1. Ωft and Ωft do not enter separately.

With expected utility, (E[πpt+1 + d̃t|Iit]−ptr)Ω(E[πpt+1 + d̃t|Iit]−ptr) is still a non-central χ2-distributed variable. But

expected utility is the expectation of the exponential of this expression: E[exp{(E[πpt+1 + d̃t|Iit]− ptr)Ω(E[πpt+1 + d̃t|Iit]−
ptr)}|I+

t−1]. The exponential of a chi-square distribution is a Wishart. Expected utility is the mean of this expression.

The time-2 expectation of excess return is distributed (E[πpt+1 + d̃t|Iit] − ptr) ∼ N ((1− C)µ−A, VER) where VER, as

in the ElnE model, is an increasing function of the payoff precision Ω, and does not contain terms in Ωft or Ωxt, except

through Ω. Using the formula for the mean of a Wishart (see Veldkamp (2011) textbook, appendix Ch.7), we compute period-1

expected utility:

U =
1

2
Tr(ΩVER) +

1

2
((1− C)µ−A)′Ω((1− C)µ−A). (64)

Since the precisions Ωft and Ωxt only enter expected utility through the posterior precision of payoffs Ω, the same is
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true for the exponential of this expression. Since the exponential function is a monotonic increasing function, we know that

expected utility takes the form of an increasing function of Ω. As long as Ω is a sufficient statistic for the data choices in

utility, investors’ data choices that maximize Ω also maximize expected utility

Details of Step 4:

Solve for fundamental information choices. Note that in expected utility (15), the choice variables Ωft and Ωxt enter

only through the posterior variance Ω−1 and through V [E[πpt+1 + d̃t|Iit]− ptr|I+
t−1] = V [πpt+1 + d̃t − ptr|I+

t−1]−Ω−1
t . Since

there is a continuum of investors, and since V [πpt+1 + d̃t − ptr|I+
t−1] and E[E[πpt+1 + d̃t|Iit]− ptr|I+

t−1] depend only on t− 1

variables, parameters and on aggregate information choices, each investor takes them as given. If the objective is to maximize

an increasing function of Ω, then information choices must maximize Ω as well.

A.4 Extension. Informed and Uninformed Investors

Here we solve for the equilibrium of the extended model of section 4.3, where measure mI of investors acquire information

and measure 1− λ do not. Note that we endow each informed investor with Kt in each period.

A.4.1 Bayesian Updating

Throughout this section, we will denote informed investors by i and uninformed investors by i′. We use the same notation for

any relevant aggregates. The analysis of an informed individual investor is identical to the baseline model. For an uninformed

investor i′, the optimal quantity of asset demand has the same form, except Ωfi′t = Ωxi′t = 0.

Next, we turn to the aggregation.

Average expectations and precisions: The price informativeness for an informed investor i is Ωpit ≡ (Ct/Dt)
2(τx + Ωxit),

and for an uninformed investor i′ is Ωpi′t ≡ (Ct/Dt)
2τx. Since all investors within the same group are ex-ante identical, they

make identical information decisions. Thus, Ωpit = Ωpt (Ωpi′t = Ω′pt) for all informed (uninformed) investors i (i′). The

realized price signal still differs because signal realizations are heterogeneous. Thus for informed investors∫
ηpitdi =

1

Ct
(pt −At −B(dt−1 − µ))− Ct

Dt
Ω−1
pt Ωxtx̃t

And for uninformed investors ∫
ηpi′tdi =

1

Ct
(pt −At −B(dt−1 − µ))

Next, we add equivalent definitions of the conditional variance / precision terms that simplify notation for the uninformed

investors.

V̂ ′t = (τ0 + (Ct/Dt)
2τx)−1

Ω
′−1
t = πC2

t+1τ
−1
0 + πD2

t+1τ
−1
x + (1 + πBt+1)2V̂ ′t

Z′t =
πρ

r
(r − πG)(C2

t+1τ
−1
0 +D2

t+1τ
−1
x ) = Zt

Ω
′−1
t =

r

ρ(r − πG)
Z′t + (

r

r − πG )2V̂ ′t

Note that future information risk is the same for the two types of investors, since it is by definition unlearnable today.

Next, we can compute the average expectations∫
E[ỹt|Ī′t] di′ = V̂ ′t Ω′pt

1

Ct
(pt −At −B(dt−1 − µ)) = (1− τ0V̂ ′t )

1

Ct
(pt −At −B(dt−1 − µ))∫

E[πpt+1 + d̃t|Ī′t] di′ = At + (1 + πB)E[d̃t|Ī′t] = At + (1 + πB)
(
µ+G(dt−1 − µ) + E[ỹt|Ī′t]

)
.

A.4.2 Solving for Equilibrium Prices

The price conjecture is again

pt = At +Bt(dt−1 − µ) + Ctỹt +Dtx̃t (65)

We will solve for the prices for general supply of asset, x̄, although in the main text it is normalized to one unit.
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The average signals in the economy is

λ

∫
ηpidi+ (1− λ)

∫
ηpi′di =

1

Ct
(pt −At −Bt(dt−1 − µ))− λDt

Ct
V ar(xt|It)Ωxtx̃t

Since Ω−1
pt = (Dt/Ct)

2V ar(xt|It), we can rewrite this as

λ

∫
ηpidi+ (1− λ)

∫
ηpi′di =

1

Ct
(pt −At −Bt(dt−1 − µ))− λCt

Dt
Ω−1
pt Ωxtx̃t

Solving for non-stationary equilibrium prices To solve for equilibrium prices, start from the portfolio first-order

condition for investors (7) and equate total demand with total supply. The total risky asset demand (excluding noisy demand)

is

λ

∫
qitdi+ (1− λ)

∫
qi′tdi

′

=
λ

ρ
Ωt

[
πAt+1 + (1 + πBt+1)

(
µ+G(dt−1 − µ) + V̂t

[
Ωftỹt + Ωpt

1

Ct
(pt −At −Bt(dt−1 − µ))− Ct

Dt
Ωxtx̃t

])
− πBt+1µ− ptr

]
+

1− λ
ρ

Ω′t

[
πAt+1 + (1 + πBt+1)

(
µ+G(dt−1 − µ) + V̂ ′t Ω′pt

1

Ct
(pt −At −Bt(dt−1 − µ))

)
− πBt+1µ− ptr

]
.

The market clearing condition equates the expression above to the residual asset supply x̄+ x̃t. To simplify notation, let

Ω̄t = λΩt + (1− λ)Ω′t

λIt =
λΩt

Ω̄t
, λUt =

(1− λ)Ω′t
Ω̄t

= 1− λIt.

Matching coefficients on (dt−1 − µ) yields:

Bt =

[
r − (1 + πBt+1)

(
λItV̂tΩpt + (1− λIt)V̂ ′t Ω′pt

) 1

Ct

]−1 [
(1 + πBt+1)G− (1 + πBt+1)

(
λItV̂tΩpt + (1− λIt)V̂ ′t Ω′pt

) Bt
Ct

]
Multiplying on both sides by the inverse term

rBt − (1 + πBt+1)(λItV̂tΩpt + (1− λIt)V̂ ′t Ω′pt)
1

Ct
Bt = (1 + πBt+1)G− (1 + πBt+1)

(
λItV̂tΩpt + (1− λIt)V̂ ′t Ω′pt

) Bt
Ct

and canceling the last term on both sides yields

Bt =
1

r
(1 + πBt+1)G (66)

As long as r and G don’t vary over time, a stationary solution for B exists. That stationary solution would be (10).

Next, collecting all the terms in ỹt

λ

ρ
Ωt
[
(1 + πBt+1)

(
V̂t [Ωftỹt + Ωptỹt]

)
− Ctỹtr

]
+

1− λ
ρ

Ω′t

[
(1 + πBt+1)

(
V̂ ′t Ω′ptỹt

)
− Ctỹtr

]
= 0

λΩt(1 + πBt+1)V̂t [Ωft + Ωpt] + (1− λ)Ω′t(1 + πBt+1)V̂ ′t Ω′pt = rCtΩ̄t

λItΩ̄t(1 + πBt+1)(1− τ0V̂t) + λUtΩ̄t(1 + πBt+1)(1− τ0V̂ ′t ) = rCtΩ̄t.

Thus, Ct simplifies to

Ct =
1

r − πG

(
1− τ0(λItV̂t + (1− λIt)V̂ ′t )

)
.

Similar to Ω̄t, let

¯̂
Vt = (λItV̂t + (1− λIt)V̂ ′t ),
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which in turn implies

Ct =
1

r − πG

(
1− τ0 ¯̂

Vt
)
. (67)

Finally, we collect terms in x̃t.

Dt = [r − (1 + πBt+1)
(
λItV̂tΩpt + (1− λIt)V̂ ′t Ω′pt

) 1

Ct
]−1[−ρΩ−1

t − (1 + πBt+1)λIt
Ct
Dt

V̂tΩxt]

multiply by the inverse term, and the use Ωpt = (Ct/Dt)
2(τx + Ωxt) and Ω′pt = (Ct/Dt)

2τx to get

rDt − (1 + πBt+1)

(
λItV̂t

Ct
Dt

(τx + Ωxt) + (1− λIt)V̂ ′t
Ct
Dt

τx

)
= −ρΩ−1

t − (1 + πBt+1)λIt
Ct
Dt

V̂tΩxt

substituting in B in the stationary solution and using the
¯̂
Vt, we get

Dt =
1

r − πG
¯̂
Vtτx

Ct
Dt
− ρ

r
Ω̄−1
t

Dt =
1

r − πG

[(
τx
Ct
Dt
− rρ

r − πG

)
¯̂
Vt − Zt

]
(68)

Next we compute the expression for informed trader demand, qt. Since At+1, B, Ct+1 and Dt+1 are non-random (condi-

tional on Ĩt), ỹt+1 and x̃t+1 are independent of the elements of Ĩt (and so E[z̃t+1|Ĩt] = E[z̃t+1] = 0 for z ∈ {x, y}) it follows

that:

E[πpt+1 + d̃t|Iit] = πAt+1 + (1 + πB)E[d̃t|Iit]− πBµ+ πCt+1E[ỹt+1|Iit] + πDt+1E[x̃t+1|Iit]

= πAt+1 + (1 + πB)E[µ+G(dt−1 − µ) + ỹt|Iit]− πBµ

= πAt+1 + µ+ πBµ+ (1 + πB)G(dt−1 − µ) + (1 + πB)E[ỹt|Iit]− πBµ

= πAt+1 + µ+ (1 + πB)G(dt−1 − µ) + (1 + πB)E[ỹt|Iit].

which implies

E[πpt+1 + d̃t|Iit]− rpt = E[πpt+1 + d̃t|Iit]− r (At +B(dt−1 − µ) + Ctỹt +Dtx̃t)

=
(
πAt+1 + µ− rAt

)
+
(
(1 + πB)G− rB

)
(dt−1 − µ) +

(
1 + πB

)
E[ỹt|Iit]− rCtỹt − rDtx̃t

Thus we obtain

E[πpt+1 + d̃t|Iit] = πAt+1 + µ+ (1 + πB)G(dt−1 − µ) + (1 + πB)
Ωpitηpt + Ωfitηft
τ0 + Ωpit + Ωfit

= πAt+1 + µ+
rG

r − πG (dt−1 − µ) +
r

r − πG
Ωptηpit + Ωftηfit
τ0 + Ωpt + Ωft

where the second line uses symmetry in information choices. Since by Bayes’ rule,

E[x̃t|ηxit] =
Ωxtηxt
τx + Ωxt

.

and

Ω−1
t := Var[πpt+1 + d̃t|Ĩt] = π(C2

t+1τ
−1
0 +D2

t+1τ
−1
x ) + (1 + πB)2 (τ0 + Ωft + Ωpt)

−1

= π(C2
t+1τ

−1
0 +D2

t+1τ
−1
x ) + (1 + πB)2 (τ0 + Ωft + (C/D)2(τx + Ωxt)

)−1
.
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Next substitute the above expressions in qt to obtain:

qt =
Ωt
ρ

[(
πAt+1 + µ− rAt

)
+
(
(1 + πB)G− rB

)
(dt−1 − µ) +

(
1 + πB

)
E[ỹt|Iit]− rCtỹt − rDtx̃t

]
=

Ωt
ρ

[(
πAt+1 + µ− rAt

)
+

r

r − πG
Ωft(ỹt + ε̃fit) + Ωpt (ỹt + (Dt/Ct)(x̃t − E[x̃t|ηxit]))

τ0 + Ωpt + Ωft
− rCtỹt − rDtx̃t

]
=

Ωt
ρ

[(
πAt+1 + µ− rAt

)]
+
rΩt
ρ

[
1

r − πG
Ωft + Ωpt

τ0 + Ωpt + Ωft
− Ct

]
ỹt +

Ωt
ρ

r

r − πG

[
Ωft

τ0 + Ωpt + Ωft

]
ε̃fit

+
rΩt
ρ

[
1

(r − πG)

Dt
Ct

Ωpt
τ0 + Ωpt + Ωft

τxx̃t − Ωxε̃xit
τx + Ωxt

−Dtx̃t
]

=
Ωt
ρ

[(
πAt+1 + µ− rAt

)]
+
rΩt
ρ

[
1

r − πG
Ωft + Ωpt

τ0 + Ωpt + Ωft
− Ct

]
ỹt +

Ωt
ρ

r

r − πG

[
Ωft

τ0 + Ωpt + Ωft

]
ε̃fit

+
rΩt
ρ

[
1

(r − πG)

Ct
Dt

τx
τ0 + Ωpt + Ωft

−Dt
]
x̃t −

rΩt
ρ

[
1

(r − πG)

Ct
Dt

Ωxt
τ0 + Ωpt + Ωft

]
ε̃xit

where the last equality substitutes Ωpt = (Ct/Dt)
2(τx + Ωxt).

Covariance between qt and x̃t. Note that the first term in qt is a constant and does not show up in any covariance.

Moreover, ỹt ∼ N (0, τ−1
0 ) and iid, and |G| < 1, thus d̃t is a (weakly) stationary AR(1) process and so E[d̃t] = µ < ∞. Thus

with x̃t ∼ N (0, τ−1
x ), we have E[x̃t] = 0 and so Cov(qt, x̃t) = E[qtx̃t]. Lastly, since ỹt, ε̃xit and ε̃fit are iid, they are independent

of x̃t, thus E[x̃tỹt] = E[x̃tε̃xit] = E[x̃tε̃fit] = 0. Therefore,

Cov(qt, x̃t) = E[qtx̃t] =
rΩt
ρ

[
1

(r − πG)

Ct
Dt

τxV̂t −Dt
]
τ−1
x

=
rΩt
ρ

[
1

(r − πG)

Ct
Dt

τxV̂t −
1

r − πG
¯̂
Vtτx

Ct
Dt

+
ρ

r
Ω̄−1
t

]
τ−1
x

=
rΩt
ρ

[
ρ

r
Ω̄−1
t −

1

(r − πG)

Ct
Dt

τx(1− λIt)(V̂ ′t − V̂t)
]
τ−1
x

=
Ωt

λΩt + (1− λ)Ω′t
τ−1
x − rΩt

ρ(r − πG)

Ct
Dt

(1− λIt)(V̂ ′t − V̂t),

which is equation (28) in the main text.

Covariance between qt and ỹt. Since E[ỹt] = 0, Cov(qt, ỹt) = E[qtỹt]. Additionally, as ỹt is independent of x̃t, ε̃xt

and ε̃ft. Then, using the same expression for qt, we have:

Cov(qt, ỹt) = E[qtỹt] =
rΩt
ρ

[
1

r − πG
Ωft + Ωpt

τ0 + Ωpt + Ωft
− Ct

]
τ−1
0

=
rΩt
ρ

[
1

r − πG (1− τ0V̂t)−
1

r − πG

(
1− τ0 ¯̂

Vt
)]
τ−1
0

=
rΩt

ρ(r − πG)
(
¯̂
Vt − V̂t) =

rΩt
ρ(r − πG)

(1− λIt)(V̂ ′t − V̂t)

=
r

ρ(r − πG)
(πC2

t+1τ
−1
0 + πD2

t+1τ
−1
x + (

r

r − πG )2V̂t)
−1(1− λIt)(V̂ ′t − V̂t).

which is equation (29) in the main text.
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A.4.3 Static Economy, π = 0

In the static economy where π = 0, we can simplify equations(28) and (29) further. First, note that with π = 0, Ω̄t =

λV̂ −1
t + (1− λ)V̂

′−1
t . Thus we have

Cov(qt, x̃t) =
V̂ −1
t

λV̂ −1
t + (1− λ)V̂

′−1
t

τ−1
x − Ct

Dt

1

ρ
V̂ −1
t (1− λIt)(V̂ ′t − V̂t)

=
τ−1
x

λ+ (1− λ)
V̂ ′t
V̂t

− Ct
Dt

Cov(qt, ỹt)

=
τ−1
x

λ+ (1− λ) τ0+(C/D)2τx
τ0+Ωft+(C/D)2(τx+Ωxt)

− Ct
Dt

Cov(qt, ỹt) (69)

and

Cov(qt, ỹt) =
1

ρ
V̂ −1
t (1− λIt)(V̂ ′t − V̂t) =

1

ρ
V̂ −1
t (1− λ)

V̂
′−1
t

λV̂ −1
t + (1− λ)V̂

′−1
t

(V̂ ′t − V̂t)

=
1− λ
ρ

1

λV̂ −1
t + (1− λ)V̂

′−1
t

(V̂ −1
t − V̂

′−1
t ) =

1− λIt
ρ

Ωft + (C/D)2Ωxt
τ0 + (C/D)2τx

=
1− λ
ρ

Ωft + (C/D)2Ωxt
τ0 + (C/D)2τx + λ (Ωft + (C/D)2Ωxt)

=
1− λ
ρ

(
λ+

τ0 + (C/D)2τx
Ωft + (C/D)2Ωxt

)−1

(70)

Use equation (70) to compute the total effective precision acquired about innovation in dividends:

Ωft + (
Ct
Dt

)2Ωxt =
ρCov(qt, ỹt)

1− λ (1 + ρCov(qt, ỹt))

(
τ0 + (

Ct
Dt

)2τx

)
, (71)

and then use that in equation (69) to infer the size of informed trading:

λ =
(1− τxCov(qt, x̃t))

(
τ0 + (Ct

Dt
)2τx

)
+ Cov(qt, ỹt)

(
1− τx Ct

Dt

(
τ0 + (Ct

Dt
)2τx

))
τxCov(qt, ỹt)

(
Cov(qt, x̃t) + Ct

Dt
Cov(qt, ỹt)

)
=

Cov(qt, ỹt) +
(
τ0 + (Ct

Dt
)2τx

) [
1− τx

(
Cov(qt, x̃t) + Ct

Dt
Cov(qt, ỹt)

)]
Cov(qt, ỹt)τx

(
Cov(qt, x̃t) + Ct

Dt
Cov(qt, ỹt)

) . (72)

Thus equations (71), (72), and (85) can be used to do the same inference for the static economy.
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Internet Appendix: Not for Publication

B Proofs

We start by proving a few preliminary lemmas which are useful in proving the main results.

Lemma 1 If Ωft > 0, then Ct > 0.

Proof. Using equation (60), it suffices to show that 1/(r − G) > 0 and (1 − τ0V̂t) > 0. From the setup, we assumed that

r > 1 and G < 1. By transitivity, r > G and r − G > 0. For the second term, we need to prove equivalently that τ0V̂t < 1

and thus that τ0 < V̂ −1
t . Recall from (37) that V̂ −1 = τ0 + Ωft + Ωpt. Since Ωft and Ωpt are defined as precisions, they must

be non-negative. Furthermore, we supposed that Ωft > 0. Thus, τ0 < V̂ −1
t , which completes the proof.

Lemma 2 Dt ≤ 0.

Proof. Start from equation (62) and substitute in (37). Since we will often treat the signal-to-noise ratio in prices as a single

variable, we define

ξ ≡ Ct
Dt

(73)

Moreover, let α ≡ ρr
r−G . Simplify to get:

ξ3(Ztτx + ZtΩx) + ξ2(Ωx) + ξ(α+ Ztτ0 + ZtΩf ) + Ωf = 0 (74)

Then, use the budget constraint to express the first order conditions as (16). One can solve for both Ωx and Ωf in terms of ξ:

Ωf =
( K

χf
(
1 +

χf

χx
ξ4
)) 1

2
(75)

Ωx =
(K
χx

(
1− 1

1 +
χf

χx
ξ4

)) 1
2

=
( K

χf

χx

χx
(
1 +

χf

χx
ξ4
)) 1

2
ξ2 =

ξ2χf
χx

( K

χf
(
1 +

χf

χx
ξ4
)) 1

2
(76)

Now I can substitute both of these into equation (74), which fully determines ξ, in terms of exogenous variables.

ξ
(
ξ2Ztτx + α+ Ztτ0

)
+ ξ2Ωx(1 + ξZt) + Ωf (1 + ξZt) = 0 (77)

First note that

Ωf + ξ2Ωx = −ξ(ξ
2Ztτx + α+ Ztτ0)

(1 + ξZt)

where the left hand side is the objective function. So we know the maximized value of objective function solely as a function of

ξ = C
D

. Keep in mind that since we already imposed an optimality condition, this latter equation holds only at the optimum.

Substituting in for Ωft and Ωxt from (75) and (76) yields an equation that implicitly defines ξ as a function of primitives,

K and future equilibrium objects, embedded in Zt.

ξ
(
ξ2Ztτx + α+ Ztτ0

)
+ (1 + ξZt)(1 +

χf
χx
ξ4)
( K

χf
(
1 +

χf

χx
ξ4
)) 1

2
= 0

ξ3Ztτx + ξ(α+ Ztτ0) + (1 + ξZt)(
K

χf
)
1
2 (1 +

χf
χx
ξ4)

1
2 = 0 (78)

The left hand side must equal zero for the economy to be in equilibrium. However, all the coefficients K,χf , χx, τ0, τx are

assumed to be positive. Furthermore, Zt is a variance. Inspection of (39) reveals that it must be strictly positive. Thus, the

only way that the equilibrium condition can possibly be equal to zero is if ξ < 0. Recall that ξ = Ct/Dt. The previous lemma

proved that Ct > 0. Therefore, it must be that Dt < 0.

The next lemma proves the following: If no one has information about future dividends, then no one’s trade is based

on information about future dividends, thus the price cannot contain information about future dividends. Since Ct is the

43



price coefficient on future dividend information, Ct = 0 means that the price is uninformative. In short, price cannot reflect

information that no one knows.

Lemma 3 When information is scarce, price is uninformative: As Kt → 0, for any future path of prices (At+j , Bt+j , Ct+j

and Dt+1, ∀j > 0), the unique solution for the price coefficient Ct is Ct = 0.

Proof. Step 1: As Ωft → 0, prove Ct = 0 is always a solution.

Start with the equation for Dt (12). Substitute in for Ω using (40) and 1 +B = r/(r −G) and rewrite it as

Dt =
1

r −GV̂t
[
τx
Ct
Dt
− ρr

(r −G)
− ZtV̂ −1

t

]
(79)

Then, express Ct from (60) as Ct = 1/(r−G)V̂t(V̂
−1
t − τ0) and divide Ct by Dt, cancelling the V̂t/(r−G) term in each to get

Ct
Dt

=
V̂ −1
t − τ0

τx
Ct
Dt
− ρr

(r−G)
− ZtV̂ −1

t

(80)

If we substitute in V̂ −1
t = τ0 + Ωpt + Ωft from (37) and then set Ωft = 0, we get

Ct
Dt

=
Ωpt

τx
Ct
Dt
− ρr

(r−G)
− Zt(τ0 + Ωpt)

(81)

Then, we use the solution for price information precision Ωpt = (C/D)2(τx + Ωx) and multiply both sides by the denominator

of the fraction to get

Ct
Dt

[
τx
Ct
Dt
− ρr

(r −G)
− Zt(τ0 +

(
Ct
Dt

)2

(τx + Ωx))

]
=

(
Ct
Dt

)2

(τx + Ωx) (82)

We can see right away that since both sides are multiplied by C/D, as Ωft → 0, for any given future price coefficients Ct+1

and Dt+1, C = 0 is always a solution.

Step 2: prove uniqueness.

Next, we investigate what other solutions are possible by dividing both sides by C/D:

τx
Ct
Dt
− ρr

(r −G)
− Zt(τ0 +

(
Ct
Dt

)2

(τx + Ωx))−
(
Ct
Dt

)
(τx + Ωx) = 0 (83)

This is a quadratic equation in C/D. Using the quadratic formula, we find

Ct
Dt

=
Ωxt ±

√
Ω2
xt − 4Zt(τx + Ωxt)(ρr/(r −G) + τ0Zt)

−2Zt(τx + Ωxt)
(84)

If we now take the limit as Ωxt → 0, the term inside the square root becomes negative, as long as r−G > 0. Thus, there

are no additional real roots when Ωxt = 0.

Similarly, if Ωx is not sufficiently large, there are no real roots of (84), which proves that: As Ωft → 0, if we take Ct+1

and Dt+1 as given, and Ωxt is sufficiently small, then the unique solution for the price coefficient C is C = 0.

Proof of Result 1. From lemma 3, we know that as Ct = 0. From the first order condition for information (16), we see that

the marginal utility of demand information relative to fundamental information (marginal rate of substitution) is a positive

constant times (Ct/Dt)
2. If Ct = 0, then ∂Uit/∂Ωxit is a positive constant time zero, which is zero.

Proof of Result 2.

(2a)

Part 1: d|Ct/Dt|
dK

> 0. In the model where π = 0, there is a simpler set of equations that characterize a solution. In this

environment, we can show exactly how changes in parameters affect information choices and price coefficients. These static

forces are also at play in the dynamic model. But there are additional dynamic forces that govern the long-run behavior of

the model.

44



Let ξ = C
D

. The following equations characterize the equilibrium of the static (π = 0) model:

ξ2Ωx + ξρ+ Ωf = 0 (85)

which has two solutions

ξ =
−ρ±

√
ρ2 − 4ΩfΩx

2Ωx

we pick the larger solution (with +), since when there is no demand information (for instance χx →∞, the solution converges

to the unique solution in the models where there is only fundamental information acquisition, −Ωf

ρ
.

Thus

ξ =
−ρ+

√
ρ2 − 4ΩfΩx

2Ωx
(86)

Now there are two extra equations to complete the model, budget constraint and investor FOC

Ω2
f + χΩ2

x = K

Ωx
Ωf

=
1

χ
ξ2

which using equation (86) implies

Ωf =

√
K(

1 + ξ4

χ

) (87)

Ωx =
ξ2

χ

√
K(

1 + ξ4

χ

) (88)

put back into equation (86) to get the signal-to-noise ratio

ξ = − 1√
2

√
ρ2χ

K
±
√
−χ (4K2 − ρ4χ)

K

again, we pick the solution which is consistent with the limit χ→∞, ξ = −
√
K
ρ

ξ = − 1√
2

√
ρ2χ

K
−
√
−χ (4K2 − ρ4χ)

K
= −ρ

√
χ

2K

√
1−

√
1− 4K2/(ρ4χ)

which implies

d(C
D

)

dK
=

dξ

dK
= −

ρ
√
χ

(2K)3/2

√
1−

√
1− 4K2

ρ4χ√
1− 4K2

ρ4χ

< 0 (89)

which means |C
D
| is increasing, i.e. signal-to-noise-ratio improves as more information becomes available.

Part 2: ∂|Ct/Dt|
∂Ωf

and ∂|Ct/Dt|
∂Ωx

Let ξt = Ct
Dt

denote the equilibrium signal-to-noise ratio associated with total information

capacity Kt, and for brevity suppress the subscript t. We have

dξ

dK
=

∂ξ

∂Ωf

(
dΩf
dK

+
∂Ωf
∂ξ

dξ

dK

)
+

∂ξ

∂Ωx

(
dΩx
dK

+
∂Ωx
∂ξ

dξ

dK

)
=

∂ξ

∂Ωf

dΩf
dK

+
∂ξ

∂Ωx

dΩx
dK

+

(
∂ξ

∂Ωf

∂Ωf
∂ξ

+
∂ξ

∂Ωx

∂Ωx
∂ξ

)
dξ

dK

The first term is the direct effect of change in K on ξ through change in fundamental analysis, the second term is the direct

effect through change in demand analysis, and the third term (in parentheses) is the indirect effect. We have

45



∂ξ

∂Ωf

dΩf
dK

= − Ωf
2K(2ξΩx + ρ)

∂ξ

∂Ωx

dΩx
dK

=
ξρ+ Ωf

2K(2ξΩx + ρ)(
∂ξ

∂Ωf

∂Ωf
∂ξ

+
∂ξ

∂Ωx

∂Ωx
∂ξ

)
dξ

dK
=

Ωf
(
ξ4 + χ

)
+ ξρχ

KΩx(ξ4+χ)(2ξΩx+ρ)(ρ2χ−2Kξ2)
ρ2χ

Note that

Ωf
(
ξ4 + χ

)
+ ξρχ = ξ4Ωf + χ(ξρ+ Ωf ) = ξ4Ωf − ξ2χΩx = ξ2 (ξ2Ωf − Ωx

)
= 0

i.e. the indirect effect is zero, consistent with what envelope theorem implies. Thus we have the following decomposition

dξ

dK
=

∂ξ

∂Ωf

dΩf
dK

+
∂ξ

∂Ωx

dΩx
dK

=
−Ωf

2K(2ξΩx + ρ)
+

ξρ+ Ωf
2K(2ξΩx + ρ)

.

From equation (85), ξρ+ Ωf < 0, thus both effects have the same sign. Moreover, we have already proven in result 2 that
dξ
dK

< 0, which in turn implies both effects must be negative and 2ξΩxt+ρ > 0. Thus the increase in either type of information

acquisition, following an increase in capacity, improves the signal-to-noise ratio (i.e. D
D

increases in absolute value).

(2b)

Recall that with π = 0

C =
1

r

(
1− τ0

τ0 + Ωf + ξ2(τx + Ωx)

)
=

1

r

(
1− τ0V̂

)
Thus to prove dC

dK
> 0, it is sufficient to show that dV̂

dK
< 0. Using the first order condition, along with definition of V̂ and

that dξ2

dK
> 0 we have that a sufficient condition for dV̂

dK
< 0 is d

√(
1 + ξ4

χ

)
K/dK > 0, which is true. Thus dC

dK
> 0.

(2c)

Recall that with π = 0

D =
1

r

τxξ − ρ
τ0 + Ωf + ξ2(τx + Ωx)

=
1

r
(τxξ − ρ)V̂ .

Thus

dD

dK
=

1

r

[
τxV̂

dξ

dK
+ (τxξ − ρ)

dV̂

dK

]
.

The derivative is the sum of two terms. The first term is negative since dξ
dK

< 0, while the second term is positive since dV̂
dK

< 0

as argued in part (2b), and (τxξ − ρ) < 0. So we have to determine which one is larger.

Substitute the closed form solutions into the above expression, and solve for K̄D such that

1

r

[
τxV̂

dξ

dK
+ (τxξ − ρ)

dV̂

dK

]
K=K̄D

= 0. (90)

The algebra is cumbersome, but it is straightforward to show that 0 < K̄D < K̄ is unique, and that dD
dK

< 0 if and only if

K < K̄D. To observe the latter point, note that when K → 0, ξ → 0, thus

dD

dK
⇔ dξ

dK
+

ρ

2τ0
√
K

< 0.

Substitute for dξ
dK

from equation (89) and use L’hopital sure to get that as K → 0, the latter inequality holds.

Proof of Result 3. From the individual first order condition (16), the only channel where aggregate information choices affect

the individual choice is through the signal-to-noise-ratio. More specifically for π = 0, one can solve for both signal-to-noise

ratio and individual information choices in closed form, as done in proof of result 2.
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As ξt < 0, from equation (86) it is immediate that ξt
Ωft

< 0. Next, equation (88) implies

dΩxit

dξt
=

2ξt
√

kχ

ξ4t +χ

ξ4
t + χ

< 0.

Which together implies dΩxit
dΩft

> 0.

Proof of Result 4.

(4a)

Substitute the closed form for ξ into Ωf and take the derivative to get19

dΩf
dK

=
2
(

8K4 + 3K2ρ4χ
(√

1− 4K2

ρ4χ
− 1
))

ρ8χ2
(√

1− 4K2

ρ4χ
− 1
)2
√
K
(√

1− 4K2

ρ4χ
+ 1
)√

2− 8K2

ρ4χ

Each term in the denominator is positive. Thus for dΩx
dK

to be positive it must be that

8K2 + 3ρ4χ

(√
1− 4K2

ρ4χ
− 1

)
> 0.

Manipulating the latter equation, the necessary and sufficient condition is

K <

√
3

4
ρ2√χ =

√
3

2
K̄,

where K̄ =
ρ2
√
χ

2
, as defined in the main text.

(4b)

From equation (88)

Ωx =
1

χ

√
K(

1
ξ4

+ 1
χ

)
Thus as K ↑, the numerator increases and the denominator falls (part a), thus dΩx

dK
> 0.

Lemma 4 Balanced data processing growth depends on future information risk and long-lived assets. |Dt| ≥
ρ(r−G)

r
Ct
(
C2
t+1τ

−1
0 +D2

t+1τ
−1
x

)
, with strict inequality if K > 0.

Proof. Use equation (78) to write

(1 + ξZt)(1 +
χf
χx
ξ4)

1
2 = −(

χf
K

)
1
2 ξ(ξ2Ztτx + α+ Ztτ0) (91)

Since we’ve proven that ξ ≤ 0 (lemma 2). And we know from the structure of the optimization problem (linear objective

subject to convex cost), for any Kt > 0, Ωft > 0, which implies Ct > 0, thus ξ < 0 with strict inequality. The other terms on

the right side are strictly positive squares or positive constants, with a negative sign in front. Thus, the right hand side of the

equation (93) is positive. On the left, since (1 +
χf

χx
ξ4)

1
2 is a square root, and therefore positive, this implies that (1 + ξZt)

must be positive as well for the equality to hold. (1 + ξZt) > 0 implies that Zt < −1/ξ Substitute for Zt to get the result.

This result puts a bound on how liquid the price can be. The liquidity is bounded by the product of price informativeness

and un-learnable, future risk.

Proof of Result 5.

(5a) Ωft/Ωxt does not converge to 0.

19We suppress the t subscripts for brevity.
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If Ωft/Ωxt converges to 0, then by the first order condition, it must be that ξ → ∞. It is sufficient to show that ξ → ∞
violates equation (78). Rearrange (78) to get[

ξZt
(
ξ2τx + (

K

χf
)
1
2 (1 +

χf
χx
ξ4)

1
2 + τ0

)
+ ξα

]
+ (

K

χf
)
1
2 (1 +

χf
χx
ξ4)

1
2 = 0 (92)

The term in square brackets is negative and the one outside is positive. Assume ξ → ∞. If Zt does not go to zero, then the

negative term grows faster and the equality cannot hold. So it must be that Zt → 0. Using equation (39) of the draft, that

requires that both Ct+1 → 0 and Dt+1 → 0. In order for Ct+1 to go to zero, V̂ → τ−1
0 . But since ξ →∞, from equation (37)

in the main draft, V̂ → 0, which is a contradiction.

(5b) As K →∞, Ωft/Ωxt does not converge to ∞.

If Ωft/Ωxt did converge to ∞ as K → ∞, then by the first-order condition (16), it would have to be that ξ → 0. So it

suffices to show that Ωft/Ωxt =∞ is inconsistent with ξ = 0, in equilibrium.

Start from the equilibrium condition (77), which must be zero in equilibrium. If ξ → 0, then the first term goes to zero.

The proof of lemma 4 proves, along the way, that (1 + ξZt) > 0. (Otherwise, (77) can never be zero because it is always

negative.) Thus the second term Ωxtξ
2(1 + ξZt) must be non-negative.

The third term Ωft(1 + ξZt) also converges to ∞ because Ωft →∞ and (1 + ξZt) > 0. How do we know that Ωft →∞?

In principle, Ωft/Ωxt could become infinite either because Ωft became infinite or because Ωxt goes to zero. But if Ωxt goes to

zero and Ωft is finite, then the information processing constraint (3), which requires that the weighted sum of Ωft and Ωxt

be K cannot be satisfied as K →∞.

Since one term of (77) becomes large and positive and the other two are non-negative in the limit, the sum of these three

terms cannot equal zero. Therefore, Ωft/Ωxt →∞ cannot be an equilibrium.

(5c) there exists an equilibrium where Ωft/Ωxt converges to a constant.

By the first order condition (16), we know that Ωft/Ωxt converges to a constant, if and only if ξ converges to a constant.

Thus, it suffices to show that there exists a constant ξ that is consistent with equilibrium, in the high-K limit.

Suppose ξ and Zt are constant in the high-K limit. In equation (78) as K → ∞, the last term goes to infinity, unless

ξ → 1
Zt

. If the last term goes to infinity and the others remain finite, this cannot be an equilibrium because equilibrium

requires that the left side of (78) is zero. Therefore, it must be that ξ → −1
Zt

. The question that remains is whether ξ and Zt

are finite constants, or whether one explodes and the other converges to zero, in the high-K limit.

Suppose ξ = − 1
Zt

, which is constant (ξ = ξ̄). Then Zt = Z̄ is constant too. The rest of the proof checks to see if such a

proposed constant- ξ̄ solution is consistent with equilibrium. We do this by showing that ξ does not explode on contract as

K increases. In other words, for ξ = −1
Zt

to be stable and thus the ratio of fundamental to technical analysis to be stable, we

need that ∂ξ/∂K → 0, in other words, ξ and therefore Ωft/Ωxt converges to a constant as K →∞.

Step 1: Derive dξ/dK: Start from the equilibrium condition for ξ (78) and apply the implicit function theorem:(
3Ztτxξ

2 +A+ Ztτ0
)
dξ +

1

2
(

1

Kχf
)
1
2 (1 + ξZt)(1 +

χf
χx
ξ4)

1
2 dK

+

[
1

2
(
K

χf
)
1
2 (1 + ξZt)(1 +

χf
χx
ξ4)−

1
2 (4

χf
χx
ξ3) + Zt(

K

χf
)
1
2 (1 +

χf
χx
ξ4)

1
2

]
dξ = 0

So we have

dξ

dK
=

1

2
(

1

Kχf
)
1
2

−(1 + ξZt)(1 +
χf

χx
ξ4)

1
2

3Ztτxξ2 +A+ Ztτ0 + 2
χf

χx
( K
χf

)
1
2 (1 + ξZt)(1 +

χf

χx
ξ4)−

1
2 ξ3 + Zt(

K
χf

)
1
2 (1 +

χf

χx
ξ4)

1
2

Use equation 78 to write the numerator as

(1 + ξZt)(1 +
χf
χx
ξ4)

1
2 = −(

χf
K

)
1
2 ξ(ξ2Ztτx +A+ Ztτ0) (93)

Now use this to rewrite dξ
dK

as

dξ

dK
=

1

2K

1
3Ztτxξ2+A+Ztτ0
ξ(ξ2Ztτx+A+Ztτ0)

− 2
χf

χx
(1 +

χf

χx
ξ4)−1ξ3 − Zt

(1+ξZt)

(94)
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Step 2: Show that dξ/dK → 0 as K →∞, as long as X(·) 6 →0

As K → ∞, it is clear that 1/2K → 0. As long as the term that multiplies 1/2K stays finite, the product will converge

to zero. Since the numerator is just 1, the second term will be finite, as long as the denominator does not go to zero. Define

X(ξ, Zt) =
3Ztτxξ

2 +A+ Ztτ0
ξ(ξ2Ztτx +A+ Ztτ0)

− 2
χf
χx

(1 +
χf
χx
ξ4)−1ξ3 − Zt

(1 + ξZt)
(95)

which is the denominator of the second fraction on the rhs of equation (94). Then if X 6→ 0, 1/X is finite, then 1/2K ∗ 1/X

goes to zero as K gets large. Thus, we get that ∂ξ/∂K → 0 as K →∞.

Step 3: X(·) 6→ 0.

To complete the proof, we need to show that ξ̄ = − 1
Z̄

which satisfies the equilirium condition (100) as K → ∞, does not

cause X(·) = 0. We can check this directly: in equation (95), if ξ = − 1
Zt

, the denominator of the last term becomes zero; so

last term becomes infinite. The only term in (95) with opposite sign is the middle term, which is finite if ξ = C
D

is finite (the

running assumption). If the last term of X tends to infinity and the only term of opposite sign is finite, the sum cannot be 0.

Thus, for ξ̄ = − 1
Z̄

, which is the limit attained in the limit as K →∞, we have that X(ξ̄) 6= 0.

Step 4: As K →∞, if (101) holds, a real-valued, finite-ξ solution exists.

From equations (37-40), as K →∞ at least one of the two information choices goes to ∞, so with finite, non-zero C
D

:

lim
K→∞

V̂ = 0 (96)

lim
K→∞

Ω−1
t =

r

ρ(r −G)
Zt = D2

t+1(ξ2
t+1τ

−1
0 + τ−1

x ) (97)

lim
K→∞

Dt = −ρ
r

Ω−1
t = − 1

(r −G)
Zt (98)

A word of interpretation here: Equation (40), which defines Ω−1 is the total future payoff risk. As V̂ → 0, it means the

predictable part of this variance goes away as information capacity gets large. Zt, which is the unpredictable part, remains

and governs liquidity, Dt.

Next, solve (97) for Dt+1, backdate the solution 1 period, to get an expression for Dt, and equate it to the expression for

Dt in (98). This implies that limK→∞D = D̄ is constant and equal to both of the following expressions

D̄2 =
−rZt

ρ(r −G)ξ̄(ξ̄2τ−1
0 + τ−1

x )
=

Zt

(r −G)2ξ̄2
(99)

We can cancel Zt on both sides, which delivers a quadratic equation in one unknown in ξ̄:

ξ̄2τ−1
0 +

r(r −G)

ρ
ξ̄ + τ−1

x = 0. (100)

In order for ξ̄ to exist equation (100) requires that the expression inside the square root term of the quadratic formula (often

written as (b2 − 4ac)) not be negative. This imposes the parametric restriction(
r(r −G)

ρ

)2

− 4τ−1
0 τ−1

x ≥ 0. (101)

Rearranging this to put τ0 on the left delivers τ0 ≥ τ , where τ = 4τ−1
x ρ2(r(r −G))−2. If we instead rearrange this to put τx

on the left delivers τx ≥ τ , where τ = 4τ−1
0 ρ2(r(r −G))−2.

Step 4: Balanced growth. Finally, use lemma 4 to prove the existence of balanced growth. The lemma shows that Ct/|Dt| <(
ρ ((r −G)/r) (C2

t+1τ
−1
0 +D2

t+1τ
−1
x )
)−1

. The first term is just fixed parameters. The second term, (C2
t+1τ

−1
0 + D2

t+1τ
−1
x ) is

the variance of the part of tomorrow’s price that depends on future shocks, xt+1 and yt+1. This is the future information

risk. It converges to a large, positive number as K grows. When information is abundant, high future information risk pushes

Ct/|Dt| down, toward a constant.

In contrast, if demand analysis were to keep growing faster than fundamental analysis (Ωft/Ωxt were to fall to zero), by

the first order condition (16), it means that (Ct/Dt)
2 keeps rising to infinity. But if (Ct/Dt)

2 is converging to infinity, then at
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some point, it must violate the inequality above because the right side of the inequality is decreasing over time. Thus, demand

analysis cannot grow faster than fundamental analysis forever.

The only solution that reconciles the first order condition, with the equilibrium price coefficients, is one where (Ωft/Ωxt)

stabilizes and converges to a constant. If fundamental analysis grows proportionately with demand analysis, the rise in

the amount of fundamental analysis makes prices more informative about dividends: Ct increases. Proportional growth in

fundamental and demand analysis allows Ct to keep up with the rise in Dt, described above. Therefore, as information

technology grows (K → ∞), a stable Ct/Dt rationalizes information choices (Ωxt, Ωft) that grow proportionately, so that

Ωxt/Ωft converges to a constant.

(5d) No perfect liquidity equilibrium, Dt 6= 0, ∀ t
Lemmas 1 and 2 prove that for any Ωft,Ωxt ≥ 0, C ≥ 0 and Dt ≤ 0. Moreover, from the structure of the optimization

problem (linear objective subject to convex cost), for any Kt > 0, Ωft > 0, which implies Ct > 0. Since Ct > 0, if Dt → 0,

the first order condition implies that Ωft/oxt has to converge to zero. This directly violates equation (92) for any finite K,

and part (5a) of the result shows that the same contradiction happens in the limit as K → ∞. Thus there is no level of

technological progress for which the market becomes perfectly liquid, Dt = 0.

Proof of Result 6.

For the static model, we want to evaluate the effect on price informativeness of reallocating attention from the supply

shock to fundamental. Since we have to respect the budget constraint on attention allocation we have that

Ωf =
√
K − χxΩ2

x.

Thus
dΩf
dΩx

= −χx
Ωx
Ωf

Using, the F.O.C Ωx
Ωf

= ξ2

χx
, we get that in equilibrium

dΩf

dΩx
= −ξ2.

We are going to calculate the effect on ξ ≡ C/D of increasing one unit of Ωx but considering the decrease in Ωf needed

to achieve the increase. Again, our starting point is

ξ2Ωx + ξρ+ Ωf = 0

Differentiating with respect to Ωx, we have

2ξ
dξ

dΩx
Ωx + ξ2 +

dξ

dΩx
ρ+

dΩf
dΩx

= 0

Replacing
dΩf

dΩx
= −ξ2, we finally obtain

dξ

dΩx
[2ξΩx + ρ] = 0

The term in brackets is 0 only if ξ = −ρ
2Ωx

. In fact, we know that ξ > −ρ
2Ωx

since the solution of ξ2Ωx+ξρ+Ωf = 0 that behaves

as expected when χx →∞ is

ξ =
−ρ
2Ωx

+

√
ρ2 − 4ΩfΩx

2Ωx

Thus, the only solution to the equation dξ
dΩx

[2ξΩx + ρ] = 0 is dξ
dΩx

= 0.

Second order condition: Of course, it could be that the equilibrium allocation minimizes price informativeness. To show

that this is a maximum, we also need to show that the second order condition is negative.

Thus starting from

2ξ
dξ

dΩx
Ωx + ξ2 +

dξ

dΩx
ρ+

dΩf
dΩx

= 0,

Group terms, use
dΩf

dΩx
= −χx Ωx

Ωf
, and then differentiate a second time to get
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dξ

dΩx
(2ξΩx + ρ) = −ξ2 + χx

Ωx
Ωf

d2ξ

dΩ2
x

(2ξΩx + ρ) +
dξ

dΩx

d(2ξΩx + ρ)

dΩx
= −2ξ

dξ

dΩx
+ χx

[
1

Ωf
− Ωx

Ω2
f

dΩf
dΩx

]

Now use dξ
dΩx

= 0, and Ωx
Ωf

= ξ2

χx
to get

d2ξ

dΩ2
x

(2ξΩx + ρ) =
χx
Ωf

[
1 + χx

(
Ωx
Ωf

)2
]

d2ξ

dΩ2
x

=
χx

Ωf (2ξΩx + ρ)

(
1 +

1

χx
ξ4

)
> 0

While this is positive, it is positive in ξ, which is (C/D). Since D < 0, this implies that the second derivative wrt to |C/D|
is > 0. In other words, the efficient allocation minimizes (C/D), the negative signal-to-noise ratio. Since C/D is a negative

number, minimizing it is maximizing the absolute value. Thus, the equilibrium information processing allocation maximizes

the measure of price informativeness |C/D|.

Result 7 Information response to technological growth (dynamic). For π = 1,

(a) If Ωx < τ0 + Ωf and V ar[pt+1 + d̃t|It] < max{
√

3, 1
2
|Ct/Dt|} , then ∂C/D

∂Ωf
< 0 and ∂C/D

∂Ωx
≤ 0.

(b) Both fundamental and demand analysis increase price informativeness. If r −G > 0 and (τx + Ωxt) is sufficiently small,

then ∂Ct/∂Ωft > 0 and ∂Ct/∂Ωxt > 0.

(c) If demand is not too volatile, then both fundamental and demand analysis improve concurrent liquidity. If τx > ρr/(r−G)

and Dt < 0, then ∂Dt/∂Ωft > 0 and ∂Dt/∂Ωxt > 0.

Proof.

(7a)

The strategy for proving this result is to apply the implicit function theorem to the price coefficients that come from

coefficient matching in the market-clearing equation. After equating supply and demand and matching all the coefficients on

x̃t, we arrive at (12). Rearranging that equation gives us the expression for Ct/Dt in (80). If we subtract the right side of

(80) from the left, we are left with an expression that is equal to zero in equilibrium, which we’ll name F :

F =
Ct
Dt
− V̂ −1

t − τ0
τx

Ct
Dt
− ρr

(r−G)
− ZtV̂ −1

t

We compute ∂C/D
∂Ωx

= −
(

∂F
∂C/D

)−1
∂F
∂Ωx

and ∂C/D
∂Ωf

= −
(

∂F
∂C/D

)−1
∂F
∂Ωf

. In particular, we have:

∂F

∂C/D
= 1−

(
2
Ct
Dt

(τx + Ωx)

)(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−1

+(V̂ −1 − τ0)

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2(
τx − Zt

(
2
Ct
Dt

(τx + Ωx)

))
= 1−

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2

[(
2
Ct
Dt

(τx + Ωx)

)(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
− (V̂ −1 − τ0)

(
τx − Zt

(
2
Ct
Dt

(τx + Ωx)

))]

∂F

∂Ωf
= −(1)

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−1

+ (V̂ −1 − τ0)

(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2

(−Zt)

= −
(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−2 [(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
+ Zt(V̂

−1 − τ0)

]
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We notice that ∂F
∂Ωx

=
(
Ct
Dt

)2
∂F
∂Ωf

since

∂F

∂Ωx
=

∂F

∂V̂ −1

∂V̂ −1

∂Ωx
=

∂F

∂V̂ −1

(
Ct
Dt

)2
∂V̂ −1

∂Ωf
=

(
Ct
Dt

)2
∂F

∂Ωf

.

Then:

∂C/D

∂Ωf
=

(
τx

Ct
Dt
− ρr

r−G − ZtV̂
−1
)

+ Zt(V̂
−1 − τ0)(

τx
Ct
Dt
− ρr

r−G − ZtV̂ −1
)2

−
[(

2Ct
Dt

(τx + Ωx)
)(

τx
Ct
Dt
− ρr

r−G − ZtV̂ −1
)
− (V̂ −1 − τ0)

(
τx − Zt

(
2Ct
Dt

(τx + Ωx)
))]
(102)

Part 1: If Ωx < τ0 + Ωf and C/D > −Zt/2 , then ∂C/D
∂Ωf

< 0 and ∂C/D
∂Ωx

≤ 0.

The numerator of (102) is(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
+ Zt(V̂

−1 − τ0) = τx
Ct
Dt
− ρr

r −G − Ztτ0 < 0

The inequality holds since we’ve proven that Ct/Dt < 0 and r > G.

In the denominator, however, not all the terms are negative. The denominator of (102), divided by by
(
τx

Ct
Dt
− ρr

r−G − ZtV̂
−1
)

+

Zt(V̂
−1 − τ0) is:(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)
−
(

2
Ct
Dt

(τx + Ωx)

)
+ (V̂ −1 − τ0)

(
τx − Zt

(
2
Ct
Dt

(τx + Ωx)

))(
τx
Ct
Dt
− ρr

r −G − ZtV̂
−1

)−1

(103)

The only positive term is −2Ct
Dt

Ωx. Then, is it easy to see that if C/D is sufficiently close to zero, then −2Ct
Dt

Ωx <
ρr
r−G +

Zt(τ0 + Ωf ), so (103) is negative.

Thus, the numerator is negative and if C/D is sufficiently close to zero the denominator is positive, so ∂C/D
∂Ωf

< 0 and

∂C/D
∂Ωx

=
(
Ct
Dt

)2
∂C/D
∂Ωf

< 0 if C/D < 0 and ∂C/D
∂Ωx

= 0 if C/D = 0.

Part 2: If C/D < − 2Z−1
t
3

, then ∂C/D
∂Ωf

< 0 and ∂C/D
∂Ωx

≤ 0

To see this, we analyze if under these new condition inequality (103) holds. We have:

− ρr

r −G − Zt(τ0 + Ωf )− 2
Ct
Dt

Ωx − 3Zt

(
Ct
Dt

)2

(τx + Ωx)

= − ρr

r −G − Zt(Ωx)− Ct
Dt

Ωx

(
2− 3Zt

Ct
Dt

)
− 3Zt

(
Ct
Dt

)2

τx

So if C/D < − 2Z−1
t
3

, we can prove the above claim:

= − ρr

r −G − Zt(Ωx)− Ct
Dt

Ωx

(
2− 3Zt

Ct
Dt

)
− 3Zt

(
Ct
Dt

)2

τx

< − ρr

r −G − Zt(Ωx)− 3Zt

(
Ct
Dt

)2

τx

< 0

Now, combining the two previous claims, we have that if Ωx < τ0 + Ωf and Zt >
1√
3
, then ∂C/D

∂Ωf
< 0 and ∂C/D

∂Ωx
≤ 0. The

condition Zt >
1√
3

implies that −Zt
2

< − 2Z−1
t
3

, which in turn the result for the entire support of C/D.

(7b)

From (60), Ct = 1
r−G (1− τ0V̂t).

From (37), V̂t is defined as

V̂ = [τ0 + Ωft +

(
Ct
Dt

)2

(τx + Ωxt)]
−1 (104)
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Notice that Ct shows up twice, once on the left side and once in V̂ . Therefore, we use the implicit function theorem to

differentiate. If we define F ≡ Ct − 1
r−G (1− τ0V̂ ), then ∂F/∂Ct = 1 + 1

r−Gτ0∂V̂ /∂Ct. Since τx and Ωxt are both precisions,

both are positive. Therefore, ∂V̂ −1/∂Ct = 2Ct/D
2
t (τx + Ωxt). This is positive, since we know that Ct > 0. That implies that

the derivative of the inverse is ∂V̂ /∂Ct = −V̂ 22Ct/D
2
t (τx + Ωxt), which is negative. The ∂F/∂Ct term is therefore one plus

a negative term. The result is positive, as long as the negative term is sufficiently small: 2
r−Gτ0V̂

2Ct/D
2
t (τx + Ωxt) < 1. We

can express this as an upper bound on τx + Ωxt by rearranging the inequality to read: (τx + Ωxt) < 1/2(r−G)τ−2
0 V̂ −2D2

t /Ct.

Next, we see that ∂V̂ −1/∂Ωft = 1. Thus, ∂V̂ /∂Ωft < 0. Since ∂F/∂V̂ > 0, this guarantees that ∂F/∂Ωft < 0.

Likewise, ∂V̂ −1/∂Ωxt = (Ct/Dt)
2. Since the square is always positive, ∂V̂ /∂Ωxt < 0. Since ∂F/∂V̂ > 0, this guarantees

that ∂F/∂Ωxt < 0.

Finally, the implicit function theorem states that ∂Ct/∂Ωft = −(∂F/∂Ωft)/(∂F/∂Ct). Since the numerator is positive,

the denominator is negative and there is a minus sign in front, ∂Ct/∂Ωft > 0. Likewise, ∂Ct/∂Ωxt = −(∂F/∂Ωxt)/(∂F/∂Ct).

Since the numerator is positive, the denominator is negative and there is a minus sign in front, ∂Ct/∂Ωxt > 0.

(7c)

Part 1: ∂Dt/∂Ωft > 0.

From market clearing:

Dt = [r − (1 +B)V̂ + Ωp
1

C
]−1[−ρΩ−1

t − (1 +B)
C

D
V̂ Ωx] (105)

Use Ωp = (C
D

)2(Ωx + τx) to get Dtr − (1 +B)V̂t
C
D

(τx) = −ρΩ−1
t . Then, use the stationary solution for B : 1 +B = r

r−G :

Dt −
1

r −GV̂t
C

D
τx = −ρ

r
Ω−1
t (106)

Then use (40) to substitute in for Ω−1
t :

Dt = − 1

r −GZt −
rρ

(r −G)2
V̂ +

1

r −GV̂t
Ct
Dt

τx (107)

In the above, the RHS, less the last term, is the loading on Xt+1, and the last term represents price feedback. We then

define F ≡ L.H.S. of (107)− R.H.S. of (107). So that we can apply the implicit function theorem as ∂Dt/∂Ωf = − ∂F
∂Ωf

/ ∂F
∂Dt

.

We begin by working out the denominator.

∂F

∂Dt
= 1 + 0 +

rρ

(r −G)2

∂V̂

∂Dt
− 1

r −G
∂V̂ + Ct

Dt

∂Dt
τx (108)

∂V̂

∂Dt
=

∂V̂

∂V̂ −1

∂V̂ −1

∂Dt
= −V̂ 2[−2C2

t

D3
t

(τx + Ωx)] = 2
C2

D3
V̂ 3
t (τx + Ωx) (109)

∂V̂ Ct
Dt

∂Dt
=
Ct
Dt

∂V̂t
∂Dt

+ V̂ (− C

D2
) (110)

=
C

D2
V̂ [2

Ct
Dt

(τx + Ωx)− 1] (111)

∂F

∂Dt
= 1 +

rρ

(r −G)2
· 2C

2

D3
V̂ 3
t (τx + Ωx)− τx

r −G
C

D2
V̂t[2

Ct
Dt

(τx + Ωx)− 1] (112)

∂F

∂Ωf
= 0− 0 +

rρ

(r −G)2

∂V̂

∂Ωt
− 1

r −G
Ct
Dt

τx
∂V̂

∂Ωt
(113)
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Recall the definition V̂t ≡ [τ0 + Ωft + Ct
Dt

2
(τx + Ωx)]−1. Differentiating V̂ , we get

∂V̂

∂Ωf
=

∂V̂t

∂V̂ −1
t

· ∂V̂
−1
t

∂Ωf
= −V̂ 2

t
∂V̂ −1

t

∂Ωf
= −V̂ 2

t (114)

substituting this in to (113) yields

∂F

∂Ωf
=

1

r −GV̂
2
t [
Ct
Dt

τx −
rρ

r −G ] (115)

Substituting in the derivative of V̂ , we get

∂Dt
∂Ωf

= −
1

r−G V̂
2
t [Ct

Dt
τx − rρ

r−G ]

1 2rρ
(r−G)2

C2

D3 V̂
2
t (τx + Ωx)− τx

r−G
C
D2 V̂t[2

C
ρ

(τx + Ωx)− 1]
(116)

Observe that if Ct
Dt

< 0, and r > G, then the numerator is positive (including the leading negative sign).

The denominator is positive if the following expression is positive:

r −G
C
D2 V̂

+ 2ρ
r

r −G
Ct
Dt

V̂t(τx + Ωx)− τxV̂t[
2C

D
(τx + Ωx − 1)] > 0 (117)

This is equivalent to

r −G
V̂t

D2

C
+ 2V̂t

Ct
Dt

(τx + Ωx)[
rρ

r −G − τx] + τxV̂t > 0. (118)

Lemma 2 proves that D < 0. That makes the middle term potentially negative. However, if [ rρ
r−G − τx] < 0 as well, the

product of this and D is positive. Thus the middle term is positive. That inequality can be rearranged as τx >
rρ
r−G . Since

the rest of the terms are squares and precisions, the rest of the expression is positive as well.

Thus if τx >
rρ
r−G , then ∂Dt

∂Ωt
> 0.

Part 2: ∂Dt/∂Ωxt > 0.

Begin with the implicit function theorem: ∂Dt/∂Ωx = − ∂F
∂Ωx

/ ∂F
∂Dt

. The previous proof already proved that if τx >
rρ
r−G ,

the denominator is positive. All that remains is to sign the numerator.

∂F

∂Ωx
= 0 + 0 +

rρ

(r −G)2

∂V̂

∂Ωx
− 1

r −G
Ct
Dt

τx
∂V̂

∂Ωx

where ∂V̂ /∂Ωx = −V̂ 2(C2)/(D2). Substituting the partial of V̂ into the partial of F yields

∂F

∂Ωx
= V̂ 2 C

2

D2
(− rρ

(r −G)2
+

1

r −G
Ct
Dt

τx).

Combining terms,

∂Dt
∂Ωx

= −
V̂ 2 C2

D2 (− rρ
(r−G)2

+ 1
r−G

Ct
Dt
τx)

∂F
∂Dt

We know from lemmas 1 and 2 that Ct
Dt

< 0. Since r > G, by assumption, ∂F/∂Ωx is negative (i.e., the C2

D2 factor does

not change the sign). Applying the implicit function theorem tells us that ∂Dt/∂Ωxt > 0.

Corollary 1 Complementarity in demand analysis (dynamic). For π = 1, if Ωxt < τ0 + Ωft, then ∂Ωxit
∂Ωxt

≥ 0.

Proof. With the exact same argument as in proof of result 1, complementarity follows from individual first condition whenever

|C
D
| is increasing.
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B.1 CRRA utility and heterogeneous risk aversion

Solving a CRRA portfolio problem with information choice is challenging because equilibrium prices are no longer linear

functions of the shocks. With two sources of information, this non-linearity implies that one of the signals is no longer

has normally-distributed signal noise about the asset fundamental. That makes combining the two sources of information

analytically intractable.

At the same time, we can come very close to CRRA with state-dependent risk aversion in exponential utility. For example,

suppose we set absolute risk aversion to be ρit = [(γ − 1)ln(Cit) + ln(γ − 1)]/Cit. In this case, the two utility functions would

be identical: exp(ρitCit) = (γ − 1)Cγ−1
it . The problem with this is that risk aversion becomes a random variable here that

depends on asset payoffs, through Cit. But suppose we do a close approximation to this. Suppose we allow ρit to be a function

of Et[Cit], where t denotes the beginning of period t information set, prior to any information processing. This approximation

implies that utility is

U(Cit) ≈ −exp
[
− ((γ − 1)ln(Et[Cit]) + ln(γ − 1))

Cit
Et[Cit]

]
We can then rewrite this log-linear approximation in a form that is like exponential utility − exp(−ρitCit), with a coefficient

of absolute risk aversion

ρit ≡ [(γ − 1)ln(Et[Cit]) + ln(γ − 1)]/Et[Cit]. (119)

This form of risk aversion introduces wealth effects on portfolio choices, but preserves linearity in prices.

Each investor chooses a number of shares q of the risky asset to maximize (B.1), subject to the budget constraint (3).

The first-order condition of that problem is

qit =
E[πpt+1 + d̃t|Iit]− rpt

ρitV ar[fit|Iit]
− hit

Given this optimal investment choice, we can impose market clearing (6) and obtain a price function that is linear in asset

payoffs and noisy demand shocks:

pCRRA = A+B(dt−1 − µ) + Cy +Dx

where A, B, C and D are the same as before, except that in place of each homogeneous ρ, there is ρ̄ ≡ (
∫

1/ρidi)
−1, which is

the harmonic mean of investors’ risk aversions and captures aggregate wealth effects.

Of course, in this formulation, if investors’ wealth grows over time, asset prices trend up. In that sense, the solution

changes. However, it is still the case that the decision to learn about fundamental or demand data depends on (C/D)2. It

is just that now wealth is an additional force that moves Dt over time. Because rho2 shows up in the numerator once and ρ

shows up in the denominator, the effect largely cancels. Quantitatively, the effect on D is small. But large changes in wealth

can now have an effect on data choices.

B.2 Real Economic Benefits of Price Informativeness

We have argued that the growth in financial technology has transformed the financial sector and affected financial market

efficiency in unexpected ways. But why should we care about financial market efficiency? What are the consequences for

real economic activity? There are many possible linkages between the financial and real sectors. In this section, we illustrate

two possible channels through which changes in informativeness and price impact can alter the efficiency of real business

investment.

Manager Incentive Effects The key friction in the first spillover model is that the manager’s effort choice is un-

observed by equity investors. The manager exerts costly effort only because he is compensated with equity. The manager

only has an incentive to exert effort if the value of his equity is responsive to his effort. Because of this, the efficiency of the

manager’s effort choice depends on asset price informativeness.

Of course, this friction reflects the fact that the wage is not an unconstrained optimal contract. The optimal compensation

for the manager is to pay him for effort directly or make him hold all equity in the firm. We do not model the reasons why

this contract is not feasible because it would distract from our main point. Our stylized sketch of a model is designed to

show how commonly-used compensation contracts that tie wages to firm equity prices (e.g., options packages) also tie price

informativeness to optimal effort.
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Time is discrete and infinite. There is a single firm whose profits d̃t depend on a firm manager’s labor choice lt. Specifically,

d̃t = g(lt) + ỹt, where g is increasing and concave and ỹt ∼ N(0, τ−1
0 ) is unknown at t. Because effort is unobserved, the

manager’s pay wt is tied to the equity price pt of the firm: wt = w̄ + pt. However, effort is costly. We normalize the units of

effort so that a unit of effort corresponds to a unit of utility cost. Insider trading laws prevent the manager from participating

in the equity market. Thus the manager’s objective is

Um(lt) = w̄ + pt − lt (120)

The firm pays out all its profits as dividends each period to its shareholders. Firm equity purchased at time t is a claim

to the present discounted stream of future profits {d̃t, d̃t+1 . . .}.
The preferences, endowments, budget constraint and information choice sets of investors are the same as before. Demand

data signals are defined as before. Fundamental analysis now generates signals of the form ηfit = g(lt) + ỹt + ε̃fit, where

the signal noise is ε̃fit ∼ N(0,Ωft). Investors choose the precision Ωft of this signal, as well as their demand signal Ωxt.

Equilibrium is defined as before, with the additional condition that the manager effort decision maximizes (120).

Solution As before, the asset market equilibrium has a linear equilibrium price:

pt = At + Ct(g(lt) + ỹt) +Dtx̃t (121)

Notice that since dividends are not persistent, dt−1 is no longer relevant for the t price

The firm manager chooses his effort to maximize (120). The first order condition is Ctg
′(lt) = 1, which yields an equilibrium

effort level lt = (g′)−1(1/Ct). Notice that the socially optimal level would set the marginal utility cost of effort equal to the

marginal product g′(lt) = 1. When Ct is below one, managers under-provide effort, relative to the social optimum because

their stock compensation moves less than one-to-one with the true value of their firm.

Similar to before, the equilibrium level of price informativeness C is

Ct =
1

r
(1− τ0V ar[g(lt) + ỹt|It]) . (122)

Thus, as more information is analyzed, dividend uncertainty (V ar[g(lt) + ỹt|It]) falls, Ct rises and managers are better

incentivized to exert optimal effort. While the model is stylized and the solution presented here is only a sketch, it is designed

to clarify why trends in financial analysis matter for the real economy.

The most obvious limitation of the model is its single asset. One might wonder whether the effect would disappear if the

asset’s return was largely determined by aggregate risk, which is out of the manager’s control. However, if there were many

assets, one would want to rewrite the compensation contract so that the manager gets rewarded for high firm-specific returns.

This would look like benchmarked performance pay. If the contract focused on firm-specific performance, the resulting model

would look similar to the single asset case here.

In short, this mechanism suggests that recent financial sector trends boost real economic efficiency. More data analysis

– of either type – improves price informativeness, and thereby improves incentives. But this is only one possible mechanism,

offering one possible conclusion. The next example offers an alternative line of thought.

B.3 Real Economic Benefits of Liquidity

The second real spillover highlights a downside of financial technology growth. More information technology creates future

information risk, which raises the risk of holding equity, raising the equity premium, and making capital more costly for firms.

This enormously simplified mechanism is meant as a stand-in for a more nuanced relationship such as that in Bigio (2015).

Suppose that a firm has a profitable investment opportunity and wants to issue new equity to raise capital for that

investment. For every dollar of capital invested, the firm can produce an infinite stream of dividends dt. Dividends follow the

same stochastic process as described in the original model. However, the firm needs funds to invest and raises those funds by

issuing equity. The firm chooses a number of shares x̄ to maximize the total revenue raised (maximize output). Each share

sells at price p, which is determined by the investment market equilibrium, minus an investment or issuance cost:

E[x̄p− c(x̄)|If ]

The firm makes its choice conditional on the same prior information that all the investors have. But does not condition on
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p. It does not take price as given. Rather, the firm chooses x̄, taking into account its impact on the equilibrium price. The

change in issuance is permanent and unanticipated. The rest of the model is the same as the dynamic model in section 1.

Solution Given the new asset supply x̄, the asset market solution and information choice solution to the problem are the

same as before. But how the firm chooses x̄ depends on how new issuance affects the asset price. When the firm issues new

equity, all asset market participants are aware that new shares are coming online. Equity issuance permanently changes the

known supply of the asset x̄. Supply x̄ enters the asset price in only one place in the equilibrium pricing formula, through At.

Recall from (9) that

At =
1

r

[
At+1 +

rµ

r −G − ρV ar[pt+1 + d̃t|It]x̄
]
. (123)

Taking At+1 as given for the moment, dAt/dx̄ = −ρV ar[pt+1 + d̃t|It]/r.20 In other words, the impact of a one-period change

in asset supply depends on the conditional variance (the uncertainty about) the future asset payoff, pt+1 + d̃t. Recall from

the discussion of price impact of trades in Section 3.4 that in a dynamic model, more information analysis reduces dividend

uncertainty but can result in more uncertainty about future prices. These two effects largely offset each other.

Figure 5: Payoff Risk and The Cost of Raising Capital. The left panel shows payoff risk, which is V ar[pt+1 + d̃t|It].
The right panel shows the absolute price impact of a one-unit change in issuance, normalized by the average level of dividends.
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Figure 5 plots the modest increase and decrease in payoff risk from these competing effects on the price impact of issuing

new equity. To give the units of the price impact some meaning, the issuance cost is scaled by the average dividend payment

so that it can be interpreted as the change in the price-dividend ratio from a one-unit change in equity supply. Thus a one-unit

increase in issuance reduces the asset price by an amount equal to 4 months of dividends, on average.

We learn that technological progress in information analysis – of either type – initially makes asset payoffs slightly more

uncertain, which makes it more costly to issue new equity. When we now take into account that the increase in asset supply

is permanent, the effect of issuance is amplified, relative to the one-period (fixed At+1) case. But when analysis becomes

sufficiently productive, issuance costs decrease again, as the risk-reducing power of more precise information dominates.

Again, one key limitation of the model is its single asset. With multiple assets, one firm’s issuance is a tiny change in the

aggregate risk supply. But the change in the supply of firm-specific risk looks similar to this problem. If one were to evaluate

this mechanism quantitatively, the magnitude would depend on how much the newly issued equity loads on idiosyncratic risk

versus aggregate risk.

20In principle, a change in issuance x̄ could change payoff variance, V ar[pt+1+d̃t|It]. However, in this setting, the conditional
variance does not change because information choices do not change. Information does not change because the marginal rate
of transformation of fundamental and demand information depends on (Ct/Dt)

2, which is not dependent on x̄. If there were
multiple assets, issuance would affect information choices, as in Begenau, Farboodi, and Veldkamp (2017).
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C Robustness of Numerical Results

We want to investigate the effect of changing parameters on the predictions of the numerical model. First, we show how

re-calibrating the model with different risk aversion affects the values of other calibrated parameters. Then we show how

changes in risk aversion and other parameters have modest effects on results. We consider changes to the exogenous, yet

important parameters of time preference, risk aversion and terminal capacity, first. Then, we consider altering endogenous,

calibrated parameters of dividend innovation variance, noise trade variance and relative cost of demand information.

Lower risk aversion The steady state coefficients with low risk aversion ρ = 0.05 are We find AT = 16.03, CT = 7.865

and DT = −3.0. AT and CT are unchanged, while DT changed from = −5.7, for high risk aversion to 3.0. Table 2 shows

the original calibration and a lower-risk aversion calibration to highlight how the other parameters adjust when risk aversion

changes.

Table 2: Parameters

low risk av high risk av

G 0.9365 0.9365
µ 0.235 0.4153

τ−1
0 0.2575 0.2445
τ−1
x 1.9850 0.5514
χx 10.6625 0.6863

r 1.03 1.03
ρ 0.05 0.1

Similarly, after re-calibrating, risk aversion makes only a minor difference. With ρ = 0.05, demand analysis still outstrips

fundamental analysis between periods 4 and 5. But if falls slightly more slowly. The ending value of Ωft is 1.8, instead of 1.6.

Changes to fixed parameters We consider lower/higher time preference, risk aversion and terminal capacity. When-

ever a parameter is changed, all other parameters are re-calibrated to match that new value and the numerical model is

simulated again.

Figure 6: Results with different rates of time preference. The first row is information acquisition, the second row is
capacity allocation and the third row are the price coefficients. Column 1 is the baseline calibration used in the paper,
corresponding to r = 1.03. Column 2 displays the path with r = 1.01 and column 3 with r = 1.05.
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Figure 7: Results with different risk premia. The first row is capacity allocation and the second row is the price coefficients.
Column 1 is the baseline calibration used in the paper, corresponding to ρ = 0.1. Column 2 displays the path with ρ = 0.05
and column 3 with ρ = 0.2.
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Figure 8: Results with different terminal capacities. The first row is capacity allocation and the second row is the price
coefficients. Column 1 is the baseline calibration used in the paper, corresponding to KT = 10. Column 2 displays the path
with KT = 5 and column 3 with KT = 15.
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(c) KT = 15

Changes to calibrated parameters We consider lower/higher dividend shock variance, noise trade variance and

relative cost of demand information. As these parameters are determined jointly by the calibration, we cannot simply change

them and re-calibrate as above. Rather, we calibrate to the baseline then change the parameter of interest for the experiment

and then recover the model’s terminal values associated with that new parameter of interest. It is important to note that we
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do not re-calibrate the other parameters when we make changes here.

Figure 9: Results with different terminal values of τ0. The first row is capacity allocation and the second row is the price
coefficients. Column 1 is the baseline calibration used in the paper. Column 2 displays the path for a lower τ0 and column 3
for a higher τ0.
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Figure 10: Results with different terminal values of τx. The first row is capacity allocation and the second row is the price
coefficients. Column 1 is the baseline calibration used in the paper. Column 2 displays the path for a lower τx and column 3
for a higher τx.
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Figure 11: Unbalanced growth model under different terminal values of χx. The first row is capacity allocation and the
second row is the price coefficients. Column 1 is the baseline calibration used in the paper. Column 2 displays the path for a
lower χx and column 3 for a higher χx.

0 50 100 150 200 250 300 350 400 450 500

time

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400 450 500

time

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400 450 500

time

0

1

2

3

4

5

6

7

8

9

10

Total Information Kt

Fundamental Analysis +ft

Demand Data Analysis +xt

0 50 100 150 200 250 300 350 400 450 500

time

0

1

2

3

4

5

6

7

8

(a) Baseline χx

0 50 100 150 200 250 300 350 400 450 500

time

0

1

2

3

4

5

6

7

8

9

(b) χ∗x = 0.5χx

0 50 100 150 200 250 300 350 400 450 500

time

0

1

2

3

4

5

6

7

Price Info Ct

Illiquidity jDtj
Marg. Value of Demand Data (Ct

Dt
)2

(c) χ∗x = 2χx

Figure 12: Unbalanced Technological Progress: χx falls. Information choices (left) and market efficiency (right)
with progress only in demand analysis. Ct is the impact of future dividend innovations on price. (−Dt) is the price impact of
a one-unit uninformed trade. (Ct/Dt)

2 tells us the marginal rate of transformation of demand and fundamental information.
The x-axis is time. This version of the model reduces χx over time, without changing K.

(a) Information Acquisition (b) Price Coefficients
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D Data Appendix

Asset price and return data for calibration Calibrating the numerical model requires some price and dividend

series that accurately represents the market as a whole. However, it is not clear what the best method for defining this

representative asset it. One option is to pick some historically representative stock, such as General Electric, or Apple, but

even though these stocks may be the best available representative, that does not mean that they capture the market as a

whole. Another option is to take an index, such as the S&P500, as a representative of the market. While using an index

may capture more about the market, its realizations in levels are not representative of actual prices or dividends, but rather

just a tracking mechanism of the evolution of the market. Aware of the deficiencies in both approaches, we choose the added

information of the S&P500 index and live with the difficulty of normalizing prices and dividends to better fit a representative

asset.

We use CRSP’s monthly S&P500 data from 2000-2015 to calibrate the steady-state of our model. Cleaning and normalizing

the data takes several steps:

1. Impute dividends. In order to impute a dividend series for the market as a whole, we use the price, return including

dividends and return excluding dividends series.

dt = pt
(pt+1 + dt

pt
− pt+1

pt

)
2. Clean up data. We log de-trend and deseasonalize the price and dividend series and then normalize the dividend series

to 1.

3. Normalize data. In order to match the price series to dividends in a meaningful way, we take price-dividend (PD) ratios

from CRSP for all S&P500 members and calculate an annual market cap.-weighted PD ratio. Then, prices are normalized

year-by-year to match that observed PD ratio.

It turns out that this normalization process loses little of the dynamics of the index series, while also being far more

accurate in terms of the describing the level relationship between prices and dividends for a representative asset of the market.

Figure 14(a) displays the normalized price series with the actual price-index series. Figure 14(b) displays the normalized

dividend series with the imputed dividend series described above.

Figure 13: Comparison of normalized series with actual series. Source: CRSP
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(b) Dividend comparison

Hedge Fund Data: Lipper TASS Database The figure showing the shift over time in investment strategies

is based on hedge fund data from Lipper. Lipper TASS provides performance data on over 7,500 actively reporting hedge

funds and funds of Hedge Funds and also provides historical performance data on over 11,000 graveyard funds that have

liquidated or stopped reporting. In addition to performance data, data are also available on certain fund characteristics, such

as investment approach, management fees, redemption periods, minimum investment amounts and geographical focus. This

database is accessible from Wharton Research Data Services (WRDS).

Though the database provides a comprehensive window into the hedge fund industry, data reporting standards are low.

There is a large portion of the industry (representing about 42% of assets) that simply do not report anything (Edelman,

Fund, and Hsieh, 2013). Reporting funds regularly report only performing assets (Bali, Brown, and Caglayan, 2014). While

any empirical analysis must be considered with caution, some interesting stylized facts about the current state and evolution
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of the hedge fund industry do exist in these data.

All hedge fund data is monthly and come from Lipper TASS. In total, the database reports on 17,534 live and defunct

funds. Data are from 1994-2015, as no data was kept on defunct funds before 1994. A significant portion of this total consists

of the same fund reported in different currency and thus are not representative of independent fund strategies (Bali, Brown,

and Caglayan, 2014). Therefore, we limit the sample to only U.S.-based hedge funds and remove funds of funds. This limits

the sample size to 10,305 funds. As the focus is to gain insight into the division between fundamental and quantitative strategy

in the market, We further limit the sample to the 7093 funds who explicitly possess these characteristics, described below.

Firms are born and die regularly throughout the sample. There are never more than 3000 existing, qualifying funds at any

point in time. By the end of 2015, there were just over 1000 qualifying funds.

Lipper TASS records data on each fund’s investment strategies. In total, there are 18 different classifications and most

of these classifications have qualities of both fundamental and quantitative analysis. An example of a strategy that could

be considered both, “Macro: Active Trading strategies utilize active trading methods, typically with high frequency position

turnover or leverage; these may employ components of both Discretionary and Systematic Macro strategies.” However, 4

strategy classifications explicitly denote fund strategy as being fundamental or quantitative. They are:

• Fundamental: This denotes that the fund’s strategy is explicitly based on fundamental analysis.

• Discretionary: This denotes that the fund’s strategy is based upon the discretion of the fund’s manager(s).

• Technical: This denotes that the fund deploys a technical strategy.

• Systematic Quant: This denotes that funds deploy technical/algorithmic strategy.

Using these classifications, it is possible to divide hedge fund strategy into three broad groups:

• Fundamental: Those funds whose strategy is classified as fundamental and/or discretionary, and not technical and/or

sytematic quant.

• Quantitative: Those funds whose strategy is classified as technical and/or systematic quant, and not technical and/or

sytematic quant.

• Mixture: Those funds whose strategy is classified as having at least one of fundamental or discretionary and at least

one of technical or systematic quant.

From 2000-2015, the assets under management (AUM) has systematically shifted away from fundamental firms to firms that

deploy some sort of quantitative analysis in their investment approach. In mid-2000, the assets under management per

fundamental firm was roughly 8 times the size of that in a quantitative or mixture firm, but this had equalized by 2011,

representing a true shift away from fundamental analysis and towards quantitative analysis in the hedge fund industry.
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Figure 14: Hedge Funds are Shifting Away from Fundamental Analysis.
Source: Lipper TASS. Data is monthly from 1994-2015. Database reports on 17,534 live and defunct funds.
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Figure 15: Google trends: Fraction of Google searches involving “order flow” or “fundamental analysis.” Source:
Google trends. Data is the weekly fraction of searches involving these search terms. Series is normalized to make the highest
data point equal to 100.
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Figure 16: Algorithmic Trading Growth 2001-2006. Source: Hendershott, Jones, and Menkveld (2011). Their proxy
for algorithmic trading is the dollar volume of trade per electronic message. The rise is more pronounced for largest market
cap (Q1) stocks. Q1-Q5 are the 5 quintiles of NYSE stocks, ordered by size (market capitalization).
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