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Abstract

We estimate the liquidity multiplier and individual banks’ contribution to systemic
liquidity risk in an interbank network using a structural model. Banks borrow liquid-
ity from neighbours and update their valuation based on neighbours’ actions. When
the former (latter) motive dominates, the equilibrium exhibits strategic substitution
(complementarity) of liquidity holdings, and a reduced (increased) liquidity multi-
plier dampening (amplifying) shocks. Empirically, we find substantial and procyclical
network-generated risks driven mostly by changes of equilibrium type rather than net-
work topology. We identify the banks that generate most systemic risk and solve the
planner’s problem, providing guidance to macro-prudential policies.
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I Introduction

The 2007-09 financial crisis has stimulated strong interest in understanding financial interme-

diation and its role in creating liquidity.1 Intermediaries face their own liquidity management

problem, and in particular, banks hold central bank reserves to buffer liquidity shocks (e.g.,

Bianchi and Bigio (2014)). Their liquidity holding decisions are crucial for payment activi-

ties, lending, and asset prices (Piazzesi and Schneider (2017)). Another area that has drawn

increasing attention is financial networks. The interbank network, where banks borrow and

lend reserves, has been at the heart of studies of systemic risk.2 These two themes merge in

our paper. We study both theoretically and empirically how the interbank network affects

banks’ liquidity holding decisions, and its implications for systemic risk.

This paper structurally estimates a liquidity-holding game where banks obtain credit

from an interbank network and their liquidity management objective incorporates different

sources of network externality. Applying our framework to U.K. banks, we find that the

dominant type of network externality varies over the business cycle. In the boom before

2008, banks’ liquidity holdings exhibit strategic complementarity, and thereby, the network

amplifies liquidity shocks. As the financial crisis unfolds, the degree of strategic complemen-

tarity declines, and after the introduction of Quantitative Easing (QE) in the U.K., banks’

liquidity holdings exhibit strategic substitution, and the interbank network turns from a

shock amplifier to a shock buffer. We are not the first to emphasize that shock propagation

depends on complementarity versus substitutability (e.g., Jovanovic (1987)). However, this

paper is the first, to the best of our knowledge, to estimate such interdependence of players

using a network structure and to provide the evidence of time-varying network externalities.

The model in the paper provides a framework to measure the impact of externalities and

allow us to compare the decentralised equilibrium with the planner’s solution that achieves

constrained efficiency. Based on these theoretical findings, the paper offers novel metrics to

guide the monitoring of banks and the design of policy intervention during boom and bust

cycles. For example, we find during the boom the systemic liquidity risk is too high and

the opposite is the case during the crisis, relative to the social optimum, indicating a need

for restraining banks’ liquidity creation or conducting quantitative easing at the different

point of the cycle. We also identify banks that contribute the most to the volatility of

aggregate liquidity through network domino effects. Our empirical evidence of time-varying

1In the recent macro-finance literature, intermediaries play the role of marginal investor in asset markets
(Brunnermeier and Sannikov (2014); He and Krishnamurthy (2013)), credit supplier (Mark and Kiyotaki
(2010); Klimenko, Pfeil, Rochet, and Nicolo (2016)), and money issuer (Brunnermeier and Sannikov (2016);
Hart and Zingales (2014); Li (2017); Quadrini (2017)).

2Recent theories on interbank network and systemic risk include Freixas, Parigi, and Rochet (2000),
Allen, Carletti, and Gale (2008), and Freixas, Martin, and Skeie (2011).
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network externalities points out the importance of modelling banks’ economic behaviour on

network rather than network topology alone. In our setting, we find the variation in network

externalities is mostly driven by changes of the type of equilibrium on the network (i.e.,

strategic complementarity or substitution).

Specifically, we model banks’ reserve holding decisions in a linear-quadratic framework

(à la Ballester, Calvo-Armengol, and Zenou (2006)), assuming a predetermined but time-

varying interbank network where capital and information flow. Bank characteristics and

macroeconomic conditions affect banks’ decision, but reserve holdings also depend on the

network topology, and the nature of network externality captured by structural parameters

that are identified by our estimation.

The interbank network generates two counteracting effects for the banks’ liquidity man-

agement problem. First, interbank relationships allow banks to borrow reserves from their

neighbours, so the marginal benefit of holding reserves on their own decreases when neigh-

bours hold more reserves. This free-riding incentive gives rise to strategic substitution (Bhat-

tacharya and Gale (1987)). Consequently, the network acts as a risk buffer for liquidity

shocks since neighbouring banks’ liquidity holdings are negatively correlated. Second, when

banks see neighbouring banks holding more reserves, they positively update their belief on

the value of liquidity. Due to such informational spillover, the marginal benefit of holding

liquidity increases in neighbours’ liquidity, which leads to strategic complementarity. In this

case, the network amplifies the liquidity shocks originating from individual banks due to the

positive correlation among neighbouring banks’ liquidity holding.3

In the (unique interior) Nash equilibrium, the overall impact of network on banks’ liq-

uidity holdings depends on a parameter φ, the network attenuation factor. If strategic

substitution dominates, φ is negative. If strategic complementarity dominates, φ is positive.

Individual banks’ equilibrium reserve holdings depend upon the magnitude of liquidity

shocks to all banks in the network. However, not all shocks are equally important. In par-

ticular, the dominant type of network externality, φ, and bank i’s indegree Katz-Bonacich

centrality (network topology) determine how a bank weights liquidity shocks to itself and

other banks in the network in their optimal liquidity holding decisions. The indegree cen-

trality counts the direct and indirect links from other banks towards bank i, weighting

connections by φk, where k is the number of steps needed to reach bank i.

In other words, the liquidity holding decision of a bank is related to its own shocks, the

shocks of its neighbours, of the neighbours of its neighbours, etc., with distant shocks be-

3Another channel through which banks’ liquidity holdings may increase in their neighbours’ is the leverage
stack mechanism in Moore (2012). In Moore (2012), by signalling its credit worthiness through a higher
liquidity buffer, banks can borrow more from other banks to finance positive NPV projects. So, when
neighbours are ready to lend (i.e., holding more reserves), a bank chooses to hold more liquidity.
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coming increasingly less important as they are weighted by φk.4 It is important to emphasize

that the network topology (e.g. Katz–Bonacich centrality measures) is not the only deter-

minant of banks’ liquidity holdings. The magnitude of shocks to individual banks and the

attenuation factor φ are also crucial, and are key structural parameters in our estimation.

For example, banks that receive extremely large liquidity shocks, regardless of their network

location, may have a large impact on all banks’ liquidity holdings in equilibrium.

Based on the equilibrium results, we analyze potential policy interventions to remedy

any negative impact of network externalities. Specifically, we characterise the volatility of

aggregate liquidity holdings and identify key banks that contributes the most to its volatility

– i.e. the risk key players. We find that the contribution by each bank to the network risk is

related to 1) the network attenuation factor φ, 2) the bank specific liquidity risks, and 3) its

outdegree Katz–Bonacich centrality measure. The outdegree centrality is similarly defined as

the indegree centrality but the connections are outbound from bank i to measure the impact

of bank i’ on its neighbours, neighbours of its neighbours, etc. Moreover, we introduce

the concept of network impulse response function (NIRF) that naturally decomposes the

volatility of aggregate liquidity into each bank’s contribution to it, and we show that the

risk key player is precisely the bank with the largest NIRF.

We also solve for the planner’s optimum and compare it with the decentralised equilib-

rium. The discrepancy in the expected level and volatility of liquidity holdings arises from

network externalities, and in particular, the fact that banks do not internalise their impact

on each other through the outbound linkages.

Using daily data from the Bank of England, we use our model to study the reserve holding

decisions of member banks of the sterling large payment system, CHAPS, in the period of

2006 to 2010. Member banks conduct transaction for their own purpose and on behalf of

their clients and hundreds of other non-member banks. Their liquidity holdings ensures the

functioning of payment system that is crucial for supporting real economic activities. In 2009,

on average £272 billions of transactions in the U.K. were settled every day in CHAPS (U.K.

nominal GDP every 5.5 days). CHAPS banks regularly have intraday liquidity exposures in

excess of £1 billion to counterparties, and they hold reserves to buffer payment imbalances.5

Variation in payment imbalances is as close as we can get to a pure liquidity shock, because

CHAPS transactions are settled in real time and on gross terms (“RTGS”) to eliminate

4This centrality measure takes into account the number of both direct and indirect connections in a
network. For more on the Bonacich centrality measure, see Bonacich (1987) and Jackson (2003). For other
economic applications, see Ballester, Calvo-Armengol, and Zenou (2006) and Acemoglu, Carvalho, Ozdaglar,
and Tahbaz-Salehi (2012). For an excellent review of the literature, see Jackson and Zenou (2012).

5The U.K. monetary framework leaves reserves management largely at individual banks’ discretion (both
before and after the Quantitative Easing). In Appendix A.1, we provide background information on the
policy framework (reserve regimes) including details on the payment system, and the interbank markets.
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counterparty credit risks.6

We measure interbank connections using overnight borrowing and lending data. Specifi-

cally, a link between two banks is quantified by the fraction of borrowing by one bank from

another in the recent past, so the network is directional and its adjacency matrix is weighted

(i.e., right stochastic). Note that the links between two banks can be interpreted as (frequen-

tist) probabilities of borrowing-lending transactions. Our results are robust when interbank

lending, or the gross amount of borrowing and lending, is used to quantify the interbank

relationship. We estimate the impact of this interbank network on banks’ reserve holdings.7

We exploit the fact that the equilibrium conditions of our model map exactly into the

spatial error model (SEM). A bank’s liquidity holdings depend on its characteristics, macro

variables, its own shock, and through the entire network structure, shocks to other banks.

Our approach stands in contrast with regression models that project variables of interest on

particular network statistics. SEM is a conservative approach, leaving a minimal amount of

variation in liquidity holdings to be driven by the interbank network, so we also estimate a

spatial Durbin model (SDM), where through the network, banks’ liquidity holdings depend

on not only shocks to other banks but also other banks’ characteristics (e.g., balance-sheet

conditions). SDM estimation serves as a model specification test.

We are able to uncover rich, pro-cyclical dynamics of network externality: the network

amplified shocks in the pre-crisis period, but as the crisis unfolded, the amplification effect

declined, and eventually in the QE period, the network became a shock buffer. Using our

estimates of the structural parameters, we quantify this network effect by computing the

ratio of aggregate liquidity volatility to the counterfactual volatility when there is no network

externality (i.e., the attenuation factor φ is zero). We find that this ratio reached 559% in

the boom, and declined to 125% during the crisis, and in the QE period, dropped to 89%.

Our finding of time-varying network externality sheds light on the relative importance

of different economic forces over a business cycle. Because it is costly to hold liquidity at

the expense of forgoing other investments, banks free ride their peers by borrowing reserves

in interbank network in response to liquidity shocks (Bhattacharya and Gale (1987)). This

common wisdom is only part of the story, because strategic complementarity arises from

informational spillovers as previously discussed. Our framework accommodates all these

6CHAPS uses RTGS instead of DNS (deferred net settlement). The DNS model is more liquidity efficient
but creates credit risk exposure for recipient banks until the end of a clearing cycle. Such risks do not exist
under RTGS since all payments are settled individually and on a gross basis. A detailed description of the
RTGS in the U.K. is provided by Dent and Dison (2012) at the Bank of England. In this report, the BoE
maintains that RTGS improves financial stability by minimizing credit exposures between banks.

7In addition to central bank reserves, banks may pledge government bonds as collateral to borrow from
the Bank of England. Therefore, in our definition of reserve holdings, we add banks’ holdings of collateral
eligible for repo with the Bank of England. Our results are robust if we use actual reserves only.
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facets of network externality, so it allows data to reveal the dominant force at different

points in time.

In addition, we empirically characterize the shock propagation mechanism, quantify the

individual banks’ contribution to aggregate liquidity risk, and identify the risk key players.

We find that the volatility of aggregate liquidity in the system is largely driven by a small

group of banks, and that each bank’s contribution varies substantially over time. Moreover,

we find that the risk key player is typically not the largest net borrower – even net lenders can

generate substantial risk in the system. These finding is particularly relevant for monitoring

and regulating the banking system, and policy interventions during crisis.

Since in our sample the network topology changes over time, we decompose the time vari-

ation of banks’ risk contributions into two components: the changes attributed to variation

in φ, the type of equilibrium on the network, and variation of network topology. We find

that the former is clearly the main driver. This suggests that in our context, endogenous

network formation plays a limited role in the variation of network effect. It is the type of

equilibrium (i.e., strategic complementarity or substitution) that matters.8

Finally, we compute the planner’s solution based on our estimates of φ, the sizes of

bank-level structural shocks, and other parameters. We find that during the boom period,

the amount of aggregate liquidity held by banks is not too far from the planner’s optimum

but the network generates too much systemic risk through shock amplification. During the

crisis period, the decentralised equilibrium generates smaller aggregate liquidity than the

planner’s optimum, and the systemic liquidity risk is still too high. After the introduction of

QE, banks hold too much liquidity and the volatility of aggregate liquidity is below the social

optimum level. These findings may guide policy makers in monitoring banks, designing crisis

interventions, and assessing the impact of QE.

This paper contributes to the literature on bank liquidity management. CHAPS banks

are at the most fundamental layer of economic transactions. Every transaction ultimately

goes through these payment system members. Their decisions have profound influence on

the whole economy (Piazzesi and Schneider (2017)). We provide the first evidence on how

the liquidity choice of payment system banks depends on interbank network. Our findings

can be embedded in the broad discussion of banks’ portfolio choice over an economic cycle

(e.g., ; Cornett, McNutt, Strahan, and Tehranian (2011)). Importantly, our finding that the

8Our finding is related to the empirical literature that critically examines the systemic consequence
of network linkages. While there is an large theoretical literature on network contagion and formation,
simulation studies based on reasonably realistic networks show little impact of linkage variation (summarized
in Upper (2011)). Using a unique dataset of all Austrian banks, Elsinger, Lehar, and Summer (2006) find
that contagion happens rarely and that the necessary funds to prevent contagion are surprisingly small. By
applying an Eisenberg and Noe (2001) style model to German banks, Chen, Wang, and Yao (2016) find that
the lack of bank capital is the key contributor to bank failure rather than the network contagion.
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equilibrium type on the network flips when QE starts contributes to the literature on bank

liquidity management and monetary policy (e.g., Bernanke and Blinder (1988); Kashyap and

Stein (2000); Bianchi and Bigio (2014); Drechsler, Savov, and Schnabl (2014)).

We contribute to the literature on bank liquidity regulation by providing an empirical

framework to attribute systemic risk to individual banks, and by characterizing the wedge

between decentralised outcome and the planner’s solution. Liquidity regulation has attracted

a lot of attention after the financial crisis. Stein (2012) argues that reserves requirement may

serve as a tool for financial stability regulation. Diamond and Kashyap (2016) study bank

liquidity regulation in the setting of Diamond and Dybvig (1983). Allen and Gale (2017)

review earlier theories that may provide foundations (i.e., sources of market failures) for bank

liquidity regulations, such as liquidity coverage ratio and net stable funding ratio in Basel

III. Our findings of pro-cyclical network externality and banks’ time-varying contribution to

systemic risk lend support to a macro-prudential perspective on liquidtiy regulation.

Our work also advances the literature on interbank market dynamics and banks’ liquid-

ity demand. Fecht, Nyborg, and Rocholl (2010) find that the prices of liquidity depend on

counterparties’ liquidity levels. Acharya and Merrouche (2010) document evidence of precau-

tionary liquidity demands of U.K. banks during the subprime crisis. Ashcraft, McAndrews,

and Skeie (2010) find that in response to heightened payment uncertainty, banks hold excess

reserves. There is also a related theoretical literature pioneered by Bhattacharya and Gale

(1987). Recent theoretical works in this area highlight the externalities in interbank markets

and the associated inefficiencies (e.g. Freixas, Parigi, and Rochet (2000); Allen, Carletti, and

Gale (2008); Freixas, Martin, and Skeie (2011); Moore (2012); Castiglionesi, Feriozzi, and

Lorenzoni (2017) among others). Our paper differs by modeling banks’ liquidity holdings as

outcome of a network game, and estimate the time-varying network externality.9

Networks have proved to be a useful analytical tool for studying financial contagion and

systemic risk from both theoretical and empirical perspectives. Starting from Allen and Gale

(2000), recent theories feature increasingly sophisticated networks and shock transmission

9There is a another line of research that focuses on the topology and formation of linkages. Afonso
and Lagos (2015) use a search theoretical framework to study the interbank market and banks’ trading
behaviour. The empirical literature on the topology of interbank networks starts with Furfine (2000, 2003).
Other earlier empirical studies of the interbank network topology include Upper and Worms (2004); Boss,
Elsinger, Summer, and Thurner (2004); Soramaki, Bech, Arnold, Glass, and Beyeler (2007); Becher, Millard,
and Soramaki (2008); Bech and Atalay (2008); and Langfield, Liu, and Ota (2014). Recent works study
the impact of the crisis on the structure of these networks, which include (but are not limited to): Gai
and Kapadia (2010); Wetherilt, Zimmerman, and Soramaki (2010); Benos, Garratt, and Zimmerman (2010);
Ball, Denbee, Manning, and Wetherilt (2011); and Afonso, Kovner, and Schoar (2011). We differ from this
literature by studying, rather than network formation, the types of equilibria on a predetermined network.
We empirically show that the variation of network externality is driven by the type of equilibrium on the
network instead of the changes in network topology.
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mechanisms.10 Recent empirical works also cover a wide range of economic networks.11 We

differ from these papers by taking a linear-quadratic approach of Ballester, Calvo-Armengol,

and Zenou (2006) to analyze how economic agents’ liquidity holding decisions in a network

game generate systemic risk and by structural estimating network externalities. Herskovic,

Kelly, Lustig, and Nieuwerburgh (2017) embed a similar spatial autoregressive structure in

firms’ growth rate to study the comovement of firm volatilities.

The remainder of the paper is organised as follows. In Section II, we present and solve a

liquidity holding game in a network, and define key players in terms of aggregate liquidity

level and risk. Section III casts the equilibrium of network game into the spatial econometric

framework, and outlines the estimation methodology. In Section IV, we describe the data

and the features of the network and bank-level and macro control variables. In Section V,

we present and discuss the estimation results. Section VI concludes.

II The Network Model

In this section, we construct a model of banks’ liquidity holding decisions that will directly

guide our empirical analysis of systemic liquidity risk from interbank network. In this model,

a bank’s liquidity holding decision depends on its own characteristics as well as all other

bank’s liquidity holding decisions (and potentially characteristics). The latter dependency

is modelled through a network. Structural estimation is presented in the following sections.

The network. There are n banks. The time-t network is predetermined, characterized by

an n-square adjacency matrix Gt. If its element gij 6=i,t 6= 0, bank i and j are connected. A

link facilitates interbank transactions and information flow. To construct Gt in the structural

estimation, we use interbank borrowing and lending data. This network of overnight credit

is likely to be most relevant for the daily variation of banks’ liquidity holdings that we focus

on. Specifically, gij 6=i,t will be the fraction of borrowing by bank i from bank j in the month

up to day t. The network is therefore weighted and directed, and Gt is right stochastic.12

10This line research includes but is not limited to Leitner (2005); Babus (2009); Babus and Allen (2009)
(for a review); Afonso and Shin (2011); Zawadowski (2012); Acemoglu, Carvalho, Ozdaglar, and Tahbaz-
Salehi (2012); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015); Elliott, Golub, and Jackson (2015); Atkeson,
Eisfeldt, and Weill (2015); Ozdagli and Weber (2015); Glasserman and Young (2015); Cabrales, Gale, and
Gottardi (2015); Cabrales, Gottardi, and Vega-Redondo (2016); Herskovic (forthcoming).

11The recent empirical network literature include but is not limited to Diebold and Yilmaz (2009, 2014);
Billio, Getmansky, Lo, and Pelizzona (2012); Hautsch, Schaumburg, and Schienle (2012); Aldasoro and
Angeloni (2013); Kelly, Lustig, and Nieuwerburgh (2013); Duarte and Eisenbach (2013); Greenwood, Landier,
and Thesmar (2015); and Gofman (2017).

12We also explore other definitions of the adjacency matrix, where gij,t is either the sterling amount of
borrowing by bank i from bank j, or 1 (0) if there is (no) borrowing or lending between Bank i and j. Note
that, in this latter case, the adjacency matrix is unweighted and undirected. Our estimation results are
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gij,t can be interpreted as the frequentist estimate of the probability of bank i’s borrowing

from bank j. We also consider other measurements of interbank relationships, such as bank

i’s lending to j and the gross amount of interbank borrowing and lending.

The matrix Gt keeps track of all direct connections – links of order one – between any

pair of banks in the network. Similarly, the matrix Gk
t , for any positive integer k, encodes

all links of order k between banks, that is, the paths of length k between any pair of banks

in the network. For example, the coefficient in the (i, j)th cell of Gk
t – i.e.

{
Gk
t

}
ij

– gives

the exposure of bank i to bank j in k steps. Since Gt is a right stochastic matrix (with each

row summing to 1), it can be interpreted as a Markov chain transition kernel, and Gk
t as the

k-step transition matrix.

Banks and their liquidity preference. We study the amount of liquidity (reserves) banks

choose to hold at the beginning of day t. Let li,t denote the total liquidity held by bank

i. We decompose li,t into two parts: qi,t, a benchmark level, and zi,t, a network-dependent

component. The benchmark level is directly pinned down by bank characteristics (xmi,t, such

as leverage, lending and borrowing rates, stock return, CDS spread etc.) and macroeconomic

conditions (xpt , such as aggregate payment pattern, monetary policy etc.), i.e.,

qi,t = αi +
M∑
m=1

βmx
m
i,t +

P∑
p=1

βpx
p
t , (1)

where αi is a fixed effect. The interbank network enters into banks’ liquidity holdings

through zi,t. This is a conservative approach to estimate network effects since we limit

the impact of the network to zi,t . In Appendix A.2.2, we analyze a more general model

where banks’ liquidity holdings depend on not only their own characteristics but also other

banks’ characteristics through the network.13

Given the predetermined network Gt, bank i chooses zi,t in response to other banks’

choices, {zj,t : j 6= i}.14 Banks make decisions simultaneously. The vector zt records

all banks’ choices. The network allows banks to borrow and lend reserves, and may also

transmits information relevant for liquidity management (more on this later).

Bank i derives utility from an accessible stock of liquidity, which is the sum of its own

holdings, zi,t, and what can be borrowed from other banks through the interbank network,

ψ
∑

j gij,tzj,t. The interbank component is proportional to neighbours’ own holdings, zj,t,

robust to these alternative measures.
13The optimality conditions of the general model map into a spatial Durbin model, which nests our main

model (spatial error model) and serves as a specification test that we report under rolling-window estimation.
14Since we model banks’ daily liquidity holdings, we take the interbank network as predetermined at the

beginning of a day. It is unlikely that interbank relationships change significantly on daily basis.
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weighted by the network linkage, gij,t, and a parameter ψ. The benefit of accessible liquidity

is µ̃i,t per unit. Bank i’s objective for choosing zi,t is represented by the following linear

quadratic function:

ui(zi,t, {zj,t : j 6= i}|Gt) = µ̃i,t︸︷︷︸
Unit Value

(
zi,t + ψ

∑
j 6=i

gij,tzj,t

)
︸ ︷︷ ︸

Accesible Liquidity

−1

2
γ

(
zi,t + ψ

∑
j 6=i

gij,tzj,t

)2

, (2)

where concavity from the second-order term leads to decreasing marginal utility of liquidity.

We decompose the unit value of liquidity, µ̃i,t, into a bank-specific stochastic component µ̂i,t,

and a network component, so

µ̃i,t := µ̂i,t + δ
∑
j 6=i

gij,tzj,t,

where

µ̂i,t/γ := µi,t = µ̄i + νi,t, (3)

µ̄i is the mean of µi,t, the standalone liquidity value scaled by γ. νi,t, the ultimate source of

uncertainty, is a shock that is independent across banks and over time with variance σ2
i .

The valuation of liquidity reflects the net benefit of liquidity holdings. νi,t can be a shock

to either the benefits or costs. A liquidity buffer cushions payment imbalances and prepares

banks for future investment opportunities, but to hoard liquidity, banks may have to forgo

other investments or raise funds at high costs outside the interbank system. νi,t is realized

before i chooses zi,t, and propagated to other banks through the network.

The network-dependent valuation of liquidity can be motivated by an information spillover

mechanism. Even though banks may value liquidity differently (due to private value), neigh-

bours’ liquidity holdings can be informative about the common value of reserves. A sufficient

statistics from the aggregate trading value is δ
∑

j gij,tzj,t where the weights are network

weights. This updating rule can be fully rational or in the spirit of opinion formation under

bounded rationality (DeGroot (1974); DeMarzo, Vayanos and Zwiebel (2003)).15 A larger

coefficient δ reflects a stronger informational spillover effect. To sum up, we can interpret

interbank linkages in our model channelling both fund and information spillover effects.

The bilateral network influences are captured by the following cross derivatives for i 6= j:

∂2ui (zt|gt)
∂zi,t∂zj,t

= (δ − γψ) gij,t.

15There is a growing literature on information aggregation in network settings (e.g., Babus and Kondor
(2013)).
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When the cross derivative is negative, i.e. when δ < γψ, banks’ liquidity holdings exhibit

strategic substitution. That is, an individual bank sets aside a smaller amount of liquid assets

when its neighbouring banks hold more liquidity, which it can draw upon. This reflects the

typical free-riding incentive as in Bhattacharya and Gale (1987).16 In our model, strategic

substitutability arises from the decreasing marginal utility of liquidity, so the degree of

strategic substitutability increases when either neighbours’ liquidity is more accessible (i.e.,

higher ψ) or the marginal utility of overall liquidity declines faster (i.e., higher γ).

Strategic complementarity arises when δ > γψ. Through our interbank network not

only flows liquidity (via borrowing and lending) but also information on the common value

of reserves. Strategic complementarity arises from such informational spillover. We would

expect a higher δ, and stronger strategic complementarity, when the common value of reserves

is more prominent than the private value. Even if we restrict the network to be only relevant

for fund flows rather than information, strategic complementary may still arise from leverage

stack as in Moore (2012). In Appendix A.2.1, we lay out an alternative specification of banks’

objective function in such spirit, which leads to the same set of equilibrium conditions.

Equilibrium. We solve banks’ optimal reserve holdings in the Nash equilibrium of simul-

taneous action. Bank i’s best response is

z∗i,t = µi,t + φ
∑
j

gij,tzj 6=i,t, (4)

where φ := δ/γ−ψ, and µi,t = µ̄i + νi,t, defined earlier in equation (3). The “network atten-

uation factor” φ is the key parameter that determines the type of equilibrium on network:

i.e., strategic substitution if φ < 0 or complementarity if φ > 0. We are agnostic about the

the sign of φ and we instead estimate it empirically.

Note that the aggregate level of reserves held by banks is fully determined by banks’

choices in the model (i.e., the demand side), without being constrained by the reserve sup-

ply of the central bank. This assumption of perfectly elastic reserve supply is consistent with

the empirical context – under the UK monetary policy framework, the Bank of England ac-

commodates banks’ reserve demand to maintain its policy rate (Appendix A.1). Accordingly,

we do not model the price of liquidity, but focus on the quantities chosen by banks. In our

estimation, interbank rate is controlled as one of the macro variables in qi,t.

Proposition 1 Suppose that |φ| < 1. Then, there is a unique interior solution for the

16Bhattacharya and Gale (1987) show that banks’ liquidity holdings are strategic substitutes, because
liquidity holdings come at a cost of forgoing higher return from long-term investments. Banks would like to
free-ride their neighbours rather than conducting precautionary savings themselves.
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individual equilibrium outcome given by

z∗i,t (φ, g) = {M (φ,Gt)}i. µt, (5)

where {}i. is the operator that returns the i-th row of its argument, µt := [µ1,t, ..., µn,t]
′, zi,t

denotes the network-dependent liquidity holdings of bank i, and

M (φ,Gt) := I + φGt + φ2G2
t + φ3G3

t + ... =
∞∑
k=0

φkGk
t = (I− φGt)

−1 . (6)

where I is the n× n identity matrix.

Proof. Since γ > 0, the first order condition identifies the individual optimal response.

Applying Theorem 1, part b, in Calvo-Armengol, Patacchini, and Zenou (2009) to our prob-

lem, the necessary equilibrium condition becomes |φλmax (Gt)| < 1 where the function

λmax (·) returns the largest eigenvalue. Since Gt is a stochastic matrix, its largest eigen-

value is 1. Hence, the equilibrium condition requires |φ| < 1, and in this case the infinite

sum in equation (6) is finite and equal to the stated result (Debreu and Herstein (1953)).

To gain intuition about the above result, note that a Nash equilibrium in pure strategies

z∗t ∈ Rn, where zt := [z1,t, ..., zn,t]
′, is such that equation (4) holds for all i = 1, 2, ..., n.

Hence, if such an equilibrium exists, it solves (I− φGt) zt = µt. If the matrix is invertible,

we obtain z∗t = (I− φGt)
−1 µt. The rest follows by simple algebra. The condition |φ| < 1

states that network externalities must be small enough in order to prevent the feedback

triggered by such externalities to escalate without bounds.

The matrix M (φ,Gt) has an important economic interpretation: it aggregates all direct

and indirect links among banks using an attenuation factor, φ, that penalises (as in Katz

(1953)) the contribution of links between distant nodes at the rate φk, where k is the length

of the path between nodes. In the infinite sum in equation (6), the identity matrix captures

the (implicit) link of each bank with itself, the second term in the sum captures all the direct

links between banks, the third term in the sum captures all the indirect links corresponding

to paths of length two, and so on. The elements of M(φ,Gt), given by mij(φ,Gt) :=∑+∞
k=0 φ

k
{
Gk
t

}
ij

, aggregates all paths from j to i, where the kth step is weighted by φk.

In equilibrium, the matrix M (φ,Gt) contains information about the centrality of net-

work players. Multiplying the rows (columns) of M (φ,Gt) by a unit vector of conformable

dimensions, we recover the indegree (outdegree) Katz–Bonacich centrality measure.17 The

17Newman (2004) shows that weighted networks can in many cases be analysed using a simple mapping
from a weighted network to an unweighted multigraph. Therefore, the centrality measures developed for
unweighted networks apply also to the weighted cases.
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indegree centrality measure provides the weighted count of the number of ties directed to

each node (i.e., inward paths), while the outdegree centrality measure provides the weighted

count of ties that each node directs to the other nodes (i.e., outward paths). That is, the

i-th row of M (φ,Gt) captures how bank i loads on the network as whole, while the i-th

column of M (φ,Gt) captures how the network as a whole loads on bank i.

To see clearly how the network propagates idiosyncratic shocks, we write equation (5)

as,

z∗t = M (φ,Gt) µ̄︸ ︷︷ ︸
level effect

+ M (φ,Gt) νt︸ ︷︷ ︸
risk effect

. (7)

The matrix M (φ,Gt) (which includes the network topology and the network attenuation

factor φ) is not enough to determine the systemic importance of a bank. Banks’ equilibrium

reserve holdings depend on both M (φ,Gt) and µt, and µt load on bank-specific shocks νt.

M (φ,Gt) governs the propagation – banks weight its own shock, and through M (φ,Gt),

the shocks to neighbouring and centrally located bank more heavily. But, regardless of how

shocks are propagated, banks with large liquidity shocks (i.e., large σ2
i ) have a large influence

on the other banks’ liquidity holdings. This equilibrium equation guides our empirical esti-

mation of the mechanism that propagates idiosyncratic shocks via network Gt. Especially,

it gives us a structure to estimate φ and a set of σi.

The planner’s solution. The model captures not only the shock amplification mechanism

through the network but also the externalities. Individual banks make their own liquidity

provision decisions without internalising the impact on other banks’ utilities. We proceed to

a formal analysis of planner’s problem in this interconnected system to analyse the wedge

between the decentralised equilibrium and social optimum. We aim to quantify this wedge

using empirical estimates to help regulators with their macro-prudential policy-making de-

cisions. Specially, we model a planner that equally weights the utility of each bank (in

equation (2)) choosing the liquidity holdings by solving the following problem:

max
{zi,t}ni=1

n∑
i=1

ui(zi,t|Gt, {zj,t : j 6= i}). (8)

The first order condition for the liquidity holding of the i-th bank (zi,t) yields

zi,t =µi,t + φ
∑
j 6=i

gij,tzj,t︸ ︷︷ ︸
decentralised f.o.c.

+ψ
∑
j 6=i

gji,tµj,t + φ
∑
j 6=i

gji,tzj,t − ψ
(
ψ − 2δ

γ

)∑
j 6=i

∑
m 6=j

gji,tgjm,tzm,t

(9)
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The first two (indegree) terms are the same as in the decentralised case, while the last

three (outdegree) terms reflect that the planner internalizes banks’ impact on their neigh-

bours’ utilities. The third term arises from the fact that for one unit of liquidity held by

bank i, neighbour j can draw ψgji,t units. Here, neighbour j values this liquidity at µj,t, the

standalone valuation absent of network impact. The fourth term reflects bank i’s impact on

the network-dependent part of j’s liquidity valuation. When i holds more liquidity, the infor-

mational spillover increases j’s valuation of liquidity, but because j can borrow more from i,

j’s marginal value of liquidity holdings changes. The overall impact is summarized by φ and

weighted by the outbound link gji,t. The fifth term captures the interaction effect of these

forces. Rewriting equation (9) in matrix form, we obtain zt = (I + ψG′t)µt+P (φ, ψ, δ,Gt) zt

where P (φ, ψ, δ,Gt) := φ
(
Gt + G

′
t

)
− ψ (ψ − 2δ/γ) G′tGt. This allows us to formally state

the planner’s solution.

Proposition 2 Suppose |λmax (P (φ, ψ, δ,Gt))| < 1. Then, the planner’s optimal solution

is uniquely defined and given by

zpi (φ, ψ, δ, gt) = {Mp (φ, ψ, δ,Gt)}i. µt, (10)

where Mp (φ, ψ, δ,Gt) := [I−P (φ, ψ, δ,Gt)]
−1 (I + ψG′t).

Proof. The proof follows the same argument as in the proof of Proposition 1.

Equation (10) directly guides our empirical analysis, especially the comparison between

the decentralised outcome and the planner’s solution. Rewriting the first order condition, we

solve the wedge between the decentralised equilibrium (z∗) and the planner’s solution (zp):

zpt − z∗t = M (φ,Gt)

[
ψG′tµt +

(
φG

′

t − ψ
(
ψ − 2δ

γ

)
G′tGt

)
zpt

]
. (11)

The extra terms (in the square brackets) arise from individual banks’ failure to internalize the

network externalities they generate. The intuition is similar to that of equation (9). The first

term arises from a bank’s contribution to neighbours’ liquidity through the network (valued

at µt absent of network effects). The second term reflects a bank’s impact on neighbours’

network-dependent valuation of liquidity. The last term is an interaction effect.18 The right-

hand side of Equation (11) still contains zpt , so in Appendix A.2.4, we provide the closed-form

solution of the wedge that depends on the parameters and Gt, topology of the network.

18φG′t − ψ
(
ψ − 2δ

γ

)
G′tGt vanishes only in the unlikely case of φ

ψ(ψ− 2δ
γ )

being an eigenvalue of Gt.
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III Empirical Methodology

In order to estimate the network model presented in Section II, we map the equilibrium

conditions of our theoretical model to a spatial error model (SEM). That is, we decompose

the total bank liquidity holdings into a function of the observables and a latent term that

captures the spatial dependence generated by the network:

li,t = αweekt + αbanki +
M∑
m=1

βbankm xmi,t +
P∑
p=1

βmacrop xpt + zi,t (12)

zi,t = µ̄i + φ
n∑
j=1

gij,tzj,t + νi,t ∼ iid
(
0, σ2

i

)
, i = 1, ..., n, t = 1, ..., T. (13)

We estimate the model using daily data, and include week fixed effects to control for

unobserved macro factors. Week fixed effects, bank fixed effects, and bank-level and macro

control variables together constitute qi,t, the part of liquidity holdings absent of any network

effects. On day t, the network is predetermined, and enters into zi,t through the residual

equation (13). gij,t is the fraction of bank i’s borrowing from bank j (average over the month

up to t). Control variables are lagged by one day for predeterminancy. The estimate of φ

reveals the type of equilibrium on network, i.e., strategic substitution or complementarity.19

Defining εi,t as the demeaned version of zi,t, we have
∑n

j=1 gij,tεj,t as a standard spatial

lag term and φ being the canonical spatial autoregressive parameter. That is, the model

in Equations (12) and (13) is a variation of Anselin (1988) spatial error model (see also

Elhorst (2010a, 2010b)). As outlined in the Appendix A.3.1, we estimate the model using

a quasi-maximum likelihood approach. To exhibit variation in φ and allow for changes in

{σi}ni=1, we estimate the model in subsamples and rolling windows.

This specification makes clear the nature of network as a shock propagation mechanism:

a shock to bank j is transmitted to bank i through φgij,t, so if φ > 0 (strategic comple-

mentarity), the network amplifies shocks, and if φ < 0 (strategic substitution), the network

buffers shocks. The ultimate impact of shocks to all banks is

εt = (I− φGt)
−1 νt ≡M (φ,Gt) νt (14)

where εt = [ε1,t, ..., εn,t]
′, and the structural shocks νt = [ν1,t, ..., νn,t]. As shown by equation

(6), M (φ,Gt) records the routes that propagates νt with the direction governed by φ.

We can define (1− φ)−1 as the “average network multiplier”. If Gt is a right stochastic

matrix (i.e., Gt1 = 1), which this is the case here since we model gij,t as the fraction of

19To exhibit potential time variation in φ, we perform estimations in subsamples and rolling windows.
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borrowing by i from j, then a unit shock to the system equally spread across banks (i.e.,

νt = (1/n) 1) would have an ultimate impact on aggregate liquidity equal to (1− φ)−1.20

An estimation issue for network models is the well-known reflection problem (Manski

(1993)): the neighbouring banks’ decisions about their liquidity holdings affect each other,

so that we cannot distinguish between whether a given bank’s action is the cause or the

effect of its neighbouring banks’ actions. To address this problem, Bramoullé, Djebbari and

Fortin (2009) have shown that the network effect φ can be identified if there are two nodes

in the network with different average connectivities of their direct connected nodes. This

condition is satisfied in our data.21

With the estimated parameters at hand, we identify the key contributors of systemic

risk (“risk key players”). First, we can decompose the aggregate liquidity buffer into a level

effect and a risk effect: the total network-dependent liquidity, Zt :=
∑

i zi,t, can be written

in equilibrium as

Z∗t = 1′M (φ,Gt) µ̄︸ ︷︷ ︸
level effect

+ 1′M (φ,Gt) νt︸ ︷︷ ︸
risk effect

(15)

where µ̄ := [µ̄1, ..., µ̄n]′, νt := [ν1,t, ..., νn,t]
′. The first term captures the network level effect,

and the second captures the risk effect by aggregating idiosyncratic shocks. Note that even

when N is large, idiosyncratic shocks may not vanish in aggregation because of the network

effects in M (φ,Gt) (similar to Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012)).

We measure risk by the conditional volatility of the aggregate liquidity, so we simply

work with the demeaned liquidity:

V art (1′εt) = 1′M (φ,Gt) ΣνM (φ,Gt)
′ 1.

Here we have used the fact that Gt is predetermined with respect to time-t information.

The covariance matrix of structural shocks, Σv := E [νtν
′
t], is a diagonal matrix with the

variances, {σ2
i }

n
i=1, on the main diagonal. To identify risk key players, we define the network

impulse response function as follows.

Definition 1 (Network Impulse Response Function) Let Lt ≡
∑N

i=1 li,t denote the ag-

gregate liquidity in the interbank network. The network impulse response function of aggre-

20From 1= (I− φGt)
−1

(I− φGt) 1 = (I− φGt)
−1

1 (1− φ), we have M (φ,Gt) 1 = (1− φ)
−1

1.
21The separate identification of µ̄i and αbanki is more complex, and is discussed in Appendix A.3.1. In

particular, when Gt is a right stochastic matrix, the identification of µ̄i and αbanki requires at least one bank
to not borrow from any other bank at some point in the sample (in our data, this happens 13.5% of the time
spread over all subsamples and rolling windows we consider). Alternatively, one can normalise one µi to zero
and identify the remaining ones as deviation from it. But note that the separate identification of these fixed
effects does not affect the identification of φ that is estimated by maximizing the concentrated likelihood.

15



gate liquidity, Lt, to a one standard deviation shock to a bank i, is given by

NIRFi (φ, σi,Gt) ≡
∂Lt
∂νi,t

σi = 1′ {M (φ,Gt)}.i σi (16)

where the operator {}.i returns the i-th column of its argument.

The network impulse response is the shock-size weighted outdegree centrality of bank i.

It measures a bank’s contribution to the volatility of aggregate liquidity, and thus, identifies

the risk key player by providing a clear ranking of the riskiness of each bank from a systemic

perspective. It offers a natural decomposition of volatility, since

V art (1′εt) ≡ vec ({NIRFi (φ, σi,Gt)}ni=1)
′
vec ({NIRFi (φ, σi,Gt)}ni=1) . (17)

A bank’s risk contribution depends on the size of its own shock σi, the network attenuation

factor, φ, and all the direct and indirect network links. As reminder, for |φ| < 1,

1′ {M (φ,Gt)}.i = 1′
{
I+φGt + φ2G2

t + ...
}
.i

= 1′

{
∞∑
k=0

φkGk
t

}
.i

where the initial element in the series captures direct effects of a unit shock to bank i,

the next element is the sum of first-order outbound links, the third element is the sum of

second-order outbound links, and so on.

We can isolate the pure network-driven of impulse response, that is, the impact beyond

direct effects of bank-level shocks (which we call the “excess NIRF”):

NIRF e
i (φ, σi,Gt) ≡ NIRFi (φ, σi,Gt)− σi. (18)

The sign of NIRF e
i (φ, σi,Gt) depends on the type of equilibrium (strategic substitution or

complementarity), i.e., the sign of φ. Note that it is straightforward to compute confidence

bands for the estimated NIRF s using the delta method, since they are functions of φ̂ and

{σ̂i}ni=1 that have canonical asymptotic Gaussian distribution (see the Appendix A.3.2).

As in the decentralised solution, one can decompose the volatility of aggregate liquidity:

V art (Zp (φ, ψ, δ,Gt)) = 1′Mp (φ, ψ, δ,Gt) diag(
{
σ2
i

}n
i=1

)Mp (φ, ψ, δ,Gt)
′ 1, (19)

where Mp (φ, ψ, δ,Gt) is defined in Proposition 2.

Similarly, we can identify “systemic level key player”, whose removal from the system

causes the largest reduction of aggregate liquidity level in expectation.22 A key input is the

22This definition is in the same spirit as the concept of key player in the crime network literature, e.g.,
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average liquidity valuation, i.e., µ̄. Since our empirical analysis focuses on shock propagation

through the network instead of the sample average of liquidity level, we present the theoretical

results on level key player in Appendix A.2.3).

Finally, as a specification test of our model, we consider a more general specification

that allows for richer network interactions. That is, we model liquidity holding as a spatial

Durbin model (SDM – see, e.g. LeSage and Pace (2009)) where a bank’s liquidity depends

directly on other banks’ liquidity and pairwise control variables

li,t = αweekt + αbanki +
M∑
m=1

βbankm xmi,t +
P∑
p=1

γmacrop xpt+ (20)

+ ρ

n∑
j=1

gi,j,tlj,t +
n∑
j=1

gi,j,txi,j,tθ + νi,t ∼ iid
(
0, σ2

i

)
,

where xi,j,t denotes match-specific control variables that may include the characteristics of

bank j.23 The above formulation serves as a specification test of our structural model since,

setting xi,j,t := vec(xmj 6=i,t)
′, and restricting θ = −φvec(βbankm ), γmacrop = (1 − φ)vec(βmacrop ),

and most importantly ρ = φ, we are back to the benchmark specification. In Section V,

we compare the estimates of SDM with those of our benchmark model (SEM)in rolling

windows. Given the close mapping from our theoretical model to the spatial error model,

the comparison can be viewed as a test of the theoretical model.

IV Data Description

We study the liquidity holdings of banks that are members of CHAPS, the UK large-value

payment system. These eleven banks are at the core of UK banking system, conducting

transactions for their own purpose and on behalf of their clients and hundreds of non-

member banks (more details in Appendix A.1).24 Their liquidity holdings serve the critical

Ballester, Calvo-Armengol, and Zenou (2006), where targeting key players is important for crime reduction.
23In Appendix A.2.2 we show that the above formulation is the equilibrium outcome of a network game.
24The banks are Halifax Bank of Scotland (owned by Lloyds Banking Group), Barclays, Citibank, Clydes-

dale (owned by National Australia Bank), Co-operative Bank (owned by The Co-operative Group), Deutsche
Bank, HSBC (that acquired Midland Bank in 1999 – one of the historical “big four” sterling clearing banks),
Lloyds TSB, Royal Bank of Scotland (including Natwest), Santander (formerly Abbey, Alliance & Leicester
and Bradford & Bingley, owned by Banco Santander of Spain), and Standard Chartered. For most of the
20th Century, the phrase “the Big Four” referred to the four largest sterling banks, which acted as clearing
houses for bankers’ cheques. These were Barclays Bank, Midland Bank (now part of HSBC), Lloyds Bank
(now Lloyds TSB Bank and part of Lloyds Banking Group); and National Westminster Bank (“NatWest”,
now part of The Royal Bank of Scotland Group). Currently, the largest four U.K. banks are Barclays, HSBC,
Lloyds Banking Group, and The Royal Bank of Scotland Group, closely followed by Standard Chartered s–
and all of these banks in our sample.
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Figure 1: Weekly average of aggregate liquidity available at the beginning of the day.

purpose of buffering intraday flow imbalance, ensuring the functioning of transaction system

for the whole economy. Our sample covers the period from January 2006 to September

2010, which allows us to estimate the network effect in the pre-crisis period, during the

financial crisis, and later in the era of quantitative easing. We focus on the daily variation of

liquidity holdings, so the model is estimated at daily frequency while incorporates variables

constructed from higher frequency data.

Liquidity holdings. To measure the dependent variable li,t, that is, the liquidity holdings

of each bank, we use central bank reserve holdings (logarithm). We supplement this with

the collateral that is repo’ed with the Bank of England in return for intraday liquidity (these

repos are unwound at the end of each working day).

The weekly average of aggregate liquidity in the system (the sum of banks’ holdings)

is reported in Figure 1. The figure shows a substantial upward trend in the period after

the U.S. subprime mortgage crisis that saw several market disruptions. This is consistent

with the evidence that banks hoard liquidity in crisis (e.g., Acharya and Merrouche (2010)),

but this upward trend is dwarfed by the steep run-up in response to the Asset Purchase

Programme (aka the Quantitative Easing) that almost tripled the aggregate liquidity. As

shown in Figure 10 in the Appendix, this sharp increase in liquidity was associated with a

reduction in the velocity, i.e., the ratio of payments to aggregate liquidity. Note that since

we include week fixed effects and macro control variables, this trend is unlikely to affect our

18



estimate of φ, and in particular, induce a positive bias in φ̂ due to trend-induced comovement

(i.e., spurious strategic complementarity in banks’ liquidity holdings).

Interbank network. We construct the interbank network Gt using interbank borrowing

data that we extract from overnight interbank payments using the Furfine (2000) algorithm.

This algorithm is a common approach in the literature on interbank money market, It iden-

tifies pairs of payments between two banks where the outgoing payment are loans and the

incoming payment are repayments (equal to the outgoing payment plus an interest rate). It

has been tested thoroughly, and accurately tracks the LIBOR rate.25 Furfine (2000) showed

that when applied to Fedwire data, the algorithm accurately identifies the Fed Funds rate.26

The loan data are compiled to from an interbank lending and borrowing network. In

particular, the element gij,t of the adjacency matrix Gt is given by the average fraction of

bank’s i overnight loans from bank j in the previous month ending on day t− 1.

By construction, Gt is a square right stochastic matrix. Its largest eigenvalue is therefore

equal to one. This implies that the strength of shock propagation on the network depends

the second largest eigenvalue of Gt, which is plotted in Figure 2.27 There was a substantial

increase in the crisis period, but what is striking is the large variation of network topology

after QE. The variation of Gt is critical for us to empirically identify the network parameters.

Another way to exhibit the variation of Gt is to plot an measure of network cohesiveness,

for which we use the Average Clustering Coefficient (ACC – see Watts and Strogatz (1998))

ACCt =
1

n

n∑
i=1

CLi(Gt), CLi,t =
#{jk ∈ Gt | k 6= j, j ∈ ni(Gt), k ∈ ni(Gt)}

#{jk | k 6= j, j ∈ ni(Gt), k ∈ ni(Gt)}

where ni(Gt) is the set of players that have a direct link with i and #{.} is the count operator.

The numerator is the number of pairs linked to i that are also linked to each other, while

its denominator is simply the number of pairs linked to i. Therefore, ACC measures the

25The data are only available for CHAPS banks. Thus, some loans may be attributed to a settlement bank
when in fact the payments are made on behalf of its customers. Moreover, where a loan is made between one
customer of a settlement bank and another, this transaction will not be settled through the payment system
but rather across the books of the settlement bank (internalisation). Internalised payments are invisible to
the BoE, so they are a part of the overnight money market that is not captured here.

26 As documented in Armantier and Copeland (2012), the Furfine’s algorithm can be affected by Type I
and, to a lesser extent, Type II, errors. Nevertheless, this is less of a concerns in our application since: first,
as documented in Kovner and Skeie (2013), at the overnight frequency that we focus on, interbank exposures
measured by the algorithm are highly correlated with the Fed funds borrowing and lending reported in bank
quarterly regulatory filings; second, and more importantly, instead of using the daily borrowing and lending
data, we smooth these exposures by computing rolling monthly averages, therefore greatly reducing the
relevance of false positives and negatives in the identification of interbank relationships. Furthermore, we
apply several robustness checks on our measure of interbank linkages (results available upon request).

27This is because Gk can be rewritten in Jordan normal form as PJkP−1 where J is the (almost) diagonal
matrix with eigenvalues (or Jordan blocks in case of repeated eigenvalues) on the main diagonal.
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Figure 2: Second largest eigenvalue of Gt.

Figure 3: Average clustering coefficient of the interbank network.

average proportion of banks that are connected to i and also connected with each other. By

construction it ranges from 0 to 1. A higher value means that the network is more dense.

The time series of ACC is shown in Figure 3. At the beginning of our sample, the
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network is highly cohesive since, on average, around 80% of pairs of banks connected to

any given bank are also connected to each other. The degree of connectedness seems to

have a decreasing trend during 2007–2008, and a substantial and sudden decrease following

the Asset Purchase Programme, when ACC dropped by about one-quarter of its pre-crises

average. This is related to the reduced interbank borrowing needs during the QE period

thanks to the availability of additional reserves from the Bank of England (combined with a

move towards increased collateralisation of borrowing and an overall deleveraging, see, e.g.

Westwood (2011)). This interpretation is consistent with Figure 9 in the Appendix, the

monthly rolling average of daily sterling value of gross borrowing in the network.

Macro control variables. To control for aggregate liquidity condition, we use the LIBOR

rate as a proxy for funding cost together with the interbank rate premium (average overnight

borrowing rate of the CHAPS banks minus the LIBOR rate).28 All control variables are

lagged by one day so that they are predetermined with respect to time t shocks.

Since banks’ decisions to hold liquidity are likely to be influenced by the volatility of

their daily payment outflows, we construct a measure of the intraday payments volatility as

V olPayt =

√√√√ 1

88

88∑
τ=1

(
P out
t,τ

)2
(21)

where P out denotes payment outflows and 88 is the number of ten-minute time intervals (the

unit of time for payment recording in our sample) within a day. The time series is plotted

in Figure 11 in the Appendix. Outflow volatility declined steadily throughout the crisis,

suggesting that banks in aggregate smoothed intraday outflow.

We also control for the turnover rate in the payment system. This variable is defined as

TORt =

∑N
i=1

∑88
τ=1 P

out
i,t,τ∑N

i=1 max
{

maxτ∈[1,88] [CNP (τ ; i, t)] , 0
}

where the cumulative net debit position (CNP) is defined as the difference between payment

outflows and inflows (see also Benos, Garratt, and Zimmerman (2010)). The numerator is

the total payments in day t, while the denominator is the sum of maximum intraday net

debt positions of all banks. The time series is plotted in Figure 12 in the Appendix. The

turnover rate increased during the crisis period, and declined after the introduction of QE.

28LIBOR is the average of borrowing rates reported by selected banks, not CHAPS banks. Interbank
rate premium can be positively or negatively correlated with banks’ liquidity holdings. First, when CHAPS
banks face more risks, they may hold more liquidity and face higher borrowing costs. Second, interbank rate
premium measures an opportunity cost – CHAPS banks can borrow to lend at LIBOR rate rather than hold
reserves. So, when LIBOR is high (interbank rate premium low), banks prefer to hold less liquidity.
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Since banks have some discretion on the timing of intraday outflows, they could behave

strategically – to preserve liquidity, banks may expedite inflows and delay outflows. There-

fore, we control for the right kurtosis (rKt) of intraday payment time.29 The time series is

plotted in Figure 13 in the Appendix, showing a substantial increase in the QE period.

Beyond these control variables at daily frequency, we add week fixed effects to account

for potential missing variables that fluctuate at lower frequencies, such as monetary policy

conditions beyond the interbank rates and real economic activities that drive payment flows.

Bank characteristics. Despite the fact that we control for average interest rates, we also

control for bank-specific overnight borrowing rate, which is a daily volume-weighted average.

As shown by Figure 14 in the Appendix, there was a substantial increase in the cross-sectional

dispersion of the overnight borrowing rates during turmoil periods, such as the collapses of

Northern Rock and Lehman Brothers. This cross-sectional dispersion persisted during the

QE period. Therefore, it is critical to account for the heterogeneity in banks’ overnight

borrowing rates. As macro variable, all bank-level control variables are lagged by one day.30

We also control for other bank-level variables: right kurtosis of intraday payment inflow

time (rKin
i,t) and outflow time (rKout

i,t ); the level of intraday payment outflow (LevPayi,t ≡∑88
τ=1 P

out
i,t,τ ); the volatility of intraday payment outflow (V olPayi,t, constructed as in equation

(21) using bank-level flows); the liquidity used (LUi,t, as in Benos, Garratt, and Zimmerman

(2010) and defined in the Appendix); repo liabilities to total assets ratio; the change of

retail deposits to total assets ratio; the total interbank lending and borrowing; an index

(cumulative change) of 5-year credit default swap (CDS) spread; daily stock return.

29We define right and left kurtosis (denoted, respectively, by rKt and lKt) as the fractions of kurtosis of
payment times from, respectively, above and below the average payment time of the day:

rKt =

∑
τ>ms

( τ−mtσt
)4∑88

τ=1( τ−mtσt
)4

; lKt =

∑
τ<mt

( τ−mtσt
)4∑88

τ=1( τ−mtσt
)4

;

where mt and σt are defined as flow-weighted average payment time and standard deviation, i.e.,

mt =
1

88

88∑
τ=1

τ

(
POUTt,τ∑T
t=1 P

OUT
t,τ

)
, σ2

t =
1

88− 1

88∑
τ=1

[
τ

(
POUTt,τ∑88
t=1 P

OUT
t,τ

)
−mt

]2
.

30For variables available at lower than daily frequency (monthly), we use the latest lagged observation.
These variables are: repo liabilities to asset ratio, total assets, and the ratio of retail deposits to total assets.
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V Estimation Results

V.1 Subsample estimation

We estimate our model (equations (12) and (13)) in three subsamples of roughly equal size:

the period before the Northern Rock and BNP Paribas Fund crisis (9 August 2007), the

period after it and before QE (19 January 2009), and the QE period. These three periods are

marked by distinct liquidity conditions, and as documented in Section IV, different behaviour

of the network and other variables. Period 1 is a relatively tranquil period. Period 2 saw

several significant events, such as the subprime mortgage fund crisis (e.g., BNP Paribas fund

freezing on 9 August 2007), the run on Northern Rock (the UK’s first in 150 years), the

Federal Reserve intervention in Bear Stearns and its subsequent sale to JP Morgan Chase,

and the bankruptcy of Lehman Brothers. Period 3 began with a regime switch in monetary

policy. On 19 January 2009, it was announced that the BoE will purchase up to £50 billion

in private assets, which marked the beginning of quantitative easing in the U.K.

The network multiplier. The estimation results for these three subsamples are reported in

Panel A of Table 1, where we report only the estimates of the spatial dependency parameter

φ (first row), the R2 of the regression (second row), the implied average network multiplier

(third row) 1/(1−φ) that was discussed in Section III, as well as the ratio of the volatility of

network liquidity to the counterfactual volatility when φ = 0. Omitted from the table are the

coefficient estimates of control variables, which are reported in Table A1 of the Appendix.

Recall that φ > 0 (< 0) implies that banks’ liquidity holding decisions are strategic

complements (substitutes) and that this tends to amplify (reduce) the the impact of bank-

level shocks to aggregate liquidity. In the first period, the estimate of φ is 0.8137 and highly

significant, indicating a substantial network amplification effect: a £1 shock equally spread

across banks would result in a 1/
(

1− φ̂
)

= £5.3677 shock to the aggregate liquidity.

In the second period, the coefficient φ is substantially lower in magnitude and marginally

significant, implying weak strategic complementarity and an average network multiplier of

about 1/ (1− 0.3031) = 1.4349. This finding suggests that in response to the turbulence in

financial markets that have characterised the second period, banks’ liquidity management

objective increasingly tilted away from responding to informational spillover and towards

free riding neighbours, i.e., a shift from strategic complementarity to substitution.

In the third period, φ̂ becomes negative, −0.1794, and statistically significant, implying

an average network multiplier of 0.8479. This is particularly interesting since strategic sub-

stitution became the dominant force in banks’ liquidity holding decisions, as in Bhattacharya

and Gale (1987). As a result, the network buffers the impact of shocks from individual banks

on the aggregate liquidity. This finding also sheds light on how massive liquidity injection

23



Table 1: Spatial Error Model Estimation
Period 1 Period 2 Period 3

Panel A: Gt based on borrowing

φ̂ 0.8137
(21.47)

0.3031
(1.90)

−0.1794
(−4.96)

R2 66.01% 92.09% 91.53%

1/
(

1− φ̂
)

5.3677
(4.92)

1.4349
(4.37)

0.8479
(32.61)√

V ar(Zt|φ̂)
V ar(Zt|φ=0)

5.59 1.25 0.89

Panel B: Gt based on lending

φ̂ 0.8209
(20.38)

0.2573
(1.23)

−0.3925
(−7.18)

R2 66.02% 91.63% 91.61%

1/
(

1− φ̂
)

5.5835
(4.45)

1.3464
(3.54)

0.7181
(25.49)√

V ar(Zt|φ̂)
V ar(Zt|φ=0)

5.71 1.45 0.85

Panel C: Gt based on borrowing and lending

φ̂ 0.8204
(19.36)

0.3258
(1.89)

−0.2824
(−6.10)

R2 63.98% 92.22% 91.70%

1/
(

1− φ̂
)

5.5679
(4.24)

1.3464
(3.91)

0.7181
(26.74)√

V ar(Zt|φ̂)
V ar(Zt|φ=0)

5.94 1.15 0.74

Estimation results for equations (12) and (13). Periods 1, 2 and 3, correspond, respectively, to before the

Northern Rock/BNP Paribas Fund Crisis, after it but before the first BoE announcement of Asset Purchase

Programme, and the QE period. The t-statistics are reported in parentheses under the estimated coefficients.

Standard errors are QMLE-robust ones, and the delta method is used for for the average network multiplier,

1/(1− φ̂). In Panel A, the adjacency matrix is computed using the interbank borrowing data, while in Panels

B and C we use, respectively, lending and borrowing plus lending (all row-normalized).

by the central bank affects the network effect.31 Overall, the model fits data fairly well in

the three subsamples, with R2 in the range of 66%− 92%.

The last row of Panel A reports

√
V ar(Zt|φ̂)/V ar(Zt|φ = 0), i.e., the ratio of the volatil-

ity of aggregate liquidity implied by our estimate of φ to the counterfactual volatility if there

were no network externalities. In the first period, the network multiplier generates a 459%

increase in volatility. The excess volatility from network effects dropped to 25% in the crisis

period, and turned negative, -11%, in the QE period. Table A2 of the Appendix reports√
V ar(zi,t|φ̂)/V ar(zi,t|φ = 0), the network volatility multiplier for each bank.

For robustness, in Panels B and C, we estimate our network model with two alternative

31Total liquidity injected from the Quantitative Easing program of the BoE was about £435 billion as of
December 2017. See https://www.bankofengland.co.uk/monetary-policy/quantitative-easing.
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constructions of the adjacency matrix Gt. In Panel B, we use the lending flows, while in

Panel C, we use the combined borrowing and lending flows. In both cases, the adjacency

matrix is row-normalized (right stochastic). Such an exercise is meaningful because, as we

emphasized when constructing the theoretical model, network linkages reflect the interbank

relationships, which may transmit information and/or liquidity. Thus, a linkage is not neces-

sarily just about borrowing. If a bank lends to another bank, a relationship formed through

this transaction may facilitates future borrowing or information transmission. Overall, the

estimates in Panels B and C are very similar to those in Panel A.

Network impulse response and key players. Using the estimates, we compute the

network impulse response functions to identify risk key players in each subsample. Results

are reported together with banks’ net borrowing amount and the network graph.

In the upper panel of Figure 4, we report each bank’s excess network impulse response

to a unit shock, i.e., NIRF e
i

(
φ̂, 1, Ḡ1

)
= NIRFi

(
φ̂, 1, Ḡ1

)
− 1, defined in equation (18),

where Ḡ1 denotes the average Gt in Period 1. It measures Bank i’s contribution to systemic

risk – the network-induced reaction of aggregate liquidity to a unit shock to Bank i. Note

that if either φ = 0 or there is no network linkages (Ḡ1 = 0), a unit shock to Bank i is a unit

shock to the aggregate liquidity, and thus, the excess response is zero. We also plot one and

two standard deviation bands. As a point of reference, we show the average excess network

multiplier, (1− φ)−1− 1 = 4.3677 (Panel A of Table 1), i.e., how network as whole amplifies

a unit shock equally spread across banks.

A key message from Figure 4 is that a small set of key players are responsible for systemic

risk, i.e., the large network multiplier. A shock of £1 to Bank 5, 6 or 9 would generate an

excess response of aggregate liquidity equal to £13.9, £8.9, and £13.8 respectively. A

shock to Bank 4 would induce an excess response similar to the network average, while the

remaining seven banks contribute relatively little to shock amplification.

The comparison between the upper and central panels makes clear that risk key players

are not necessarily large net borrowers – large net borrowers and lenders are both likely to

be key risk contributors. This is intuitive: a negative shock to a bank that lends to a large

part of the network (high outdegree centrality) can be, for the aggregate liquidity buffer, as

bad as a negative shock to a bank that borrows from many banks (high indegree centrality).

However, even if we consider both borrowing and lending amounts, it is still not enough to

identify key players. For example, the risk contribution of Bank 5 would be underestimated.

The reasons behind can be understood by looking at the lower panel of Figure 4, where we

present the average network structure in Period 1. The size of ellipses identifying individual

banks are (log) proportional to their average gross borrowing, incoming arrows to a node

indicate borrowing flows while outgoing arrows indicate lending flows, and the thickness of
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Figure 4: The period before the Northern Rock/Hedge Fund Crisis: Network excess impulse
response functions to a unit shock (upper panel); net borrowing (central panel); borrowing and
lending flows (lower panel) where the ellipses identifying individual banks are (log) proportional to
their average gross borrowing, incoming arrows to a node indicate borrowing flows while outgoing
arrows indicate lending flows, and the thickness of arrows is (log) proportional to the sterling value.
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arrows is (log) proportional to the sterling value. It shows that key risk contributors tend to

be banks with high centrality (e.g., Bank 5), i.e., with thick and many links, especially links

to other well-connected banks, but not necessarily the large players by size.

Figure 5 reports excess impulse response functions (upper panel), average net borrowing

(central panel), and network flows (lower panel) for Period 2 – the period characterised by

a high degree of stress in the financial market. The first thing to notice is that despite

the overall increase in borrowing and lending activities in the interbank market (see also

Figure 9 in the Appendix), there is a drastic reduction in the average network multiplier

reported in the top panel: the network-induced excess reaction to a unit shock is only about

0.43. In a crisis period, banks seem to have radically adjusted their liquidity management

objectives, reflected by the estimate of φ, and they have done so despite having increased

the utilization of interbank network to transfer liquidity. Nevertheless, systemic risk, even

though substantially reduced, is still quite high and driven by a few key players. In particular,

a unit shock to Bank 5, Bank 9 and Bank 6 trigger an excess reaction of aggregate liquidity

equal to 1.77, 1.36 and 0.85 respectively, while a shock to Bank 4 has an average effect, and

the remaining banks contribute little.

The results for Period 3 – the one starting at the onset of QE – are reported in Figure 6,

and are radically different from the ones of the previous two periods. First, banks’ liquidity

holdings exhibit strategic substitution (φ̂ < 0), and as a result, the network buffers shocks

to individual banks, reflected in an average excess multiplier of −0.15 – a unit shock equally

spread across banks would result in a shock of 1 − 0.15 = 0.85 to the aggregate liquidity.

But, once again, there is substantial heterogeneity among the banks, in the sense that most

banks (1, 3, 7, 8, 10 and 11) contribute little to shock propagation, while a few key players

(4, 5, 6, and 9) are responsible for the network buffering effect.

This behaviour arises in a period in which the degree of connectedness of the network

was substantially reduced (see Figure 3 and the lower panel of Figure 6), the total borrowing

had been substantially reduced (see Figure 9 in the Appendix), and most banks held net

borrowing positions close to zero (central panel of Figure 6), but at the same time, the overall

liquidity in the system had substantially increased, which is likely due to QE (Figure 1).

What is also interesting to notice is that the same banks that were the riskiest players

in the previous two periods (Banks 5, 6 and 9) are now the least risky ones for the system.

Thanks to their network centrality, and more importantly, the overall strategic substitution

behaviour on the network, these banks become the biggest shock absorbers.

A natural question is whether we can explain the large heterogeneity of individual banks’

contribution to system risk using banks’ characteristics, and maybe find some proper indi-

cators. Table 2 reports the rank correlations of individual bank characteristics with banks’
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Figure 5: The period after the Norther Rock/Hedge Fund Crisis but before QE: Network excess
impulse response functions to a unit shock (upper panel); net borrowing (central panel); borrowing
and lending flows (lower panel) where the ellipses identifying individual banks are (log) proportional
to their average gross borrowing, incoming arrows to a node indicate borrowing flows while outgoing
arrows indicate lending flows, and the thickness of arrows is (log) proportional to the sterling value.
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Figure 6: The QE period: Network excess impulse response functions to a unit shock (upper panel);
net borrowing (central panel); borrowing and lending flows (lower panel) where the ellipses identi-
fying individual banks are (log) proportional to their average gross borrowing, incoming arrows to
a node indicate borrowing flows while outgoing arrows indicate lending flows, and the thickness of
arrows is (log) proportional to the sterling value.
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Table 2: Rank Correlation of Bank Characteristics and NIRF e
i

Period 1 Period 2 Period 3
Interbank Rate 20.91% 37.27% −64.55%

lnLevPayi,t−1 82.73%∗∗∗ 95.45%∗∗∗ −85.45%∗∗∗

rKin
i,t−1 20.00% −34.55% 10.91%

rKout
i,t−1 −45.45% −89.09%∗∗∗ 73.64%∗∗

lnV olPayi,t−1 48.18% 56.36%∗ −54.55%∗

lnLUi,t−1 21.82% 35.45% −23.64%
Repo Liability

Assets
39.45% 48.18% −37.27%

Total Assets (log) 12.73% 25.45% 4.55%
∆Deposits

Assets
12.73% −50% 68.18%∗∗

CDS Spread 38.18% 18.18% −40.00%

Stock Return 13.64% −17.27% −56.36%∗

Total Lending and Borrowing (log) 86.36%∗∗∗ 95.45%∗∗∗ −89.09%∗∗∗

Total Lending (log) 97.27%∗∗∗ 99.09%∗∗∗ −89.09%∗∗∗

Total Borrowing (log) 66.36%∗∗ 91.82%∗∗∗ −76.36%∗∗∗

Net Borrowing (log) −17.27% 10.91% 54.55%∗

* represents 10% significance, ** 5% significance, and *** 1% significance.

network impulse-response functions in the three subsamples. Only a few characteristics seem

to correlate significantly with the magnitude of NIRF e
i . Several observations are in order.

For the total payments channeled by a bank, in periods 1 and 2, the rank correlations

for this variable are, respectively, 82.73% and 95.45%, while in period 3 we have -85.45%,

suggesting banks that channel a larger amount of payments are likely to be central in the

interbank credit network but the implications of its centrality depends on the type of equi-

librium, i.e., strategy complementarity (φ > 0) or substitution (φ < 0). In the first two

periods, when φ > 0, banks with large payment flows contribute to the volatility of aggre-

gate liquidity, while in the third period, when φ < 0, they dampens the effect of shocks.

The last row of Table 2 shows that net borrowing has no significant rank correlation

with banks’ NIRF e
i , consistent with Figures (4)-(6). Nevertheless, gross lending and gross

borrowing, and their sum, are all highly correlated with banks’ NIRF e
i . That is, banks that

borrow and/or lend a lot (in gross terms) tend to be key players in our network. Once again,

the sign of correlation depends on the sign of φ: large banks, in terms of gross borrowing or

lending, can be key risk contributors or absorbers depending on the type of equilibrium on the
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Table 3: Central Planner vs. Market Equilibria
Period 1 Period 2 Period 3

∆% Volatility of Total Liquidity −90.8% −64.8% 30.7%
∆ Level of Total Liquidity (unit: £10bn) −3.47 15.5 −27.5

The three subsamples are indexed by j = 1, 2, 3, and Ḡj is the average Gt in subsample j. The table reports:

in first row, 100×

[(
V ar(Zp(φ̂j ,Ḡj))
V ar(Z∗(φ̂j ,Ḡj))

) 1
2

− 1

]
; in second row, 1′

[
Mp

(
φ̂j , Ḡj

)
−M

(
φ̂j , Ḡj

)]
ˆ̄µj .

network. How to measure bank size is important. For example, size measured by total assets

is only weakly correlated with NIRF e
i . Interestingly, the rank correlations are, in absolute

terms, marginally larger for total lending than for total borrowing, suggesting outdegree links

are more important for shock propagations. As we have shown in the theoretical model,

outbound routes are responsible for the discrepancy between the planner’s solution and

decentralised equilibrium outcome. Next, we use our estimates to quantify this discrepancy.

V.2 The planner’s solution vs. decentralised equilibrium

Using the estimates of structural parameters, we assess the discrepancy between banks’

liquidity holdings in the decentralised equilibrium, and the level of liquidity buffer that a

benevolent central planner would have wanted the banks to hold. That is, from equations

(15), we compute the (expected) difference between the aggregate liquidity of planner’s choice

and the aggregate decentralised liquidity as 1′ [Mp (φ, ψ, δ,G)−M (φ,G)] µ̄. Similarly, from

equations (17) and (19) we compute the difference in the volatility of planner’s choice and

that of the aggregate decentralised liquidity: V ar(Zp (φ, ψ, δ,G))
1
2 −V ar (Z∗ (φ,G))

1
2 .

To compute these quantities, we need ψ and the ratio δ/γ (see Proposition 2). While

we cannot estimate ψ directly, we calibrate it to a natural benchmark, that is ψ = 1 –

banks value the liquidity available from the network (i.e., borrowing from neighbours) in an

identical manner as they value its own liquidity holdings. Since we have an estimate of φ,

the ratio δ/γ can be backed out from the definition of φ, i.e., δ/γ = φ+ ψ.

Table 3 reports the discrepancies between the central planner’s solutions and the market

equilibria, based on the estimates of structural parameters in Table 1, and the average value

of the adjacency matrix Gt, in the three subsamples.

In Period 1 – when the (average) network multiplier was extremely large – the market

equilibrium features excessive risk from the perspective of a central planner: the planner

would prefer the volatility of aggregate liquidity to be reduced by almost 91%. Moreover,

albeit marginally, the liquidity level in the system is also excessive. Because both the planner

and individual banks face the same bank-specific mean valuation of liquidity (µ̄) and shock
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variance (σ2
i ), the discrepancy between the planner’s solution and decentralised outcome lies

in the fact that individual banks do not internalise their impact on each other (i.e., the

outdegree linkages), as shown by equation (9).

In Period 2, the market equilibrium produces less volatility than in the Period 1. Nev-

ertheless, the market volatility is still too large (by about 65%) from the central planner’s

perspective. In comparison with Period 1, the network is less cohesive (see Figure 3), and

the network multiplier declines since φ is closer to zero. However, this does not mean that

the network externalities are eliminated. Quite to the opposite, such externalities through

outdegree linkages lead to an expected level of aggregate liquidity buffer that is £15.5 billions

lower than what is considered optimal by the central planner.

In the last period, the (average) network multiplier in the market equilibrium is smaller

than 1, hence overall the system dampens the volatility of shocks. From the central planner’s

perspective, not enough volatility is generated (by about 31%) while at the same time the

aggregate network liquidity buffer is too high. This implies that banks hold idle reserves, and

thus, the transmission of monetary policy (i.e., QE in this context) to the broad economy

tends to be less effective than envisioned.

V.3 Time-varying network effects

The results presented so far indicate a substantial change over time in the role played by

the network interactions in determining aggregate liquidity level and risk. In this section,

we analyse the drivers of this time variation.

Drivers of variation in network effects. The network impulse response functions de-

picted in Figures (4)-(6) show substantial time variation in the amplification of shocks across

periods. This could be caused by either the time variation in the network topology G or in

the network multiplier φ. To examine the relative contribution, we compute the changes in

the network impulse response functions across the three periods.

In particular, Panel A of Figure 7 reports the change in NIRFs between Periods 1 and 2

due to the variation of G (NIRFi(φ̂1, 1, Ḡ2)−NIRFi(φ̂1, 1, Ḡ1), dotted line with triangles),

and the change due to the variation of φ (NIRFi(φ̂2, 1, Ḡ1)−NIRFi(φ̂1, 1, Ḡ1), dash-dotted

line with +). Note that total change is not the sum of ceteris paribus change due to variation

in G and ceteris paribus change due to variation in φ, but as a point of reference, the total

change is plotted (NIRFi(φ̂2, 1, Ḡ2)−NIRFi(φ̂1, 1, Ḡ1), dashed line with circles).

A striking feature of the graph is that most of the total change comes from the reduction

in the network multiplier φ for all banks. In fact, ceteris paribus, the NIRF of Bank 5 would

have increased from Period 1 to 2 due to the change in G. However, this effect is dwarfed
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Figure 7: Attribution of the change in NIRFs across periods: the ceteris paribus change due
to variation of G (NIRFi(φ̂1, 1, Ḡ2) − NIRFi(φ̂1, 1, Ḡ1), dotted line with triangles); the ceteris
paribus change due to variation of φ (NIRFi(φ̂2, 1, Ḡ1)−NIRFi(φ̂1, 1, Ḡ1), dash-dotted line with
+); the total change (NIRFi(φ̂2, 1, Ḡ2)−NIRFi(φ̂1, 1, Ḡ1), dashed line with circles).
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by the reduction of its NIRF caused by the change in φ.

Panel B reports the same decomposition of the change in NIRFs between Periods 2 and

3. Once again the changes are mostly driven by the change in the network multiplier rather

than the change in network topology. Overall, Figure 7 shows that the time variation of the

network multiplier, i.e., the type of equilibrium on the network (strategic complementarity

vs. substitution), has the first order effect on the network amplification mechanism.

Rolling-window estimation and spatial Durbin model. The results in the previous

sections indicate the importance of variation of φ in determining the network effects. There-

fore, to capture this time variation, we now estimate the structural model in equations (12)

and (13) using a 6-month rolling window.32 These rolling estimates of the network coefficient

φ are reported (blue line), together with 95% confidence bands (red lines), in Figure 8.

The figure also reports the rolling point estimates of the coefficient φ implied by the

spatial Durbin model (green line) in equation (20) which, as a more general model, serves

as a specification test of our benchmark spatial error model. If the two estimated φ are

close to each other, as shown in Figure 8, this indicates that our theory-driven spatial error

specification of the interbank network cannot be rejected for a more general specification.33

Specifically, we find that less than 95% of the time, the two estimates differ statistically at

the 5% confidence level.

At the beginning of the sample, the estimate of φ implies an extremely large network

multiplier, and thus, the interbank system as a powerful shock amplifier. The estimate has its

first sharp reduction around the 18th of May 2006 when the Bank of England introduced the

reserve averaging system described in Section A.1. The network multiplier is relatively stable

after that, except for a temporary decrease during the 2007 subprime mortgage default, until

the Northern Rock bank run when the network multiplier is drastically reduced for several

months. After this reduction, the coefficient goes back to roughly the previous average

level but exhibits a declining trend that culminates in a slump following the Bear Stearns

collapse. From this period onward, and until long after the Lehman Brothers bankruptcy,

the coefficient is statistically indistinguishable from zero.

32Recall that when Gt is a right stochastic matrix, separate identifications of the bank (αbank) and network
(µ̄) fixed effects require that there is a subset of banks that does not borrow at least at one point in time in
each subsample (see footnote 25 and the Appendix A.3.1). This condition is not satisfied in all the rolling
windows. But since the separate identification of these fixed effect does not affect the identification of φ,
we normalise the bank fixed effects to zero. Moreover, given the very short length of the rolling window,
we drop time fixed effects from the specification and heteroskedastic specification of shocks. Estimates with
the full sets of fixed effects and heteroscekasticity show a very similar behaviour, but with somewhat larger
confidence intervals, due to the increase of number of parameters. We focus on the more parsimonious
specification, but results of sull specifications are available upon request.

33Likelihood ratio test cannot reject the spatial error model most part of our sample (i.e., except rolling
windows ending from May 2009 to May 2010). Results are available upon request.
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Figure 8: Spatial Error (blue line) and Durbin (green line) rolling estimates of φ.

Our estimation suggests that banks’ liquidity management objectives change in response

to market-wide crisis in a way that reduce the domino effect of shock propagation and

amplification on the interbank network. This may happen through the following channels:

a) a reduction in the informational spillover effect, i.e., a reduction in δ; b) interbank credit

becomes more prominent a source of liquidity, i.e., an increase in ψ; c) the marginal utility

from liquidity hoarding decreases faster, i.e., an increase in γ.

Interestingly, the coefficient φ̂ becomes negative right before the announcement of Asset

Purchase Programme, and remains negative throughout the QE period. This indicates that

during the active liquidity injection by the Bank of England (and also in expectation of

it), banks’ liquidity holding decisions exhibit strategic substitution in their liquidity holding

decision (as in Bhattacharya and Gale (1987)). Note that our results are unlikely to be driven

by the direct or mechanical impact of QE on the interbank market of reserves for the following

reasons: a) our estimation controls for variation in many prices (e.g., interbank rates),

aggregate quantities (e.g., payment patterns, repo, deposits etc.), and time (weekly) fixed

effects, so our estimated response functions of individual banks are already conditional on

such information; b) as shown in Figure 1, overall, banks hold more liquidity after QE, which

favours strategic complementarity (i.e., correlated liquidity holdings) instead of strategic

substitution; c) the drop in φ actually occurred before the announcement of QE; d) as
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previous emphasized and described in the Appendix A.1, the Bank of England followed an

accommodative reserve supply policy throughout our sample period, so the impact of QE

is not through alleviating reserve scarcity. Therefore, our finding of a strong QE impact on

banks’ liquidity management objectives (i.e., our structural parameters) posit a challenge

for theoretical research on how monetary policy affects the banking system.

VI Conclusion

We develop a network model of banks’ liquidity holding decisions, and estimate the model to

uncover the structural parameters that determine the type of equilibrium on the interbank

network, i.e., strategic complementarity or substitution. Using the estimated parameters and

the observed network topology, we construct measures of systemic risk and identify banks

that contribute the most to the risk of aggregate liquidity buffer in the payment system.

We find that the network effects vary significantly through the sample period of 2006 to

2010. In the pre-crisis period, banks’ liquidity holding decisions exhibit strategic comple-

mentarity, so shocks are amplified by the network. In contrast, during the crisis, the network

multiplier declined significantly, suggesting that banks adjusted their liquidity management

objectives in a way that reduce network domino effects. Finally, during the QE period, in re-

sponse to the large liquidity injection, the equilibrium on interbank network is characterised

by strategic substitution, and accordingly, the network became a shock buffer.

To the best of our knowledge, we are the first to provide evidence on the substantial

time variation in the nature of equilibrium on a financial network. Moreover, we show that,

form a systemic risk perspective, the change in the type of equilibrium is the dominant force

(rather than the change in network topology). This could rationalise the empirical puzzle of

network changes having little impact on aggregate quantities in the calibration/simulation

studies on interbank networks (e.g., Elsinger, Lehar, and Summer (2006)).

From a policy perspective, we are able to identify key risk contributors using our estimates

of structural parameters, and show that a subset of players are responsible for systemic

risk generated through network connections. Last, but not least, we solve the choice of

a benevolent central planner, and quantify the discrepancy between the planner’s solution

and the decentralised outcome in both expected level and volatility of aggregate liquidity.

In particular, we find that during both the pre-crisis and the 2007-2009 crisis periods, the

system was characterised by an excessive amount of risk, and during the crisis, too little

liquidity buffer held by individual banks relative to the social optimum.
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Bramoullé, Y., H. Djebbari, and B. Fortin (2009): “Identification of Peer Effects through Social
Networks,” Journal of Econometrics, 150(1), 41–55.

Brunnermeier, M. K., and Y. Sannikov (2014): “A Macroeconomic Model with a Financial Sector,”
American Economic Review, 104(2), 379–421.

(2016): “The I Theory of Money,” Working paper, Princeton University.

Cabrales, A., D. Gale, and P. Gottardi (2015): “Financial Contagion in Networkss,” Discussion
paper.

Cabrales, A., P. Gottardi, and F. Vega-Redondo (2016): “Risk-sharing and contagion in networks,”
Working paper, European University Institute.

Calvo-Armengol, A., E. Patacchini, and Y. Zenou (2009): “Peer effects and social networks in
education,” Review of Economic Studies, 76, 1239–1267.

Castiglionesi, F., F. Feriozzi, and G. Lorenzoni (2017): “Financial Integration and Liquidity Crises,”
Working Paper 23359, National Bureau of Economic Research.

Chen, H., T. Wang, and D. D. Yao (2016): “Financial Network and Systemic Risk A Dynamic Model,”
working paper.

Cornett, M. M., J. J. McNutt, P. E. Strahan, and H. Tehranian (2011): “Liquidity risk manage-
ment and credit supply in the financial crisis,” Journal of Financial Economics, 101(2), 297 – 312.

Debreu, G., and I. Herstein (1953): “Nonnegative Square Matrices,” Econometrica, 21, 597–607.

DeGroot, M. (1974): “Reaching a Consensus,” Journal of the American Statistical Association, 69, 118–
121.

DeMarzo, P., D. Vayanos, and J. Zwiebel (2003): “Persuasion Bias, Social Influence, and Uni-
Dimensional Opinions,” Quarterly Journal of Economics, 118, 909–968.

Dent, A., and W. Dison (2012): “The Bank of Englands Real-Time Gross Settlement infrastructure,”
Bank of England Quarterly Bulletin 3, Bank of England.

Diamond, D. W., and P. H. Dybvig (1983): “Bank Runs, Deposit Insurance, and Liquidity,” Journal of
Political Economy, 91(3), 401–419.

Diamond, D. W., and A. K. Kashyap (2016): “Liquidity Requirements, Liquidity Choice and Financial
Stability,” Working Paper 22053, National Bureau of Economic Research.

Diebold, F., and K. Yilmaz (2009): “Measuring Financial Asset Return and Volatility Spillovers, with
Application to Global Equity Markets,” Economic Journal, 119(534), 158–171.

38



Diebold, F. X., and K. Ylmaz (2014): “On the network topology of variance decompositions: Measuring
the connectedness of financial firms,” Journal of Econometrics, 182(1), 119–134.

Drechsler, I., A. Savov, and P. Schnabl (2014): “A Model of Monetary Policy and Risk Premia,”
Working Paper 20141, National Bureau of Economic Research.

Duarte, F. M., and T. M. Eisenbach (2013): “Fire-sale spillovers and systemic risk,” Discussion paper.

Eisenberg, L., and T. H. Noe (2001): “Systemic Risk in Financial Systems,” Journal of Political Econ-
omy, 47, 236–249.

Elhorst, J. P. (2010a): “Applied Spatial Econometrics: Raising the Bar,” Spatial Economic Analysis,
5(1), 9–28.

(2010b): “Spatial Panel Data Models,” in Handbook of Applied Spatial Analysis, ed. by M. M.
Fischer, and A. Getis, pp. 377–407. Springer Berlin Heidelberg.

Elliott, M., B. Golub, and M. O. Jackson (2015): “Financial Networks and Contagion,” American
Economic Review, 104(10), 3115–3153.

Elsinger, H., A. Lehar, and M. Summer (2006): “Risk Assessment for Banking Systems,” Management
Science, 52(9), 1301–1314.

Fecht, F., K. Nyborg, and J. Rocholl (2010): “The price of liquidity: Bank characteristics and market
condition,” University of Zurich working paper.

Freixas, X., A. Martin, and D. Skeie (2011): “Bank Liquidity, Interbank Markets, and Monetary
Policy,” Review Financial Studies, 44(8), 2656–2692.

Freixas, X., B. Parigi, and J. Rochet (2000): “Systemic Risk, Interbank Relations and Liquidity
Provision by the Central Bank,” Journal of Money, Credit and Banking, 32(1), 611–638.

Furfine, C. (2000): “Interbank payments and the daily federal funds rate,” Journal of Monetary Economics,
46, 535–553.

Furfine, C. H. (2003): “Interbank Exposures: Quantifying the Risk of Contagion,” Journal of Money,
Credit and Banking, 35(1), 111–128.

Gai, P., and S. Kapadia (2010): “Contagion in financial networks,” Proceedings of the Royal Society A:
Mathematical, Physical, and Engineering Science, 466, 2401–2423.

Glasserman, P., and H. Young (2015): “How likely is contagion in financial networks?,” Journal of
Banking & Finance, 50, 383–399.

Gofman, M. (2017): “Efficiency and stability of a financial architecture with too-interconnected-to-fail
institution,” Journal of Financial Economics, forthcoming.

Gorodentsev, A. L. (1994): “Helix theory and nonsymmetrical bilinear forms,” in Algebraic Geometry
and its Applications, pp. 47–59. Vieweg+ Teubner Verlag.

Greenwood, R., A. Landier, and D. Thesmar (2015): “Vulnerable banks,” Journal of Financial
Economics, 115, 471–485.

Hart, O., and L. Zingales (2014): “Banks Are Where The Liquidity Is,” Working paper, Harvard
University.

Hautsch, N., J. Schaumburg, and M. Schienle (2012): “Financial Network Systemic Risk Contribu-
tions,” working paper.

Hayashi, F. (2000): Econometrics. Princeton University Press: Princeton.

He, Z., and A. Krishnamurthy (2013): “Intermediary Asset Pricing,” American Economic Review,
103(2), 732–770.

Henderson, H. V., and S. R. Searle (1981): “On Deriving the Inverse of a Sum of Matrices,” SIAM
Review, 23(1), pp. 53–60.

39



Herskovic, B. (forthcoming): “Networks in Production: Asset Pricing Implications,” Journal of Finance.

Herskovic, B., B. T. Kelly, H. N. Lustig, and S. V. Nieuwerburgh (2017): “Firm Volatility in
Granular Networks,” Chicago Booth Research Paper 12-56, University of Chicago.

Jackson, M. O. (2003): Social and Economic Networks. Princeton University Press, New Jersey.

Jackson, M. O., and Y. Zenou (2012): “Games on Networks,” CEPR Discussion Papers 9127, C.E.P.R.
Discussion Papers.

Jovanovic, B. (1987): “Micro shocks and aggregate risk,” The Quarterly Journal of Economics, 102(21),
395–409.

Kashyap, A. K., and J. C. Stein (2000): “What Do a Million Observations on Banks Say about the
Transmission of Monetary Policy?,” American Economic Review, 90(3), 407–428.

Katz, L. (1953): “A new status index derived from sociometric analysis,” Psychometrika, 18(1), 39–43.

Kelly, B. T., H. N. Lustig, and S. V. Nieuwerburgh (2013): “Firm Volatility in Granular Networks,”
Fama-Miller Working Paper; Chicago Booth Research Paper No. 12-56.

Klimenko, N., S. Pfeil, J.-C. Rochet, and G. D. Nicolo (2016): “Aggregate Bank Capital and
Credit Dynamics,” Swiss Finance Institute Research Paper Series 16-42.

Kovner, A., and D. Skeie (2013): “Evaluating the quality of fed funds lending estimates produced from
Fedwire payments data,” Staff Reports 629, Federal Reserve Bank of New York.

Langfield, S., Z. Liu, and T. Ota (2014): “Mapping the UK interbank system,” Journal of Banking &
Finances, 45, 288–303.

Lee, L.-f., and J. Yu (2010): “A Spatial Dynamic Panel Data Model With Both Time And Individual
Fixed Effects,” Econometric Theory, 26(02), 564–597.

Leitner, Y. (2005): “Financial networks: Contagion, commitment, and private sector bailouts,” The
Journal of Finance, 60, 2925–2953.

LeSage, J., and R. Pace (2009): Introduction to spatial econometrics, Statistics, textbooks and mono-
graphs. CRC Press.

Li, Y. (2017): “Procyclical Finance: The Money View,” Working paper, Columbia University Graduate
School of Business.

Mark, G., and N. Kiyotaki (2010): “Chapter 11 - Financial Intermediation and Credit Policy in Business
Cycle Analysis,” in Handbook of Monetary Economics, ed. by B. M. Friedman, and M. Woodford, vol. 3
of Handbook of Monetary Economics, pp. 547 – 599. Elsevier.

Moore, J. (2012): “Leverage stacks and the financial system,” Edinburgh University and London School
of Economics working paper.

Newman, M. E. J. (2004): “Analysis of weighted networks,” Physical Review, 70, 1–9.

Ozdagli, A. K., and M. Weber (2015): “Monetary Policy Through Production Networks: Evidence
from the Stock Market,” working paper.

Piazzesi, M., and M. Schneider (2017): “Payments, Credit and Asset Prices,” Working paper, Stanford
University.

Quadrini, V. (2017): “Bank liabilities channel,” Journal of Monetary Economics, 89, 25 – 44, Carnegie-
Rochester-NYU Conference Series on the Macroeconomics of Liquidity in Capital Markets and the Cor-
porate Sector.

Soramaki, K., M. L. Bech, J. Arnold, R. J. Glass, and W. E. Beyeler (2007): “The topology of
interbank payment flows,” Physica A, 379(1), 317–333.

Stein, J. C. (2012): “Monetary Policy as Financial-Stability Regulation,” Quarterly Journal of Economics,
127(1), 57–95, forthcoming in the Quarterly Journal of Economics Draft Date: Revised May 2011.

40



Upper, C. (2011): “Simulation methods to assess the danger of contagion in interbank markets,” Journal
of Financial Stability, 7(3), 111–125.

Upper, C., and A. Worms (2004): “Estimating bilateral exposures in the German interbank market: Is
there a danger of contagion?,” European Economic Review, 48(4), 827 – 849.

Watts, D. J., and S. H. Strogatz (1998): “Collective dynamics of ‘small-world’ networks,” Nature, 393,
440–442.

Westwood, B. (2011): “The Money Market Liaison Group Sterling Money Market Survey,” Bank of
England Quarterly Bulletin, 51(3), 247–250.

Wetherilt, A., P. Zimmerman, and K. Soramaki (2010): “The sterling unsecured loan market during
2006-08: insights from network theory,” Bank of England working papers 398, Bank of England.

Zawadowski, A. (2012): “Entangled financial systems,” Boston University working paper.

41



A Appendix

A.1 Reserves schemes, payment systems, and interbank liquidity

Banks in the UK choose the amount of central bank reserves that they hold to support a

range of short term liquidity needs. Reserves are the ultimate settlement asset for interbank

payments. Whenever payments are made between the accounts of customers at different

commercial banks, they are ultimately settled by transferring central bank money (reserves)

between the reserves accounts of those banks. Reserve balances are used to buffer against

intraday payment imbalances (i.e., cumulative outflows larger than inflows). Additionally,

central bank reserves are the most liquid asset that banks can draw upon in the presence of

unexpected outflows of funds. Since 2006, the starting year of our sample, banks choose their

reserve holdings on a discretionary basis, i.e., reserve holdings are not mandatory. However,

their reserve holding decisions depend on the policy framework in which they operate.

A.1.1 Monetary policy framework

Since the 1998 Banking Act, the Bank of England (BoE) has had independent responsibility

for setting interest rates to ensure that inflation, as measured by the Consumer Price Index

(CPI), meets the inflation target of 2%. Each month the Monetary Policy Committee (MPC)

meets to decide the appropriate level of the Bank rate (the policy interest rate) to meet the

inflation target in the medium term. The Sterling Monetary Framework changed over time.

During our sample period, the Bank of England had three distinct monetary frameworks:

prior to 18 May 2006, the Bank of England operated an unremunerated reserve scheme;

this was then replaced by a reserves average scheme; since March 2009 and the initiation of

Quantitative Easing, the reserves average scheme has been suspended.

Pre-2006 Reform: Prior to the 2006 reforms, the Sterling Monetary Framework (SMF)

was based upon a voluntary unremunerated reserves. There were no reserve requirements

and no reserve averaging over a maintenance period. The only requirement was that banks

were obliged to maintain a minimum zero balance at the end of each day. In practice, due to

uncertainties from end of day cash positions, banks opted for small positive reserve balances.

Reserve Averaging: In May 2006, the Bank of England undertook a major reform of the

Sterling Monetary Framework. The new scheme was voluntary remunerated reserves with

a period-average maintenance requirement. Each maintenance period – the period between

two meetings of the Monetary Policy Committee – banks were required to decide upon a

reserves target. This voluntary choice of reserves target is a feature unique to the UK system.

Over the course of each maintenance period, the banks would manage their balance sheets so

that, on average, their reserve balances hit the target. Where banks were unable to hit the
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target, standing borrowing and deposit facilities were available. Within a range of ±1% of

the target, reserves are remunerated at the Bank Rate.34 Holding an average level of reserves

outside the target range attracts a penalty charge.35 But an SMF participant can ensure it

hits its target by making use of the Bank’s Operational Standing Facilities (OSFs). These

bilateral facilities allow SMF participants to borrow overnight from the Bank (against high-

quality collateral) at a rate above Bank Rate or to deposit reserves overnight with the Bank

at a rate below Bank Rate. The possibility of arbitrage between interbank market rates and

reserves remunerated at Bank Rate is the main mechanism through which market rates are

kept in line with Bank Rate. In both schemes before Quantitative Easing (QE), the BoE

would ensure sufficient reserves supply for banks to meet their reserves target. Banks then

use the interbank market to reallocate reserves from banks in surplus to banks in deficit.

Post Quantitative Easing: Quantitative Easing in UK started in March 2009 when the

MPC decided that in order to meet the inflation target in the medium term, it would need

to supplement the use of interest rate (which had hit the practical lower bound of 0.5%)

with the purchase of assets using central bank reserves. This consisted of the BoE’s boosting

the money supply by creating central bank reserves and using them to purchase assets,

predominantly UK gilts. Furthermore, the BoE suspended the average reserve targeting

regime, and now remunerates all reserves at the Bank rate.

A.1.2 Payment and settlement systems

Banks use central bank reserves to, inter alia, meet their demand for intraday liquidity in the

payment and settlement systems. Reserves act as a buffer to cover regular timing mismatches

between incoming and outgoing payments, for example, due to exceptionally large payments,

operational difficulties, or stresses that impact upon a counterparty’s ability, or willingness

to send payments. There are two major payment systems in the UK: CHAPS and CREST.36

These two systems play a vital role in the UK financial system. On average, in 2011, £700

billion of transactions was settled every day within the two systems. This equates to the UK

2011 nominal GDP being settled every two days.

CHAPS is the UK’s large-value payment system. It is used for real time settlement of

payments between its member banks. These banks settle payments on behalf of hundreds of

other banks through correspondent relationships. Typical payments are business-to-business

payments, home purchases, and interbank transfers. Payments relating to unsecured inter-

34At various points during the crisis, this ±1% range was increased to give banks more flexibility to manage
their liquidity.

35Settlement banks also pay a penalty if their reserves account is overdrawn at the end of any day.
36There are also four retail payment systems (Bacs, the Faster Payments Service (FPS), Cheque and Credit

Clearing (CCC) and LINK) that are operated through the BoE.
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bank money markets are settled in CHAPS. CHAPS opens for settlement at 8 am and closes

at 4:20 pm. Payments made on behalf of customers cannot be made after 4 pm. The system

has throughput guidelines which require members to submit 50% of their payments by noon

and 75% by 14:30. This helps ensure that payments are settled throughout the day and do

not bunch towards the end of the day.

In 2011, CHAPS settled an average of 135,550 payments each day valuing £254bn.

CHAPS is a real-time gross settlement (RTGS) system. This means that payments are

settled finally and irrevocably in real time. To fund these payments, banks have to access

liquidity intraday. If a bank has, at any point during the day, cumulatively sent more pay-

ments than it has received, then it needs liquidity to cover this difference. This comes either

from central bank reserves or intraday borrowing from the BoE. Furthermore, when a bank

sends funds to another bank in the system, it exposes itself to liquidity risk. That is, the

risk that the bank may not get those fund inflows back during the day, and so will run

down their own liquidity holdings or borrow from the BoE. Therefore, it is important to

choose an appropriate level of liquidity buffer. Besides maintaining a liquidity buffer, banks

manage liquidity by borrowing from and lending to each other in the unsecured overnight

markets. According to Bank of England estimates, payments relating to overnight market

activity (advances and repayments) account for about 20% of CHAPS values (Wetherilt,

Zimmerman, and Soramaki (2010)).

CREST is a securities settlement system. Its Delivery-vs-Payment (DVP) mechanism

ensures simultaneous transfer of funds and securities. When a liquidity need is identified, the

CREST system’s intraday liquidity mechanism with the BoE works automatically through

“Self Collateralising Repos” (SCRs): if a CREST settlement bank would otherwise have

insufficient funds to settle a transaction, a secured intraday loan is generated using as eligible

collateral either the purchased security (if eligible) or other securities.

A.1.3 The sterling unsecured overnight interbank market

Interbank markets are the markets where banks and other financial institutions borrow

and lend assets, typically with maturities of less than one year. At the shortest maturity,

overnight, banks borrow and lend central bank reserves. Monetary policy aims at influencing

the rate at which these markets transact, so as to control inflation in the wider economy.

There is limited information available about the size and the structure of the sterling money

markets. The Bank of England estimates suggest that the overnight unsecured market

is approximately £20–30 billion per day during our sample period. Wetherilt, Zimmerman,

and Soramaki (2010) describe the network of the sterling unsecured overnight money market.

They find that the network has a small core of highly connected participants, surrounded by
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a wider periphery of banks loosely connected with each other, but with connections to the

core. It is believed that prior to the recent financial crisis, the unsecured market was much

larger than the secured one. We identify interbank borrowing and lending transactions in

CHAPS settlement data.

A.2 Model discussion and additional theoretical results

A.2.1 An alternative bank objective function

Even if we restrict the network to be only relevant for fund flows rather than information,

strategic complementary may still arise from leverage stack as in Moore (2012). In the

Appendix, we lay out an alternative specification of banks’ objective function in the spirit

of (2012).

Moore (2012) models a chain of borrowing/lending relationships that starts from the

bank who borrows from households and ends at the bank with investment project. Interbank

loans can be pledged to upstream lenders as collateral, so δ is lower if the collateral haircut

is higher. Under this alternative formulation, we may posit bank i’s objective function as

follows:

ui(zt|gt) = µ̂i,t

(
zi,t + ψ

∑
j 6=i

gij,tzj,t

)
︸ ︷︷ ︸

Accesible Liquidity

−1

2
γ

(
zi,t + ψ

∑
j 6=i

gij,tzj,t

)2

+ zi,tδ
∑
j 6=i

gij,tzj,t︸ ︷︷ ︸
“Collateralised” Liquidity

, (22)

The “collateralised” liquidity term, zi,tδ
∑

j gij,tzj,t has two parts: the available reserves

that could be borrowed from neighbours,
∑

j gij,tzj,t, and the multiplication factor zi,tδ, which

can be thought of as collateral posted by bank i with parameter δ reflecting a haircut. Since

in the empirical context banks borrow and lend reserves on an unsecured basis, we may also

interpret the multiplication factor as “information collateral,” i.e., by holding liquidity zi,t,

bank i signals its creditworthiness to neighbouring banks in the interbank network. Note

that whether banks’ objective is from equation (2) or (22) does not change the equilibrium

outcome (i.e., their first-order conditions, or best response functions, stay the same).37

37The only difference between these two objective functions is that equation (2) has an additional second-

order term
(
δ
∑
j 6=i gij,tzj,t

)(
ψ
∑
j 6=i gij,tzj,t

)
, but it only contains other banks’ choice of liquidity holdings,

not bank i’s, so this additional term does not affect bank i’s first-order condition. In the planner’s problem
that we discuss later, since the planner internalizes any spillover effect, the solutions differ slightly depending
on whether we take equation (2) or equation (22) as banks’ objective function.
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A.2.2 A more general model

In this section, we present an alternative model where the network effect on banks’ liquidity

holding decisions is not modelled as a residual. Specifically, we let the total liquidity holding

by bank i, i.e., li,t, to be accessible to the network. Hence, the valuation of liquidity for bank

i in network gt becomes:

µ̃i,t︸︷︷︸
Per Unit Value

(
li,t + ψ

∑
j 6=i

gij,tlj,t

)
︸ ︷︷ ︸

Accesible Liquidity

(23)

and the per unit value µ̃i,t is specified as

µ̃i,t := µ̂i,t + δ
∑
j

gij,tlj,t +
M∑
m=1

β̃mx
m
i,t +

∑
j

gij,txi,j,tθ̃ +
P∑
p=1

γ̃px
p
t (24)

where xi,j,t denotes match specific control variables and the characteristics of other banks,

and θ̃ is a vector of suitable dimension. That is, in addition to the aggregate information

embedded in the neighbouring banks’ holdings, also macro variables and the neighbouring

banks’ characteristics affect the per unit valuation of the liquidity.

In this setup, bank i’s utility from holding liquidity is specified as:

ui(lt|gt) =

(
µ̂i,t + δ

∑
j

gij,tlj,t +
M∑
m=1

β̃mx
m
i,t +

∑
j

gij,txi,j,tθ̃ +
P∑
p=1

γ̃px
p
t

)(
li,t + ψ

∑
j 6=i

gij,tlj,t

)

−1

2
γ

(
li,t + ψ

∑
j 6=i

gij,tlj,t

)2

. (25)

The optimal response function for each bank is then:

l∗i,t =
µ̂i,t +

∑M
m=1 β̃mx

m
i,t +

∑
j gij,txi,j,tθ̃ +

∑P
p=1 γ̃px

p
t

γ
+

(
δ

γ
− ψ

)∑
j 6=i

gij,tlj,t

= µi,t +
M∑
m=1

βmx
m
i,t +

∑
j

gij,txi,j,tθ +
P∑
p=1

γpx
p
t + φ

∑
j

gij,tlj 6=i,t (26)

where φ := δ/γ − ψ, µi,t := µ̂i,t/γ := µ̄i + νi,t, βm = β̃m/γ, γp = γ̃p/γ, and θ = θ̃/γ. Note

that the empirical counterpart of the above best response is the spatial Durbin model in

equation (20).

Let us denote µi,t +
∑M

m=1 βmx
m
i,j,t +

∑
j gij,txi,tθ+

∑P
p=1 γpx

p
t by µ̆t. The following result

is immediate following similar steps of the proof in the main text.
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Proposition 3 Suppose that |φ| < 1. Then, there is a unique interior solution for the

individual equilibrium outcome given by

l∗i,t (φ, g) = {M (φ,Gt)}i. µ̆t, (27)

where {}i. is the operator that returns the i-th row of its argument, µ̆t := [µ̆1,t, ..., µ̆n,t]
′, li,t

denotes the total liquidity holding by bank i.

The above result implies that, even in this more general model, the definitions of condi-

tional volatility of liquidity, risk key player, and level key player38, as well as their dependency

on the network topology and equilibrium parameter φ, stay unchanged.

A.2.3 Level key player

Similar to risk key player, we can identify “systemic level key player”, whose removal from

the system causes the largest aggregate liquidity reduction in expectation.39

Definition 2 (Level key player) The level key player τ ∗t is the player that, when removed,

causes the maximum expected reduction in the overall level of total liquidity. We use G\τ,t to

denote the new adjacency matrix obtained by setting to zero all of Gt’s τ -th row and column

coefficients. The resulting network is g\τ,t. The level key player τ ∗t is found by solving

τ ∗t = arg max
τ=1,...,n

E

[∑
i

z∗i (φ, gt)−
∑
i 6=τ

z∗(φ, g\τ,t)

∣∣∣∣∣ gt, τ
]

(28)

where E is the expectation operator.

We define level key player under the assumption that the removal of banks does not

trigger immediately the formation of new links. Hence, we capture the short-run effects of a

bank’s sudden failure. Since we do not observe bank failure in our sample, we cannot provide

a precise time frame for link formation after removal. Yet, our definition can be operational

from a policy perspective, especially during a crisis when banks shun each other and link

formation becomes less likely. Using Proposition 1, we have the following corollary.

38In this case, l∗ should replace z∗ in equation (28).
39This definition is in the same spirit as the concept of key player in the crime network literature, e.g.,

Ballester, Calvo-Armengol, and Zenou (2006), where targeting key players is important for crime reduction.
Here, it is useful to consider the ripple effect on the aggregate liquidity when a bank fails and exits from
the system. Injecting liquidity to out key level players might be necessary to avoid major disruptions to the
whole system.
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Corollary 1 A player τ ∗t is the level key player that solves (28) if and only if

τ ∗t = arg max
τ=1,...,n

{M(φ,Gt)}τ.µ̄︸ ︷︷ ︸
Indegree effect

+ 1′{M (φ,Gt)}.τ µ̄τ︸ ︷︷ ︸
Outdegree effect

− mττ (φ,Gt)µ̄τ︸ ︷︷ ︸
Double count correction

, (29)

where mττ (φ,Gt) is the τ -th element of the diagonal of M (φ,Gt).

When bank τ is removed, its liquidity disappears from the system. This is the first

component, the indegree effect, which depends on neighbours’ µ̄ through {M(φ,Gt)}τ., the

routes from neighbours to τ . The second component reflects bank τ ’s impact on other banks,

so its own µ̄τ is multiplied by the sum of routes from τ to neighbours, i.e., 1′{M(φ,Gt)}τ..
This outdegree effect captures network externality. The level key player metric is particularly

relevant for a central planner who decides on which bank to help to sustain the aggregate

liquidity buffer. Such a decision depends on a bank’s own contribution to aggregate liq-

uidity and the spillover effects through network linkages. As in the risk key player metric,

focusing on network alone is not enough. Both the attenuation factor φ and bank-specific

characteristics, now captured by µ̄, are important inputs in computing key players.

A.2.4 Planner’s solution vs. decentralised outcome: a close-form solution

The following corollary offers a closed-form characterization of the wedge between the plan-

ner’s solution and the decentralised outcome.

Corollary 2 Let Ht := φG′t−ψ (ψ − 2δ/γ) G′tGt. Then, the aggregate network liquidity in

the planner’s solution can be expressed as

Zp
t = Z∗t + 1′

[
ψMtG

′
t + MtHtMt (I−HtMt)

−1 (I + ψG′t)
]
µt (30)

where Z∗t denotes the aggregate bilateral liquidity in the decentralised equilibrium in equation

(15) and Mt := M (φ,Gt). Moreover, if Ht is invertible, we have

Zp
t = Z∗t + 1′

[
ψMtG

′
t + Mt

(
H−1
t −Mt

)−1
Mt (I + ψG′t)

]
µt. (31)

Proof. If Ht is invertible, observing that

Mp (φ, ψ, δ,Gt) ≡
[
M (φ,Gt)

−1 − φG′t + ψ (ψ − 2δ/γ) G′tGt

]−1
(I + ψG′t)

and using the Woodbury matrix identity (see, e.g. Henderson and Searle (1981)) gives

Mp (φ, ψ, δ,Gt) = Mt + Mt

(
H−1
t −Mt

)−1
Mt,

48



hence the result is immediate. If Ht is not invertible, using equation (26) in Henderson and

Searle (1981), we obtain

Mp (φ, ψ, δ,Gt) = Mt + MtHtMt(I−HtMt)
−1

and the result follows.

The above implies that the discrepancy between the planner solution and the decen-

tralised solution can be positive or negative depending on the parameters and topology of

the network (the eigenvalues of the canonical operator of Gt).
40

A.3 Details of the empirical methodology

A.3.1 Quasi-maximum likelihood formulation and identification

Writing the variables and coefficients of the spatial error model in equations (12) and (13)

in matrix form as41

B := [αtime1 , ..., αtimet , ..., αtimeT , αbank1 , ..., αbanki , ..., αbankN ,

βbank1 , .., βbankm , ..., βbankM , βtime1 , ..., βtimep , ..., βtimeP ]′,

L := [l1,1, ..., lN,1, ..., li,t, ..., l1,T , ..., lN,T ] , z := [z1,1, ..., zN,1, ..., zi,t, ..., z1,T , ..., zN,T ]′

ν := [ν1,1, ..., νN,1, ..., νi,t, ..., ν1,T , ..., νN,T ]′, µ := 1T ⊗ [µ̄1, ..., µ̄N ]′ ,

G := diag (Gt)
T
t=1 =


G1 0 ... 0

0 G2 ... ...

... ... ... 0

0 ... 0 GT

 , X :=
[
D,F,Xbank,Xtime

]
,

where D := IT ⊗ 1N , F := 1T ⊗ IN , and

Xtime =


x1

1 ... xp1 ... xP1

... ... ... ... ...

x1
t ... xpt ... xPt

... ... ... ... ...

x1
T ... xpT ... xPT

⊗ 1N , Xbank =


x1

1,1 ... xm1,1 ... xM1,1

... ... ... ... ...

x1
N,1 ... xmN,1 ... xMN,1
... ... ... ... ...

x1
N,T ... xmN,T ... xMN,T

 ,

40See, e.g., Gorodentsev (1994) for the definition of canonical operator. The proof of this result is very
involved, hence we present it in an appendix available upon request.

41This is similar to the spatial formulation in Lee and Yu (2010).
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we can then rewrite the empirical model as

L = XB + z, z = µ+ φGz + ν, νi,t ∼ iid
(
0, σ2

i

)
.

This, in turn, implies that

ν
(
B, µ, φ

)
= (IN×T − φG) (L−XB)− µ. (32)

Finally, using the Gaussian distribution to model the exogenous error terms ν yields the

log likelihood

lnL
(
B, φ, µ,

{
σ2
i

}N
i=1

)
≡ −TN

2
ln (2π)− T

2

N∑
i=1

lnσ2
i −

N∑
i=1

1

2σ2
i

T∑
t=1

νi,t
(
B, µ, φ

)2
, (33)

and the above can be estimated using standard optimization methods.

In the above formulation, the identification of φ is ensured by the usual conditions on

G (see, e.g. Bramoullé, Djebbari, and Fortin (2009)). Instead, the separate identification

of the bank fixed effects, αbank :=
[
αbank1 , ..., αbankN

]′
, and the network-bank fixed effects,

µ̄ := [µ̄1, ..., µ̄N ]′, deserve some further remarks. Isolating the role of these fixed effects,

equation (32) can be rewritten as

ν
(
B, µ, φ

)
= (IN×T − φG)

(
L− X̃B̃ − Fαbank

)
− µ

= (IN×T − φG)
(
L− X̃B̃

)
− 1T ⊗

(
µ̄+ αbank

)
+ φGFαbank

where X̃ :=
[
D,Xbank,Xtime

]
and B̃ is simply the vector B without the αbank elements.

Several observations are in order. First, the above implies that if φ = 0, then µ̄ and αbank

cannot be separately identified (nevertheless the parameters B̃ are still identified). Second,

if there is no time variation in the network structure, i.e. if Gt = Ḡ ∀t, µ̄ and αbank cannot

be separately identified even if φ 6= 0. Third, if a bank never lends to any other bank in

the sample, its fixed effects µ̄i and αbanki cannot be separately identified. Fourth, if Gt is a

right stochastic matrix, separate identification of µ̄ and αbank can be achieved only up to a

parameter normalization, since for any scalar κ and vector κ̄ := 1N ⊗ κ, we have

ν
(
B, µ, φ

)
= (IN×T − φG)

(
L− X̃B̃

)
− 1T ⊗

(
µ̄+ αbank + φκ̄

)
+ φGF

(
αbank + κ̄

)
The above also makes clear that a handy normalisation is to set one of the network-bank

fixed effect (say the i-th one) to zero since it would imply the restriction
{
αbank + φκ̄

}
i

={
αbank + κ̄

}
i

that, for any φ 6= 0 and 1, can only be satisfied with κ = 0. Under this
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normalisation, the remaining estimated bank-network fixed effects are then in deviation

from the normalised one. Fifth, note that the lack of separate identification for µ̄ and αbank

is due to the fact that when Gt is a right stochastic matrix, and if all banks borrow from at

least one bank at each point in time (i.e. Gt has no rows of zeros), then Gt1N = 1N and

G1N×T = 1N×T . Fortunately, in our dataset, the condition Gt1N = 1N does not hold every

day in the sample because there are periods in which certain banks do not borrow (in this

case, the corresponding rows of Gt contain all zeros and sum to zero, instead of one). In

our sample, except for bank 7 and bank 11, all the other banks borrow every period from at

least one of their counterparties. There are fourteen days when bank 7 does not borrow at

all, and 145 days in which bank 11 does not borrow at all. Moreover, the no borrowing days

of bank 7 and bank 11 do not overlap, so we have a total of 159 days in which either the

sum of the 7th row of Gt or the sum of the 11th row of Gt is equal to zero, not one (13.5%

of the days).

A.3.2 Confidence bands for the network impulse response functions

The φ estimator outlined in the previous section has an asymptotic Gaussian distribution

with variance s2
φ (that can be readily estimated from the QMLE covariance matrix based,

as usual, on the Hessian and gradient of the log likelihood in equation (33)). That is,√
T
(
φ̂− φ0

)
d→ N

(
0, s2

φ

)
, where φ0 denotes the true value of φ. Writing

a1 (φ) :=
∂1′
{

(I− φG)−1}
.i

∂φ
, a2 (φ) =

∂1′
{

(I− φG)−1 φG
}
.i

∂φ

we have from Lemma 2.5 of Hayashi (2000) that

√
T
[
NIRFi

(
φ̂, 1
)
−NIRFi (φ0, 1)

]
d→ N

(
0, a1 (φ0)2 s2

φ

)
,

√
T
[
NIRF e

i

(
φ̂, 1
)
−NIRF e

i (φ0, 1)
]

d→ N
(
0, a2 (φ0)2 s2

φ

)
.

Therefore, since aj

(
φ̂
)

p→ aj (φ0), j = 1, 2, by the continuous mapping theorem, and by

Slutsky’s theorem, aj

(
φ̂
)
ŝ2
φ

p→ aj (φ0)2 s2
φ, where ŝ2

φ is a consistent variance estimator, we

can construct confidence bands for the network impulse response functions using the sample

estimates of φ and s2
φ.

A.3.3 Details on variable construction

Macro control variables
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• rK t−1: lagged right kurtosis of the intraday time of aggregate payment outflow:

rKt =

∑
τ>mt

( τ−mt

σt
)4∑88

τ=1( τ−mt

σt
)4

where

mt =
1

88

88∑
τ=1

τ

(
POUT
t,τ∑88

τ=1 P
OUT
t,τ

)
, σ2

t =
1

88− 1

88∑
τ=1

(τ −mt)
2

(
POUT
t,τ∑88

τ=1 P
OUT
t,τ

)

and POUT
t,τ is the aggregate payment outflow at time interval τ . Note that transactions

are recorded for 88 10-minute time intervals within each day (from 5:00 to 19:30). The

variable mt is the average of payment time weighted by the payment outflow.

• lnVolPay t−1: intraday volatility of aggregate liquidity available (lagged by one day, in

logarithms). “Liquidity available” is defined below at bank level.

• TORt−1: lagged turnover rate in the payment system. To define the turnover rate, we

need first to define the Cumulative Net (Debit) Position (CNP):

CNP (T, i, s) =
T∑
t=1

(POUT
i,s,t − P IN

i,s,t),

where POUT
i,s,t is bank i’s total payment outflow at time t in day s. P IN

i,s,t is the payment

inflow. The turnover rate (in day s) is defined as

TORs =

∑N
i=1

∑88
t=1 P

OUT
i,s,t∑N

i=1 max{maxT [CNP (T ; i, s)], 0}

The numerator is the total payment made in the system at day s. The denominator

sums the maximum cumulative net debt position of each bank at day s. Note that

in the denominator, if the cumulative net position of a certain bank is always below

zero (that is, this bank’s cumulative inflow alway exceeds its cumulative outflow), this

bank actually absorbs liquidity from the system. If there are banks absorbing liquidity

from the system, there must be banks injecting liquidity into the system. When we

calculate the turnover rate (the ratio between the total amount circulating and the

base), we should only consider one of the two. That’s why we take the first (outside)

maximum operator. The reason for the inside operator goes as follows: any increase

in the cumulative net debit position (wherever positive) incurs an injection of liquidity

into the system, so the maximum of the cumulative net position is the total injection
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from the outside to the payment system. And, the sum over different banks gives the

total injection through all the membership banks. A higher turnover rate means a

more frequent reuse of liquidity injected from outside into the payment system.

• LIBOR: daily LIBOR rate, lagged by one day.

• Interbank Rate Premium: average interbank rate minus LIBOR, lagged by one day.

Bank-level control variables

• Intraday liquidity available (LA) is the amount of liquidity to meet payment require-

ments and is measured as the sum of reserves (SDAB, Start of Day Account Balance)

plus the value of intraday repo available with the BoE (PC, Posting of Collateral). As

time passes, the liquidity available in CHAPS is calculated by subtracting the money

moved to CREST from the liquidity available in the previous time interval. In this

way, we can trace for bank i the liquidity available at any time t in day s:

LA(t, i, s) = SDABi,s + PCi,s −
∑t

τ=1
CRESTi,s,τ

• Liquidity holdings (li,t, i.e., the dependent variable): the logarithm of reserve balances

plus collateral posted to the BoE at the beginning at the day.

• Interbank Rate: interbank borrowing rate, lagged by one day.

• lnLevPay i,t−1: total intraday payment level (lagged by one day, in logarithms).

• rK in
i,t−1: right kurtosis of incoming payment time, lagged by one day.

• rK out
i,t−1: right kurtosis of outgoing payment time, lagged by one day.

• lnVolPay i,t−1: log intraday volatility of liquidity available, lagged by one day.

• lnLU i,t−1: liquidity used is defined as follows

LU(i, s) = max{max
T

[CNP (T ; i, s)], 0}.

The first (inside) maximum operator picks the highest level of cumulative net debit

position (CNP ) within a day. About the second (outside) maximum operator, if the

highest level is negative, the bank i is always a liquidity contributor on day s, so LU

is equal to zero. When used in estimation, it is lagged by one day and in logarithms.

• repo Liability
Assets

: repo liability to total asset ratio (lagged, monthly).
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• Total Assets (log): total asset (lagged, monthly, in logarithms).

• ∆Deposits
Assets

: the change of retail deposits to total assets ratio × 100 (lagged, monthly).

• Total Lending and Borrowing (log): total lending and borrowing in the interbank

market (lagged by one day, in logarithms).

• CDS Spread : an index (log cumulative change) of 5-year senior unsecured CDS spread.

• Stock Return: gross stock return including dividends (lagged by one day).

A.4 Additional figures and tables

Figure 9: Daily gross interbank borrowing (rolling monthly average).
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Figure 10: Velocity of liquidity in the payment system.

Figure 11: Intraday volatility of aggregate outflows.
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Figure 12: Turnover rate in the payment system.

Figure 13: Right kurtosis of aggregate payment times.
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Figure 14: Cross-sectional dispersion of interbank rates.
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Table A1: Spatial Error Model Estimation Results
Period 1 Period 2 Period 3

φ̂ 0.8137∗
(21.47)

0.3031∗
(1.90)

−0.1794∗
(−4.96)

1/
(

1− φ̂
)

5.3677∗
(4.92)

1.4349∗
(4.37)

0.8479∗
(32.61)

Macro Control Variables
rKt−1 0.1845

(1.30)
0.0084

(0.55)
−0.0032∗

(−3.88)

lnV olPayt−1 −0.4451
(−1.00)

0.0308
(1.17)

0.0291
(1.72)

TORt−1 0.0166
(1.80)

0.0007
(0.69)

0.0018
(1.75)

LIBOR 0.2378
(0.27)

0.0928
(1.28)

0.5800∗
(2.52)

Interbank Rate Premium 3.8845
(1.61)

−0.0405
(−0.33)

0.6973∗
(3.00)

Bank Characteristics/Mircro Control Variables
Interbank Rate −0.2081

(−0.98)
−0.0473

(−1.03)
−0.0880

(−1.92)

lnLevPayi,t−1 −0.0235
(−0.62)

0.0802∗
(3.29)

0.0808∗
(5.09)

rKin
i,t−1 0.0010

(0.14)
−0.0086

(−0.63)
0.0045

(1.03)

rKout
i,t−1 0.0090

(0.92)
0.0320∗

(3.62)
−0.0061

(−1.32)

lnV olPayi,t−1 0.0129∗
(4.59)

0.0039
(1.92)

0.0196∗
(5.96)

lnLUi,t−1 −0.0038∗
(−2.86)

−0.0039∗
(−3.41)

−0.0027∗
(−3.79)

Repo Liability
Assets

−5.5625∗
(−3.61)

0.0282
(0.43)

−0.3057
(−1.45)

Total Assets (log) 1.2590∗
(5.39)

0.6328∗
(10.31)

1.0170∗
(18.92)

∆Deposits
Assets

−0.0014
(−0.20)

0.0149∗
(5.15)

0.0481∗
(11.76)

Total Lending and Borrowing (log) −0.1882∗
(−5.57)

0.0612∗
(2.95)

−0.0025
(−1.27)

CDS Spread 0.0051
(0.13)

−0.1212∗
(−6.61)

−0.0383∗
(−4.00)

Stock Return −0.5667
(−0.88)

0.1927
(1.49)

0.2574
(1.88)

R2 66.01% 92.09% 91.53%

Estimation results for equations (12) and (13). Periods 1, 2 and 3, correspond, respectively, to before the

Northern Rock/BNP Paribas Fund Crisis, after it but before the first BoE announcement of Asset Purchase

Programme, and the QE period. The t-statistics are reported in parentheses under the estimated coefficients,

and ∗ denotes statistically significant estimates at a 10% or higher confidence level. Standard errors are

QMLE-robust ones, and for the average network multiplier, 1/(1− φ̂), the delta method is employed.
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Table A2: ratio of network to idiosyncratic volatility.

Period 1 Period 2 Period 3
Bank 1 2.54 1.05 0.98
Bank 2 2.10 1.04 1.02
Bank 3 1.83 1.06 0.87
Bank 4 2.62 1.06 1.08
Bank 5 2.41 1.10 1.02
Bank 6 1.65 1.09 1.03
Bank 7 1.47 0.97 1.13
Bank 8 1.69 1.09 1.03
Bank 9 2.12 1.09 1.03
Bank 10 1.62 0.99 1.09
Bank 11 2.04 1.14 1.31
Mean 2.01 1.06 1.05

The table reports
√

V ar(ẑi,t)
V ar(v̂i,t)

for each bank and each period considered.
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