Monopsony in Online Labor Markets

Arindrajit Dube, Jeff Jacobs, Suresh Naidu, Siddharth Suri*

July 13, 2018

Abstract

Despite the seemingly low switching and search costs of on-demand labor markets like Amazon Mechanical Turk, we find substantial monopsony power which we quantify by measuring the elasticity of labor supply facing the requester (employer). We isolate plausibly exogenous variation in rewards using a double-machine-learning estimator applied to a large dataset of scraped MTurk tasks. We also re-analyze data from 5 MTurk experiments that randomized payments to obtain corresponding experimental estimates. Both approaches yield uniformly low labor supply elasticities, around 0.1, with little heterogeneity. Our results suggest monopsony might also be present even in putatively "thick" labor markets.

^{*}Contact information: adube@econs.umass.edu, jpj2122@columbia.edu, sn2430@columbia.edu, suri@microsoft.com. We thank Gary Hsieh and Panos Ipeirotis for sharing data as well as Bentley Macleod, Aaron Sojourner, and Glen Weyl for helpful comments.

1 Introduction

Generations of economics students are taught that the labor market is best described as competitive, with firms facing perfectly horizontal labor supply curves. But a popular alternative view holds that the labor market is characterized by pervasive monopsony, and this view has been bolstered by a recent, fast-growing literature (Naidu et al., 2018) suggesting that even 21st century U.S. labor markets exhibit a substantial degree of market power, possibly due to increased concentration (Benmelech et al., 2018; Azar et al., 2017) or increased use of legal devices such as no-poaching or non-compete agreements (Krueger et al., 2017; Starr et al., 2017). In this paper, we present direct experimental and quasi-experimental estimates of monopsony in a thick online spot labor market with low putative search frictions. We find considerable market power even here, suggesting that monopsony is *not* limited to thin labor markets, nor markets with high search frictions and/or legal restrictions, and may be far more common than previously thought.

The emergence of online labor platforms represents an idealized environment where frictions are presumably very low. In his review of Manning's 2003 book Monopsony in Motion, Peter Kuhn made the following conjecture. "[U]pward-sloping labor supply curves—whether induced by search or other factors—seem unlikely to me to be a serious constraint for most firms. This seems even more likely to be the case in the near future, as ... information technology has the potential to reduce search frictions." (Kuhn, 2004, pp. 376). Counter to this conjecture, we find a highly robust and surprisingly high degree of market power even in this large and diverse online spot labor market.

Kingsley et al. (2015) argue employers in online labor markets have significant market power, and show considerable concentration on MTurk, but they stop short of quantifying requester-specific supply elasticities. In this paper, we rigorously estimate the degree of requester market power in a widely-used online labor market – Amazon Mechanical Turk. MTurk is the most popular online micro-task platform, allowing requesters (employers) to post jobs which workers can complete for pay. Independently of showing that market power can exist even in thick markets for spot labor, understanding monopsony in online labor markets is an important contribution as they are likely to become much more common.

We provide initial evidence regarding how sensitive the duration of task vacancies are to task rewards, using data from a near-universe of tasks scraped from MTurk. This evidence provides us with an estimate of wage-setting (monopsony) power facing task requesters (Manning (2003); Card et al. (2016)). We isolate plausibly exogenous variation in rewards using a double-machine-learning (Chernozhukov et al. (2017)) method, which controls for a highly predictive function of observables generated from the textual and numeric fields associated with each task. This empirical strategy is a labor market analogue to Einav et al. (2015), who match products and sellers using a large sample of listings on eBay to estimate demand elasticities.

We then present results from a number of independent experiments on the sensitivity of workers' acceptance of tasks to the level of pay offered. We analyze data from 5 previous experiments that randomized wages of MTurk subjects, with the full list of experiments we surveyed given in Appendix B. While the previous experimenters had randomly varied the wage, none except Dube et al. (2017) recognized that they had estimated a task-specific labor supply curve, nor noticed that this reflected monopsony power on the MTurk marketplace. We empirically estimate a labor supply elasticity facing requesters on both a "recruitment" margin where workers see a reward and associated task as part of their normal browsing for jobs, and a "retention" margin where workers, having already accepted a task, are given an opportunity to perform additional work for a randomized bonus payment. The experimental recruitment elasticity estimate is obtained from a novel "honeypot" experimental design, where randomly-varied wage offers were made observable only to random subsets of MTurk workers.¹

Together, these very different pieces of evidence provide a remarkably consistent estimate of the labor supply elasticity facing MTurk requesters, indicating the robustness of our results. The three experiments with a "honeypot" design suggest a *recruitment* elasticity between 0.05 and 0.11. Similarly, *retention* probabilities do not increase very much as a function of reward posted, with implied retention elasticities in the 0.1 to 0.5 range for the two experiments using that design. The precision-weighted average experimental requester's labor supply elasticity is 0.14, and in particular the pooled recruitment elasticity is 0.06, remarkably close to the corresponding 0.096 estimate produced by our preferred double-ML specification. The estimates are uniformly small across subsamples, with little heterogeneity by reward amount. This close agreement suggests that the constant elasticity specification, commonly used in the literature, may not be a bad approximation in this context. As a further contribution, our paper provides an independent—and favorable—assessment of the double-ML estimator against an experimental benchmark.

2 Monopsony in A Task Market

Monopsony is characterized by two features: wage-setting power and inability to wage-discriminate. MTurk, with its task-posting structure, did not offer many margins for wage-discrimination until very recently (after our sample period). In our sample period, requesters could only restrict the set of eligible workers based on prior acceptance rates (the rates at which previous requesters had deemed their work satisfactory) or

¹In search-based models of dynamic monopsony, the labor supply to a firm includes both recruitment and retention margins.

location (e.g., by country or by U.S. state).

Monopsony power may arise due to a small number of employers on the platform, from search frictions in locating higher paying tasks, or from idiosyncratic preferences over task characteristics. Prior work has shown that all three of these reasons are at play in MTurk. First, about 10 percent of all requesters post approximately 98-99 percent of all tasks to the AMT platform implying substantial market concentration(Kingsley et al., 2015; Ipeirotis, 2010). Second, workers often resort to communicating via off-platform online forums to reduce search costs (Yin et al., 2016; Gray et al., 2016). Third, there is evidence for task specialization among workers (Yin et al., 2016).

In Appendix A we present a simple model of the MTurk market, where employers set wages and wait for tasks to be filled. Each job is seen by a constant fraction λ of workers, who have a distribution of reservation wages (derived from a random utility or rational inattention model) given by $F(w) \propto w^{\eta}$. We show that the labor supply elasticity, η , can be recovered from a regression of log duration on log reward, as well as directly from experimental estimates.

3 Observational Evidence on Recruitment Elasticity from MTurk

3.1 Data and empirical strategy

For our observational analysis, we use two primary sources of scraped MTurk data. The first dataset was obtained from Ipeirotis (2010), and covers the January 2014 to February 2016 period. The data consists of over 400,000 scraped HIT batches from the Mechanical Turk Tracker web API². This scraper downloaded the newest 200 HIT batches posted to MTurk every six minutes, then the status page for each discovered HIT batch was checked every minute until the page reported that all HITs in the batch had been accepted.

Beginning in May 2016 we launched our own scraper, which took snapshots of all HIT batches on MTurk every 30 minutes, later increased to every 10 minutes beginning in March 2017. This scraping strategy may miss batches that are posted and filled too quickly for the scraper to detect (i.e. duration less than 30 or 10 minutes). This scraping strategy yielded over 300,000 HIT batches, but stopped working on August 22, 2017, and we have been unable to collect more data since then. We show results separately for these two datasets, and find broadly similar results. Further details on the data are in Appendix C, including densities of the log duration separately by dataset.

We use the time it takes for a posted task to disappear as a measure of the probability of acceptance,

²http://crowd-power.appspot.com/#/general

and regress the duration of the task posting on the observed reward to obtain a "recruitment" estimate of η . As we show in the model in Appendix A, this is valid under the assumption that the rate at which a job is observed by workers is independent of the wage. We take advantage of the vast amount of available online crowdsourcing data to estimate η , using a high-dimensional regression adjustment applied to numeric and textual characteristics of the tasks to control for possible sources of endogenous task characteristics. Duration of a HIT batch is an imperfect proxy for the actual time until a worker takes the job, as batches differ in the number of tasks they offer, and whether workers can do many (e.g. image tagging) or just one (e.g. surveys). Further, batches can be terminated by the requester, for example when they see that it is being filled too slowly. The complementary and quite similar experimental estimates we show below are reassuring that we are in fact measuring the labor supply elasticity with the duration elasticity.

The resulting linear specification is estimated on observations of HIT batch durations and rewards, and is given by:

$$\ln(duration_h) = -\eta \ln(reward_h) + \nu_h + \epsilon_h, \tag{1}$$

where ν is a nuisance parameter that is correlated with both rewards and durations, and ϵ is an error term that is conditionally independent of durations, so $E[\epsilon|\nu] = 0$. An unbiased estimate of η requires that we correctly control for ν , the determinants of duration that are correlated with rewards, and in particular, labor demand. The virtue of the experimental estimates in the fourth section is that randomization ensures that ν is independent of $\ln(reward)$. With observational data, we must rely on a sufficiently rich set of observables to control for ν , and it is impossible to be completely confident that all possible sources of omitted variable bias have been eliminated. However, the large and high-dimensional nature of the observational MTurk data lets us push the limits of observational analysis. We use two different approaches for this analysis, namely fixed effects regression and double-machine-learning.

3.2 Fixed-Effects Regression

In our first strategy, we control for requester and time fixed effects along with fixed effects for deciles of the time allotted by the requester and the number of HITs in the batch. Time allotted is the maximum time the requester allows a worker to finish the task, and can be taken as a very rough proxy for how long the task takes to finish. Controlling for these fixed effects is an attempt to control for task and requester characteristics within a given time period and ideally isolates exogenous variation in labor demand. Formally, we assume that $\nu = \rho_r + \tau_t + \delta_d + \delta_N$. This assumption says that the unobserved relative task attractiveness is captured by the identity of the employer ρ_r , the time the task is first posted τ_t , the decile of the time allotted for the task δ_d and the decile of the number of HITs in the batch δ_N . We can then estimate a standard fixed-effects regression:

$$\ln(duration_h) = -\eta \ln(reward_h) + \rho_r + \tau_t + \delta_d + \delta_N + \epsilon_h \tag{2}$$

3.2.1 Results

In Table 1 we present basic OLS results and fixed effects regressions. Column 1 shows the simple bivariate regression of log duration on log reward. Unsurprisingly this regression is inconclusive, likely because of extensive omitted variables that are correlated with task attractiveness and the intensity of requester demand, both of which would be correlated with both the reward posted as well as the time until the HIT is filled. Column 2 implements the fixed-effects specification, controlling for deciles of time allotted for the task as well as fixed effects for requester and the time posted described above. The coefficient on log reward is -0.06, but it is imprecise and statistically indistinguishable from 0.

3.3 Double Machine Learning

As our second approach, we implement a "double-machine-learning" (double-ML) estimator recently developed by Chernozhukov et al. (2017), which in our case uses an ensemble machine learning approach to model the unobserved ν .

In particular, we suppose that ν in equation 1 is equal to $g_0(Z)$, an unknown function of a high-dimensional vector of observable variables Z. We further suppose that variation in rewards is generated by another function of Z so that $\ln(rewards) = m_0(Z) + \mu$. Combining these two equations we get:

$$\ln(duration) = -\eta \ln(reward) + g_0(Z) + \epsilon, \ E[\epsilon|Z, \ln(reward)] = 0$$
(3)

$$\ln(reward) = m_0(Z) + \mu, \ E[\mu|Z] = 0, \tag{4}$$

The benefit of the procedure proposed by Chernozhukov et al. (2017) stems from the fact that it allows us to utilize any number of state-of-the-art machine learning methods, such as neural nets or random forests, to obtain estimates of the conditional expectation functions $\hat{l}_0(Z) = E[\ln(\widehat{duration})|Z]$ and $\widehat{m}_0(Z) = E[\ln(\widehat{rewards})|Z]$ which are then "partialled out" to obtain our desired estimator $\check{\eta}$. Specifically, from our machine learning-estimated $\hat{l}_0(Z)$ and $\widehat{m}_0(Z)$ we can compute the residuals from (3) and (4) as $\widehat{\mu} = \ln(reward) - \widehat{m_0}(Z)$ and $\widehat{\xi} = \ln(duration) - \widehat{l_0}(Z)$, respectively, and use these residuals to compute the final estimator as

$$\check{\eta}^0 = \left(\frac{1}{n}\sum_{i=1}^n \widehat{\mu_i}^2\right)^{-1} \frac{1}{n}\sum_{i=1}^n \widehat{\mu_i}\widehat{\xi_i},\tag{5}$$

The bias from overfitting will not asymptotically go to 0 if the same data is used to estimate $l_0(Z)$ and $m_0(Z)$ and η . However, if a different sample is used to estimate $l_0(Z)$ and $m_0(Z)$ and $\check{\eta}$ is averaged over multiple folds, then the estimator is consistent and unbiased.

The intuition behind this estimator is similar to the classic partial regression formula. In equation 1 the partial regression formula implies that η could be recovered from a regression of $E[\ln(duration)|\nu]$ on $E[\ln(reward)|\nu]$. The double-ML estimator uses machine learning to form proxies for ν that fit both conditional expectations very well, implying that the resulting residuals have "partialled out" a very flexible function of all covariates that capture as much of the variation as possible.

3.3.1 Double Machine Learning Features

Double-machine-learning allows us to leverage a large number of covariates for identifying causal effects, using whichever prediction algorithm has highest goodness-of-fit (see Table 6 for R^2) in held-out data. We construct a large set of both textual and non-textual covariates as inputs to the double-ML procedure. We generate four distinct types of textual features from each HIT group's description, title, and list of keywords: n-grams, topic distributions, Doc2Vec embeddings, and hand-engineered features. The details can be found in Appendix D. Additionally, we use non-textual features from the HIT including information about the batch size, time allotted for each HIT in the group by the requester, time remaining before expiration of the HIT group, required qualifications (e.g., worker acceptance rate required to be above x%), the volume of HIT groups posted by the requester across the marketplace, and so on (the full set of features is described in Appendix D.3).

To satisfy the sample-splitting requirement of the double-ML estimator, the full set of HIT groups is split into two equally-sized subsets, A and B. Each subset is further split into training and validation sets, with 80% of the observations in A going into A_{train} and 20% into A_{val} , and similarly for B_{train} and B_{val} . The machine learning then proceeds in two "stages".

In the first stage, the *n*-gram features are computed for A_{train} and B_{train} , and two series of learning algorithms are run, the first with A_{train} as training data and A_{val} as test data, the second with B_{train} as

training data and B_{val} as test data. For each series and each dataset (Ipeirotis (2010) and our own scraped data) the algorithm which achieves the highest total validation score (here the sum of validation scores for reward prediction and duration prediction) is selected as the "final" algorithm to be used for the remainder of the procedure. In each case we ran, scikit-learn's RandomForestRegressor achieved the highest score, and so is the machine learning method underlying all of the double ML results.³ The random forest regression constructs a series of decision trees, each of which is built based on a random subset of all available features, and takes the mean prediction over all of these trees to be the estimate. For more on random forest regression, see Breiman (2001), Section 11.

To begin the second stage of the procedure, we select the 100 textual features which best predicted the reward values in the first stage, along with the 100 which best predicted the duration values, and set these as the first 200 columns of our second-stage feature matrix. The additional text and numeric features, described in Appendix D, are then appended to the matrix. The "final" algorithm discovered in stage one is then run twice, the first time with the HIT groups in A used as training data and groups in B used as test data, and the second with the training and test sets reversed. These two values are then averaged as specified in equation 5 to produce the final estimate $\check{\eta}^0$ (along with its standard error) for each dataset.

3.3.2 Results

In Table 1 we present the double-ML regressions (with and without fixed effects) alongside the basic OLS results and fixed effects regressions. Columns 3 through 7 show the results from the double-ML estimator. Column 3 shows the bivariate OLS regression of residualized durations on residualized rewards, and here the coefficient on residualized rewards is a strongly significant -0.096. Figure 1 shows the corresponding binned scatterplot, which shows the binned residuals falling quite close to the linear fit implied by a constant elasticity. Moving from the 25th to the 75th percentile of the rewards distribution (from 5 cents to 60 cents) would result in a 24% decrease in duration, a reduction in the time to completion of roughly 13 hours, over a mean duration of 55 hours.

Column 4 in Table 1 adds the fixed effects from Column 2 to the ML specification, and obtains a quite similar estimate of -0.079, suggesting that the double-ML procedure is effectively purging the effects of observable variables omitted from Column 1 (as a large change in the coefficient would suggest that there were other unobserved variables confounding the regression). Columns 5-7 show the double-ML specifications for the different scraped samples. While there is some heterogeneity, the implied elasticities are uniformly

³RandomForestRegressor consistently achieved the highest score out of {AdaBoostRegressor, BaggingRegressor, Extra-TreesRegressor, GradientBoostingRegressor, RandomForestRegressor, and SVR (SupportVectorRegressor)}.

Figure 1: Binned scatterplot (20 ventiles) for double-ML residuals of log duration and log rewards. Residuals are calculated as difference between observed value and predicted value from a random forest trained on a held-out sample, as described in Section 3.3.

small.

4 Experimental Evidence on Labor Supply Elasticity Facing Requesters on MTurk

The observational evidence is quite suggestive of a requester's recruitment elasticity, η , being low but even in the double-ML estimates concerns about omitted variable bias may linger. It is possible that not all task-relevant characteristics have been adequately controlled for, despite the high predictive power of our conditional expectation functions above. If we have experimental (random) variation in rewards, we can estimate the following regression at the worker level *i*:

$$Pr(Accept_i) = \alpha + \beta reward_i + \epsilon_i \tag{6}$$

yielding an estimate of η recovered by $\eta = \beta \times \frac{E[reward]}{Pr(Accept)}$ with the expectation taken over the population of workers in the sample. We can compare this estimate of η to the double-ML estimate from the observational data above to bolster our confidence because if both estimates yield similar results then the double-ML

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Log Reward	0.186	-0.0600					
	(0.0947)	(0.0585)					
Log Reward-ML res.			-0.0958	-0.0787	-0.198	-0.181	-0.0299
			(0.00558)	(0.00651)	(0.0281)	(0.0161)	(0.00402)
N	644873	629756	644873	629756	93775	292746	258352
Clusters	41167	26050	41167	26050	6962	18340	24923
Type	OLS	\mathbf{FE}	ML	ML-FE	ML	ML	ML
Data	Pooled	Pooled	Pooled	Pooled	2017	2016-2017	2014-2016

Table 1: Duration Elasticities from Observational MTurk Data

Notes: This Table presents OLS, FE, and double-ML estimates using the data obtained from scraping MTurk between Jan. 2014 and Feb. 2016 (from Ipeirotis (2010)), May 2016-March 2017 (scraped every 30 minutes), and March-August 2017 (scraped every 10 minutes). FE indicates fixed-effects for the hour of the first appearance of the HIT, requester, and time allotted fixed effects. Standard errors are clustered at the requester level.

estimator is indeed adequately controlling for unobserved variation, and the experimental estimates are externally valid. Next we report experimental estimates of η from the retention margin, and then proceed to estimate η from the recruitment margin—which is most directly comparable to the double-ML estimates.

4.1 Experimental Retention Elasticities

Horton et al. (2011) and Dube et al. (2017) both run variants of the following experiment. A simple uniformly priced (say, 10 cent) HIT is posted. Subjects give demographic information and perform a simple task (e.g., tagging an image). The subjects are then asked if they would like to perform a given number of additional identical tasks for a randomized bonus wage. The change in the probability of acceptance as a function of the wage gives the responsiveness of requester's labor supply to random wage posting, with low values suggesting a great deal of market power. This is a "retention" estimate of η as workers have already been drawn into a HIT *i* when asked whether they wish to continue.

Experiment 1 was conducted by Horton et al. (2011), and was among the earliest attempts to estimate economic parameters from MTurk. The authors aimed to elicit the labor-supply elasticity of online workers to the market, but this design does not elicit the market labor supply, but rather the requester's labor supply (i.e., the supply to the experimenter/requester for the particular task). The task in this experiment was transcribing Tagalog translations of paragraphs from Adam Smith's *The Theory of Moral Sentiments*.

Experiment 2 was conducted by Dube et al. (2017) in 2016, deliberately emulating the design of the Horton et al. (2011) study with the aim of testing for left-digit bias in the requester's labor supply of online workers. Hence the rewards are substantially lower, between 5 and 15 cents, but the sample sizes are correspondingly larger. The task here was tagging sheets of the 1850 US census slave schedules for the

	(1)	(2)	(3)	(4)
		Panel A: Horton	et al. 2011 Probability	of Accepting Offer
Reward	0.127	0.140	0.0861	0.0973
	(0.0219)	(0.0241)	(0.0292)	(0.0333)
Ν	328	307	125	107
η	0.234	0.241	0.192	0.202
SE	0.0334	0.0364	0.0594	0.0664
Avg. Reward	11.60	11.63	11.37	11.50
Sophisticated	No	No	Yes	Yes
Controls	No	Yes	No	Yes
		Panel B: Dube e	et al. 2017 Probability of	of Accepting Offer
Reward	0.0267	0.0486	0.0764	0.0782
	(0.0171)	(0.0202)	(0.0348)	(0.0329)
Controls	No	Yes	No	Yes
Ν	5184	5017	1702	1618
η	0.052	0.077	0.118	0.114
SE	0.0333	0.0322	0.0534	0.0479
Avg. Reward	9	9	9	9
Sophisticated	No	No	Yes	Yes

Table 2: Offer Acceptance and Offered Rewards from Retention Experiments

Notes: Coefficients from logit regressions of accept indicator on log reward from "retention" experiments, and calculated elasticities, assessed at the specification sample mean. Robust standard errors in parenthesis.

presence of marks in the fugitive slave columns.

We show results for both the full sample and sophisticates (defined as working more than 10 hours on MTurk and primarily for money). The resulting requester's labor supply elasticities are shown in Columns 1-4 of Table 2. The implied η from the Horton et al. estimates are quite low, between 0.19 and 0.25, while implied η from the Dube et al. estimates are even lower, always below 0.12. Besides differences in the tasks, one likely reason for the very slight difference is the different support of the reward variation (Dube et al. randomize between 5 and 15 cents, while Horton et al. randomize between 10 and 25 cents), and the composition of workers and requesters likely changed considerably between 2011 and 2016. Despite these differences, the estimates are similarly small.

4.2 Experimental Recruitment Elasticities

Engineering an experiment to test the recruitment elasticity is much more challenging than estimating the retention elasticity. We take advantage of three pieces of prior work, Ho et al. (2015), Hsieh and Kocielnik (2016), and Yin et al. (2018), that presented tasks with varying pay rates to random subsets of the MTurk

population such that workers assigned one pay rate could not see the tasks available to other workers who had a different pay rate. We stress that none of the papers actually estimated a labor supply elasticity using this random variation in pay.

All of these experiments use a two-phase "honeypot" design. In the first phase a generic HIT is posted at a fixed pay rate. In this simple task, workers are asked a couple of survey questions including whether they would like to be notified of future work opportunities. The IDs of the workers who said yes are then randomized into treatment conditions. During the second phase of the experiment HITs corresponding to the different treatment conditions are launched with identical tasks but varying rewards. This design uses a relatively obscure piece of the MTurk API that lets a requester make a HIT group visible to only a subset of workers. Thus each HIT group can only be seen by and accepted by those treated, and it appears as a regular HIT group in the MTurk interface for them. This design, which first appeared in Section 5 of Ho et al. (2015) and was later refined in Yin et al. (2018), replicates the search environment workers are facing before having said yes to the task.

In the first experiment (Ho et al. (2015)), 800 people were recruited via a 0.05 cent "honeypot" HIT, and then randomly split into four treatment groups of 200 workers each. The control group (68.5% accept rate) earned \$0.50 to complete the HIT, one treatment (control for our purposes) had an additional surprise \$1.00 bonus, of whom 64.5% accepted, another treatment had an additional performance based bonus, and a fourth treatment had a base rate of \$1.50, of whom 70.5% accepted. We drop the group that was given a performance-based bonus incentive and focus on the base payment, ignoring the unexpected bonus payment, to isolate the recruitment elasticity.

In the second experiment (Yin et al. (2018)), 1,800 workers recruited using the same "honey pot" protocol were randomly split into three treatment groups, with rewards for the additional task of \$0.03, \$0.04, and \$0.05, respectively. For the task itself, users were asked to categorize an Amazon.com review as positive or negative. Of the 600 in each group, 357 in the \$0.03 group accepted, 351 in the \$0.04 group accepted, and 371 in the \$0.05 group accepted.

In the third experiment (Hsieh and Kocielnik (2016)), 927 workers were recruited via a similar design, with the task being to brainstorm the "number of uses of a brick" (a measure of creative thinking) and given one of 7 random rewards: 0 cents, 5 cents, 25 cents, 1% chance of \$5, 1% chance of \$25, and 25 and 50 cent donation to charity. We drop the lottery and charity treatments and examine only the variation in rewards (0, 5 or 25 cents), which leaves us with 338 observations. Of these, 131 were in the 0 cent reward group (68 accepted), 89 were in the 5 cent group (52 accepted), and 118 were in the 25 cent group (82 accepted).

	(1)	(2)	(3)	(4)
Reward	0.00186	0.0451	0.0287	0.00744
N	600	1800	338	2738
η	0.0497	0.0724	0.115	0.0610
SE	0.0503	0.0944	0.0417	0.0290
Avg. Reward	83.33	4	10.04	22.13
Experiment	Spot Diff.	Classify Reviews	Brainstorming	Pooled

Table 3: Recruitment Elasticities From Three Experiments

Notes: Coefficients from logit regressions of an accept indicator on reward from "recruitment" experiments, and calculated elasticities, assessed at the experimental sample mean. The pooled specification includes experiment fixed effects, and is weighted by the inverse of the standard deviation of rewards within each experiment. Robust standard errors in parentheses.

We made a synthetic dataset based on these numbers in communication with the authors, as the replication data was unavailable.

Neither of the first two experiments asked demographic characteristics, and replication data for the third is unavailable, so there is limited capacity to control for observables. However, the randomized assignment of the reward mitigates any role for covariates besides improving precision. Table 3 shows the simple OLS regression results using the same logit specification as equation 6, separately by experiment, and then pooled. The pooled regression controls for experiment fixed effects and weights by the inverse of the standard deviation of rewards within each experiment.

While the first 2 experiments have insignificant elasticities, in the third experiment we obtain a statistically significant, but still small elasticity, despite a smaller sample size, possibly due to the more attractive nature of the ex-post task relative to the other two. Even when all experiments are pooled, the point estimates are remarkably similar despite the very different wage levels at which the experiments were run, and close to the very small estimates obtained from the double-ML procedure above. The implied recruitment elasticity from the pooled three experiments is 0.06 and is distinguishable from 0 at 5% significance.

4.3 Comparison of Estimates

Figure 2 shows the double-ML estimates obtained from pooling the two samples, split by quintiles of the reward distribution, together with the estimates from each of the experiments. The graph also plots the precision-weighted mean elasticity of the experimental estimates (weighted by the inverse of the variance of the estimated elasticities) of 0.14. The double-ML estimates are all very close to this line, despite being estimated using very different sources of variation in the rewards. The consistency of the estimates is remark-

Figure 2: Baseline estimates from both "recruitment" and "retention" experimental designs (Column 1 of Table 2 and Columns 1-3 of Table 3), as well as double-ML recruitment elasticities from observational data, plotted by mean reward of sample.

able, and generally implies a low labor supply elasticity facing requesters on MTurk, with some estimates unable to rule out 0 with 95% confidence. Moreover, the labor supply elasticity is largely independent of the reward.

We can use our estimates to infer the distribution of MTurk surplus between workers and requesters, following the formula in Appendix A that accounts for the dynamics of the requester's problem. The general formula is different from the standard static monopsony problem because a task refused in a given period can be filled in the future, thereby reducing the costs of offering "too low" a wage. However, when employers are sufficiently impatient (because the task is time-sensitive), the markdown falls to the static Lerner rule. Even these static markdowns are quite large, with workers paid less than 13% of their productivity. Despite considerable differences in the institutional environment and type of work, these are close to the markdowns implied by firm labor supply elasticities estimated for nurses by Staiger et al. (2010), among the lowest in the literature.

Are employers using their market power? To check this rigorously, we would need variation in the extent of market power facing requesters, and our observational analysis suggests that elasticities are generally constant. We examine heterogeneity in the double-ML elasticities by task type, using the categorization developed by Gadiraju et al. (2014). While there are only six categories and the elasticities do not vary very much across categories, Appendix Figure C.3 shows that tasks with a higher elasticity do have higher reward per minute of time allotted, suggesting that employers are using their monopsony power. The calibrated model explaining round number bunching in Dube et al. (2017) provides additional evidence on employer optimization on MTurk. Consistent with greater competition in familiar tasks, we also find that more frequent types of tasks have slightly higher elasticities.

5 Discussion and Conclusion

The findings in this paper provide strong evidence that even in a labor market where barriers to entry and search frictions may appear to be low, there is considerable monopsony power. As discussed in the introduction, this finding is consistent with the growing body of observational evidence from offline labor markets suggesting monopsony might be at play in those markets as well. Overall, these results call into question the idea that monopsony power is relevant only in unusual cases like company towns or in the presence of legal restrictions on worker mobility.

The source of the monopsony power on MTurk likely lies in the information and market environment presented to workers and requesters, together with the absence of bargaining or many margins of wage discrimination. In particular, the tastes different workers have for a given task may be quite dispersed and not easily discerned by requesters, which induces requesters posting a wage to trade-off the probability of acceptance against a lower wage. Further, this may be exacerbated by the information environment facing workers, which makes searching for alternative jobs difficult. Jobs are highly heterogeneous in time required, entertainment value ("fun") to the worker, and the reliability of the requester in approving payments (Benson et al., 2017). There is no single dimensional index of job quality that can be used to order HIT groups while searching: workers can't sort HIT batches by the *real* wage.

As online platforms for data work have increased in prevalence, efforts to mitigate the effects of market power have emerged. For example, workers organically created their own mechanisms for sharing information about good and bad requesters and HITs via online discussion fora Gray et al. (2016). Tools like Turkopticon (Irani and Silberman, 2013) reduce the information asymmetry by supplying workers with reputation information on requesters. Platforms such as Upwork allow workers to bargain on the wages for a task. Furthermore, some platforms are designed from the ground up to be "worker-friendly" such as Stanford's Dynamo. Also, scientific funders such as Russell Sage have instituted minimum wages for crowdsourced work. The high value data services have as inputs into artificial intelligence has led some to call for "data labor unions" to collectively bargain over high-quality labelled data (Arrieta-Ibarra et al., 2017). Our results suggest that these sentiments and policies may have an economic justification.

References

- Abernethy, Jacob, Yiling Chen, Chien-Ju Ho, and Bo Waggoner, "Low-Cost Learning via Active Data Procurement," in "Proceedings of the Sixteenth ACM Conference on Economics and Computation" EC '15 ACM New York, NY, USA 2015, pp. 619–636.
- Arrieta-Ibarra, Imanol, Leonard Goff, Diego Jiménez Hernández, Jaron Lanier, and E Weyl, "Should We Treat Data as Labor? Moving Beyond'Free'," 2017.
- Azar, José, Ioana Marinescu, and Marshall I Steinbaum, "Labor market concentration," Technical Report, National Bureau of Economic Research 2017.
- Benmelech, Efraim, Nittai Bergman, and Hyunseob Kim, "Strong employers and weak employees: How does employer concentration affect wages?," Technical Report, National Bureau of Economic Research 2018.
- Benson, Alan, Aaron Sojourner, and Akhmed Umyarov, "The value of employer reputation in the absence of contract enforcement: A randomized experiment," 2017.
- Berinsky, Adam J, Gregory A Huber, and Gabriel S Lenz, "Evaluating Online Labor Markets for Experimental Research: Amazon.com's Mechanical Turk," *Political Analysis*, 2012, 20 (3), 351–368.
- Blei, David M, Andrew Y Ng, and Michael I Jordan, "Latent Dirichlet Allocation," Journal of Machine Learning Research, mar 2003, 3, 993–1022.
- Breiman, Leo, "Random Forests," Mach. Learn., October 2001, 45 (1), 5-32.
- Buhrmester, Michael, Tracy Kwang, and Samuel D. Gosling, "Amazon's Mechanical Turk: A New Source of Inexpensive, Yet High-Quality, Data?," *Perspectives on Psychological Science*, 2011, 6 (1), 3–5.
- Callison-Burch, Chris, "Crowd-workers: Aggregating information across turkers to help them find higher paying work," in "Second AAAI Conference on Human Computation and Crowdsourcing" 2014.
- Card, David, Ana Rute Cardoso, Jörg Heining, and Patrick Kline, "Firms and labor market inequality: Evidence and some theory," Technical Report, National Bureau of Economic Research 2016.
- Chandler, Dana and John Horton, "Labor Allocation in Paid Crowdsourcing: Experimental Evidence on Positioning, Nudges and Prices," 2011.
- Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins, "Double/debiased machine learning for treatment and structural parameters," *The Econometrics Journal*, 2017.
- Crump, Matthew J. C., John V. McDonnell, and Todd M. Gureckis, "Evaluating Amazon's Mechanical Turk as a Tool for Experimental Behavioral Research," PLOS ONE, 03 2013, 8 (3), 1–18.
- Dasgupta, Anirban and Arpita Ghosh, "Crowdsourced Judgement Elicitation with Endogenous Proficiency," in "Proceedings of the 22Nd International Conference on World Wide Web" WWW '13 ACM New York, NY, USA 2013, pp. 319–330.
- Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, "Imagenet: A large-scale hierarchical image database," in "Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on" IEEE 2009, pp. 248–255.
- Difallah, Djellel Eddine, Michele Catasta, Gianluca Demartini, and Philippe Cudré-Mauroux, "Scaling-Up the Crowd: Micro-Task Pricing Schemes for Worker Retention and Latency Improvement," in "HCOMP" 2014.

- _ , _ , _ , Panagiotis G. Ipeirotis, and Philippe Cudré-Mauroux, "The Dynamics of Micro-Task Crowdsourcing: The Case of Amazon MTurk," in "Proceedings of the 24th International Conference on World Wide Web" WWW '15 International World Wide Web Conferences Steering Committee Republic and Canton of Geneva, Switzerland 2015, pp. 238–247.
- Doerrenberg, Philipp, Denvil Duncan, and Max Löffler, "Asymmetric labor-supply responses to wage-rate changes: Evidence from a field experiment," 2016, (16-006).
- Dube, Arindrajit, Alan Manning, and Suresh Naidu, "Monopsony, Misoptimization, and Round Number Bunching in the Wage Distribution," 2017.
- Einav, Liran, Theresa Kuchler, Jonathan Levin, and Neel Sundaresan, "Assessing sale strategies in online markets using matched listings," *American Economic Journal: Microeconomics*, 2015, 7 (2), 215–47.
- Fosgerau, Mogens, Emerson Melo, and Matthew Shum, "Discrete choice and rational inattention: A general equivalence result," 2016.
- Gabaix, Xavier, David Laibson, Deyuan Li, Hongyi Li, Sidney Resnick, and Casper G de Vries, "The impact of competition on prices with numerous firms," *Journal of Economic Theory*, 2016, 165, 1–24.
- Gadiraju, Ujwal, Ricardo Kawase, and Stefan Dietze, "A Taxonomy of Microtasks on the Web," in "Proceedings of the 25th ACM Conference on Hypertext and Social Media" HT '14 ACM New York, NY, USA 2014, pp. 218–223.
- Gray, Mary L., Siddharth Suri, Syed Shoaib Ali, and Deepti Kulkarni, "The Crowd is a Collaborative Network," in "Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing" CSCW '16 ACM New York, NY, USA 2016, pp. 134–147.
- Heer, Jeffrey and Michael Bostock, "Crowdsourcing Graphical Perception: Using Mechanical Turk to Assess Visualization Design," in "Proceedings of the SIGCHI Conference on Human Factors in Computing Systems" CHI '10 ACM New York, NY, USA 2010, pp. 203–212.
- Ho, Chien-Ju, Aleksandrs Slivkins, Siddharth Suri, and Jennifer Wortman Vaughan, "Incentivizing High Quality Crowdwork," in "Proceedings of the 24th International Conference on World Wide Web" WWW '15 International World Wide Web Conferences Steering Committee Republic and Canton of Geneva, Switzerland 2015, pp. 419–429.
- Hofmann, Thomas, Bernhard Schölkopf, and Alexander J. Smola, "Kernel methods in machine learning," Ann. Statist., 06 2008, 36 (3), 1171–1220.
- Honnibal, Matthew and Mark Johnson, "An Improved Non-monotonic Transition System for Dependency Parsing," in "Conference on Empirical Methods in Natural Language Processing" 2015.
- Horton, John J, David G Rand, and Richard J Zeckhauser, "The online laboratory: Conducting experiments in a real labor market," *Experimental Economics*, 2011, 14 (3), 399–425.
- Horton, John Joseph and Lydia B. Chilton, "The Labor Economics of Paid Crowdsourcing," in "Proceedings of the 11th ACM Conference on Electronic Commerce" EC '10 ACM New York, NY, USA 2010, pp. 209–218.
- Hsieh, Gary and Rafał Kocielnik, "You get who you pay for: The impact of incentives on participation bias," in "Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing" ACM 2016, pp. 823–835.
- Huang, Eric, Haoqi Zhang, David C. Parkes, Krzysztof Z. Gajos, and Yiling Chen, "Toward Automatic Task Design: A Progress Report," in "Proceedings of the ACM SIGKDD Workshop on Human Computation" HCOMP '10 ACM New York, NY, USA 2010, pp. 77–85.

- **Ipeirotis, Panagiotis G.**, "Analyzing the Amazon Mechanical Turk Marketplace," *XRDS*, December 2010, 17 (2), 16–21.
- Irani, Lilly C. and M. Six Silberman, "Turkopticon: Interrupting Worker Invisibility in Amazon Mechanical Turk," in "Proceedings of the SIGCHI Conference on Human Factors in Computing Systems" CHI '13 ACM New York, NY, USA 2013, pp. 611–620.
- Katz, Lawrence F. and Alan B. Krueger, "The Rise and Nature of Alternative Work Arrangements in the United States, 1995-2015," Working Paper 22667, National Bureau of Economic Research September 2016.
- Kingsley, Sara Constance, Mary L. Gray, and Siddharth Suri, "Accounting for Market Frictions and Power Asymmetries in Online Labor Markets," *Policy & Internet*, 2015, 7 (4), 383–400.
- Krueger, Alan B, Orley Ashenfelter et al., "Theory and Evidence on Employer Collusion in the Franchise Sector," Technical Report 2017.
- Kuhn, Peter, "Is monopsony the right way to model labor markets? a review of Alan Manning's monopsony in motion," *International Journal of the Economics of Business*, 2004, 11 (3), 369–378.
- Le, Quoc and Tomas Mikolov, "Distributed Representations of Sentences and Documents," in Eric P. Xing and Tony Jebara, eds., Proceedings of the 31st International Conference on Machine Learning, Vol. 32 of Proceedings of Machine Learning Research PMLR Bejing, China 22–24 Jun 2014, pp. 1188–1196.
- Lindley, Dennis V, "The choice of sample size," Journal of the Royal Statistical Society: Series D (The Statistician), 1997, 46 (2), 129–138.
- Manning, Alan, Monopsony in motion: Imperfect competition in labor markets, Princeton University Press, 2003.
- Manyika, James, Susan Lund, Kelsey Robinson, John Valentino, and Richard Dobbs, "A labor market that works: Connecting talent with opportunity in the digital age," *McKinsey Global Institute*, 2015.
- Marge, Matthew, Satanjeev Banerjee, and Alexander I Rudnicky, "Using the Amazon Mechanical Turk for transcription of spoken language," in "Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on" IEEE 2010, pp. 5270–5273.
- Mason, Winter and Duncan J. Watts, "Financial Incentives and the "Performance of Crowds"," in "Proceedings of the ACM SIGKDD Workshop on Human Computation" HCOMP '09 ACM New York, NY, USA 2009, pp. 77–85.
- and Siddharth Suri, "Conducting behavioral research on Amazon's Mechanical Turk," Behavior research methods, 2012, 44 (1), 1–23.
- Naidu, Suresh, Eric A Posner, and E Glen Weyl, "Antitrust Remedies for Labor Market Power," Harvard Law Review, 2018.
- Radanovic, Goran and Boi Faltings, "Learning to scale payments in crowdsourcing with properboost," in "Fourth AAAI Conference on Human Computation and Crowdsourcing" 2016.
- Robinson, Peter M., "Root-N-Consistent Semiparametric Regression," *Econometrica*, 1988, 56 (4), 931–954.
- Rogstadius, Jakob, Vassilis Kostakos, Aniket Kittur, Boris Smus, Jim Laredo, and Maja Vukovic, "An Assessment of Intrinsic and Extrinsic Motivation on Task Performance in Crowdsourcing Markets," 2011.

Smith, Aaron, "Gig work, online selling and home sharing," Pew Research Center, 2016.

- Sorokin, Alexander and David Forsyth, "Utility data annotation with amazon mechanical turk," in "Computer Vision and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE Computer Society Conference on" IEEE 2008, pp. 1–8.
- Staiger, Douglas O, Joanne Spetz, and Ciaran S Phibbs, "Is there monopsony in the labor market? Evidence from a natural experiment," *Journal of Labor Economics*, 2010, 28 (2), 211–236.
- Starr, Evan, JJ Prescott, and Norman Bishara, "Noncompetes in the US labor force," 2017.
- Yin, Ming, Mary L. Gray, and Siddharth Suri, "Running Out of Time: The Impact and Value of Flexibility in On-Demand Work," Under Review at The ACM CHI Conference on Human Factors in Computing Systems 2018, 2018.
- _ , _ , _ , _ , and Jennifer Wortman Vaughan, "The Communication Network Within the Crowd," in "Proceedings of the 25th International Conference on World Wide Web" WWW '16 International World Wide Web Conferences Steering Committee Republic and Canton of Geneva, Switzerland 2016, pp. 1293– 1303.

Appendix A Monopsony on Mechanical Turk

L employers, denoted as *i*, initially post N_i jobs, each worth p_i only if completed before time T_i . Jobs are completed instantaneously once accepted. Each job gets seen by λ myopic workers, whose reservation values for that are job given by F(b). F(b) could arise from a variety of random utility models. For example, if worker *j*'s utility over job posted by employer *i* is given by $U_{ji} = \eta \ln(w_j) + \epsilon_{ji}$, where ϵ is Gumbel, then $F(w) \propto w^{\eta}$, delivering a constant elasticity labor supply curve facing the firm.⁴

While we proceed with a random utility interpretation of the idiosyncratic shock, Fosgerau et al. (2016) show a generic equivalence between rational inattention and random utility based discrete choice models (in particular the logit can be expressed as a rational inattention model with a Shannon entropy cost of information processing). While MTurk makes many work options available and easy to find, employers may have outsized market power either due to idiosyncratic tastes of workers for particular tasks (random utility) or due to costly information processing that makes it difficult to discern which task is best (rational inattention).

Each employer posts a job and chooses a wage to maximize $\Pi(w) = \int_0^{T_i} e^{-rt} N(w,t)(p_i - w) F(w) \lambda dt$ subject to $N(w,t) = -\lambda F(w) N(w,t)$.

When T_i is small, this profit function can be approximated (up to scale) by the static profit function:

$$\Pi(w_i) \approx (p_i - w_i) N_i T_i \lambda F(w_i) \tag{7}$$

The rate at which a batch is filled is thus $\lambda F(w)$ and the average duration of a batch is thus $d_i = min(T_i, \frac{N_i}{\lambda F(w_i)})$. The labor supply elasticity facing the firm is η . Taking a percent change approximation to the log we get:

$$\eta \approx \frac{dF(w)}{d\ln(w)} \frac{1}{\bar{F}(w)} \tag{8}$$

In the general case, the first-order condition characterizing the wage is

$$\frac{p_i - w_i}{w_i} = \frac{1}{\eta - \Psi} \tag{9}$$

Where $\Psi = \lambda w f(w) \left(\frac{1}{\lambda F(w) + r} - \frac{T}{exp(T(\lambda f(w) + r) - 1)} \right)$

Note that Ψ goes to 0 as r gets large or T gets small, and so equation 9 converges to the standard, static

⁴Gabaix et al. (2016) give conditions on the tail behavior of the distribution of ϵ such that, in a symmetric model with $p_i = p$, wages can increase towards p as L gets large (as would be intuitive). However they also given conditions under which the markdown stays constant or even increases as L gets large. Fat-tailed distributions of idiosyncratic utility imply that markdowns will remain substantial even in the presence of many firms.

Lerner condition in either of these cases, both of which generate impatient requesters. If T is large and r small, the static approximation fails, and the gap between the marginal product and wage is larger than the static case. This is because the cost of paying a low wage for a requester (rejection of the offer) is attenuated by the fact that a rejection is potentially only temporary, as the job stays offered until filled or until time T.

Note that the assumption of a constant rate of offer arrival implies that the elasticity of the duration of a HIT with respect to w identifies $-\eta$. The duration of a HIT batch will be the time until an agent who will accept the offer sees the offer. Clearly if T_i is sufficiently large relative to $\frac{1}{\lambda F(w)}$ (or we have enough controls for T_i), then $\frac{d\ln(d_i)}{d\ln(w_i)} = -\eta$.

Note that the assumption of a constant rate of offer arrival implies that the elasticity of the duration of a HIT with respect to w identifies $-\eta$. The duration of a HIT batch will be the time until an agent who will accept the offer sees the offer.

Identification of η is obtained by a) using machine-learned functions to control for batch properties (e.g. N_i as well as any other characteristics of the task that influence the distribution of worker reservation values besides the wage) in the double-ML approach and b) using the "honeypot" design described below to randomize w_i holding the batch properties constant.

We can obtain a separate estimate of the labor supply elasticity, η , using the "retention" experiments described in the text. The retention experiment involves a requester making a take it or leave it offer to a worker who has already agreed to a HIT. In principle, the worker has the same distribution of other HITs or outside options so that the distribution of reservation values should be the same F(b) as above, but we allow for the possibility that this elasticity is different from the η estimated from recruitment. The assumption of constant worker arrival rates, instantaneous job fulfillment, and no specific skills for a task suggests that these should be quite close, as both are recovering the log-curvature of F.

Appendix B Other Experiments Surveyed

We surveyed a large number of MTurk experiments, shown in 4. However, we did not include those that did not randomize the wage within the same batch. In a large number of MTurk studies, researchers will issue batches of HITs sequentially, with each batch being given a different wage⁵ The majority of these are not randomized and thus we cannot use them to recover even quasi-experimental requester's labor supply elasticities. See Table 4 for full explanations of the inclusion/exclusion criteria for each study.

 $^{^{5}}$ We examined the estimates in the following papers: Berinsky et al. (2012), Buhrmester et al. (2011), Crump et al. (2013), Doerrenberg et al. (2016), Heer and Bostock (2010), Horton and Chilton (2010), Marge et al. (2010), Mason and Watts (2009), Rogstadius et al. (2011), Sorokin and Forsyth (2008)

Study	Included	Reason			
Berinsky et al. (2012)	No	HIT groups posted sequentially (not randomized)			
Buhrmester et al. (2011)	No	HIT groups posted sequentially (not randomized)			
Callison-Burch (2014)	No	Unable to obtain data			
Chandler and Horton (2011)	No	Unable to obtain data			
Crump et al. (2013)	No	HIT groups posted sequentially (not randomized)			
Doerrenberg et al. (2016)	No	Piecemeal wage, non-honeypot setup			
Dube et al. (2017)	Yes	Replicated			
Heer and Bostock (2010)	No	HIT groups posted sequentially (not randomized)			
Ho et al. (2015)	Yes	Randomized "honeypot" design			
Horton and Chilton (2010)	No	Labor supply elasticity (0.34) imputed, not estimated directly			
Horton et al. (2011)	Yes	Replicated			
Huang et al. (2010)	No	Unable to obtain data			
Hsieh and Kocielnik (2016)	Yes	Randomized "honeypot" design			
Marge et al. (2010)	No	HIT groups posted sequentially (not randomized)			
Mason and Watts (2009)	No	Piecemeal wage, non-honeypot setup			
Rogstadius et al. (2011)	No	Common HIT pool creates non-			
		independence of accept/reject decisions			
Sorokin and Forsyth (2008)	No	HIT groups posted sequentially (not randomized)			
Yin et al. (2018)	Yes	Randomized "honeypot" design			

 Table 4: All Experiments Surveyed

amazonmechanical turk Artificial Artificial Intelligence	Your Accou	Int HITs	Qualifications	1,017,654 available r	HITS	Accoun	t Settings Sign Out Help
	All HITS HITS A	vailable To You	HITs Assigned To	You	C for which a		
Find HITs v containing			that pay at le	ast \$ <mark>0.00</mark>	require Ma	ster Qualification	
All HITS							
1-10 of 1033 Results							
Sort by: HITs Available (most first) 🗸 💿	Show all details Hide	e all details				1 <u>2 3 4 5</u> > <u>Next</u>	Items per Page: 10 \lor
Extract purchased items from a shopping receipt (1-2 items)							View a HIT in this group
Requester: ScoutIt	HIT Expiration Date:	Dec 18, 2017 (6	days 23 hours)	R	eward:	\$0.01	
	Time Allotted:	2 hours		н	ITs Available:	127404	J
Extract purchased items from a shopping receipt (3-5 items)							View a HIT in this group
Requester: ScoutIt	HIT Expiration Date:	Dec 18, 2017 (6	days 23 hours)	R	eward:	\$0.03	
	Time Allotted:	2 hours		н	ITs Available:	119277	J
Rekognition Internal Boundingbox					B	equest Qualification (Why?) View a HIT in this group
Requester: Amazon Requester Inc Rekognition Team	HIT Expiration Date:	Jan 6, 2018 (3 we	eks 4 days)	R	eward:	\$0.00	
	Time Allotted:	6 hours		н	ITs Available:	62038	J
Extract purchased items from a shopping receipt							View a HIT in this group
Requester: ScoutIt	HIT Expiration Date:	Dec 18, 2017 (6	days 23 hours)	R	eward:	\$0.08	
	Time Allotted:	2 hours		н	ITs Available:	56357	J
Extract purchased items from a shopping receipt (6-10 items)							View a HIT in this group
Requester: ScoutIt	HIT Expiration Date:	Dec 18, 2017 (6	days 23 hours)	R	eward:	\$0.06	
	Time Allotted:	2 hours		н	ITs Available:	55645	

Figure C.1: Sample interface page from Amazon Mechanical Turk

Appendix C Observational Data Appendix

Figure C.1 shows a sample of the MTurk interface for workers. We use two different scraping strategies. Section Appendix C.1 describes data from Ipeirotis (2010) obtained via the Mechanical Turk Tracker API⁶, and goes from January 2014 through February 2016, when the account was ended by Amazon. Beginning in May 2016, we ran our own scraper, which took snapshots of all HITs available to a worker with a US address every 30 minutes, though the frequency was increased to every 10 minutes beginning in May 2017. Data from this latter scrape is described in Section Appendix C.2.

Appendix C.1 Data for January 2014 – February 2016

Ipeirotis (2010) introduces the Mehcanical Turk Tracker, a web interface allowing researchers to view hourly market data (*e.g.*, number of HITs available) and demographic information (*e.g.*, proportion of workers who identify as male/female or who are from India/the United States) for the Amazon Mechanical Turk marketplace. An Application Programming Interface (API) is provided alongside the web interface, allowing for programmatic queries to be issued to the database. Using this API, we downloaded both "cross-sectional" data (*e.g.*, requester name, title, description, keywords) and "time series" data (number of HITs available in the group for each run of the scraper) for 410,284 HIT groups. Of these, 125,337 were either posted to the marketplace after February 1st, 2017 or had observations after this date, the date Amazon changed

⁶https://crowd-power.appspot.com/#/general

	2014-2016 Scrape		2016-2017 Scrape		2017 Scrape	
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev
Duration (Minutes)	3370.360	9414.101	3519.257	9721.523	2293.174	8375.199
Reward (Cents)	38.014	63.741	70.397	92.420	61.774	87.358
Log Reward ML Prediction	2.639	1.229	3.431	1.416	3.286	1.362
Log Duration ML Prediction	5.210	2.642	6.223	1.414	5.301	1.589
Log Duration ML Residuals	-0.004	0.892	-0.013	1.432	0.003	1.466
Log Reward ML Residuals	-0.001	0.679	-0.003	0.483	-0.001	0.459
Time Allotted (Minutes)	77.793	204.495	595.510	2916.676	434.435	2102.791
Max No. of HITs in Batch	83.413	1303.061	59.867	1627.825	53.539	931.335
Observations	258352		292746		93775	

Table 5: The leftmost panel presents summary statistics from scraping MTurk between Jan. 2014 and Feb. 2016. The middle panel presents analogous numbers using data obtained from May. 2016 through May 2017 (30 minute interval scrape). The last panel presents the same information for the May-August 2017 scrape at 10 minute intervals.

its interface and the scraper ceased working, and thus were dropped from our analysis. Of the remaining 284,947, we dropped any that had

- Zero-valued reward,
- Only one observation (since we're unable to compute durations for these groups), or
- Rewards or durations greater than the 99.5th percentile of their respective distributions (approx. 90,000 minutes for durations and \$10.00 for rewards),

leaving us with 258,352 "final" observations, as seen in the leftmost panel of Table 5.

Appendix C.2 Data for May 2016 – August 2017

At the beginning of the project in May 2016, we set up a scraper which would log in to MTurk as a user with a US address and download all available information about each HIT group listed in the web interface as shown in Figure C.1. The scraper ran every 30 minutes (on the hour and on the half-hour) starting at midnight EST on May 31st 2016, though this was increased to every 10 minutes beginning at midnight EST on May 31st 2017. The scraper was finally banned by Amazon on August 21st 2017 at 7:30pm EST. The every-30-minute scrapes from May 2016 to May 2017 produced 363,181 total observations (292,746 after cleaning, as seen in the center panel of Table 5), while the every-10-minute scrapes from May 2017 to August 2017 produced 110,732 (93,775 after cleaning, as seen in the rightmost panel of Table 5).

Figure C.2 show how the distributions of log durations differ among the samples. The observed truncation is to be expected as the scraping windows for the 2016-2017 samples are different and will mechanically miss

Figure C.2: Kernel density plots of log duration for the 3 different samples used in the analysis.

durations shorter than 30 and 10 minutes.

Appendix C.3 Heterogeneity Across Task Types

We can examine heterogeneity across task types using the classification of tasks developed by Gadiraju et al. (2014). Note that tasks are not uniquely categorized, as the same task can be in multiple categories. Figure C.3 shows the double-ML elasticity separately for each type of task plotted against our best proxy for the real wage, Log(Reward/Time Allotted). As would be expected if employers were using their monopsony power, higher wages would be associated with higher elasticities. Further, as is intuitive, (slightly) higher elasticities are found in HIT types with more posted batches, that is, more competition.

Figure C.3: Correlation Between Elasticity and Reward Per Minute Allotted. Dot size is proportional to the number of HIT batches of each type.

Appendix D Full Double-ML Procedure

Appendix D.1 Data Loading/Merging

For each of our three datasets, the initial data processing proceeded as follows. First, a scraped panel dataset is loaded which contains, for each HIT group, the number of HITs available and the timestamp of each scrape in which the group was observed. This panel data then gets collapsed into a cross-sectional dataset consisting of several features derived from the distribution of the timestamps and HITs available – for example, into min(timestamp), max(timestamp), min(hits_available), and max(hits_available) for each HIT group. Then, a separate cross-sectional metadata file (containing, for example, the titles, descriptions, and requester names for each HIT group) is merged into the collapsed panel dataset via the unique Amazon-supplied group ID⁷.

Appendix D.2 Data Cleaning

All observations with a reward greater than \$5 or duration greater than 90,000 minutes (approximately two months) are dropped⁸. Then all observations with 0 reward or 0 duration values (only occurring in the 2014-2016 scrape data) are dropped, to allow transformation of the dependent variables into log space. This produces the final set of observations used in the machine learning procedure itself, which are summarized in Table 5.

Appendix D.3 Feature Selection and Test/Training Split

We transform the text scraped with each HIT batch into a large number of text features as follows:

- N-grams: An *n*-gram is an ordered sequence of *n* words. For example, if the full description for a HIT is "quick transcription task," this will produce three 1-grams "quick," "description" and "task"; two 2-grams "quick description" and "description task"; and a single 3-gram "quick description task." We use sliding windows of 1 to 3 words over all words within the title, HIT description and keyword list to form 1, 2 and 3-grams. The frequency of these *n*-grams in each HIT is then a feature used by the ML algorithm. We use the standard English stopword list in Scikit-learn to eliminate stopwords.
- **Topic Distributions**: Besides ordered sequence of words, sometimes sets of particular words ("topic") convey important information. A topic model is essentially an algorithm which searches for sets of words

⁷This final cross-sectional file contains 411,196 observations for the Jan 2014 - Feb 2016 data, 363,181 for the May 2016 - May 2017 data, and 110,732 for the May 2017 - Aug 2017 data, as described in the previous section.

 $^{^{8}}$ These values correspond approximately to the 99.5th percentiles of the original distribution.

that tend to occur together in a corpus. For example, one of our topics identifies the words "image," "text," and "transcribe" as its top words. HITs requesting transcription of text from an image will tend to have high feature values for this topic and lower values for other topics. The resulting features for each HIT is then the distribution over topics found in that HIT's title, description, and keyword list.⁹ We use the NLTK English stopword corpus to drop stopwords. The top 5 words for each topic model run with $K \in \{5, 10, 15, 20\}$ are available online at textlab.econ.columbia.edu/topicwords.pdf.

- **Doc2Vec Embeddings**: Unlike LDA which tries to generate features by splitting *documents* into discrete human-interpretable topics, the goal of Doc2Vec is to generate a vector space in which vectors for *words* which are semantically similar are close together, and then infer a document-level vector within this same vector space via amalgamation of the learned vectors for its constituent words. For example, since "survey" and "questionnaire" are semantically similar in the sense that they are used in similar contexts ("a short [survey/quetionnaire]", "fill out this [survey/questionnaire]"), their vectors will be close together in the constructed vector space, and this will "pull" the document-level vectors for descriptions containing either word closer together. ¹⁰
- Hand-Engineered Features: Finally, we use a set of custom regular-expression-based features, which are generally binary variables describing the presence or absence of certain salient keywords (*e.g.*, "survey", "transcribe"), but also real-valued variables capturing (for example) time estimates given in the titles/descriptions (*e.g.*, "5-minute survey"). The bulk of these features are derived from the explicit features described in Difallah et al. (2015), and the HIT taxonomy scheme developed in Gadiraju et al. (2014). The hand-engineered features are as follows:
 - Based on common patterns we observed in HIT titles, descriptions, and keywords, dummy variables were created indicating the presence or absence of the following regular expressions: easy, transcr* (capturing, e.g., "transcription" or "transcribe"), writ* (capturing, e.g., "written", "write", or "writing"), audio, image/picture, video, bonus, copy, search, ident* (capturing, e.g., "identify"), text, date, fun, simpl*, summar*, only, improve, five/5, ?, and !.
 - Based on the HIT taxonomy scheme developed in Gadiraju et al. (2014), a numerical category was assigned to each HIT group via the following regular expressions:

⁹We run a Latent Dirichlet Allocation (LDA) topic model model (Blei et al. (2003)) on all descriptions. LDA requires the choice of a parameter K which determines how many topics the algorithm should try to discover: we estimate models with $K \in \{5, 10, 15, 20\}$.

 $^{^{10}}$ We run Doc2Vec model Le and Mikolov (2014) on all titles, descriptions, and keywords in the data, producing a 50dimensional semantic information vector for each.

- * Information Finding (IF): find
- * Verification and Validation (VV): check, match
- * Interpretation and Analysis (IA): choose, categor*
- * Content Creation (CC): suggest, translat*
- * Surveys (S): survey
- * Content Access (CA): click, link, read

 The following numeric features were extracted, some of which were derived from features used in Difallah et al. (2015):

- * time_allotted: The time a worker is given to complete a given HIT
- * time_left: The time remaining before the HIT group expires (expired HIT groups are removed from the marketplace)
- * first_hits: The number of HITs initially posted to the marketplace
- * last_hits: The number of HITs remaining to be completed in the group at the time it was last observed
- * min_hits: The minumum number of HITs available observed for the group across all scrapes
- * max_hits: The maximum number of HITs available observed for the group across all scrapes
- * avg_hitrate: The average rate (per hour) at which HITs within the group were filled by workers
- * avg_hits_completed: The average change in available HITs between subsequent observations
 of the group
- * med_hits_completed: The median change in available HITs between subsequent observations
 of the group
- * min_hits_completed: The minimum change in available HITs between subsequent observations of the group
- * max_hits_completed: The maximum change in available HITs between subsequent observations of the group
- * num_zeros: The number of observations for which the number of available HITs in the group was listed as 0
- * req_mean_reward: The average reward over all HITs posted by the requester

- * req_mean_dur: The average duration of all HIT groups posted by the requester
- * title_len: The length of the HIT group's title
- * desc_len: The length of the HIT group's description
- * keywords_len: The sum of the lengths of the HIT group's keywords
- * num_keywords: The number of keywords given for the HIT group
- * title_words: The number of words in the HIT group's title
- * desc_words: The number of words in the HIT group's description
- * minutes_title: The number of minutes if a phrase including "X minutes" appears in the title
- * minutes_desc: The number of minutes if a phrase including "X minutes" appears in the description
- * minutes_kw: The number of minutes if a phrase including "X minutes" appears in the keyword list
- * qual_len: The length of the string given in the HIT group's description which lists the qualifications
- * num_quals: The number of qualifications required for the HIT group
- * custom_not_granted: The number of custom qualifications required for the HIT group for which our "blank" account (an account which had never accepted or completed a HIT) was not qualified
- * custom_granted: The number of custom qualifications required for the HIT group for which our "blank" account (an account which had never accepted or completed a HIT) was qualified
- * any_loc: A dummy variable representing whether or not the HIT group had a location restriction (e.g., US only)
- * us_only: A dummy variable which is 1 if the HIT group is restricted to US workers, and 0 otherwise
- * appr_rate_gt: The lower bound on approval rate required for workers to be eligible for the HIT, coded as -1 if no lower bound was enforced
- * rej_rate_lt: The upper bound on rejection rate required for workers to be eligible for the HIT, coded as 101 if no upper bound was enforced

- * appr_num_gt: The lower bound on number of approvals required for workers to be eligible for the HIT, coded as -1 if no lower bound was enforced
- * rej_num_lt: The upper bound on number of rejections required for workers to be eligible for the HIT, coded as 999 if no upper bound was enforced
- * adult_content: A dummy variable which is 1 if the HIT group indicated that it contained adult content, and 0 otherwise

To save on computation time, we utilized a "two stage" double ML procedure as outlined in Section 3.3. Given the initial split of the data into A and B sets, and the subsequent split of these sets into A_{train} , A_{val} , B_{train} , and B_{val} , a given run of our procedure $(A \to B \text{ or } B \to A$; here we describe the $A \to B$ run without loss of generality) proceeds as follows. First, in the "feature selection" phase, the full set of n-gram features were generated as described above, and a "preliminary" run of the learning algorithm was performed using only these n-gram features as the feature matrix for A_{train} , with the goal of predicting the reward and duration values in A_{val} . Upon completion of this stage, we "threw away" all but the top 100 most predictive n-gram features for reward and top 100 most predictive n-gram features for duration, and for the remainder of the run only those n-gram features were included. For illustration, the top 100 most predictive reward and duration features for the $A \to B$ run on the Jan 2014 - Feb 2016 data are available online at textlab.econ. columbia.edu/top100_text_duration.pdf, respectively.

Once this feature selection phase was complete, a second "full data" phase was performed, as outlined in Section 3.3. In this phase, the top 200 *n*-gram features from the feature selection phase are included in the feature matrix for A along with the LDA, Doc2Vec, and hand-engineered features, with the goal of predicting the reward and duration values in B.

Appendix D.4 Regression via Random Forests

Before computing predictions on the test set, the validation set was used to tune not only hyperparameters but also which learning method was chosen. Random forest regression, implemented by RandomForestRegressor in scikit-learn, greatly outperformed the other classifiers we employed: {AdaBoostRegressor, BaggingRegressor, ExtraTreesRegressor, GradientBoostingRegressor, RandomForestRegressor, SVR (Support-VectorRegressor)}, and thus a trained random forest regression was our choice for computing predictions for the test data. The random forest method constructs a series of individual decision tree estimators, where each regressor is trained on a subset of the full feature set, and then reports the mean prediction over all

	Jan 2014 - Feb 2016		May 2016 -	- May 2017	May 2017 - Aug 2017		
	$A \to B$	$B \to \mathbf{A}$	$A \to B$	$B \to A$	$A \to B$	$B \to A$	
Reward	0.7716	0.7764	0.8951	0.8949	0.8982	0.8984	
Duration	0.8968	0.8980	0.4379	0.4404	0.5085	0.5035	

Table 6: \mathbb{R}^2 scores for each run of the Double-ML regressions

regressors. Based on two additional cross-validation procedures, for the first-stage feature selection an random forest regression with 40 decision tree estimators was used (with the number of estimators optimized over $\{10, 20, ..., 100\}$) while for the second-stage ML the model was run with 600 estimators (optimized over $\{100, 200, ..., 1000\}$, with the increased order of magnitude made feasible due to the fact that in the second stage all but 200 of the approximately 800,000 total *n*-gram features are dropped).

Appendix D.5 Computing the Double-ML estimate

Once the ML algorithm has finished its runs and the predicted log duration and log reward values have been generated for each fold of the data, the estimated η value is computed straightforwardly via Equation 5 with n = 2.