
Monopsony in Online Labor Markets

Arindrajit Dube, Jeff Jacobs, Suresh Naidu, Siddharth Suri∗

July 13, 2018

Abstract

Despite the seemingly low switching and search costs of on-demand labor markets like Amazon Me-
chanical Turk, we find substantial monopsony power which we quantify by measuring the elasticity of
labor supply facing the requester (employer). We isolate plausibly exogenous variation in rewards us-
ing a double-machine-learning estimator applied to a large dataset of scraped MTurk tasks. We also
re-analyze data from 5 MTurk experiments that randomized payments to obtain corresponding experi-
mental estimates. Both approaches yield uniformly low labor supply elasticities, around 0.1, with little
heterogeneity. Our results suggest monopsony might also be present even in putatively “thick” labor
markets.

∗Contact information: adube@econs.umass.edu, jpj2122@columbia.edu, sn2430@columbia.edu, suri@microsoft.com. We
thank Gary Hsieh and Panos Ipeirotis for sharing data as well as Bentley Macleod, Aaron Sojourner, and Glen Weyl for
helpful comments.

1

1 Introduction

Generations of economics students are taught that the labor market is best described as competitive, with

firms facing perfectly horizontal labor supply curves. But a popular alternative view holds that the labor

market is characterized by pervasive monopsony, and this view has been bolstered by a recent, fast-growing

literature (Naidu et al., 2018) suggesting that even 21st century U.S. labor markets exhibit a substantial

degree of market power, possibly due to increased concentration (Benmelech et al., 2018; Azar et al., 2017)

or increased use of legal devices such as no-poaching or non-compete agreements (Krueger et al., 2017; Starr

et al., 2017). In this paper, we present direct experimental and quasi-experimental estimates of monopsony

in a thick online spot labor market with low putative search frictions. We find considerable market power

even here, suggesting that monopsony is not limited to thin labor markets, nor markets with high search

frictions and/or legal restrictions, and may be far more common than previously thought.

The emergence of online labor platforms represents an idealized environment where frictions are presum-

ably very low. In his review of Manning’s 2003 book Monopsony in Motion, Peter Kuhn made the following

conjecture. “[U]pward-sloping labor supply curves—whether induced by search or other factors—seem un-

likely to me to be a serious constraint for most firms. This seems even more likely to be the case in the near

future, as ... information technology has the potential to reduce search frictions.” (Kuhn, 2004, pp. 376).

Counter to this conjecture, we find a highly robust and surprisingly high degree of market power even in

this large and diverse online spot labor market.

Kingsley et al. (2015) argue employers in online labor markets have significant market power, and show

considerable concentration on MTurk, but they stop short of quantifying requester-specific supply elastic-

ities. In this paper, we rigorously estimate the degree of requester market power in a widely-used online

labor market – Amazon Mechanical Turk. MTurk is the most popular online micro-task platform, allowing

requesters (employers) to post jobs which workers can complete for pay. Independently of showing that mar-

ket power can exist even in thick markets for spot labor, understanding monopsony in online labor markets

is an important contribution as they are likely to become much more common.

We provide initial evidence regarding how sensitive the duration of task vacancies are to task rewards,

using data from a near-universe of tasks scraped from MTurk. This evidence provides us with an estimate

of wage-setting (monopsony) power facing task requesters (Manning (2003); Card et al. (2016)). We isolate

plausibly exogenous variation in rewards using a double-machine-learning (Chernozhukov et al. (2017))

method, which controls for a highly predictive function of observables generated from the textual and numeric

fields associated with each task. This empirical strategy is a labor market analogue to Einav et al. (2015),

2

who match products and sellers using a large sample of listings on eBay to estimate demand elasticities.

We then present results from a number of independent experiments on the sensitivity of workers’ accep-

tance of tasks to the level of pay offered. We analyze data from 5 previous experiments that randomized

wages of MTurk subjects, with the full list of experiments we surveyed given in Appendix B. While the pre-

vious experimenters had randomly varied the wage, none except Dube et al. (2017) recognized that they had

estimated a task-specific labor supply curve, nor noticed that this reflected monopsony power on the MTurk

marketplace. We empirically estimate a labor supply elasticity facing requesters on both a “recruitment”

margin where workers see a reward and associated task as part of their normal browsing for jobs, and a

“retention” margin where workers, having already accepted a task, are given an opportunity to perform ad-

ditional work for a randomized bonus payment. The experimental recruitment elasticity estimate is obtained

from a novel “honeypot” experimental design, where randomly-varied wage offers were made observable only

to random subsets of MTurk workers.1

Together, these very different pieces of evidence provide a remarkably consistent estimate of the labor

supply elasticity facing MTurk requesters, indicating the robustness of our results. The three experiments

with a “honeypot” design suggest a recruitment elasticity between 0.05 and 0.11. Similarly, retention prob-

abilities do not increase very much as a function of reward posted, with implied retention elasticities in the

0.1 to 0.5 range for the two experiments using that design. The precision-weighted average experimental

requester’s labor supply elasticity is 0.14, and in particular the pooled recruitment elasticity is 0.06, re-

markably close to the corresponding 0.096 estimate produced by our preferred double-ML specification. The

estimates are uniformly small across subsamples, with little heterogeneity by reward amount. This close

agreement suggests that the constant elasticity specification, commonly used in the literature, may not be

a bad approximation in this context. As a further contribution, our paper provides an independent—and

favorable—assessment of the double-ML estimator against an experimental benchmark.

2 Monopsony in A Task Market

Monopsony is characterized by two features: wage-setting power and inability to wage-discriminate. MTurk,

with its task-posting structure, did not offer many margins for wage-discrimination until very recently (after

our sample period). In our sample period, requesters could only restrict the set of eligible workers based

on prior acceptance rates (the rates at which previous requesters had deemed their work satisfactory) or
1In search-based models of dynamic monopsony, the labor supply to a firm includes both recruitment and retention margins.

3

location (e.g., by country or by U.S. state).

Monopsony power may arise due to a small number of employers on the platform, from search frictions in

locating higher paying tasks, or from idiosyncratic preferences over task characteristics. Prior work has shown

that all three of these reasons are at play in MTurk. First, about 10 percent of all requesters post approxi-

mately 98-99 percent of all tasks to the AMT platform implying substantial market concentration(Kingsley

et al., 2015; Ipeirotis, 2010). Second, workers often resort to communicating via off-platform online forums

to reduce search costs (Yin et al., 2016; Gray et al., 2016). Third, there is evidence for task specialization

among workers (Yin et al., 2016).

In Appendix A we present a simple model of the MTurk market, where employers set wages and wait for

tasks to be filled. Each job is seen by a constant fraction λ of workers, who have a distribution of reservation

wages (derived from a random utility or rational inattention model) given by F (w) ∝ wη. We show that

the labor supply elasticity, η, can be recovered from a regression of log duration on log reward, as well as

directly from experimental estimates.

3 Observational Evidence on Recruitment Elasticity from MTurk

3.1 Data and empirical strategy

For our observational analysis, we use two primary sources of scraped MTurk data. The first dataset was

obtained from Ipeirotis (2010), and covers the January 2014 to February 2016 period. The data consists of

over 400,000 scraped HIT batches from the Mechanical Turk Tracker web API2. This scraper downloaded

the newest 200 HIT batches posted to MTurk every six minutes, then the status page for each discovered

HIT batch was checked every minute until the page reported that all HITs in the batch had been accepted.

Beginning in May 2016 we launched our own scraper, which took snapshots of all HIT batches on MTurk

every 30 minutes, later increased to every 10 minutes beginning in March 2017. This scraping strategy may

miss batches that are posted and filled too quickly for the scraper to detect (i.e. duration less than 30 or

10 minutes). This scraping strategy yielded over 300,000 HIT batches, but stopped working on August 22,

2017, and we have been unable to collect more data since then. We show results separately for these two

datasets, and find broadly similar results. Further details on the data are in Appendix C, including densities

of the log duration separately by dataset.

We use the time it takes for a posted task to disappear as a measure of the probability of acceptance,
2http://crowd-power.appspot.com/#/general

4

http://crowd-power.appspot.com/#/general

and regress the duration of the task posting on the observed reward to obtain a “recruitment” estimate of

η. As we show in the model in Appendix A, this is valid under the assumption that the rate at which a

job is observed by workers is independent of the wage. We take advantage of the vast amount of available

online crowdsourcing data to estimate η, using a high-dimensional regression adjustment applied to numeric

and textual characteristics of the tasks to control for possible sources of endogenous task characteristics.

Duration of a HIT batch is an imperfect proxy for the actual time until a worker takes the job, as batches

differ in the number of tasks they offer, and whether workers can do many (e.g. image tagging) or just one

(e.g. surveys). Further, batches can be terminated by the requester, for example when they see that it is

being filled too slowly. The complementary and quite similar experimental estimates we show below are

reassuring that we are in fact measuring the labor supply elasticity with the duration elasticity.

The resulting linear specification is estimated on observations of HIT batch durations and rewards, and

is given by:

ln(durationh) = −η ln(rewardh) + νh + εh, (1)

where ν is a nuisance parameter that is correlated with both rewards and durations, and ε is an error term

that is conditionally independent of durations, so E[ε|ν] = 0. An unbiased estimate of η requires that we

correctly control for ν, the determinants of duration that are correlated with rewards, and in particular, labor

demand. The virtue of the experimental estimates in the fourth section is that randomization ensures that ν

is independent of ln(reward). With observational data, we must rely on a sufficiently rich set of observables

to control for ν, and it is impossible to be completely confident that all possible sources of omitted variable

bias have been eliminated. However, the large and high-dimensional nature of the observational MTurk data

lets us push the limits of observational analysis. We use two different approaches for this analysis, namely

fixed effects regression and double-machine-learning.

3.2 Fixed-Effects Regression

In our first strategy, we control for requester and time fixed effects along with fixed effects for deciles of

the time allotted by the requester and the number of HITs in the batch. Time allotted is the maximum

time the requester allows a worker to finish the task, and can be taken as a very rough proxy for how long

the task takes to finish. Controlling for these fixed effects is an attempt to control for task and requester

characteristics within a given time period and ideally isolates exogenous variation in labor demand. Formally,

we assume that ν = ρr + τt + δd + δN . This assumption says that the unobserved relative task attractiveness

5

is captured by the identity of the employer ρr, the time the task is first posted τt, the decile of the time

allotted for the task δd and the decile of the number of HITs in the batch δN . We can then estimate a

standard fixed-effects regression:

ln(durationh) = −η ln(rewardh) + ρr + τt + δd + δN + εh (2)

3.2.1 Results

In Table 1 we present basic OLS results and fixed effects regressions. Column 1 shows the simple bivariate

regression of log duration on log reward. Unsurprisingly this regression is inconclusive, likely because of

extensive omitted variables that are correlated with task attractiveness and the intensity of requester demand,

both of which would be correlated with both the reward posted as well as the time until the HIT is filled.

Column 2 implements the fixed-effects specification, controlling for deciles of time allotted for the task as

well as fixed effects for requester and the time posted described above. The coefficient on log reward is

−0.06, but it is imprecise and statistically indistinguishable from 0.

3.3 Double Machine Learning

As our second approach, we implement a “double-machine-learning”(double-ML) estimator recently devel-

oped by Chernozhukov et al. (2017), which in our case uses an ensemble machine learning approach to model

the unobserved ν.

In particular, we suppose that ν in equation 1 is equal to g0(Z), an unknown function of a high-dimensional

vector of observable variables Z. We further suppose that variation in rewards is generated by another

function of Z so that ln(rewards) = m0(Z) + µ. Combining these two equations we get:

ln(duration) = −η ln(reward) + g0(Z) + ε, E[ε|Z, ln(reward)] = 0 (3)

ln(reward) = m0(Z) + µ, E[µ|Z] = 0, (4)

The benefit of the procedure proposed by Chernozhukov et al. (2017) stems from the fact that it al-

lows us to utilize any number of state-of-the-art machine learning methods, such as neural nets or ran-

dom forests, to obtain estimates of the conditional expectation functions l̂0(Z) = ̂E[ln(duration)|Z] and

m̂0(Z) = ̂E[ln(rewards)|Z] which are then “partialled out" to obtain our desired estimator η̌. Specifically,

from our machine learning-estimated l̂0(Z) and m̂0(Z) we can compute the residuals from (3) and (4) as

6

µ̂ = ln(reward)− m̂0(Z) and ξ̂ = ln(duration)− l̂0(Z), respectively, and use these residuals to compute the

final estimator as

η̌0 =
(

1
n

n∑
i=1

µ̂i
2

)−1
1
n

n∑
i=1

µ̂iξ̂i, (5)

The bias from overfitting will not asymptotically go to 0 if the same data is used to estimate l0(Z) and

m0(Z) and η. However, if a different sample is used to estimate l0(Z) and m0(Z) and η̌ is averaged over

multiple folds, then the estimator is consistent and unbiased.

The intuition behind this estimator is similar to the classic partial regression formula. In equation

1 the partial regression formula implies that η could be recovered from a regression of E[ln(duration)|ν]

on E[ln(reward)|ν]. The double-ML estimator uses machine learning to form proxies for ν that fit both

conditional expectations very well, implying that the resulting residuals have “partialled out” a very flexible

function of all covariates that capture as much of the variation as possible.

3.3.1 Double Machine Learning Features

Double-machine-learning allows us to leverage a large number of covariates for identifying causal effects,

using whichever prediction algorithm has highest goodness-of-fit (see Table 6 for R2) in held-out data. We

construct a large set of both textual and non-textual covariates as inputs to the double-ML procedure. We

generate four distinct types of textual features from each HIT group’s description, title, and list of keywords:

n-grams, topic distributions, Doc2Vec embeddings, and hand-engineered features. The details can be found

in Appendix D. Additionally, we use non-textual features from the HIT including information about the

batch size, time allotted for each HIT in the group by the requester, time remaining before expiration of the

HIT group, required qualifications (e.g., worker acceptance rate required to be above x%), the volume of

HIT groups posted by the requester across the marketplace, and so on (the full set of features is described

in Appendix D.3).

To satisfy the sample-splitting requirement of the double-ML estimator, the full set of HIT groups is split

into two equally-sized subsets, A and B. Each subset is further split into training and validation sets, with

80% of the observations in A going into Atrain and 20% into Aval, and similarly for Btrain and Bval. The

machine learning then proceeds in two “stages”.

In the first stage, the n-gram features are computed for Atrain and Btrain, and two series of learning

algorithms are run, the first with Atrain as training data and Aval as test data, the second with Btrain as

7

training data and Bval as test data. For each series and each dataset (Ipeirotis (2010) and our own scraped

data) the algorithm which achieves the highest total validation score (here the sum of validation scores for

reward prediction and duration prediction) is selected as the “final” algorithm to be used for the remainder

of the procedure. In each case we ran, scikit-learn’s RandomForestRegressor achieved the highest score, and

so is the machine learning method underlying all of the double ML results.3 The random forest regression

constructs a series of decision trees, each of which is built based on a random subset of all available features,

and takes the mean prediction over all of these trees to be the estimate. For more on random forest regression,

see Breiman (2001), Section 11.

To begin the second stage of the procedure, we select the 100 textual features which best predicted the

reward values in the first stage, along with the 100 which best predicted the duration values, and set these as

the first 200 columns of our second-stage feature matrix. The additional text and numeric features, described

in Appendix D, are then appended to the matrix. The “final” algorithm discovered in stage one is then run

twice, the first time with the HIT groups in A used as training data and groups in B used as test data,

and the second with the training and test sets reversed. These two values are then averaged as specified in

equation 5 to produce the final estimate η̌0 (along with its standard error) for each dataset.

3.3.2 Results

In Table 1 we present the double-ML regressions (with and without fixed effects) alongside the basic OLS

results and fixed effects regressions. Columns 3 through 7 show the results from the double-ML estimator.

Column 3 shows the bivariate OLS regression of residualized durations on residualized rewards, and here

the coefficient on residualized rewards is a strongly significant −0.096. Figure 1 shows the corresponding

binned scatterplot, which shows the binned residuals falling quite close to the linear fit implied by a constant

elasticity. Moving from the 25th to the 75th percentile of the rewards distribution (from 5 cents to 60 cents)

would result in a 24% decrease in duration, a reduction in the time to completion of roughly 13 hours, over

a mean duration of 55 hours.

Column 4 in Table 1 adds the fixed effects from Column 2 to the ML specification, and obtains a quite

similar estimate of −0.079, suggesting that the double-ML procedure is effectively purging the effects of

observable variables omitted from Column 1 (as a large change in the coefficient would suggest that there

were other unobserved variables confounding the regression). Columns 5-7 show the double-ML specifications

for the different scraped samples. While there is some heterogeneity, the implied elasticities are uniformly
3RandomForestRegressor consistently achieved the highest score out of {AdaBoostRegressor, BaggingRegressor, Extra-

TreesRegressor, GradientBoostingRegressor, RandomForestRegressor, and SVR (SupportVectorRegressor)}.

8

-.2

-.1

0

.1

.2

Lo
g

D
ur

at
io

n
M

L
R

es
id

ua
ls

-2 -1 0 1 2

Log Reward ML Residuals

Figure 1: Binned scatterplot (20 ventiles) for double-ML residuals of log duration and log rewards. Residuals
are calculated as difference between observed value and predicted value from a random forest trained on a
held-out sample, as described in Section 3.3.

small.

4 Experimental Evidence on Labor Supply Elasticity Facing Re-

questers on MTurk

The observational evidence is quite suggestive of a requester’s recruitment elasticity, η, being low but even

in the double-ML estimates concerns about omitted variable bias may linger. It is possible that not all

task-relevant characteristics have been adequately controlled for, despite the high predictive power of our

conditional expectation functions above. If we have experimental (random) variation in rewards, we can

estimate the following regression at the worker level i:

Pr(Accepti) = α+ βrewardi + εi (6)

yielding an estimate of η recovered by η = β × E[reward]
Pr(Accept) with the expectation taken over the population of

workers in the sample. We can compare this estimate of η to the double-ML estimate from the observational

data above to bolster our confidence because if both estimates yield similar results then the double-ML

9

Table 1: Duration Elasticities from Observational MTurk Data

(1) (2) (3) (4) (5) (6) (7)
Log Reward 0.186 -0.0600

(0.0947) (0.0585)
Log Reward-ML res. -0.0958 -0.0787 -0.198 -0.181 -0.0299

(0.00558) (0.00651) (0.0281) (0.0161) (0.00402)
N 644873 629756 644873 629756 93775 292746 258352
Clusters 41167 26050 41167 26050 6962 18340 24923
Type OLS FE ML ML-FE ML ML ML
Data Pooled Pooled Pooled Pooled 2017 2016-2017 2014-2016
Notes: This Table presents OLS, FE, and double-ML estimates using the data obtained from scraping MTurk between Jan.
2014 and Feb. 2016 (from Ipeirotis (2010)), May 2016-March 2017 (scraped every 30 minutes), and March-August 2017
(scraped every 10 minutes). FE indicates fixed-effects for the hour of the first appearance of the HIT, requester, and time
allotted fixed effects. Standard errors are clustered at the requester level.

estimator is indeed adequately controlling for unobserved variation, and the experimental estimates are

externally valid. Next we report experimental estimates of η from the retention margin, and then proceed

to estimate η from the recruitment margin—which is most directly comparable to the double-ML estimates.

4.1 Experimental Retention Elasticities

Horton et al. (2011) and Dube et al. (2017) both run variants of the following experiment. A simple uniformly

priced (say, 10 cent) HIT is posted. Subjects give demographic information and perform a simple task (e.g.,

tagging an image). The subjects are then asked if they would like to perform a given number of additional

identical tasks for a randomized bonus wage. The change in the probability of acceptance as a function

of the wage gives the responsiveness of requester’s labor supply to random wage posting, with low values

suggesting a great deal of market power. This is a “retention” estimate of η as workers have already been

drawn into a HIT i when asked whether they wish to continue.

Experiment 1 was conducted by Horton et al. (2011), and was among the earliest attempts to estimate

economic parameters from MTurk. The authors aimed to elicit the labor-supply elasticity of online workers

to the market, but this design does not elicit the market labor supply, but rather the requester’s labor supply

(i.e., the supply to the experimenter/requester for the particular task). The task in this experiment was

transcribing Tagalog translations of paragraphs from Adam Smith’s The Theory of Moral Sentiments.

Experiment 2 was conducted by Dube et al. (2017) in 2016, deliberately emulating the design of the

Horton et al. (2011) study with the aim of testing for left-digit bias in the requester’s labor supply of

online workers. Hence the rewards are substantially lower, between 5 and 15 cents, but the sample sizes

are correspondingly larger. The task here was tagging sheets of the 1850 US census slave schedules for the

10

Table 2: Offer Acceptance and Offered Rewards from Retention Experiments

(1) (2) (3) (4)

Panel A: Horton et al. 2011 Probability of Accepting Offer

Reward 0.127 0.140 0.0861 0.0973
(0.0219) (0.0241) (0.0292) (0.0333)

N 328 307 125 107
η 0.234 0.241 0.192 0.202
SE 0.0334 0.0364 0.0594 0.0664
Avg. Reward 11.60 11.63 11.37 11.50
Sophisticated No No Yes Yes
Controls No Yes No Yes

Panel B: Dube et al. 2017 Probability of Accepting Offer

Reward 0.0267 0.0486 0.0764 0.0782
(0.0171) (0.0202) (0.0348) (0.0329)

Controls No Yes No Yes
N 5184 5017 1702 1618
η 0.052 0.077 0.118 0.114
SE 0.0333 0.0322 0.0534 0.0479
Avg. Reward 9 9 9 9
Sophisticated No No Yes Yes
Notes: Coefficients from logit regressions of accept indicator on log reward from “retention” experiments, and calculated
elasticities, assessed at the specification sample mean. Robust standard errors in parenthesis.

presence of marks in the fugitive slave columns.

We show results for both the full sample and sophisticates (defined as working more than 10 hours on

MTurk and primarily for money). The resulting requester’s labor supply elasticities are shown in Columns

1-4 of Table 2. The implied η from the Horton et al. estimates are quite low, between 0.19 and 0.25, while

implied η from the Dube et al. estimates are even lower, always below 0.12. Besides differences in the

tasks, one likely reason for the very slight difference is the different support of the reward variation (Dube

et al. randomize between 5 and 15 cents, while Horton et al. randomize between 10 and 25 cents), and the

composition of workers and requesters likely changed considerably between 2011 and 2016. Despite these

differences, the estimates are similarly small.

4.2 Experimental Recruitment Elasticities

Engineering an experiment to test the recruitment elasticity is much more challenging than estimating the

retention elasticity. We take advantage of three pieces of prior work, Ho et al. (2015), Hsieh and Kocielnik

(2016), and Yin et al. (2018), that presented tasks with varying pay rates to random subsets of the MTurk

11

population such that workers assigned one pay rate could not see the tasks available to other workers who

had a different pay rate. We stress that none of the papers actually estimated a labor supply elasticity using

this random variation in pay.

All of these experiments use a two-phase “honeypot” design. In the first phase a generic HIT is posted

at a fixed pay rate. In this simple task, workers are asked a couple of survey questions including whether

they would like to be notified of future work opportunities. The IDs of the workers who said yes are then

randomized into treatment conditions. During the second phase of the experiment HITs corresponding to

the different treatment conditions are launched with identical tasks but varying rewards. This design uses a

relatively obscure piece of the MTurk API that lets a requester make a HIT group visible to only a subset

of workers. Thus each HIT group can only be seen by and accepted by those treated, and it appears as a

regular HIT group in the MTurk interface for them. This design, which first appeared in Section 5 of Ho

et al. (2015) and was later refined in Yin et al. (2018), replicates the search environment workers are facing

before having said yes to the task.

In the first experiment (Ho et al. (2015)), 800 people were recruited via a 0.05 cent “honeypot” HIT,

and then randomly split into four treatment groups of 200 workers each. The control group (68.5% accept

rate) earned $0.50 to complete the HIT, one treatment (control for our purposes) had an additional surprise

$1.00 bonus, of whom 64.5% accepted, another treatment had an additional performance based bonus, and

a fourth treatment had a base rate of $1.50, of whom 70.5% accepted. We drop the group that was given a

performance-based bonus incentive and focus on the base payment, ignoring the unexpected bonus payment,

to isolate the recruitment elasticity.

In the second experiment (Yin et al. (2018)), 1,800 workers recruited using the same “honey pot” protocol

were randomly split into three treatment groups, with rewards for the additional task of $0.03, $0.04, and

$0.05, respectively. For the task itself, users were asked to categorize an Amazon.com review as positive or

negative. Of the 600 in each group, 357 in the $0.03 group accepted, 351 in the $0.04 group accepted, and

371 in the $0.05 group accepted.

In the third experiment (Hsieh and Kocielnik (2016)), 927 workers were recruited via a similar design,

with the task being to brainstorm the “number of uses of a brick” (a measure of creative thinking) and given

one of 7 random rewards: 0 cents, 5 cents, 25 cents, 1% chance of $5, 1% chance of $25, and 25 and 50 cent

donation to charity. We drop the lottery and charity treatments and examine only the variation in rewards

(0, 5 or 25 cents) , which leaves us with 338 observations. Of these, 131 were in the 0 cent reward group

(68 accepted), 89 were in the 5 cent group (52 accepted), and 118 were in the 25 cent group (82 accepted).

12

Table 3: Recruitment Elasticities From Three Experiments

(1) (2) (3) (4)

Reward 0.00186 0.0451 0.0287 0.00744
(0.00188) (0.0587) (0.0104) (0.00385)

N 600 1800 338 2738
η 0.0497 0.0724 0.115 0.0610
SE 0.0503 0.0944 0.0417 0.0290
Avg. Reward 83.33 4 10.04 22.13
Experiment Spot Diff. Classify Reviews Brainstorming Pooled
Notes: Coefficients from logit regressions of an accept indicator on reward from “recruitment” experiments, and calculated
elasticities, assessed at the experimental sample mean. The pooled specification includes experiment fixed effects, and is
weighted by the inverse of the standard deviation of rewards within each experiment. Robust standard errors in parentheses.

We made a synthetic dataset based on these numbers in communication with the authors, as the replication

data was unavailable.

Neither of the first two experiments asked demographic characteristics, and replication data for the third

is unavailable, so there is limited capacity to control for observables. However, the randomized assignment

of the reward mitigates any role for covariates besides improving precision. Table 3 shows the simple

OLS regression results using the same logit specification as equation 6, separately by experiment, and then

pooled. The pooled regression controls for experiment fixed effects and weights by the inverse of the standard

deviation of rewards within each experiment.

While the first 2 experiments have insignificant elasticities, in the third experiment we obtain a statisti-

cally significant, but still small elasticity, despite a smaller sample size, possibly due to the more attractive

nature of the ex-post task relative to the other two. Even when all experiments are pooled, the point esti-

mates are remarkably similar despite the very different wage levels at which the experiments were run, and

close to the very small estimates obtained from the double-ML procedure above. The implied recruitment

elasticity from the pooled three experiments is 0.06 and is distinguishable from 0 at 5% significance.

4.3 Comparison of Estimates

Figure 2 shows the double-ML estimates obtained from pooling the two samples, split by quintiles of the

reward distribution, together with the estimates from each of the experiments. The graph also plots the

precision-weighted mean elasticity of the experimental estimates (weighted by the inverse of the variance of

the estimated elasticities) of 0.14. The double-ML estimates are all very close to this line, despite being

estimated using very different sources of variation in the rewards. The consistency of the estimates is remark-

13

Precision-weighted mean
experimental elasticity = .14

-.2

-.1

0

.1

.2

.3

.4

El
as

tic
ity

 o
f L

ab
or

 S
up

pl
y

Fa
ci

ng
 R

eq
ue

st
er

2 10 50 100 150 200

Mean Reward in Cents (Log Scale)

Recruitment (Experimental)
Retention (Experimental)
Recruitment (Double-ML, pooled MTurk samples) By Reward Quintile

Figure 2: Baseline estimates from both “recruitment” and “retention” experimental designs (Column 1 of
Table 2 and Columns 1-3 of Table 3), as well as double-ML recruitment elasticities from observational data,
plotted by mean reward of sample.

able, and generally implies a low labor supply elasticity facing requesters on MTurk, with some estimates

unable to rule out 0 with 95% confidence. Moreover, the labor supply elasticity is largely independent of the

reward.

We can use our estimates to infer the distribution of MTurk surplus between workers and requesters,

following the formula in Appendix A that accounts for the dynamics of the requester’s problem. The general

formula is different from the standard static monopsony problem because a task refused in a given period

can be filled in the future, thereby reducing the costs of offering “too low” a wage. However, when employers

are sufficiently impatient (because the task is time-sensitive), the markdown falls to the static Lerner rule.

Even these static markdowns are quite large, with workers paid less than 13% of their productivity. Despite

considerable differences in the institutional environment and type of work, these are close to the markdowns

implied by firm labor supply elasticities estimated for nurses by Staiger et al. (2010), among the lowest in

the literature.

Are employers using their market power? To check this rigorously, we would need variation in the extent

of market power facing requesters, and our observational analysis suggests that elasticities are generally

constant. We examine heterogeneity in the double-ML elasticities by task type, using the categorization

developed by Gadiraju et al. (2014). While there are only six categories and the elasticities do not vary very

14

much across categories, Appendix Figure C.3 shows that tasks with a higher elasticity do have higher reward

per minute of time allotted, suggesting that employers are using their monopsony power. The calibrated

model explaining round number bunching in Dube et al. (2017) provides additional evidence on employer

optimization on MTurk. Consistent with greater competition in familiar tasks, we also find that more

frequent types of tasks have slightly higher elasticities.

5 Discussion and Conclusion

The findings in this paper provide strong evidence that even in a labor market where barriers to entry

and search frictions may appear to be low, there is considerable monopsony power. As discussed in the

introduction, this finding is consistent with the growing body of observational evidence from offline labor

markets suggesting monopsony might be at play in those markets as well. Overall, these results call into

question the idea that monopsony power is relevant only in unusual cases like company towns or in the

presence of legal restrictions on worker mobility.

The source of the monopsony power on MTurk likely lies in the information and market environment

presented to workers and requesters, together with the absence of bargaining or many margins of wage

discrimination. In particular, the tastes different workers have for a given task may be quite dispersed and

not easily discerned by requesters, which induces requesters posting a wage to trade-off the probability of

acceptance against a lower wage. Further, this may be exacerbated by the information environment facing

workers, which makes searching for alternative jobs difficult. Jobs are highly heterogeneous in time required,

entertainment value (“fun”) to the worker, and the reliability of the requester in approving payments (Benson

et al., 2017). There is no single dimensional index of job quality that can be used to order HIT groups while

searching: workers can’t sort HIT batches by the real wage.

As online platforms for data work have increased in prevalence, efforts to mitigate the effects of market

power have emerged. For example, workers organically created their own mechanisms for sharing information

about good and bad requesters and HITs via online discussion fora Gray et al. (2016). Tools like Turkop-

ticon (Irani and Silberman, 2013) reduce the information asymmetry by supplying workers with reputation

information on requesters. Platforms such as Upwork allow workers to bargain on the wages for a task.

Furthermore, some platforms are designed from the ground up to be “worker-friendly” such as Stanford’s

Dynamo. Also, scientific funders such as Russell Sage have instituted minimum wages for crowdsourced

work. The high value data services have as inputs into artificial intelligence has led some to call for “data

15

labor unions" to collectively bargain over high-quality labelled data (Arrieta-Ibarra et al., 2017). Our results

suggest that these sentiments and policies may have an economic justification.

16

References
Abernethy, Jacob, Yiling Chen, Chien-Ju Ho, and Bo Waggoner, “Low-Cost Learning via Active
Data Procurement,” in “Proceedings of the Sixteenth ACM Conference on Economics and Computation”
EC ’15 ACM New York, NY, USA 2015, pp. 619–636.

Arrieta-Ibarra, Imanol, Leonard Goff, Diego Jiménez Hernández, Jaron Lanier, and E Weyl,
“Should We Treat Data as Labor? Moving Beyond’Free’,” 2017.

Azar, José, Ioana Marinescu, and Marshall I Steinbaum, “Labor market concentration,” Technical
Report, National Bureau of Economic Research 2017.

Benmelech, Efraim, Nittai Bergman, and Hyunseob Kim, “Strong employers and weak employees:
How does employer concentration affect wages?,” Technical Report, National Bureau of Economic Research
2018.

Benson, Alan, Aaron Sojourner, and Akhmed Umyarov, “The value of employer reputation in the
absence of contract enforcement: A randomized experiment,” 2017.

Berinsky, Adam J, Gregory A Huber, and Gabriel S Lenz, “Evaluating Online Labor Markets for
Experimental Research: Amazon.com’s Mechanical Turk,” Political Analysis, 2012, 20 (3), 351–368.

Blei, David M, Andrew Y Ng, and Michael I Jordan, “Latent Dirichlet Allocation,” Journal of
Machine Learning Research, mar 2003, 3, 993–1022.

Breiman, Leo, “Random Forests,” Mach. Learn., October 2001, 45 (1), 5–32.

Buhrmester, Michael, Tracy Kwang, and Samuel D. Gosling, “Amazon’s Mechanical Turk: A New
Source of Inexpensive, Yet High-Quality, Data?,” Perspectives on Psychological Science, 2011, 6 (1), 3–5.

Callison-Burch, Chris, “Crowd-workers: Aggregating information across turkers to help them find higher
paying work,” in “Second AAAI Conference on Human Computation and Crowdsourcing” 2014.

Card, David, Ana Rute Cardoso, Jörg Heining, and Patrick Kline, “Firms and labor market
inequality: Evidence and some theory,” Technical Report, National Bureau of Economic Research 2016.

Chandler, Dana and John Horton, “Labor Allocation in Paid Crowdsourcing: Experimental Evidence
on Positioning, Nudges and Prices,” 2011.

Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,
Whitney Newey, and James Robins, “Double/debiased machine learning for treatment and structural
parameters,” The Econometrics Journal, 2017.

Crump, Matthew J. C., John V. McDonnell, and Todd M. Gureckis, “Evaluating Amazon’s
Mechanical Turk as a Tool for Experimental Behavioral Research,” PLOS ONE, 03 2013, 8 (3), 1–18.

Dasgupta, Anirban and Arpita Ghosh, “Crowdsourced Judgement Elicitation with Endogenous Pro-
ficiency,” in “Proceedings of the 22Nd International Conference on World Wide Web” WWW ’13 ACM
New York, NY, USA 2013, pp. 319–330.

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in “Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on” IEEE 2009, pp. 248–255.

Difallah, Djellel Eddine, Michele Catasta, Gianluca Demartini, and Philippe Cudré-Mauroux,
“Scaling-Up the Crowd: Micro-Task Pricing Schemes for Worker Retention and Latency Improvement,”
in “HCOMP” 2014.

17

, , , Panagiotis G. Ipeirotis, and Philippe Cudré-Mauroux, “The Dynamics of Micro-Task
Crowdsourcing: The Case of Amazon MTurk,” in “Proceedings of the 24th International Conference on
World Wide Web” WWW ’15 International World Wide Web Conferences Steering Committee Republic
and Canton of Geneva, Switzerland 2015, pp. 238–247.

Doerrenberg, Philipp, Denvil Duncan, and Max Löffler, “Asymmetric labor-supply responses to
wage-rate changes: Evidence from a field experiment,” 2016, (16-006).

Dube, Arindrajit, Alan Manning, and Suresh Naidu, “Monopsony, Misoptimization, and Round
Number Bunching in the Wage Distribution,” 2017.

Einav, Liran, Theresa Kuchler, Jonathan Levin, and Neel Sundaresan, “Assessing sale strategies
in online markets using matched listings,” American Economic Journal: Microeconomics, 2015, 7 (2),
215–47.

Fosgerau, Mogens, Emerson Melo, and Matthew Shum, “Discrete choice and rational inattention:
A general equivalence result,” 2016.

Gabaix, Xavier, David Laibson, Deyuan Li, Hongyi Li, Sidney Resnick, and Casper G de Vries,
“The impact of competition on prices with numerous firms,” Journal of Economic Theory, 2016, 165, 1–24.

Gadiraju, Ujwal, Ricardo Kawase, and Stefan Dietze, “A Taxonomy of Microtasks on the Web,” in
“Proceedings of the 25th ACM Conference on Hypertext and Social Media” HT ’14 ACM New York, NY,
USA 2014, pp. 218–223.

Gray, Mary L., Siddharth Suri, Syed Shoaib Ali, and Deepti Kulkarni, “The Crowd is a Collabo-
rative Network,” in “Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work
& Social Computing” CSCW ’16 ACM New York, NY, USA 2016, pp. 134–147.

Heer, Jeffrey and Michael Bostock, “Crowdsourcing Graphical Perception: Using Mechanical Turk to
Assess Visualization Design,” in “Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems” CHI ’10 ACM New York, NY, USA 2010, pp. 203–212.

Ho, Chien-Ju, Aleksandrs Slivkins, Siddharth Suri, and Jennifer Wortman Vaughan, “Incen-
tivizing High Quality Crowdwork,” in “Proceedings of the 24th International Conference on World Wide
Web” WWW ’15 International World Wide Web Conferences Steering Committee Republic and Canton
of Geneva, Switzerland 2015, pp. 419–429.

Hofmann, Thomas, Bernhard Schölkopf, and Alexander J. Smola, “Kernel methods in machine
learning,” Ann. Statist., 06 2008, 36 (3), 1171–1220.

Honnibal, Matthew and Mark Johnson, “An Improved Non-monotonic Transition System for Depen-
dency Parsing,” in “Conference on Empirical Methods in Natural Language Processing” 2015.

Horton, John J, David G Rand, and Richard J Zeckhauser, “The online laboratory: Conducting
experiments in a real labor market,” Experimental Economics, 2011, 14 (3), 399–425.

Horton, John Joseph and Lydia B. Chilton, “The Labor Economics of Paid Crowdsourcing,” in
“Proceedings of the 11th ACM Conference on Electronic Commerce” EC ’10 ACM New York, NY, USA
2010, pp. 209–218.

Hsieh, Gary and Rafał Kocielnik, “You get who you pay for: The impact of incentives on participation
bias,” in “Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social
Computing” ACM 2016, pp. 823–835.

Huang, Eric, Haoqi Zhang, David C. Parkes, Krzysztof Z. Gajos, and Yiling Chen, “Toward
Automatic Task Design: A Progress Report,” in “Proceedings of the ACM SIGKDD Workshop on Human
Computation” HCOMP ’10 ACM New York, NY, USA 2010, pp. 77–85.

18

Ipeirotis, Panagiotis G., “Analyzing the Amazon Mechanical Turk Marketplace,” XRDS, December 2010,
17 (2), 16–21.

Irani, Lilly C. and M. Six Silberman, “Turkopticon: Interrupting Worker Invisibility in Amazon Me-
chanical Turk,” in “Proceedings of the SIGCHI Conference on Human Factors in Computing Systems”
CHI ’13 ACM New York, NY, USA 2013, pp. 611–620.

Katz, Lawrence F. and Alan B. Krueger, “The Rise and Nature of Alternative Work Arrangements in
the United States, 1995-2015,” Working Paper 22667, National Bureau of Economic Research September
2016.

Kingsley, Sara Constance, Mary L. Gray, and Siddharth Suri, “Accounting for Market Frictions
and Power Asymmetries in Online Labor Markets,” Policy & Internet, 2015, 7 (4), 383–400.

Krueger, Alan B, Orley Ashenfelter et al., “Theory and Evidence on Employer Collusion in the
Franchise Sector,” Technical Report 2017.

Kuhn, Peter, “Is monopsony the right way to model labor markets? a review of Alan Manning’s monopsony
in motion,” International Journal of the Economics of Business, 2004, 11 (3), 369–378.

Le, Quoc and Tomas Mikolov, “Distributed Representations of Sentences and Documents,” in Eric P.
Xing and Tony Jebara, eds., Proceedings of the 31st International Conference on Machine Learning, Vol. 32
of Proceedings of Machine Learning Research PMLR Bejing, China 22–24 Jun 2014, pp. 1188–1196.

Lindley, Dennis V, “The choice of sample size,” Journal of the Royal Statistical Society: Series D (The
Statistician), 1997, 46 (2), 129–138.

Manning, Alan, Monopsony in motion: Imperfect competition in labor markets, Princeton University Press,
2003.

Manyika, James, Susan Lund, Kelsey Robinson, John Valentino, and Richard Dobbs, “A labor
market that works: Connecting talent with opportunity in the digital age,” McKinsey Global Institute,
2015.

Marge, Matthew, Satanjeev Banerjee, and Alexander I Rudnicky, “Using the Amazon Mechanical
Turk for transcription of spoken language,” in “Acoustics Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on” IEEE 2010, pp. 5270–5273.

Mason, Winter and Duncan J. Watts, “Financial Incentives and the “Performance of Crowds”,” in
“Proceedings of the ACM SIGKDD Workshop on Human Computation” HCOMP ’09 ACM New York,
NY, USA 2009, pp. 77–85.

and Siddharth Suri, “Conducting behavioral research on Amazon’s Mechanical Turk,” Behavior re-
search methods, 2012, 44 (1), 1–23.

Naidu, Suresh, Eric A Posner, and E Glen Weyl, “Antitrust Remedies for Labor Market Power,”
Harvard Law Review, 2018.

Radanovic, Goran and Boi Faltings, “Learning to scale payments in crowdsourcing with properboost,”
in “Fourth AAAI Conference on Human Computation and Crowdsourcing” 2016.

Robinson, Peter M., “Root-N-Consistent Semiparametric Regression,” Econometrica, 1988, 56 (4), 931–
954.

Rogstadius, Jakob, Vassilis Kostakos, Aniket Kittur, Boris Smus, Jim Laredo, and Maja
Vukovic, “An Assessment of Intrinsic and Extrinsic Motivation on Task Performance in Crowdsourc-
ing Markets,” 2011.

19

Smith, Aaron, “Gig work, online selling and home sharing,” Pew Research Center, 2016.

Sorokin, Alexander and David Forsyth, “Utility data annotation with amazon mechanical turk,” in
“Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE Computer Society Con-
ference on” IEEE 2008, pp. 1–8.

Staiger, Douglas O, Joanne Spetz, and Ciaran S Phibbs, “Is there monopsony in the labor market?
Evidence from a natural experiment,” Journal of Labor Economics, 2010, 28 (2), 211–236.

Starr, Evan, JJ Prescott, and Norman Bishara, “Noncompetes in the US labor force,” 2017.

Yin, Ming, Mary L. Gray, and Siddharth Suri, “Running Out of Time: The Impact and Value of
Flexibility in On-Demand Work,” Under Review at The ACM CHI Conference on Human Factors in
Computing Systems 2018, 2018.

, , , and Jennifer Wortman Vaughan, “The Communication Network Within the Crowd,” in
“Proceedings of the 25th International Conference on World Wide Web” WWW ’16 International World
Wide Web Conferences Steering Committee Republic and Canton of Geneva, Switzerland 2016, pp. 1293–
1303.

20

Appendix A Monopsony on Mechanical Turk

L employers, denoted as i, initially post Ni jobs, each worth pi only if completed before time Ti. Jobs are

completed instantaneously once accepted. Each job gets seen by λ myopic workers, whose reservation values

for that are job given by F (b). F (b) could arise from a variety of random utility models. For example, if

worker j’s utility over job posted by employer i is given by Uji = η ln(wj) + εji, where ε is Gumbel, then

F (w) ∝ wη, delivering a constant elasticity labor supply curve facing the firm.4

While we proceed with a random utility interpretation of the idiosyncratic shock, Fosgerau et al. (2016)

show a generic equivalence between rational inattention and random utility based discrete choice models

(in particular the logit can be expressed as a rational inattention model with a Shannon entropy cost of

information processing). While MTurk makes many work options available and easy to find, employers

may have outsized market power either due to idiosyncratic tastes of workers for particular tasks (random

utility) or due to costly information processing that makes it difficult to discern which task is best (rational

inattention).

Each employer posts a job and chooses a wage to maximize Π(w) =
∫ Ti

0 e−rtN(w, t)(pi − w)F (w)λdt

subject to ˙N(w, t) = −λF (w)N(w, t).

When Ti is small, this profit function can be approximated (up to scale) by the static profit function:

Π(wi) ≈ (pi − wi)NiTiλF (wi) (7)

The rate at which a batch is filled is thus λF (w) and the average duration of a batch is thus di =

min(Ti, Ni

λF (wi)). The labor supply elasticity facing the firm is η. Taking a percent change approximation to

the log we get:

η ≈ dF (w)
d ln(w)

1
¯F(w)

(8)

In the general case, the first-order condition characterizing the wage is

pi − wi
wi

= 1
η −Ψ (9)

Where Ψ = λwf(w)
(1
λF (w)+r −

T
exp(T (λf(w)+r)−1

)
Note that Ψ goes to 0 as r gets large or T gets small, and so equation 9 converges to the standard, static

4Gabaix et al. (2016) give conditions on the tail behavior of the distribution of ε such that, in a symmetric model with
pi = p, wages can increase towards p as L gets large (as would be intuitive). However they also given conditions under which
the markdown stays constant or even increases as L gets large. Fat-tailed distributions of idiosyncratic utility imply that
markdowns will remain substantial even in the presence of many firms.

21

Lerner condition in either of these cases, both of which generate impatient requesters. If T is large and r

small, the static approximation fails, and the gap between the marginal product and wage is larger than the

static case. This is because the cost of paying a low wage for a requester (rejection of the offer) is attenuated

by the fact that a rejection is potentially only temporary, as the job stays offered until filled or until time T .

Note that the assumption of a constant rate of offer arrival implies that the elasticity of the duration of

a HIT with respect to w identifies −η. The duration of a HIT batch will be the time until an agent who will

accept the offer sees the offer. Clearly if Ti is sufficiently large relative to 1
λF (w) (or we have enough controls

for Ti), then d ln(di)
d ln(wi) = −η.

Note that the assumption of a constant rate of offer arrival implies that the elasticity of the duration of

a HIT with respect to w identifies −η. The duration of a HIT batch will be the time until an agent who will

accept the offer sees the offer.

Identification of η is obtained by a) using machine-learned functions to control for batch properties (e.g.

Ni as well as any other characteristics of the task that influence the distribution of worker reservation

values besides the wage) in the double-ML approach and b) using the “honeypot” design described below to

randomize wi holding the batch properties constant.

We can obtain a separate estimate of the labor supply elasticity, η, using the “retention” experiments

described in the text. The retention experiment involves a requester making a take it or leave it offer to a

worker who has already agreed to a HIT. In principle, the worker has the same distribution of other HITs or

outside options so that the distribution of reservation values should be the same F (b) as above, but we allow

for the possibility that this elasticity is different from the η estimated from recruitment. The assumption

of constant worker arrival rates, instantaneous job fulfillment, and no specific skills for a task suggests that

these should be quite close, as both are recovering the log-curvature of F .

Appendix B Other Experiments Surveyed

We surveyed a large number of MTurk experiments, shown in 4. However, we did not include those that

did not randomize the wage within the same batch. In a large number of MTurk studies, researchers will

issue batches of HITs sequentially, with each batch being given a different wage5 The majority of these are

not randomized and thus we cannot use them to recover even quasi-experimental requester’s labor supply

elasticities. See Table 4 for full explanations of the inclusion/exclusion criteria for each study.
5We examined the estimates in the following papers: Berinsky et al. (2012), Buhrmester et al. (2011), Crump et al. (2013),

Doerrenberg et al. (2016), Heer and Bostock (2010), Horton and Chilton (2010), Marge et al. (2010), Mason and Watts (2009),
Rogstadius et al. (2011), Sorokin and Forsyth (2008)

22

Study Included Reason
Berinsky et al. (2012) No HIT groups posted sequentially (not

randomized)
Buhrmester et al. (2011) No HIT groups posted sequentially (not

randomized)
Callison-Burch (2014) No Unable to obtain data
Chandler and Horton (2011) No Unable to obtain data
Crump et al. (2013) No HIT groups posted sequentially (not

randomized)
Doerrenberg et al. (2016) No Piecemeal wage, non-honeypot setup
Dube et al. (2017) Yes Replicated
Heer and Bostock (2010) No HIT groups posted sequentially (not

randomized)
Ho et al. (2015) Yes Randomized “honeypot” design
Horton and Chilton (2010) No Labor supply elasticity (0.34) imputed,

not estimated directly
Horton et al. (2011) Yes Replicated
Huang et al. (2010) No Unable to obtain data
Hsieh and Kocielnik (2016) Yes Randomized “honeypot” design
Marge et al. (2010) No HIT groups posted sequentially (not

randomized)
Mason and Watts (2009) No Piecemeal wage, non-honeypot setup
Rogstadius et al. (2011) No Common HIT pool creates non-

independence of accept/reject decisions
Sorokin and Forsyth (2008) No HIT groups posted sequentially (not

randomized)
Yin et al. (2018) Yes Randomized “honeypot” design

Table 4: All Experiments Surveyed

23

Figure C.1: Sample interface page from Amazon Mechanical Turk

Appendix C Observational Data Appendix

Figure C.1 shows a sample of the MTurk interface for workers. We use two different scraping strategies.

Section Appendix C.1 describes data from Ipeirotis (2010) obtained via the Mechanical Turk Tracker API6,

and goes from January 2014 through February 2016, when the account was ended by Amazon. Beginning

in May 2016, we ran our own scraper, which took snapshots of all HITs available to a worker with a US

address every 30 minutes, though the frequency was increased to every 10 minutes beginning in May 2017.

Data from this latter scrape is described in Section Appendix C.2.

Appendix C.1 Data for January 2014 – February 2016

Ipeirotis (2010) introduces the Mehcanical Turk Tracker, a web interface allowing researchers to view hourly

market data (e.g., number of HITs available) and demographic information (e.g., proportion of workers

who identify as male/female or who are from India/the United States) for the Amazon Mechanical Turk

marketplace. An Application Programming Interface (API) is provided alongside the web interface, allowing

for programmatic queries to be issued to the database. Using this API, we downloaded both “cross-sectional”

data (e.g., requester name, title, description, keywords) and “time series” data (number of HITs available

in the group for each run of the scraper) for 410,284 HIT groups. Of these, 125,337 were either posted

to the marketplace after February 1st, 2017 or had observations after this date, the date Amazon changed
6https://crowd-power.appspot.com/#/general

24

https://crowd-power.appspot.com/#/general

2014-2016 Scrape 2016-2017 Scrape 2017 Scrape
Mean Std Dev Mean Std Dev Mean Std Dev

Duration (Minutes) 3370.360 9414.101 3519.257 9721.523 2293.174 8375.199
Reward (Cents) 38.014 63.741 70.397 92.420 61.774 87.358
Log Reward ML Prediction 2.639 1.229 3.431 1.416 3.286 1.362
Log Duration ML Prediction 5.210 2.642 6.223 1.414 5.301 1.589
Log Duration ML Residuals -0.004 0.892 -0.013 1.432 0.003 1.466
Log Reward ML Residuals -0.001 0.679 -0.003 0.483 -0.001 0.459
Time Allotted (Minutes) 77.793 204.495 595.510 2916.676 434.435 2102.791
Max No. of HITs in Batch 83.413 1303.061 59.867 1627.825 53.539 931.335

Observations 258352 292746 93775

Table 5: The leftmost panel presents summary statistics from scraping MTurk between Jan. 2014 and Feb.
2016. The middle panel presents analogous numbers using data obtained from May. 2016 through May 2017
(30 minute interval scrape). The last panel presents the same information for the May-August 2017 scrape
at 10 minute intervals.

its interface and the scraper ceased working, and thus were dropped from our analysis. Of the remaining

284,947, we dropped any that had

• Zero-valued reward,

• Only one observation (since we’re unable to compute durations for these groups), or

• Rewards or durations greater than the 99.5th percentile of their respective distributions (approx. 90,000

minutes for durations and $10.00 for rewards),

leaving us with 258,352 “final” observations, as seen in the leftmost panel of Table 5.

Appendix C.2 Data for May 2016 – August 2017

At the beginning of the project in May 2016, we set up a scraper which would log in to MTurk as a user

with a US address and download all available information about each HIT group listed in the web interface

as shown in Figure C.1. The scraper ran every 30 minutes (on the hour and on the half-hour) starting at

midnight EST on May 31st 2016, though this was increased to every 10 minutes beginning at midnight EST

on May 31st 2017. The scraper was finally banned by Amazon on August 21st 2017 at 7:30pm EST. The

every-30-minute scrapes from May 2016 to May 2017 produced 363,181 total observations (292,746 after

cleaning, as seen in the center panel of Table 5), while the every-10-minute scrapes from May 2017 to August

2017 produced 110,732 (93,775 after cleaning, as seen in the rightmost panel of Table 5).

Figure C.2 show how the distributions of log durations differ among the samples. The observed truncation

is to be expected as the scraping windows for the 2016-2017 samples are different and will mechanically miss

25

0

.1

.2

.3

.4
D

en
si

ty

0 2 4 6 8 10 12

Log Duration

2014-2016 Scrape

2016-2017 Scrape

2017 Scrape

Figure C.2: Kernel density plots of log duration for the 3 different samples used in the analysis.

durations shorter than 30 and 10 minutes.

Appendix C.3 Heterogeneity Across Task Types

We can examine heterogeneity across task types using the classification of tasks developed by Gadiraju et

al. (2014). Note that tasks are not uniquely categorized, as the same task can be in multiple categories.

Figure C.3 shows the double-ML elasticity separately for each type of task plotted against our best proxy for

the real wage, Log(Reward/Time Allotted). As would be expected if employers were using their monopsony

power, higher wages would be associated with higher elasticities. Further, as is intuitive, (slightly) higher

elasticities are found in HIT types with more posted batches, that is, more competition.

26

Content Access

Interpretation

Survey

New Content

Data ValidationInfo. Finding

-4.5

-4

-3.5

-3

-2.5

Lo
g

R
ew

ar
d/

Ti
m

e
Al

lo
tte

d

.04 .06 .08 .1 .12

Double ML Elasticity

Figure C.3: Correlation Between Elasticity and Reward Per Minute Allotted. Dot size is proportional to the
number of HIT batches of each type.

27

Appendix D Full Double-ML Procedure

Appendix D.1 Data Loading/Merging

For each of our three datasets, the initial data processing proceeded as follows. First, a scraped panel dataset

is loaded which contains, for each HIT group, the number of HITs available and the timestamp of each scrape

in which the group was observed. This panel data then gets collapsed into a cross-sectional dataset consisting

of several features derived from the distribution of the timestamps and HITs available – for example, into

min(timestamp), max(timestamp), min(hits_available), and max(hits_available) for each HIT group. Then,

a separate cross-sectional metadata file (containing, for example, the titles, descriptions, and requester names

for each HIT group) is merged into the collapsed panel dataset via the unique Amazon-supplied group ID7.

Appendix D.2 Data Cleaning

All observations with a reward greater than $5 or duration greater than 90,000 minutes (approximately two

months) are dropped8. Then all observations with 0 reward or 0 duration values (only occurring in the

2014-2016 scrape data) are dropped, to allow transformation of the dependent variables into log space. This

produces the final set of observations used in the machine learning procedure itself, which are summarized

in Table 5.

Appendix D.3 Feature Selection and Test/Training Split

We transform the text scraped with each HIT batch into a large number of text features as follows:

• N-grams: An n-gram is an ordered sequence of n words. For example, if the full description for a

HIT is “quick transcription task,” this will produce three 1-grams “quick,” “description” and “task”;

two 2-grams “quick description” and “description task”; and a single 3-gram “quick description task.”

We use sliding windows of 1 to 3 words over all words within the title, HIT description and keyword

list to form 1, 2 and 3-grams. The frequency of these n-grams in each HIT is then a feature used by

the ML algorithm. We use the standard English stopword list in Scikit-learn to eliminate stopwords.

• Topic Distributions: Besides ordered sequence of words, sometimes sets of particular words (“topic”)

convey important information. A topic model is essentially an algorithm which searches for sets of words
7This final cross-sectional file contains 411,196 observations for the Jan 2014 - Feb 2016 data, 363,181 for the May 2016 -

May 2017 data, and 110,732 for the May 2017 - Aug 2017 data, as described in the previous section.
8These values correspond approximately to the 99.5th percentiles of the original distribution.

28

that tend to occur together in a corpus. For example, one of our topics identifies the words “image,”

“text,” and “transcribe” as its top words. HITs requesting transcription of text from an image will tend

to have high feature values for this topic and lower values for other topics. The resulting features for

each HIT is then the distribution over topics found in that HIT’s title, description, and keyword list.9

We use the NLTK English stopword corpus to drop stopwords. The top 5 words for each topic model

run with K ∈ {5, 10, 15, 20} are available online at textlab.econ.columbia.edu/topicwords.pdf.

• Doc2Vec Embeddings: Unlike LDA which tries to generate features by splitting documents into

discrete human-interpretable topics, the goal of Doc2Vec is to generate a vector space in which vectors

for words which are semantically similar are close together, and then infer a document-level vector

within this same vector space via amalgamation of the learned vectors for its constituent words. For

example, since “survey” and “questionnaire” are semantically similar in the sense that they are used in

similar contexts (“a short [survey/quetionnaire]”, “fill out this [survey/questionnaire]”), their vectors

will be close together in the constructed vector space, and this will “pull” the document-level vectors

for descriptions containing either word closer together. 10

• Hand-Engineered Features: Finally, we use a set of custom regular-expression-based features,

which are generally binary variables describing the presence or absence of certain salient keywords

(e.g., “survey”, “transcribe”), but also real-valued variables capturing (for example) time estimates

given in the titles/descriptions (e.g., “5-minute survey”). The bulk of these features are derived from

the explicit features described in Difallah et al. (2015), and the HIT taxonomy scheme developed in

Gadiraju et al. (2014). The hand-engineered features are as follows:

– Based on common patterns we observed in HIT titles, descriptions, and keywords, dummy

variables were created indicating the presence or absence of the following regular expressions:

easy, transcr* (capturing, e.g., “transcription” or “transcribe”), writ* (capturing, e.g., “written”,

“write”, or “writing”), audio, image|picture, video, bonus, copy, search, ident* (capturing, e.g.,

“identify”), text, date, fun, simpl*, summar*, only, improve, five|5, ?, and !.

– Based on the HIT taxonomy scheme developed in Gadiraju et al. (2014), a numerical category

was assigned to each HIT group via the following regular expressions:
9We run a Latent Dirichlet Allocation (LDA) topic model model (Blei et al. (2003)) on all descriptions. LDA requires the

choice of a parameter K which determines how many topics the algorithm should try to discover: we estimate models with
K ∈ {5, 10, 15, 20} .

10We run Doc2Vec model Le and Mikolov (2014) on all titles, descriptions, and keywords in the data, producing a 50-
dimensional semantic information vector for each.

29

textlab.econ.columbia.edu/topicwords.pdf

∗ Information Finding (IF): find

∗ Verification and Validation (VV): check, match

∗ Interpretation and Analysis (IA): choose, categor*

∗ Content Creation (CC): suggest, translat*

∗ Surveys (S): survey

∗ Content Access (CA): click, link, read

– The following numeric features were extracted, some of which were derived from features used in

Difallah et al. (2015):

∗ time_allotted: The time a worker is given to complete a given HIT

∗ time_left: The time remaining before the HIT group expires (expired HIT groups are re-

moved from the marketplace)

∗ first_hits: The number of HITs initially posted to the marketplace

∗ last_hits: The number of HITs remaining to be completed in the group at the time it was

last observed

∗ min_hits: The minumum number of HITs available observed for the group across all scrapes

∗ max_hits: The maximum number of HITs available observed for the group across all scrapes

∗ avg_hitrate: The average rate (per hour) at which HITs within the group were filled by

workers

∗ avg_hits_completed: The average change in available HITs between subsequent observations

of the group

∗ med_hits_completed: The median change in available HITs between subsequent observations

of the group

∗ min_hits_completed: The minimum change in available HITs between subsequent observa-

tions of the group

∗ max_hits_completed: The maximum change in available HITs between subsequent observa-

tions of the group

∗ num_zeros: The number of observations for which the number of available HITs in the group

was listed as 0

∗ req_mean_reward: The average reward over all HITs posted by the requester

30

∗ req_mean_dur: The average duration of all HIT groups posted by the requester

∗ title_len: The length of the HIT group’s title

∗ desc_len: The length of the HIT group’s description

∗ keywords_len: The sum of the lengths of the HIT group’s keywords

∗ num_keywords: The number of keywords given for the HIT group

∗ title_words: The number of words in the HIT group’s title

∗ desc_words: The number of words in the HIT group’s description

∗ minutes_title: The number of minutes if a phrase including “X minutes” appears in the

title

∗ minutes_desc: The number of minutes if a phrase including “X minutes” appears in the

description

∗ minutes_kw: The number of minutes if a phrase including “X minutes” appears in the key-

word list

∗ qual_len: The length of the string given in the HIT group’s description which lists the

qualifications

∗ num_quals: The number of qualifications required for the HIT group

∗ custom_not_granted: The number of custom qualifications required for the HIT group for

which our “blank” account (an account which had never accepted or completed a HIT) was

not qualified

∗ custom_granted: The number of custom qualifications required for the HIT group for which

our “blank” account (an account which had never accepted or completed a HIT) was qualified

∗ any_loc: A dummy variable representing whether or not the HIT group had a location

restriction (e.g., US only)

∗ us_only: A dummy variable which is 1 if the HIT group is restricted to US workers, and 0

otherwise

∗ appr_rate_gt: The lower bound on approval rate required for workers to be eligible for the

HIT, coded as -1 if no lower bound was enforced

∗ rej_rate_lt: The upper bound on rejection rate required for workers to be eligible for the

HIT, coded as 101 if no upper bound was enforced

31

∗ appr_num_gt: The lower bound on number of approvals required for workers to be eligible

for the HIT, coded as -1 if no lower bound was enforced

∗ rej_num_lt: The upper bound on number of rejections required for workers to be eligible for

the HIT, coded as 999 if no upper bound was enforced

∗ adult_content: A dummy variable which is 1 if the HIT group indicated that it contained

adult content, and 0 otherwise

To save on computation time, we utilized a “two stage” double ML procedure as outlined in Section 3.3.

Given the initial split of the data into A and B sets, and the subsequent split of these sets into Atrain, Aval,

Btrain, and Bval, a given run of our procedure (A→ B or B → A; here we describe the A→ B run without

loss of generality) proceeds as follows. First, in the “feature selection” phase, the full set of n-gram features

were generated as described above, and a “preliminary” run of the learning algorithm was performed using

only these n-gram features as the feature matrix for Atrain, with the goal of predicting the reward and

duration values in Aval. Upon completion of this stage, we “threw away” all but the top 100 most predictive

n-gram features for reward and top 100 most predictive n-gram features for duration, and for the remainder

of the run only those n-gram features were included. For illustration, the top 100 most predictive reward and

duration features for the A→ B run on the Jan 2014 - Feb 2016 data are available online at textlab.econ.

columbia.edu/top100_text_reward.pdf and textlab.econ.columbia.edu/top100_text_duration.pdf,

respectively.

Once this feature selection phase was complete, a second “full data” phase was performed, as outlined

in Section 3.3. In this phase, the top 200 n-gram features from the feature selection phase are included

in the feature matrix for A along with the LDA, Doc2Vec, and hand-engineered features, with the goal of

predicting the reward and duration values in B.

Appendix D.4 Regression via Random Forests

Before computing predictions on the test set, the validation set was used to tune not only hyperparameters

but also which learning method was chosen. Random forest regression, implemented by RandomForestRe-

gressor in scikit-learn, greatly outperformed the other classifiers we employed: {AdaBoostRegressor, Bag-

gingRegressor, ExtraTreesRegressor, GradientBoostingRegressor, RandomForestRegressor, SVR (Support-

VectorRegressor)}, and thus a trained random forest regression was our choice for computing predictions for

the test data. The random forest method constructs a series of individual decision tree estimators, where

each regressor is trained on a subset of the full feature set, and then reports the mean prediction over all

32

textlab.econ.columbia.edu/top100_text_reward.pdf
textlab.econ.columbia.edu/top100_text_reward.pdf
textlab.econ.columbia.edu/top100_text_duration.pdf

Jan 2014 - Feb 2016 May 2016 - May 2017 May 2017 - Aug 2017
A→ B B → A A→ B B → A A→ B B → A

Reward 0.7716 0.7764 0.8951 0.8949 0.8982 0.8984
Duration 0.8968 0.8980 0.4379 0.4404 0.5085 0.5035

Table 6: R2 scores for each run of the Double-ML regressions

regressors. Based on two additional cross-validation procedures, for the first-stage feature selection an ran-

dom forest regression with 40 decision tree estimators was used (with the number of estimators optimized

over {10, 20, . . . , 100}) while for the second-stage ML the model was run with 600 estimators (optimized

over {100, 200, . . . , 1000}, with the increased order of magnitude made feasible due to the fact that in the

second stage all but 200 of the approximately 800,000 total n-gram features are dropped).

Appendix D.5 Computing the Double-ML estimate

Once the ML algorithm has finished its runs and the predicted log duration and log reward values have been

generated for each fold of the data, the estimated η value is computed straightforwardly via Equation 5 with

n = 2.

33

	Introduction
	Monopsony in A Task Market
	Observational Evidence on Recruitment Elasticity from MTurk
	Data and empirical strategy
	Fixed-Effects Regression
	Results

	Double Machine Learning
	Double Machine Learning Features
	Results

	Experimental Evidence on Labor Supply Elasticity Facing Requesters on MTurk
	Experimental Retention Elasticities
	Experimental Recruitment Elasticities
	Comparison of Estimates

	Discussion and Conclusion
	Monopsony on Mechanical Turk
	Other Experiments Surveyed
	Observational Data Appendix
	Data for January 2014 – February 2016
	Data for May 2016 – August 2017
	Heterogeneity Across Task Types

	Full Double-ML Procedure
	Data Loading/Merging
	Data Cleaning
	Feature Selection and Test/Training Split
	Regression via Random Forests
	Computing the Double-ML estimate

