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Abstract

Digital platforms have made possible a variety of technology-enabled tools that en-

hance market transparency, including real-time monitoring, ratings of buyers and sell-

ers, low-cost complaint channels, and new pricing schemes. How do these innovations

affect moral hazard and service quality? We investigate this problem by comparing

driver routing choices and efficiency at a large digital platform, Uber, with traditional

taxis. The identification is enabled by matching taxi and Uber trips at a very granular

level so they are subject to the same underlying optimal route, and by exploiting char-

acteristics of the pricing schemes that differentially affect the incentives of taxi and

Uber drivers in various circumstances. We find that (1) taxi drivers detour on airport

routes by an average of 7.4%, with non-local passengers on airport routes experiencing

even longer detours; (2) taxi drivers overall drive at a greater speed than Uber drivers;

and (3) Uber drivers are more likely to detour during periods of high surge pricing.

These findings are consistent with the platform tools reducing driver moral hazard,

but not with competing explanations such as driver selection or differences in driver

navigation technologies.
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1 Introduction

The economic effects of digital platforms are rapidly growing, especially in the service sector.

Examples include Uber for ride-hailing, Airbnb for accommodations, Rover for dog-walking,

Urbansitter for baby sitting, etc. Do digital platforms significantly affect moral hazard

or service quality, compared to traditional settings? Answer to this question is of crucial

importance for a better understanding of the nature of online-offline competition and welfare

in the digital economy. In this paper, we study this question by comparing a particularly

successful and pervasive digital platform, Uber, with traditional taxis.

Specifically, we investigate driver detours and travel speed, two key metrics of driver

routing efficiency and service quality. Detour in our context is defined as the extra distance

a driver adds to the optimal passenger route. This is a measure of driver moral hazard. In

a hypothetical situation where a taxi driver and an Uber driver drive between the same two

points at the same time, the difference in their routing decisions should reflect differences

in their payoffs, including the benefits and costs of detours and speeding. To the extent

that features such as GPS navigation, tech-aided monitoring, ratings, and digital feedback

increase market transparency for passengers and therefore increase penalty of driver moral

hazard, the Uber driver’s routing is likely more efficient than that of the comparable taxi

driver in situations with high moral hazard payoffs for both drivers.

There are two key challenges in identifying driver moral hazard. First, without directly

observing driver moral hazard,1 one needs to construct valid counterfactuals to infer oppor-

tunistic behavior by using detailed trip-level data of both taxis and Uber. We overcome

this data challenge by combining taxi and UberX trip records in New York city (NYC) and

matching taxi and Uber trips at granular route-time level. As a result, the drivers of the

matched trips are plausibly subject to the same real-time optimal routes, even if they are

not directly observed.

These matched pairs of taxi and Uber trips then become our units of analysis, where we

explore the variation in the within-match taxi-Uber difference in trip distance and duration

1The inability to directly observe driver moral hazard is due to the lack of the optimal routing benchmark
at the time of the trip. For example, using a long-run average trip distance queried from routing engines
such as Google Maps may under-estimate the true real-time optimal route and over-estimate the detour if
there was a road closure on the optimal route.
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across route types that represent different moral hazard incentives. However, the estimation

approach (essentially a “diff-in-diff” approach) would face an identification challenge if route

types were not randomly assigned to taxi and Uber drivers. We address this challenge by

exploiting the institutional background of the taxi industry and the Uber platform. For

taxis, there is no passenger selection of taxi drivers as taxi drivers are ex ante homogeneous

to passengers. Due to the strict taxi refusal law and sample over-representation of short trips

in thick markets and airport trips, driver selection of passengers is at best limited. On Uber,

rider assignment, performed by Uber’s algorithm, is practically random to individual drivers,

and driver selection of passengers is deterred through multiple mechanisms. Therefore, the

market itself approximates the experimental ideal. Nonetheless, we also exploit the within-

driver variations in some specifications to further purge potential selection issues.

We find that drivers indeed respond opportunistically to changes in incentives. When the

fare is metered in trip distance, taxi drivers detour by an average distance of 7.4% on airport

trips. Taxi drivers detour even more when the rider is non-local on a metered airport trip.

Uber drivers are not immune to moral hazard either. We find that they are more likely to

detour on metered airport trips when they are paid high surge multipliers. When we compare

trip durations, we find that taxis, on average, travel faster and finish trips earlier than Uber

drivers, which is consistent with a rational response to their different pricing schedules.

These findings fit a model of driver moral hazard, where the driver decides on the amount

of detour and speed of travel, given the set of information, the pricing schedule, and over-

all incentive devices at work. The key tension is a trade-off between payoff and cost of

the opportunistic behavior, where the cost includes expected monetary and reputation cost

of opportunistic behavior, and the expected forgone earnings lost due to the opportunistic

behavior (for example, detour usually prolongs travel time, reducing opportunities for addi-

tional trips). It then follows that drivers lack detour incentives when driving short trips in

thick markets (e.g. within-Manhattan trips), in light of low returns and high opportunity

costs, and the detour incentive is greater on airport trips. On the other hand, the driver’s

speeding incentive increases when the metered fare does not also compensate for driving

time.

We strengthen our identification of driver moral hazard by exploring competing expla-
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nations. First, we demonstrate that this is not mainly driven by drivers self selecting into

more profitable routes. This is done by observing no significant change in estimation results

when Uber or taxi driver fixed effects are controlled for. Second, driver selection can also

take place on the extensive margin. Following 1,549 former taxi drivers who switched to

Uber, we find that these drivers used to detour as taxi drivers and their detour behavior

was no longer observed after joining Uber. This is strong evidence that drivers re-optimize

under Uber’s arrangement via behavioral change. Third, we show that the data are not com-

patible with the hypothesis that the difference in GPS adoption accounts for the observed

taxi driver routing inefficiency. Lastly, we examine whether or not the observed detouring

behaviour could be the result of optimizing for travel time as opposed to distance. We rule

out this possibility by demonstrating that taxi drivers arrive later than comparable Uber

drivers when detouring and the extra travel time increases with the amount of detour.

This industry offers an ideal setting to study a research question like ours. First of

all, it is a textbook example of competitive marketplace, where both taxi and Uber drivers

offer a homogeneous, well-defined service (namely, transporting a passenger from one point

to another), take the price as given, and maximize earnings as individual entrepreneurs.

Therefore, full exploitation of opportunities can be safely assumed. Second, GPS coordinate

data allow us to make valid comparisons between taxis and Uber at the trip level. Such

counterfactual groups can be difficult to form in other industries. Lastly, identification of

moral hazard is facilitated by the institutional features of taxis and Uber, where driver

behavior responds to exogenous changes in route characteristics. Therefore, we make a

strong case by drawing evidence from the taxi industry, and our findings can shed light on

other marketplaces as well.

1.1 Literature and Contribution

Our paper is closely related to several strands of the literature. The first is on how tech-

nology, particularly information technology (IT), mitigates the agency problem in various

settings (Tabarrok and Cowen (2015)). In the typical workplace, IT-enabled monitoring is

found to be productivity-enhancing through complementing performance pay (Aral et al.

(2012), Bresnahan et al. (2002)), reducing employee shirking (Nagin et al. (2002)) or mis-
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conduct (Pierce et al. (2015)), and increasing standard process compliance (Staats et al.

(2016)). In the context of trucking, Hubbard (2000) finds that on-board computers that

facilitate monitoring of drivers increase productivity by improving both driver incentives

and managers’ resource allocation decisions. Duflo et al. (2012) show that incentive pay en-

abled by tech-aided monitoring can raise teachers’ attendance rate and consequently student

performance. Reimers et al. (2018) find that insurance companies’ monitoring technologies

reduce driver moral hazard and fatal accidents. Sudhir and Talukdar (2015) illustrate the

role of IT at inducing business transparency by showing more corrupt businesses tend to

resist IT adoption more.

Besides the traditional settings, there are also studies on digital market designs that

improve productivity by regulating agent incentives. Hui et al. (2016) identify efficiency

gains from eBay’s buyer protection program as a result of reduced seller moral hazard and

seller adverse selection. Klein et al. (2016) show that a change in eBay’s policies that lead

to less biased buyer ratings of sellers also improved seller effort and quality without inducing

sellers to exit the market. Gans et al. (2017) evaluate the role of Twitter as a mechanism of

consumer voice in disciplining firms for low quality. Liang et al. (2016) find that IT-enabled

monitoring mitigates moral hazard on an online labor platform.

While these aforementioned studies focus on technological improvements either within

the offline setting or within the online setting, we are among the first to provide a direct

online-offline comparison to study the relationship between technology, agent incentives, and

quality provision. As many sectors are being digitized, empirical studies of how incentives

and quality provision differ between online and offline markets become crucially important

for a better understanding of competition and welfare in the digital economy.

Second, this paper relates to the literature on digital disruption and online-offline com-

petition (Bakos (1997), Brown and Goolsbee (2002), Brynjolfsson et al. (2003), Brynjolfsson

and Smith (2000), Forman et al. (2009), Waldfogel (2017), among many others. See Gold-

farb and Tucker (2017) for a review.). In particular, this paper contributes to the studies of

emerging tech-aided ride-hailing platforms. These platforms, compared to traditional taxis,

enable more efficient matching of drivers and passengers with real-time technologies and

dynamic pricing (Castillo et al. (2017), Guda and Subramanian (2018), Hall et al. (2015)),
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as reflected in higher driver utilization (Cramer and Krueger (2016)) as well as quick adjust-

ments to market equilibrium (Hall et al. (2017)). Specifically, efficiency induced by dynamic

pricing critically depends on consumer preferences and the tradeoff between wait time and

price (Lam and Liu (2017)), as well as driver labor supply that responds to wage fluctua-

tions (Chen and Sheldon (2016)). Consumers benefit from ride-hailing platforms extensively

(Cohen et al. (2016)). Drivers also benefit from these platforms due to flexible work arrange-

ment (Chen et al. (2017), Hall and Krueger (2015)) and commission schemes that allow for

driving without a lease (Angrist et al. (2017)). In this paper, we find that these technologi-

cal and organizational features have important implications on driver incentives and quality

provision, and thus add an important layer in the analysis of efficiency.

Finally, our findings resonate with empirical work on taxi driver opportunistic behavior.

Balafoutas et al. (2013) identify taxi driver detours when passengers are less informed about

the optimal routes or the local taxi fare structure, via a field experiment in Athens, Greece.

Also studying NYC taxi market, Liu et al. (2017) identify likely non-locals from locals based

on the destinations of trips originating at New York’s airports. They find that taxi drivers

defraud non-locals more on LaGuardia trips that are metered, but not so on JFK flat-fare

trips. Balafoutas et al. (2017) show that drivers may also defraud more when passengers

explicitly state that their expenses will be reimbursed, giving rise to a second-degree moral

hazard. Rajgopal and White (2015) point out the importance of regulatory restrictions on

driver fraud as they find greater likelihood of driver fraud when dropping passengers off

in areas where taxis are not allowed to pick up subsequent passengers. We contribute to

this literature by demonstrating that driver moral hazard can be mitigated by tech-aided

ride-hailing platforms.
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2 NYC Taxis vs. Uber: Pricing and Market Design

2.1 Taxi and Uber Pricing

NYC taxi fares are set by Taxi and Limousine Commision (TLC)2. Most routes are metered

with a base fare of $2.50 upon entry, plus a linear component that is $0.50 for every 1
5

miles

traveled, as well as taxes, fees, and tolls incurred. A $0.50 per-minute charge is applied

in place of the per-mile charge when the traffic is slow (under 12 miles per hour). Routes

between Manhattan and JFK airport are not metered. Instead, a flat rate of $52 plus

taxes, fees, and tolls applies. Some taxi drivers are medallion-owners who essentially run

the business as an entrepreneur, while other drivers pay a daily, weekly, or monthly lease to

medallion owners and keep all revenues minus gas and some maintenance.

Unlike taxis, Uber does not differentiate between fast and slow traffic. The UberX base

fare includes a fixed component of $2.55 upon entry, $0.35 per minute of travel, and $1.75 per

mile of travel, plus taxes, fees, and tolls. On top of the base fare, passengers also need to pay

whatever the surge multiplier in effect at the time of request. For a 2-mile, 10-minute trip

with a surge multiplier of 2, UberX costs 2× ($2.55 + $0.35× 10 + $1.75× 2) = $19.10, plus

taxes, fees, and tolls. Designed to balance real-time demand and supply (Hall et al. (2015)),

Uber’s surge multipliers change rapidly across locations and time (Lam and Liu (2017)).

Unlike taxi fixed fare on certain routes, all Uber routes in NYC are metered according

to the same pricing formula. Uber drivers keep all trip earnings minus commission fees,

which usually run between 20% and 30%, and they are responsible for all operation-related

expenses, such as insurance, maintenance, and gasoline.

2.2 Taxi and Uber Market Design

The market design for the Uber platform differs significantly from taxis. First, GPS naviga-

tion is widely adopted and used by Uber drivers, while taxi drivers mainly navigate without

GPS. The Uber app is designed in a way that GPS navigation becomes an integral part:

when the driver picks up a passenger and starts the trip, Uber’s built-in GPS automati-

2Refer to the official language on the pricing rule: http://www.nyc.gov/html/tlc/html/passenger/

taxicab_rate.shtml
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cally initiates, or the app switches to the preferred GPS that the driver has set up (eg.

GoogleMaps and Waze).

Second, Uber implements a set of market designs that aim at aligning driver incentives,

and these market designs are absent or costly with taxis. With the Uber app, passengers can

readily monitor driver routing in real time – passengers can either monitor the route taken

through their own smart phone app, or directly seeing the driver’s app since driver’s phone

is usually mounted in a way that it is visible to passengers. This way, passengers can easily

tell whether or not the driver is taking the route that is given by the GPS.

Uber ratings are designed to be very easy for users to access (i.e. a swipe of stars and a

click to confirm) and therefore most passengers do rate their drivers (73.5% for NYC UberX,

January - June 2016). Similar to other reputation systems, Uber driver ratings are highly

concentrated with a mean of 4.74 (see Figure 1). Drivers with low ratings are constantly

warned by Uber. Uber starts to consider deactivating a driver when the driver rating is

below a threshold (4.5 in NYC). Drivers appear to take ratings seriously3 and perhaps as a

result, the deactivation risk is quite low (about 3%).

Figure 1: NYC UberX Driver Rating Distribution, Jan-June 2016

In addition to monitoring and rating, verification and complaints are also made easy

on Uber due to electronic trip records stored. Passengers can re-visit the historical trip

summaries in their app to check and verify certain details. In the case of negative riding

3The qualitative study by Lee et al. (2015) states that “Drivers took their ratings seriously. High ratings
such as 4.98 became a source of pride whereas a rating below 4.7 became a source of disappointment,
frustration, and fear of losing their jobs.”
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experience, Uber passengers can easily file a complaint through the app and Uber customer

service handles the conflict resolution by evaluating the trip records. By contrast, taxi

passengers in these situations can either call the TLC hot line or visit their website, but the

process is usually long and may require legal procedures. In 2016, taxi complaints are 1 in

every 6,356 trips, whereas Uber fare adjustments are more than 30 times more likely: 1 in

every 170 trips. Figure 2 lists the main reasons of fare adjustments, with the number one

reason being ”inefficient route”.

Uber’s market design enhances market transparency and, at least in theory, should pro-

mote market efficiency. In particular, timely and effective monitoring and regulation should

be able to discipline agent behavior by reducing moral hazard.

Figure 2: Uber Fare Adjustment Reasons

3 A Theoretical Framework of Driver Moral Hazard

In this section, we describe a theoretical framework of driver moral hazard that builds on Liu

et al. (2017), where a representative, risk-neutral driver maximizes her payoff by deciding on

the amount of detour and driving speed. For a given pair of pick-up and drop-off locations

whose route length is d (as given by a map, say), the realized trip distance, d, is represented

by the following equality:
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d = d(∆d+ x+ εd), (1)

where ∆d represents the driver’s navigation skill, e.g., driver’s knowledge of the streets,

∆d ∈ [1,+∞). Let x denote the amount of detour, where x ∈ [0,+∞). Let εd denote the

random driver-route shock that affects routing efficiency, which is normally distributed with

a mean 0 4.

Similarly, the trip duration, t, is defined as follows:

t = t(∆t+ λx+ y + εt), (2)

where t is the expected trip duration for a route of length d, based on the on-going traffic of

the route. The driver’s driving skill in reflected in ∆t, where ∆t ∈ [1,+∞). Let λx measure

the additional travel time because of the detour x, where λ ∈ [0,+∞). Let y represent

the extra travel time incurred when the driver drives at a speed other than implied by t∆t:

y > 0 when the driver drives relatively slow, and y < 0 when the driver drives relatively fast.

Let εt denote the random driver-route shock that affects trip duration, which is normally

distributed with a mean 0.

Under a linear pricing rule, the driver chooses the amount of detour (x) and the speed

of driving (equivalent to y) to maximize the following expected payoff function:

Max E
x,y

{γ[p0 + pdd(∆d+ x+ εd) + ptt(∆t+ λx+ y + εt)]

− f(x; d,Θf )− g(y; t,Θg)− qet(λx+ y)(
p0 + pdDe + ptTe

Te
)},

(3)

where γ denotes the surge multiplier: it is equal to 1 for taxi trips and greater than or equal

to 1 for Uber trips; p0 is the base fare upon entry; pd is the rate per unit of distance; pt is

the rate per unit of time (note that in normal traffic, pt = 0 for taxis). Therefore, the first

part of the maximand is the total earning of the trip.

4It is possible that the realized trip distance is shorter than the map distance d, when the random shock
ε is sufficiently negative. This occurs, for example, when a road turn is permitted during certain time of the
day, which shortens the route but is not captured by the map distance.
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When detouring, the driver incurs a cost f , which can be viewed as the probability of

getting caught times the monetary and/or reputation penalty of the detour. The cost may

be in the form of fines (taxis), lost tips (taxis) 5, low ratings (Uber), and refund to passengers

(taxis and Uber). f is assumed twice differentiable in x, with route length d and a parameter

set Θf , and f(x = 0) = 0, fx > 0, fxx > 0, as longer detour is more likely to be caught and

penalized more. Moreover, it is assumed that detour is progressively costly on longer routes,

or fxd > 0, fxxd ≥ 0. In addition, γ ∈ Θf , and fxγ > 0, meaning that the marginal detour

penalty on Uber is greater when surge is greater. Defined similarly as f , g is the expected

monetary and/or reputation cost associated with the trip duration: g > 0 for all y, i.e., both

driving unnecessarily slow and unnecessarily fast tend to be noticed and penalized by the

passenger; gy < 0 for y < 0 and gy > 0 for y > 0; finally, gyy > 0 and gyt > 0.

Let qe represent the probability of getting a subsequent passenger at the drop-off location

and time if there was no detour; t(λx+ y) measures the forgone service minutes due to the

detour; p0+pdDe+ptTe
Te

represents the per-minute earning of the forgone trip, where De and Te

are the expected length and duration of the forgone trip, respectively. Thus, the last part of

the maximand represents the opportunity cost of detour in terms of the forgone payoff that

could have been earned from a subsequent trip.

Taken together, the driver’s problem in Equation 3 is to solve two trade-offs: one trade-

off is between the monetary reward of detour and the opportunity cost of detour, which

consists of the expected detour penalty and the forgone payoff because of the detour; the

other similar trade-off applies to driving speed. The first-order conditions are listed below,

fx(x; d,Θf ) + qetλ(
p0 + pdDe + ptTe

Te
)− γ(pdd+ pttλ) = 0, (4)

gy(y; t,Θg) + qet(
p0 + pdDe + ptTe

Te
)− γptt = 0. (5)

Then the following comparative statics follow:

(1) ∂x∗

∂d
=

γpd−fxd
fxx

≶ 0, depending on the sign of γpd − fxd. That is, the driver detours

more (less) on longer routes when the increase in marginal detour profitability due to longer

5By the end of our sample period, Uber had not implemented the tip feature in the application.
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routes is greater (less) than the increase in marginal detour penalty due to longer routes.

Similarly, ∂y∗

∂t
=

γpt−qe(
p0+pdDe+ptTe

Te
)−gyt

gyy
≶ 0.

(2) ∂x∗

∂θ
= − fxθ

fxx
< 0, for a parameter θ ∈ Θf that increases the marginal detour penalty

(fxθ > 0). For example, the driver detours less (more) when the rider is a local (non-local)

passenger who is more likely to notice the detour. Similarly, ∂y∗

∂θ
= − gyθ

gyy
< 0, for a parameter

θ ∈ Θg that increases the marginal detour penalty (gyθ > 0).

(3) ∂x∗

∂γ
= pdd+pttλ−fxγ

fxx
≶ 0, depending on the sign of pdd + pttλ − fxγ. This means that

the driver detours more (less) when the surge multiplier is higher if the increase in marginal

payoff of detour due to high surge is greater (less) than the increase in marginal detour

penalty due to high surge. Similarly, ∂y∗

∂γ
= ptt−gyγ

gyy
≶ 0, depending on the sign of ptt − gyγ:

when the increase in marginal payoff of additional travel time because of surge exceeds the

increase in marginal penalty of additional travel time because of surge, Uber drivers have

the incentive to drive for longer time.

(4) ∂x∗
∂qe

= − tλ(
p0+pdDe

Te
)

fxx
< 0. Other things held constant, the driver detours more (less)

when the demand at the drop-off location is lower (higher), due to a lower (higher) oppor-

tunity cost of detour. Similarly, ∂y∗
∂qe

= − t(
p0+pdDe

Te
)

gyy
< 0.

(5) In normal traffic, yc∗ < 0, and yc∗ ≤ yu∗, where c denotes taxi cabs and u denotes

Uber. Everything else held constant, taxi drivers have greater incentives than Uber drivers

to drive faster than the ongoing traffic on the road, because they are not paid by their driving

time (pt = 0).6

4 Data and Sample Construction

4.1 Data

Our data combines NYC taxi trip records and UberX trip records for two six-month peri-

ods: January to June, 2016 and July to December, 2013. Taxi trip records contain detailed

information such as pick-up and drop-off time and GPS coordinates, trip distance and dura-

tion, and fares and fees of various sorts. The 2013 taxi data contain anonymized driver ID

6In the rare case of slow traffic with sufficiently low drop-off demand, it is possible that yc∗ > 0 and
yc∗ ≥ yu∗ because pt > qe(

p0+pdDe+ptTe

Te
).
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and medallion numbers, but these identifiers were removed later on by TLC due to privacy

concerns. UberX trip records contain similar information, plus extra information such as the

surge multiplier, anonymized driver ID, driver total number of trips on Uber, anonymized

rider ID, rider total number of trips on Uber, driver lifetime rating, driver and rider rating

of a given trip.

4.2 Matching of Comparable Taxi and Uber Trips

To make a valid comparison of taxi and Uber routing, we match taxi and Uber trips at

granular route-time levels, such that the matched trips are subject to the same underlying

optimal routing. In brief, we match an Uber trip to a given taxi trip if they share the same

pick-up location and dropoff location, and their start times are within a short time window

of each other. In the remainder of this section, we detail the steps of the matching process.

Figure 3: Matching of Taxi and Uber Trips

Step 1: Because of the exceedingly high concentration of pick-ups and drop-offs around

street intersections, we first define locations by dividing NYC into small Voronoi cells cen-

tered at street intersections, where each street intersection is approximately 100 meters from

its closest neighboring intersections. An example of these Voronoi cells is given by Figure

9. Using Figure 3 as an illustration, this means that we match Taxi 1, Uber 1, Uber 2,
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and Uber 3 in the circled area. However, we show in Figure 10 that if we did nothing else,

this matching criterion would yield a stark difference in the distribution of pick-ups between

taxis and Uber – taxi pick-ups (purple) are more concentrated on major avenues and streets,

whereas Uber pick-ups (green) are more from cross-town streets with relatively slow-moving

traffic. Similar distribution applies to matched drop-offs as well. This may reflect the differ-

ence in drivers searching and matching with passengers: taxi drivers mainly cruise on major

avenues and streets to look for passengers, while Uber drivers more often pick up passengers

at their door steps.

Step 2: We then restrict matches to be on the same street, because trips on different

streets are subject to different optimal routes, therefore they cannot be valid counterfactuals

to each other. In the example of Figure 3, this means that Taxi 1 will be matched with Uber

1 and Uber 3, instead of Uber 2.

Step 3: Following a similar logic as Step 2, we further filter out matches that follow

different traffic directions of the same streets. Therefore, Uber 3 ceases to be matched with

Taxi 1, and Taxi 1 and Uber 1 of Figure 3 remain in the sample so far as they are in the

same traffic direction.

We then apply the same filters (Step 1, 2, 3) for drop-offs as well.

Step 4: We then keep matched pairs whose pick-ups are within a short time window from

each other, so that the matched trips are subject to the same traffic, road conditions, as well

as other common factors. The time window for the main analysis is set at 15 minutes, and

we apply various time windows (eg. 5 minutes, 10 minutes, 20 minutes) in the robustness

checks.

Finally, we discover that in the raw TLC taxi trip records, there are two taxi meter

vendors with about equal shares, where Vendor 1 reports trip distance to the first decimal

place and Vendor 2 to the second decimal place. A casual check of dozens of randomly-

selected short trips in Manhattan from Vendor 1 against their GoogleMaps shortest distances

makes us believe that this meter vendor may have rounded down the actual trip distance.

For example, a trip of 1.05 miles could be recorded as 1 mile, and this measurement error

can make taxi trips appear to be shorter than matched Uber trips by a sizable margin.

Moreover, the bias is likely to be larger for short routes than for long routes in percentage
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terms. Therefore, we drop matches involving taxi trips reported by Vendor 1 and add them

back to the sample only as a robustness check.

Table 1: Summary Statistics

Variable Mean Std.Dev. 10th Median 90th
Taxi trip distance(miles) 8.69 5.32 1.12 9.67 16.55
Uber trip distance(miles) 8.43 5.34 1.14 9.15 16.66
Taxi distance/ Uber distance 1.04 0.16 0.86 1.01 1.26
Taxi trip duration(minutes) 28.65 16.70 7.98 27 50.53
Uber trip duration(minutes) 30.03 17.30 8.72 28.32 52.77
Taxi duration/ Uber duration 0.97 0.22 0.71 0.95 1.25
Airport 0.71 0.45 0 1 1
LaGuardia 0.60 0.49 0 1 1
JFK 0.10 0.30 0 0 1
Newark 0.02 0.12 0 0 0
Non-local passenger 0.51 0.50 0 1 1
Surge multiplier 0.11 0.27 0 0 0.50
Uber driver total trips 2489.19 2008.73 358 2018 5313
Uber driver lifetime rating 4.75 0.09 4.64 4.76 4.85
Uber rider total trips 115.34 170.12 5 55 293
N 95,357

Notes. Sample is from taxi and Uber trip records of NYC, Jan to June 2016.
“Non-local passenger” takes the value 1 if the billing zip code of a given passenger is outside of NYC,
or in the case of missing billing zip codes, the passenger’s city for most Uber trips is not NYC.

Using the 2016 taxi and Uber data, the matching process generates a sample of 95,357

pairs of matched trips that contains trips from 23,974 Uber drivers. The sample is summa-

rized in Table 1. An average route is about 8.4-8.7 miles long, 28-30 minutes in trip duration.

There is a considerable amount of dispersion in both trip distance and trip duration, because

our sample is over represented by airport trips and short, within Manhattan trips, compared

to the population of taxi trips and Uber trips, as a result of the matching criteria. As the

taxi-Uber trip distance ratios and duration ratios suggest, despite starting and ending at

the same locations, taxi trips are on average slightly longer in distance and slightly shorter

in duration than their matched Uber trips. “Non-local passenger” takes the value 1 if the

billing zip code of a given Uber passenger is outside of NYC, or in the case of missing billing

zip codes, the passenger’s city of most Uber trips is not NYC. The Uber surge multiplier is on

average 1.11, and we subtract 1 from surge multipliers for easier interpretation of estimation
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results later. Therefore, a surge multiplier 0 in our sample means a “1x”, or just base fare.

An average Uber driver in the sample has driven 2,489 trips before the current trip, and this

measure has a large variation. Like other digital platforms, Uber driver lifetime rating is

highly concentrated with a mean of 4.75. Lastly, Uber riders in the sample on average have

taken 115 Uber trips.

The cumulative distributions of Taxi-Uber distance ratios and duration ratios are sep-

arately plotted in Figure 4, across three route types: routes between JFK and Manhattan

where taxi fares are fixed, non-airport routes, and all other airport routes where both taxi

and Uber fares are metered, which include all LaGuardia trips, all Newark trips, and trips

between JFK and NYC outer boroughs. The graph reveals several interesting facts. Figure

4a shows that taxi and Uber trips are quite similar in trip distance for non-airport trips and

JFK flat-fare trips, as illustrated by the high concentration of the distance ratios around 1.

However, taxi trips are significantly longer in distance than matched Uber trips for all other

airport trips, as indicated by the location and shape of the cumulative distribution function.

On the other hand, Figure 4b shows that taxis overall arrive faster than Uber, which is also

consistent with the implications of our theory. In particular, these patterns appear to reflect

driver moral hazard, where taxi drivers seem to be less efficient in routes that are anecdotally

more lucrative and driving at a greater average speed than comparable Uber drivers. In the

next section, we turn to formal tests of driver moral hazard.

Figure 4: Distance and Duration Ratios of Matched Taxi and Uber Trips

(a) Distance ratios of matched taxi and Uber
trips

(b) Duration ratios of matched taxi and Uber
trips
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5 Empirical Analysis

5.1 Empirical Model

In this section, we use the theory predictions to motivate hypothesis development. Equation

(1) requires that for a given matched taxi-Uber pair,

dc − du

d
= ∆dc −∆du + xc∗ − xu∗ + εcd − εud . (6)

That is, the normalized difference in Uber and taxi routing is a function of driver skills,

detours, and driver-trip random shocks, where the difference in detours is a function of

various route characteristics that affect driver incentives.

According to comparative statics in Section 3, both taxi and Uber driver should have little

incentive to detour on short trips in thick markets (e.g. trips start and end in Manhattan),

because of low marginal payoff of detour (due to short length) and high opportunity cost of

detour (finding another ride at drop-off is easy). To add empirical support to this assumption,

we investigate how taxi and Uber driver routing in non-airport trips of our sample compares

with a measure of long-run average optimal routing given by GURAFU, Uber’s internal

routing engine. Shown in Figure 5, the GURAFU-weighted trip distance is concentrated

to 1 to a large degree, for both taxis and Uber. We consider this to be empirical support

for our above-mentioned assumption and take non-airport trips as our control groups in the

estimation.
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Figure 5: Taxi and Uber driver routing compared with Uber’s internal routing engine

Let r denote a given matched taxi-Uber pair. Based on the theory predictions and the

data structure, we specify and estimate the following empirical model on the sample that

consists of non-airport trips and airpor trips that are both metered by taxis and Uber (that

is, we exclude JFK flat-fare routes):

dcr
dur

= α0 + α1Airportr + α2Non localr + α3Airportr ×Non localr

+ α4Uber surge multiplierr + α5Airportr × Uber surge multiplierr

+ α6log(Uber driver total tripsr) + α7Uber driver ratingr + α8log(Uber rider total tripsr)

+ φhw + ηi + εcdr − εudr,

(7)

First of all, we include in the regression a set of route characteristics that affect the

incentives and costs of detour, which include airport dummy, non-local dummy, airport

times non-local, Uber surge multiplier, and airport times Uber surge multiplier. Although

detour incentives increase for both taxi and Uber drivers in situations such as longer routes

and routes with non-local passengers, Uber’s incentive design adds extra penalties to detours.
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The effect of these incentives can be reflected in the estimates of these route characteristics.

Therefore, we hypothesize that α1 > 0, α2 > 0, α3 > 0, α4 < 0, and α5 < 0.

Second, a set of Uber driver and Uber rider characteristics are controlled for to further

explain the variation in Uber-taxi routing difference. Uber driver experience is measured

by the driver’s total trips driven prior to the current trip, and it is expected to positively

correlate with Uber driver routing efficiency if there is a learning-by-doing effect. Uber driver

routing efficiency is expected to positively correlated with Uber driver rating as routing

efficiency is an important metric in overall driver quality. We also account for Uber rider

experience on the platform, measured by the total number of trips completed, as more

experienced riders may make the trip more efficient by better communication with the driver,

choosing a more efficient pickup/dropoff location, etc. Let φhw represent fixed effects at the

hour-of-week level. In some specifications, we include Uber driver fixed effects ηi to control

for Uber driver-invariant unobservables.

We can perform a similar decomposition as the one in Equation 6 to Uber-taxi travel

time difference:

tc − tu

t
= ∆tc −∆tu + λ(xc∗ − xu∗) + yc∗ − yu∗ + εct − εut . (8)

As discussed in the first-order conditions of the model, taxi drivers overall are incentivized

to travel at a greater speed and arrive faster than Uber drivers. To the extent that the total

travel time is affected by both the amount of detour and additional speeding, the Uber-

taxi difference in travel time should be driven by factors that affect the routing difference

(xc∗ − xu∗), as well as factors that affect the speeding difference (yc∗ − yu∗). Therefore, we

estimate a similar empirical model as Equation 7,
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tcr
tur

= β0 + β1Airportr + β2Non localr + β3Airportr ×Non localr

+ β4Uber surge multiplierr + β5Airportr × Uber surge multiplierr

+ β6log(Uber driver total tripsr) + β7Uber driver ratingr + β8log(Uber rider total tripsr)

+ φhw + ηi + εctr − εutr.

(9)

Here we face somewhat competing hypotheses. β1 > 0 if for airport trips, taxi additional

travel time because of detour exceeds the travel time saved by speeding, rendering the total

travel time to be greater than that of Uber; β1 < 0 if the opposite is true. A similar logic

applies to β2 and β3. However, it is unambiguous to expect that β4 < 0 and β5 < 0, because

when surge multiplier is greater, it is in Uber drivers’ best interest to detour and not to

speed.

5.2 Identification

Without loss of generality, we assume normality of the mean-zero driver-route random shocks

εudr, ε
c
dr, ε

u
tr, and εctr. For Ordinary Least Squares estimation to produce unbiased coefficient

estimates, route characteristics in the empirical model need to be uncorrelated with unob-

served driver-route shock in the error term. This is supported by the institutional features

of taxis and Uber.

On one hand, for taxi drivers, the matching of passengers of certain destinations is

close to randomly assigned, because passengers determine the destinations and refusals of

passengers are heavily penalized by the TLC refusal law.7 However, taxi drivers can indeed

form expectations of passenger destinations and route profitability by developing their own

search strategies, leading to a correlation between route characteristics and driver types. In

7Per the TLC refusal law, “It is against the law to refuse a person based on race, disability, or a destination
in New York City. A taxicab driver is required to drive a passenger to any destination in the five boroughs.”
Riders are encouraged to make a refusal complaint by calling 3-1-1. According to Haggag et al. (2017),
“In 2009 the refusal punishment was $200-$350 for a first offense, $350-$500 and a possible 30-day license
suspension for a second, and a mandatory license revocation for a third offense. The TLC received about
2,000 formal complaints per year in 2009 and 2010”
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this case, taxi driver fixed effects are a good way to tease out the bias. however, it is infeasible

in the main analysis with 2016 taxi data due to the lack of taxi driver IDs. Nonetheless, we

demonstrate in Section 6.1 that driver selection appears to be insignificant when the same

estimation is run on 2013 data where taxi driver fixed effects are controlled for.

On the other hand, several features of the Uber platform limit the scope of endogeneity

of route characteristics:

1. To Uber drivers, rider assignment by the platform is virtually random by construction.

Uber’s matching of drivers and riders are mainly based on spatial proximity and dispatching

efficiency, and it gives little weights to driver and rider characteristics in the matching.

Therefore, route characteristics can be viewed as exogenous.

2. Uber drivers have the option to cancel trip requests, but cancellation of rides is

costly. If drivers could cancel on riders without any costs, they would do it in order to select

more profitable rides, thus creating an endogeneity problem. However, trip cancellation is

constrained at various places on Uber. Once assigned a rider, the driver cannot see the rider’s

destination on the application until having picked up that rider, which makes it difficult for

drivers to “cherry pick” passengers before accepting a trip request. Moreover, frequent and

suspicious ride cancellation is penalized on Uber, often in the form of warning, “time out”,

or even deactivation. In addition, it is difficult for a driver to form expectations on the next

rider’ profitability after cancellation, making cancellation of the current ride risky.

3. For individual Uber drivers, surge pricing is difficult to predict and chase. As shown

in Lam and Liu (2017), Uber surge multipliers are extremely volatile and hard to predict

by highly granular location-time fixed effects. With such volatile and unpredictable surge

multipliers, it is not in the driver’s best interest to chase the surge, at the cost of forgone

earnings from trip requests declined. Uber drivers commonly agree on this view, based

on our conversations with Uber drivers in New York City and Boston, Massachusetts. In

addition, the Uber app no longer shows the surge hot spots after driver’s accepting a ride,

which prevents drivers from canceling the current no-surge or low-surge ride in order to get

a high-surge ride.

Taken together, these aforementioned institutional details suggest that the correlation be-

tween route characteristics and unobserved driver-route shocks is at best limited. To further
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reduce the potential bias, we control for Uber driver fixed effects in some specifications.

5.3 Results

5.3.1 Baseline: Non-airport Routes + Metered Airport Routes

The main results of our analysis are shown in Table 2, which are performed on all routes that

are both metered on Uber and taxis (that is, all routes except JFK taxi flat-fare routes).

Specifications (1)-(3) show regression results of taxi-Uber distance ratios, and Specifications

(4)-(6) show regression results of taxi-Uber duration ratios.

In Specification 1, we find a sizable and statistically strong effect of airport trips on

the relative size of taxi-Uber detour ratio. Specifically, the taxi-Uber distance ratio for an

airport trip is on average 7.4% larger than for a non-airport trip, other things held constant.

The effect of non-local passengers is small and weakly estimated on non-airport trips, yet

its effect is positive and strong on airport trips, suggesting that taxi drivers tend to exploit

the information advantage more on profitable routes. However, it is important to note that

we use the information of the Uber rider to proxy for whether the taxi passenger is a local

or not. Therefore, this variable could be subject to measurement errorrrors, which may lead

to a downward bias when it is a classical measurement error. We caution that the scope of

measurement error of “non-local” should be smaller on airport routes than on non-airport

routes, because it is more likely that the taxi rider and the Uber rider are either both locals

or both non-locals when they head to the airport from the same specific place at the same

time (eg. a hotel). Lastly, we find that Uber drivers tend to detour more relative to taxi

drivers on airport trips with a surge price in effect. However, the effect of surge multiplier

is not found on non-airport trips. In addition, we find that Uber driver rating is positively

correlated with the relative detour, suggesting that Uber drivers with better ratings are more

efficient at routing or drivers who take inefficient routes are more likely to get low ratings.
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Table 2: Taxi and Uber Driver Routing Difference

D.V. = Taxi dist./Uber dist. D.V. = Taxi dur./Uber dur.

(1) (2) (3) (4) (5) (6)

Airport 0.074*** 0.074*** 0.074*** 0.034*** 0.038*** 0.036***

(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

Non local -0.002 -0.003 0.001 0.008** 0.008** 0.006

(0.002) (0.002) (0.003) (0.004) (0.004) (0.004)

Airport × Non local 0.018*** 0.019*** 0.013*** -0.009** -0.011*** -0.008*

(0.003) (0.003) (0.003) (0.004) (0.004) (0.005)

Surge multiplier 0.002 0.001 -0.000 0.008* 0.009* -0.002

(0.003) (0.003) (0.004) (0.004) (0.004) (0.006)

Surge multiplier × Airport -0.026*** -0.023*** -0.022*** -0.021*** -0.013* -0.006

(0.005) (0.005) (0.005) (0.008) (0.007) (0.009)

Log (Uber driver total trips) 0.000 -0.000 0.005** 0.010*** 0.010*** 0.012***

(0.001) (0.001) (0.002) (0.001) (0.001) (0.003)

Uber driver rating 0.040*** 0.039*** 0.000 0.128*** 0.126*** 0.000

(0.007) (0.007) (.) (0.009) (0.009) (.)

Log (Uber rider total trips) 0.001 0.001 0.001 0.002*** 0.003*** 0.003***

(0.000) (0.000) (0.001) (0.001) (0.001) (0.001)

Hour of week FE No Yes Yes No Yes Yes

Uber driver FE No No Yes No No Yes

N 86,627 86,627 86,627 86,627 86,627 86,627

R2 0.055 0.060 0.376 0.008 0.014 0.330

Notes. For all specifications, standard errors are cluster-robust at the hour-of-week level.

*** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level.

The estimated effects hardly change when hour-of-week fixed effects in Specification (2).

Further controlling for Uber driver fixed effects does not appear to affect the point estimates

much, as shown in Specification (3). Interestingly, the effect of Uber driver total trips

becomes strong, suggesting a routing improvement due to accumulated driving experience

within a driver.
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In Specifications (4)-(6), the same set of regression analyses are performed to explain the

variations in taxi-Uber travel time difference. Across specifications, we observe a positive

and strong effect of airport trips. Using Specification (6) as an example, the taxi-Uber travel

time ratio of an airport trip is on average 3.6% greater than that of a non-airport trip,

other things held constant. Combining this effect with the 7.4% effect of airport routes on

distance ratio suggests that (1) taxi drivers are more additionally faster than Uber drivers

on airport routes than on non-airport routes, and (2) this additional speeding may not fully

compensate the time spent on detour. The effect of “non-local” is positive on non-airport

routes and the effect disappears on airport trips (0.006 - 0.008 = 0.002 using Specification

(6)). Across specifications, the effects of “non-local” are estimated with noise and small in

size. Similarly, the effects of surge multiplier are also weakly identified, although overall

they exhibit expected signs. Contrary to the routing distance, routing time is much more

affected by driver experience and driver rating. In particular, driver experience affects travel

time efficiency both across drivers (the extensive margin) and within drivers (the intensive

margin). Thus it appears that while the technology tools and incentive design that the Uber

platform bring to bear are important, driver expertise and learning also continue to have

important roles.

5.3.2 Non-airport Routes + JFK Taxi Flat-fare Routes

It is important to note that the analysis so far identifies moral hazard in relative terms —

the effect of 7.4% describes how taxi driver routing in metered airport routes, referenced by

Uber driver routing in these routes, compares with that in non-airport routes. Therefore,

taxi drivers may in fact detour more in absolute terms if the comparable Uber drivers also

detour to some extent. In this section, we leverage the JFK taxi flat-fare routes to identify

the extent to which Uber drivers detour — these routes are an ideal scenario where taxi

drivers do not have any incentive to detour when the trip fare is flat, because detour only

incurs cost while not gaining any benefit. In particular, we estimate the same regressions

as Equation 7 and Equation 9 on the sample that consists of non-airport routes and routes

between Manhattan and JFK.

The regression results are shown in Table 3. The effect of airport trips(hereby JFK trips)
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Table 3: Taxi and Uber Driver Routing Difference: JFK Taxi Fixed-fare Routes

D.V. = Taxi dist./Uber dist. D.V. = Taxi dur./Uber dur.

(1) (2) (3) (4) (5) (6)
Airport 0.003 0.002 -0.002 0.005 0.012*** 0.015**

(0.003) (0.003) (0.004) (0.004) (0.004) (0.007)
Non local -0.002 -0.002 -0.002 0.008** 0.008** 0.007

(0.002) (0.002) (0.003) (0.004) (0.004) (0.005)
Airport × Non local 0.001 0.002 0.006 -0.006 -0.009* -0.013

(0.003) (0.004) (0.005) (0.005) (0.005) (0.008)
Surge multiplier 0.002 0.000 -0.001 0.008* 0.008* -0.009

(0.003) (0.003) (0.004) (0.004) (0.004) (0.008)
Surge multiplier × Airport -0.007 -0.008 -0.003 -0.024*** -0.025*** -0.005

(0.008) (0.008) (0.013) (0.009) (0.009) (0.015)
Log (Uber driver total trips) 0.002*** 0.002*** 0.000 0.008*** 0.008*** 0.015***

(0.001) (0.001) (0.003) (0.001) (0.001) (0.005)
Uber driver rating 0.029*** 0.028*** 0.000 0.137*** 0.136*** 0.000

(0.008) (0.008) (.) (0.013) (0.013) (.)
Log (Uber rider total trips) 0.001 0.001 0.000 0.001 0.001 0.002

(0.000) (0.000) (0.001) (0.001) (0.001) (0.001)
Hour of week FE No Yes Yes No Yes Yes
Uber driver FE No No Yes No No Yes
N 36,587 36,587 36,587 36,587 36,587 36,587
R2 0.001 0.007 0.520 0.004 0.011 0.522

Notes. For all specifications, standard errors are cluster-robust at the hour-of-week level.
*** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level.

on the taxi-Uber distance ratio is not statistically different from zero, which suggests that

Uber drivers do not detour on routes between JFK and Manhattan. Similarly, Uber drivers

do not route less efficiently when the passenger is non-local or when the surge multiplier is

high, for both airport routes and non-airport routes. However, the effect of airport on the

duration ratio is strongly estimated in Specifications (5) and (6), although the effect is small

in size. This is consistent with the patterns in Figure 4b, where taxi-Uber speed difference

is even larger in non-airport trips than in airport trips. It is likely because taxi drivers

have a greater incentive to speed in busy location-hours to avoid the low rate by minute

($0.5 per minute), which is lower than if they driver above 12 mile per hour to earn by

mileage. Effects of non-local and surge multiplier are generally small and weakly estimated,

with the exception of the interaction of surge multiplier and airport in Specification (4) and

(5), meaning that Uber drivers tend to drive at a slower pace on airport routes with high
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surge prices than they do on non-airport routes. This is consistent with what we find in the

baseline results in Section 5.3.1.

Regression results presented in this section complement the baseline results, where we

show that the observed driver strategic inefficiency is indeed the true size of moral hazard.

Combining these two sets of analyses gives rise to our main empirical findings: 1. taxi

drivers detour on airport trips that are metered; 2. taxi drivers overall drive faster than

Uber drivers; 3. Uber drivers generally do not detour or strategically drive slow, except on

airport trips with high surge prices.

6 Competing Explanations and Robustness

In this section, we examine three alternative explanations, and conclude that none of these

is likely to have caused the observed patterns in taxi-Uber routing difference.

6.1 Driver Selection

As discussed in the identification section, the unobserved taxi and Uber driver types in the

error term may be correlated with route characteristics. For example, strategic driver types

may more likely take airport routes and routes more traveled by non-local riders. If this is

the case, then the observed effects are in fact largely driven by driver selection into certain

routes, rather than drivers being responsive to incentives. It is revealing that we see no

significant changes in the coefficient estimates when Uber driver fixed effects are controlled

for in the main analysis. However, we need to explore whether the effects remain when taxi

driver fixed effects are accounted for.

We repeat the same regression analysis on the 2013 data. Given the small market share

of Uber in 2013, matches that follow the same matching procedure as for 2016 data would

lead to a sample size too small for identification, especially when the aim is to purge out

the within-taxi-driver variations. Therefore, we relax the matching criteria to only Step 1

and Step 4, i.e. we do not restrict the matched trips to be on the same street, or following

the same traffic direction. Also, we relax the time window to be 30 minutes. In addition,

a small share of matches are dropped because new Uber drivers did not have ratings at the
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time of the trip. The final sample consists of 16,989 matches on metered routes with 10,085

taxi drivers, 4,410 of which have more than one trip in the sample.

Shown in Table 4, estimates are in general of the same sign and similar size with that of

2016 analysis. Particularly, in Specification (3), the effect of airport on distance ratio remains

strong and large when taxi driver fixed effects are controlled, and the effect of non-local on

airport routes is borderline significant. For travel time difference, the estimates lose statistical

significance when taxi driver fixed effects are added in Specification (6). Overall, the findings

based on 2013 data suggest that behavioral responses to incentives and opportunities are

present, and driver selection is not fully responsible for the observed routing difference.

It is also possible that drivers of different types select differently into being taxi and Uber

drivers. If this is the case, then the observed moral hazard can be an artifact of the driver

type distributions of taxis and Uber. Not being able to directly observe driver types, we

cannot definitively rule this possibility out. However, we shed light on the extent of driver

behavioral change by following 1,549 former taxi drivers who switched to Uber — given that

types are persistent, former taxi drivers who used to detour might be expected to continue

their detour behavior on Uber in similar situations. Table 8 shows the regression results of

distance ratios and duration ratios on the sample of non-airport routes and metered airport

routes, for these 1,549 former taxi drivers and their matched Uber drivers in 2013. The

estimates confirm the moral hazard behavior of these former taxi drivers in 2013. Table

9 shows the regression results of distance ratios and duration ratios on the sample of non-

airport routes and JFK flat-fare routes, for these drivers and their matched taxi drivers in

2016. Results here show little evidence that these drivers continue to detour in profitable

routes, when compared with the behavior of Uber drivers. This provides strong evidence

that drivers adapt to changes in technology and market design via behavioral change, which

is consistent with the driver moral hazard finding of this paper.

6.2 A GPS Story?

It is also possible that the Uber-taxi routing difference is driven by the difference in technol-

ogy adoption — Uber drivers generally adopt GPS navigation while NYC taxi drivers mostly

rely on their own judgment. For example, the effect of airport can also be rationalized if the
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Table 4: Taxi and Uber Driver Routing Difference, 2013

D.V. = Taxi dist./Uber dist. D.V. = Taxi dur./Uber dur.

(1) (2) (3) (4) (5) (6)
Airport 0.105*** 0.112*** 0.101*** 0.017** 0.013 0.003

(0.007) (0.007) (0.011) (0.008) (0.008) (0.017)
Non local -0.007** -0.010*** -0.009 0.001 0.002 -0.006

(0.003) (0.003) (0.006) (0.005) (0.005) (0.010)
Airport × Non local 0.019*** 0.022*** 0.023* -0.007 -0.008 0.002

(0.007) (0.007) (0.013) (0.010) (0.010) (0.019)
Surge multiplier -0.001 -0.002 -0.006 0.006 0.009 0.001

(0.006) (0.004) (0.007) (0.006) (0.006) (0.012)
Surge multiplier × Airport -0.027** -0.021** -0.035 -0.028* -0.027 -0.016

(0.011) (0.010) (0.024) (0.016) (0.017) (0.038)
Log (Uber driver total trips) -0.002** -0.003** -0.003 0.001 0.000 -0.002

(0.001) (0.001) (0.002) (0.002) (0.002) (0.003)
Uber driver rating 0.056*** 0.052** 0.048 0.100*** 0.103*** 0.077

(0.020) (0.021) (0.039) (0.031) (0.031) (0.056)
Log (Uber rider total trips) 0.000 0.000 0.001 0.002 0.001 0.004

(0.001) (0.001) (0.002) (0.002) (0.002) (0.003)
Hour of week FE No Yes Yes No Yes Yes
Taxi driver FE No No Yes No No Yes
N 16,989 16,989 16,989 16,989 16,989 16,989
R2 0.082 0.102 0.644 0.001 0.015 0.620

Notes. For all specifications, standard errors are cluster-robust at the hour-of-week level.
*** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level.

benefits of GPS over taxi driver knowledge is greater for these routes than on non-airport

routes.

Regression results on the sample of JFK flat-fare routes directly speak against this pos-

sibility — JFK routes are among the longest routes of NYC, yet no significant difference in

Uber and taxi routing is observed on these routes. However, it is likely that taxi drivers are

more familiar with JFK routes, compared to other long routes that are infrequently traveled,

and as a result, JFK routes are not a conclusive counterargument. Noting this, we split La-

Guardia pick-ups into trips to Manhattan and trips to outer boroughs and show in Figure 6

that LGA-to-Manhattan routes, the routes that should be more familiar to taxi drivers, are

exactly where taxi drivers route longer in distance. Given the large share of LGA trips in

our sample, the observed taxi-Uber routing difference cannot reasonably be interpreted as

solely a GPS story.
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Figure 6: LaGuardia Trips to Manhattan vs. to Outer Boroughs

6.3 Taxi Drivers Take Longer But Time-Efficient Routes?

It is also possible that taxi drivers take routes that are longer in trip distance and shorter in

trip duration, compared to Uber drivers, which can also lead to the observed effects. Among

alternative routes, taxi drivers indeed have incentives to choose a route that is both long

in distance and short in duration. But in order for this to be the main explanation of our

findings, either Uber GPS systematically prioritizes route distance over travel time, or taxi

drivers on average possess superior routing information than Uber GPS at detecting long but

time efficient routes. Our conversation with Uber’s routing department rules out the first

possibility – in fact, Uber GPS weighs travel time more than trip distance. Therefore, we need

to investigate whether taxi drivers possess superior information, and a necessary condition

for that is that taxi drivers finish trips faster when they take a longer route compared to

matched Uber trips.
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Figure 7: Taxi-Uber Duration Ratios and Speed Ratios

(a) Taxi-Uber duration ratios across taxi-Uber
distance ratios

(b) Taxi-Uber speed ratios across taxi-Uber dis-
tance ratios

As shown in Figure 7 (a), when detouring (ie. distance ratio > 1), taxi drivers on

average finish trips later than comparable Uber drivers. Furthermore, the relative travel

time difference increases when taxi detour is longer. A look into the relative average travel

speed in Figure 7 (b) reveals that taxi drivers tend to speed more when detouring, but

the speeding cannot fully make up the time lost in detours. Therefore, we conclude that

taxi drivers do not consistently out-perform Uber drivers at detecting long but time-efficient

routes.

6.4 Robustness

We perform two sets of robustness checks to strengthen the identification of driver moral

hazard. In the main analysis of driver detour, we constrained the matched taxi and Uber

trips to be 15 minutes apart. In the first set of robustness checks, we perform the same

analysis using alternative time windows, namely 5 minutes, 10 minutes, 20 minutes, and

30 minutes. Shown in Table 6, the estimated effects are stable and consistent across time

window lengths, particularly for the regressions with distance ratio as the dependent variable.

To the extent that trips within a smaller time range can be more subject to the same traffic

and thus better approximate the experimental ideal, the fact we find significant effects and

they are of similar size even with a time window as short as 5 minutes greatly enhances our
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identification.

Recall that our main sample only contains taxi trips reported by Vendor 2, because

Vendor 1’s meter system appears to round down trip distance to the nearest first decimal

place. Taxi trips may appear to be shorter because of the rounding. Consider a pair of

matched Uber and taxi trips, where the Uber trip is 1 mile and the taxi trip is 0.95 miles

but reported taxi trip length is rounded to 0.9 miles. Then the distance ratio would be 0.9

instead of 0.95, with a downward bias of -0.05. For a 9.95-mile taxi trip rounded to 9.9

miles with a matched 10-mile Uber trip, the downward bias is only -0.005. Thus, the same

amount of rounding error leads to proportionately greater downward bias on shorter routes.

The implication is that for the moral hazard behavior to be consistent across drivers of both

vendors, we expect the robustness check on Vendor 1 sample to yield an upward bias in

the coefficient estimate of airport trips, instead of the opposite. In Table 7, we separately

estimate the main regressions using Vendor 1 only and both Vendor 1 and Vendor 2, and

compare these with the main regression results using only Vendor 2. We indeed find the

upward bias, where the estimated effect of airport on distance ratio is 9.3% on Vendor 1

sample, 1.9% more than the effect on Vendor 2 sample. We find this upward bias, instead

of a downward one, consistent with our main findings.

7 Discussion

7.1 Mechanisms

In this section, we discuss two mechanisms that account for the observed routing difference

between taxi and Uber drivers.

The first mechanism is the set of technology-enabled incentive devices implemented by the

Uber platform but not by taxis. These incentive devices include tech-aided monitoring and

verification, tech-enabled rider rating of drivers, and tech-aided conflict resolution. Each of

these make the cost function for moral hazard via detour steeper for Uber than for taxis. One

necessary condition for a working rating system to penalize strategic behavior is the negative

correlation between passengers’ ratings to the drivers and driver routing inefficiency. To test
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this correlation, we use the subsample of only JFK taxi flat-fare routes as taxi driver routing

in these routes is a valid benchmark. Shown in Table 5 (1) - (5), both the normalized Uber

distance (by taxi distance) and the normalized Uber duration (by taxi duration) negatively

predict the ratings given by passengers, conditional on the fact that a rating was given. The

correlations is more salient in the subset where Uber distance is greater than taxi distance

(Specification (6)). However, in the cases where Uber distance is less than taxi distance

(Specification (7)), Uber trips shorter in distance than the matched taxi trips are less likely

to gain high ratings. One likely reason for this is that passengers dislike off-GPS routing and

thus give low ratings even when Uber drivers have found a shorter route. It seems plausible

that passengers cannot easily assess whether a driver’s deviations from the prescribed GPS

route are due to superior information used to shorten the route or an effort to extract a

higher fare with a longer route.

These incentive devices all appear to enhance market transparency and our results suggest

they are effective at mitigating moral hazard in this setting. Our results also imply that these

mechanisms govern most cases as it is seen that Uber drivers do not appear to detour on

JFK routes, where the potential gain from detour is large. Strikingly, Uber drivers do tend

to detour or driver more slowly on airport trips when surge pricing is high, suggesting that

the the monitoring devices are not binding. Instead, as the agency model predicts, Uber

drivers are willing to make a trade off when surge pricing is high that can offset possible

penalty.

In addition to technology-enabled monitoring tools, pricing is another important mech-

anism that predicts driver routing behavior. This is most clearly reflected in taxi driver

routing efficiency on JFK routes with flat fares. When taxi fares are metered as a two-part

tariff, taxi drivers tend to detour on longer routes because the variable part of the fare can

justify the detour; on the other hand, taxi drivers tend to detour less in short routes, espe-

cially in thick markets like Manhattan, because it is in their best interest to take as many

trips as possible to exploit the proportionately larger fixed component of the fare.
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Table 5: Uber Driver Ratings by Passengers Are Correlated with Routing Efficiency

All JFK taxi flat fare routes Uber dist. ≥ Taxi dist. Uber dist. < Taxi dist.
(1) (2) (3) (4) (5) (6) (7)

Uber dist/Taxi dist -0.222*** -0.152** -0.150** -0.132 -0.283** 0.518**
(0.061) (0.062) (0.061) (0.082) (0.115) (0.218)

Uber dur/Taxi dur -0.276*** -0.253*** -0.204*** -0.206*** -0.269*** -0.123
(0.045) (0.046) (0.046) (0.053) (0.077) (0.082)

Uber driver rating 0.862*** 0.880*** 0.904*** 0.765***
(0.096) (0.104) (0.149) (0.154)

Log (Uber driver total trips) 0.013* 0.015* 0.021 0.011
(0.008) (0.009) (0.013) (0.012)

Surge multiplier -0.111** -0.100* -0.121 -0.034
(0.045) (0.053) (0.083) (0.079)

Non local 0.019 0.021 0.039 0.007
(0.017) (0.023) (0.031) (0.030)

Log (Uber rider total trips) 0.028*** 0.027*** 0.035*** 0.018**
(0.005) (0.006) (0.009) (0.008)

Hour of week FE No Yes Yes No Yes Yes Yes
N 5,885 5,885 5,885 5,885 5,885 3,139 2,746
R2 0.002 0.006 0.007 0.026 0.049 0.080 0.078

Notes. For Specifications (5), (6), and (7), standard errors are cluster-robust at the hour-of-week level.
*** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level.

Figure 8: Driver Marginal Minute Earning Across Travel Speeds

Furthermore, perhaps the pricing scheme is of first-order importance in explaining taxi

driver travel speed. We document in the main analysis that taxi drivers, although detouring

in some cases, in general drive at a faster speed than Uber drivers. This is expected because
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taxi drivers are not paid by their driving time in normal traffic. Next, we compare the pricing

schemes of taxis and Uber and show that speeding is rewarded more for taxi drivers than

for Uber drivers. In Figure 8, we compute driver marginal minute earnings at various traffic

speeds, separately for taxis and Uber, following their pricing formulas. All the computations

are net of the fixed component of the fare (i.e. $2.5 for taxis and $2.55 for Uber). An

interesting divergence appears. For example, taxi driver per-minute earning increases by 4

times from 12 MPH to 48 MPH (from $0.5/min to $2/min), while an Uber driver per-minute

earning only increases by 2.5 times (from $0.7/min to $1.75/min). This difference stems from

the weight given to trip distance in the pricing formula, where taxi distance is marginally

more rewarding than that of Uber. One artifact of the taxi pricing schedule is that, when

traffic is flowing at about 12 miles per hour, a NYC taxi driver would actually earn a slightly

higher fare by alternating between being stopped and racing ahead at 24 miles per hour.

7.2 Mind vs. Machine

“GPS routes are slower in Manhattan, so I don’t use it.”

— Gurpreet Singh, NYC taxi driver, interviewed on July 9th, 2018.

The data show that taxi drivers are efficient at routing than Uber drivers in short, non-

airport routes. For routes within Manhattan Core, where Manhattan Core is defined as

roughly the part of Manhattan below the north edge of Central Park, taxi trip distance is

on average 98.5% of that of Uber, and the difference is statistically significant at 1% level.

This is evidence that human navigation still can perform at least as well as the technology

in dense markets.

One way that human navigation can outperform GPS is by having more up-to-date infor-

mation on the road networks and conditions, for example, temporary road closures, upcoming

sporting events, or undocumented short-cuts. Another possibility is that experienced taxi

drivers can suggest a better drop-off point than the exact address given by the passenger,

based on the driver’s extensive experience. For example, the driver might suggest dropping

off the passenger on the opposite side of the street in order to avoid unnecessary travel. This

is confirmed by an interview with Loai Yousef, an NYC Uber and Lyft driver, who stated
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that “Sometimes the Uber GPS map has mistakes. Sometimes it makes the driver do a

U-turn to arrive at the exact address even though it would be easy for rider to just cross the

street. Taxis drivers often drop passengers off a short distance from exact address.”

NYC taxi driver expertise in routing should not be surprising, because as residual claimants,

they are strongly motivated to learn the routes, optimize their routing, and take initiative

when they can. In contrast, Uber drivers might not have as large of a motivation to use their

discretion, even in cases when they do possess better information than the GPS. The reason

is that off-GPS routing might come across as suspicious behavior to the riders, which can re-

sult in bad ratings and complaints. Loai Yousef shared a similar insight from a practitioner’s

perspective: “..., Uber passengers tend to want driver to go to the exact address even if it’s

wasteful.” Therefore, the use of GPS, coupled with the monitoring and rating systems, can

limit the incentives for human knowledge accumulation, as well as initiative and discretion.

8 Conclusion

In this paper, we study how a technology platform affects agent monitoring and reward

systems, and consequently moral hazard and service quality. We provide causal evidence from

the taxi and Uber setting in the form of driver choices that affect the length and duration

of trips from the identical start and end points. Analyzing trip-level data from NYC, we

find that taxi drivers tend to detour more relative to Uber drivers on airport routes and

especially routes taken by non-local riders, while Uber drivers tend to detour more relative

to taxi drivers on routes with greater surge pricing. In other words, as predicted by our

theoretical model, the Uber technology platform and pricing scheme reduce driver moral

hazard behavior where taxi moral hazard return is high, but at the same time create other

margins of driver moral hazard. What’s more, the the incentives for creating and using driver

routing expertise may be reduced by the Uber platform. These findings are consistent with

the agency theory, while driver selection or difference between taxis and Uber in navigation

technologies are found not likely to have caused the observed patterns in driver routing.

We highlight the importance of incentive devices as well as pricing schemes as the un-

derlying mechanisms. As such, our findings extend important implications to industry par-
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ticipants. For TLC, our results provide support for the development and implementation

of smart phone applications that handle taxi dispatching and matching with passengers,

digital payment, and passenger monitoring. Also, it is important for TLC to re-evaluate

the current pricing scheme that rewards taxi cab speeding as well as impacts of alternative

pricing structures. For digital platforms such as Uber, our findings suggest an opportunity

for machine learning based techniques to detect driver opportunistic behavior, which may

further enhance market transparency and trust building.

This paper contributes to the debate over the digital disruption, particularly the part in-

volving digital platforms that represent new labor contractual relationships. Previous studies

have demonstrated efficiency gains of ride-hailing platforms due to the ability to better align

demand and supply, compared to regulated taxis. Building on these important margins, we

identify the efficiency gain from the agency perspective. The efficiency gain is large, given

the sizable estimated effects. However, a full welfare account calls for future empirical work

such as quantifying the impact of speeding on public safety and traffic congestion.
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A Figures

Figure 9: Dividing NYC into Voronoi Cells Centered at Street Intersections

Figure 10: Pickup Locations of Uber and Taxi after Matching Step 1 (taxis in purple; Uber
in green)

39



B Tables

Table 6: Robustness: Various Time Windows

D.V. = Taxi dist./Uber dist.

5 min. 10 min. 15 min. 20 min. 30 min.
Airport 0.074*** 0.073*** 0.074*** 0.073*** 0.072***

(0.005) (0.003) (0.003) (0.003) (0.002)
Non local -0.002 -0.003 0.001 -0.001 -0.003

(0.005) (0.003) (0.003) (0.002) (0.002)
Airport × Non local 0.015** 0.016*** 0.013*** 0.015*** 0.016***

(0.006) (0.004) (0.003) (0.003) (0.002)
Surge multiplier 0.009 0.002 -0.000 0.001 0.002

(0.008) (0.005) (0.004) (0.003) (0.003)
Surge multiplier × Airport -0.023** -0.024*** -0.022*** -0.020*** -0.024***

(0.011) (0.007) (0.005) (0.005) (0.004)
N 32,475 60,124 86,627 112,179 161,896
# of Uber drivers 15,565 20,390 23,109 24,770 27,028
R2 0.562 0.440 0.376 0.336 0.285

D.V. = Taxi dur./Uber dur.

5 min. 10 min. 15 min. 20 min. 30 min.
Airport 0.034*** 0.032*** 0.036*** 0.038*** 0.037***

(0.008) (0.005) (0.003) (0.003) (0.003)
Non local 0.000 -0.001 0.006 0.005 0.005*

(0.008) (0.005) (0.004) (0.004) (0.003)
Airport × Non local -0.002 0.000 -0.008* -0.009** -0.011***

(0.010) (0.006) (0.005) (0.004) (0.003)
Surge multiplier -0.006 -0.001 -0.002 -0.003 -0.005

(0.013) (0.007) (0.006) (0.005) (0.004)
Surge multiplier × Airport -0.006 -0.003 -0.006 -0.001 -0.002

(0.018) (0.011) (0.009) (0.007) (0.006)
N 32,475 60,124 86,627 112,179 161,896
# of Uber drivers 15,565 20,390 23,109 24,770 27,028
R2 0.533 0.401 0.330 0.288 0.233

Notes. Controls not reported in the table include logged Uber driver total trips and logged Uber rider
total trips. They are in expected signs and similar to the estimates reported in the main analyses.
Hour-of-week fixed effects and Uber driver fixed effects are included in all specifications.
For all specifications, standard errors are cluster-robust at the hour-of-week level.
*** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level.
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Table 7: Robustness: Vendor 1

D.V. = Taxi dist./Uber dist. D.V. = Taxi dur./Uber dur.

Vendor1 Vendor2 Vendor1&2 Vendor1 Vendor2 Vendor1&2
(Main sample) (Main sample)

Airport 0.093*** 0.074*** 0.082*** 0.028*** 0.036*** 0.033***
(0.003) (0.003) (0.002) (0.004) (0.003) (0.003)

Non local 0.003 0.001 0.000 0.005 0.006 0.005*
(0.003) (0.003) (0.002) (0.004) (0.004) (0.003)

Airport × Non local 0.007** 0.013*** 0.012*** -0.007 -0.008* -0.008**
(0.004) (0.003) (0.002) (0.005) (0.005) (0.004)

Surge multiplier 0.007 -0.000 0.001 -0.002 -0.002 0.000
(0.005) (0.004) (0.003) (0.007) (0.006) (0.004)

Surge multiplier × Airport -0.032*** -0.022*** -0.025*** -0.022** -0.006 -0.014**
(0.007) (0.005) (0.004) (0.009) (0.009) (0.006)

Log (Uber driver total trips) 0.007*** 0.005** 0.005*** 0.013*** 0.012*** 0.012***
(0.002) (0.002) (0.001) (0.003) (0.003) (0.002)

Log (Uber rider total trips) 0.000 0.001 0.000 0.002*** 0.003*** 0.002***
(0.001) (0.001) (0.000) (0.001) (0.001) (0.000)

N 71,850 86,627 158,477 71,850 86,627 158,477
R2 0.413 0.376 0.296 0.362 0.330 0.239

Notes. Hour-of-week fixed effects and Uber driver fixed effects are included in all specifications.
For all specifications, standard errors are cluster-robust at the hour-of-week level.
*** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level.
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Table 8: Former Cabbies 2013

D.V. = Taxi dist./Uber dist. D.V. = Taxi dur./Uber dur.

(1) (2) (3) (4) (5) (6)
Airport 0.096*** 0.105*** 0.098*** 0.008 -0.003 -0.029

(0.011) (0.013) (0.021) (0.019) (0.020) (0.034)
Non local -0.007 -0.009 -0.010 -0.020* -0.023* -0.021

(0.007) (0.007) (0.013) (0.011) (0.012) (0.019)
Airport × Non local 0.022* 0.021 0.021 0.015 0.016 0.043

(0.013) (0.014) (0.025) (0.023) (0.024) (0.041)
Surge multiplier 0.008 0.006 0.008 0.012 0.009 -0.002

(0.009) (0.009) (0.017) (0.013) (0.014) (0.025)
Surge multiplier × Airport -0.004 -0.000 -0.028 -0.072* -0.076* -0.023

(0.022) (0.021) (0.033) (0.041) (0.042) (0.068)
Log (Uber driver total trips) -0.003 -0.003 -0.003 0.001 -0.000 -0.001

(0.002) (0.002) (0.004) (0.004) (0.004) (0.006)
Log (Uber rider total trips) 0.002 0.001 0.002 0.004 0.004 0.010*

(0.002) (0.002) (0.003) (0.003) (0.003) (0.006)
Hour of week FE No Yes Yes No Yes Yes
Uber driver FE No No Yes No No Yes
N 3,221 3,221 3,221 3,221 3,221 3,221
R2 0.071 0.127 0.598 0.003 0.053 0.549

Notes. For all specifications, standard errors are cluster-robust at the hour-of-week level.
*** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level.
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Table 9: Former Cabbies 2016

D.V. = Taxi dist./Uber dist. D.V. = Taxi dur./Uber dur.

(1) (2) (3) (4) (5) (6)
Airport -0.004 -0.006 -0.006 0.016 0.019 0.036

(0.007) (0.008) (0.012) (0.012) (0.014) (0.023)
Non local 0.004 0.002 -0.002 0.009 0.009 0.010

(0.005) (0.006) (0.008) (0.011) (0.011) (0.015)
Airport × Non local -0.001 0.003 0.009 -0.006 -0.005 -0.013

(0.010) (0.011) (0.015) (0.015) (0.016) (0.026)
Surge multiplier -0.001 0.001 -0.001 0.016 0.018 0.004

(0.009) (0.010) (0.011) (0.015) (0.017) (0.020)
Surge multiplier × Airport 0.006 0.013 0.004 -0.049 -0.040 -0.041

(0.026) (0.025) (0.032) (0.032) (0.036) (0.054)
Log (Uber driver total trips) 0.002 0.002 -0.004 0.008* 0.009** 0.007

(0.003) (0.003) (0.010) (0.004) (0.005) (0.018)
Uber driver rating -0.037 -0.029 0.000 0.122*** 0.150*** 0.000

(0.028) (0.029) (.) (0.044) (0.047) (.)
Log (Uber rider total trips) -0.001 -0.002 -0.002 -0.003 -0.004 -0.003

(0.001) (0.001) (0.002) (0.002) (0.003) (0.004)
Hour of week FE No Yes Yes No Yes Yes
Uber driver FE No No Yes No No Yes
N 3,751 3,751 3,751 3,751 3,751 3,751
R2 0.001 0.056 0.484 0.004 0.051 0.511

Notes. For all specifications, standard errors are cluster-robust at the hour-of-week level.
*** Significant at the 1% level. ** Significant at the 5% level. * Significant at the 10% level.
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