# An Audit Alternative: Measuring Employer Preferences and Beliefs without Deception

Judd B. Kessler, Corinne Low, and Colin D. Sullivan

July 23, 2018

# What matters on the job market?

- Fundamental question in labor economics is how employers value different candidate characteristics, such as:
  - Human capital characteristics (education, field of study, experience, (e.g., Autor and Houseman [2010], Pallais [2014])
  - Gender and race (e.g., Altonji and Blank [1999])
- We need powerful tools to study these questions—obviously observational studies are insufficient
- Audit studies have been a workhorse in this literature
  - In-person (critiqued by Turner et al. [1991], Heckman and Siegelman [1992], Heckman [1998])
  - Correspondence and resume audits for discrimination (large literature launched by Bertrand and Mullainathan [2004])
  - Branched out into new areas (e.g., unemployment spells, Kroft et al. [2013], Eriksson and Rooth [2014], Nunley et al. [2017], value of for-profit-college degrees, Deming et al. [2016])
- Resume audit studies give you the difference in callback rates between groups

Imagine a distribution of employer i's expected productivity of candidate j with vector of characteristics X<sub>i</sub> as in the below:

$$V_{ij} = \beta X_j + \xi_{ij},$$



What we observe in an audit study is an indicator for whether a candidate is called back:

$$D_{ij} = \mathbb{1}[V_{ij} \geq V_i^*(c_i)]$$



We can compare callback rates of different groups. For simplicity, imagine a binary characteristic x<sub>i</sub>:

$$V_{ij} = \beta x_j + \xi_{ij},$$



Resume audit studies measure the impact of x<sub>j</sub> on callback rate by estimating α as:

$$\alpha = E[D_{ij}|x_j = 1] - E[D_{ij}|x_j = 0]$$



- Why might we be interested in richer information on  $V_{ij}$ ?
- If the shape of the distribution depends on x<sub>j</sub>, callback rates will not have consistent relationship across the distribution

More



- Why might we be interested in richer information on  $V_{ij}$ ?
- If the shape of the distribution depends on x<sub>j</sub>, callback rates will not have consistent relationship across the distribution

More



- Why might we be interested in richer information on  $V_{ij}$ ?
- If you change thresholds (e.g., selective hiring to economic expansion), the sign of α can flip



- Why might we be interested in richer information on  $V_{ij}$ ?
- If you change thresholds (e.g., selective hiring to economic expansion), the sign of α can flip



# A new approach: Incentivized Resume Rating (IRR)

- Much richer information by being able to directly measure preferences
  - Parallel to buy / no-buy versus tracing demand curve (e.g., BDM)
- How to do it in the hiring domain with incentives?
  - Employers rate hypothetical resumes with randomly assigned characteristics
  - They are matched with real job seekers according to their reported preferences
- Similar-in-spirit to design applied to dating markets in Low [2017]
- This offers the control of a laboratory experiment with the "stakes" of a field experiment
  - Independently randomize many characteristics
  - Get continuous measures of employer preferences
  - Have each employer rate multiple resumes
- Experimental paradigm is very flexible, and can be used to measure many different traits with different pools of employers and candidates

# We study employer preferences for college students

 Traditionally hard to investigate preferences of "elite" employers because they do not accept cold resumes

How they value human capital investments

- College students spend three months a year outside of school; we explore the impact of their HC accumulation in those months
- Investigate impact of quality (e.g., more prestigious internship) and quantity (e.g., an additional experience) of summer employment
- Can compare these to impact of GPA, which we treat as a numeraire
- How they respond to demographics
  - On-campus recruiters may have different race and gender preferences than firms traditionally targeted in resume audit studies
  - We measure—for the first time—employers' beliefs about demographic groups' likelihood of job acceptance

# Sample resume of graduating senior



· Assisted in organizing speaker conferences, alumni panels, and networking sessions, with past

### Incentivized Resume Rating: our design

- We partner with University of Pennsylvania Career Services
  - Collect hundreds of real Penn resumes to cull components
  - Use real Penn seniors interested in being matched as candidate pool
- Career Services offers employers the opportunity to try a new pilot tool designed by Wharton professors
  - Framed and marketed as a way to help employers find candidates
  - Only participation incentive is to be matched with Penn seniors
- Employers rate 40 resumes (median employer takes 28 minutes)
  - Choose majors to view: Humanities/Social Sciences or Science/Math
  - Rate candidates on: "desirability" and "likelihood of acceptance"
- We use ML to match each employer to 10 real seniors based on their preferences (i.e., no deception) and email their resumes
- We repeat the experiment at University of Pittsburgh to show differences based on subject pool

# Rating on two dimensions

| Launched early stage entrepreneurial venture with                                              | peers to improve the career search process     |
|------------------------------------------------------------------------------------------------|------------------------------------------------|
| for college students                                                                           |                                                |
| <ul> <li>Connected students with Philadelphia-based compa<br/>expand to other Ivies</li> </ul> | anies that match their interests and worked to |

| How interes            | ted would you | u be in hiring N | lathan Stewa | art? |   |         |   |   |                          |
|------------------------|---------------|------------------|--------------|------|---|---------|---|---|--------------------------|
| Not<br>interested<br>1 | 2             | 3                | 4            | 5    | 6 | 7       | 8 | 9 | Very<br>interested<br>10 |
| 0                      | $\bigcirc$    | 0                | $\circ$      | 0    | 0 | $\circ$ | 0 | 0 | 0                        |

| 1 2 3 | 4 | 5       | 6 | 7          | 8 | 9 | Very likely<br>10 |
|-------|---|---------|---|------------|---|---|-------------------|
| 0 0 0 | 0 | $\circ$ | 0 | $\bigcirc$ | 0 | 0 | 0                 |

## Resume creation and variables

| Component  | Randomization                               |
|------------|---------------------------------------------|
| GPA        | Drawn from <i>U</i> (2.90, 4.00)            |
| Major      | Drawn from a list of Penn majors            |
| First job  | $Pr(Top Internship) = \frac{1}{2}$          |
| Second job | $Pr(Second Internship)^2 = \frac{13}{40}$ , |
| -          | $Pr(Work for Money) = \frac{13}{40}$        |
|            | $Pr(Blank) = \frac{14}{40}$                 |
| Leadership | Two items drawn independently               |
| Skills     | Pr(Technical skills)=0.25                   |

| Component | Randomization                       |  |  |  |  |
|-----------|-------------------------------------|--|--|--|--|
| Name      | Pr(Not White Male)=67.2%,           |  |  |  |  |
|           | Gender (50% Male, 50% Female),      |  |  |  |  |
|           | Race drawn from U.S. distribution   |  |  |  |  |
|           | (65.7% White, 16.8% Hispanic, 12.6% |  |  |  |  |
|           | Black, 4.9% Asian)                  |  |  |  |  |

### Regression specification

► Recall expected employer productivity,  $V_{ij} = \beta X_j + \xi_{ij}$ 

Mean value in OLS (averaged over the space we created):

 $V_{ij} = \beta_0 + \beta_1 GPA + \beta_2 TopInt + \beta_3 SecondInt + \beta_4 WFM + \beta_5 TechSkills + \beta_6 NotWhiteMale + \alpha_i + \gamma_i + \xi_{ii}$ 

where  $\alpha_i$  are rater fixed effects and  $\gamma_j$  includes leadership and major fixed effects

- Will also run quantile specifications to estimate marginal effects at 25th, 50th, 75th, 90th, and 95th percentiles
- Will first present results on the first rating: "How interested would you be in hiring [name]"?

# OLS results

|                               | All      | Humanities &<br>Social Sciences | Science &<br>Math |
|-------------------------------|----------|---------------------------------|-------------------|
| GPA                           | 2.195*** | 2.300***                        | 1.852***          |
|                               | (0.129)  | (0.153)                         | (0.243)           |
| Top Internship                | 0.902*** | 1.039***                        | 0.530***          |
|                               | (0.0806) | (0.0944)                        | (0.173)           |
| Second Internship             | 0.463*** | 0.514***                        | 0.291             |
|                               | (0.0947) | (0.114)                         | (0.187)           |
| Work for Money                | 0.149    | 0.114                           | 0.319*            |
|                               | (0.0913) | (0.109)                         | (0.185)           |
| Technical Skills              | -0.0680  | -0.0492                         | -0.171            |
|                               | (0.0900) | (0.106)                         | (0.186)           |
| Not White Male                | -0.117   | -0.0110                         | -0.399**          |
|                               | (0.0842) | (0.0998)                        | (0.188)           |
| Observations                  | 2880     | 2040                            | 840               |
| F-test p-value for Majors     | < 0.001  | 0.0036                          | < 0.001           |
| F-test p-value for Leadership | 0.0649   | 0.0246                          | < 0.001           |

Standard errors in parentheses

\* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

# Valuation of summer work experience



Bars indicate 95% Confidence Intervals.

#### Interactions between work experience



Bars indicate 95% Confidence Intervals.

## Work experience narrative?



Bars indicate 95% Confidence Intervals.

## Human capital matters, what about demographics?

Have shown that firms value summer work experience

- Both quality and quantity important—effects differ by quantile
- Constraints students face in needing to earn money from summer work might be materially important
- Interactions between different components, can be more closely examined with this design
- Have also shown that firms recruiting in STEM are less interested in female/minority candidates
  - Will now examine impact of demographic characteristics more closely
  - In Bertrand and Mullainathan [2004], not only did resumes with black names receive fewer callbacks, there was also a lower return to quality improvements

# Top Internship less valuable for women and minorities



Bars indicate 95% Confidence Intervals.

### Effect absent for GPA



Bars indicate 95% Confidence Intervals.

# Second measure: likelihood of acceptance

- Recall question: "How likely do you think [name] would be to accept a job with your organization?"
  - This is correlated positively with desirability rating
  - Holding desirability constant, negatively correlated with "objective" quality



# Firms believe women and minorities are less likely to accept

|                   | All      | Desirability $< 5$ | Desirability $\geq$ 5 |
|-------------------|----------|--------------------|-----------------------|
| GPA               | 0.734*** | -0.341**           | -0.133                |
|                   | (0.120)  | (0.140)            | (0.144)               |
| Top Internship    | 0.666*** | 0.435***           | 0.0632                |
|                   | (0.0763) | (0.0910)           | (0.0880)              |
| Second Internship | 0.393*** | 0.293***           | 0.194*                |
|                   | (0.0910) | (0.105)            | (0.104)               |
| Work for Money    | 0.200**  | 0.0895             | 0.136                 |
|                   | (0.0895) | (0.0991)           | (0.106)               |
| Technical Skills  | -0.105   | 0.00508            | -0.119                |
|                   | (0.0862) | (0.0982)           | (0.0962)              |
| Not White Male    | -0.197** | -0.0664            | -0.208**              |
|                   | (0.0805) | (0.0913)           | (0.0919)              |
| Observations      | 2880     | 1367               | 1513                  |

Standard errors in parentheses

\* 
$$p < 0.10$$
, \*\*  $p < 0.05$ , \*\*\*  $p < 0.01$ 

# Why does this matter?

- Imagine the firm incurs costs to interview or recruit candidates (e.g., time/effort, limited slots)
- Could produce (or exacerbate) lower callback rates for underrepresented groups
- Callback differences may reflect more than expected productivity
  - Essentially an omitted variable bias problem
  - But not solved with randomization, since appeal of trait and impact on likelihood of acceptance assigned simultaneously
  - Anything the firm finds appealing might also change their chance of "getting" candidate

# Incentivized Resume Rating: future research opportunities

- ▶ IRR can be used to answer a wide array of human capital questions
- Can identify different dimensions of preferences
- Setup costs are substantial, but marginal costs of running are lower (we will gladly share our technology)
- Can be used outside of college setting
- Deployment with multiple groups possible for comparison

Conclusion

## Firm Size & GPA



Bars indicate 95% Confidence Intervals.

## Firm Size & Top Internship



Bars indicate 95% Confidence Intervals.

### Results at Pitt directionally similar

|                               | Penn     | Pitt     |
|-------------------------------|----------|----------|
| GPA                           | 2.195*** | 0.263**  |
|                               | (0.129)  | (0.113)  |
| Top Internship                | 0.902*** | 0.222*** |
|                               | (0.0806) | (0.0741) |
| Second Internship             | 0.463*** | 0.212**  |
|                               | (0.0947) | (0.0844) |
| Work for Money                | 0.149    | 0.154*   |
|                               | (0.0913) | (0.0807) |
| Technical Skills              | -0.0680  | 0.107    |
|                               | (0.0900) | (0.0768) |
| Not White Male                | -0.117   | 0.00297  |
|                               | (0.0842) | (0.0710) |
| Observations                  | 2880     | 3440     |
| F-test p-value for Majors     | < 0.001  | < 0.001  |
| F-test p-value for Leadership | 0.0649   | 0.937    |

Standard errors in parentheses

\* p < 0.10, \*\* p < 0.05, \*\*\* p < 0.01

# Summary

- In this paper, we introduce a new experimental paradigm, Incentivized Resume Rating, for measuring employers' preferences over candidate characteristics
- The key advantage is ability to elicit the full distribution of employer preferences
  - Estimate value of characteristics at different levels of selectivity
  - Independent randomization of many characteristics allows for analysis of conditional marginal effects
- Other benefits
  - Can access employers who don't respond to cold resumes
  - Can measure multiple dimensions driving employer callbacks
- We deploy IRR to investigate
  - Preferences of recruiters at elite colleges for student human capital investments
  - Impact of demographic characteristics, beyond current literature