
Heterogeneity and Asset Prices: A Different Approach

Nicolae Gârleanu
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Abstract

We develop a macro-asset pricing framework that links volatile asset prices and

high risk premiums to non-volatile, but persistent, movements in the cross-sectional

income and consumption distributions. We propose a novel empirical approach to infer

low frequency, time-series movements in the marginal agent’s consumption over a long

period of time by utilizing cross-sectional (rather than time-series) information on the

consumption of different cohorts. In a calibration we use these inferred low frequency

components to assess the model’s ability to account quantitatively for the stylized asset

pricing facts (high market price of risk, equity premium, volatility, return predictability,

etc.). We also show how imperfect risk sharing suffices to allow anticipations of future

movements in discount rates to become a self-fulfilling source of asset price volatility.
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1 Introduction

We construct equilibria of continuous-time overlapping-generations economies with imper-

fect risk sharing that can jointly account for volatile asset-price fluctuations and high risk

premiums in an economy with deterministic aggregate growth and non-volatile changes in

the cross-sectional consumption and wealth distributions. Unlike the seminal paper of Con-

stantinides and Duffie (1996), where the risk premiums are driven by i.i.d. shocks to the

cross-sectional variance of consumption changes, in our construction all the moments of the

cross-sectional distribution of consumption evolve in a non-volatile, indeed locally determin-

istic1 and persistent manner — features that seem empirically attractive.

Because of imperfect risk sharing, the stochastic discount factor does not coincide with

aggregate per-capita consumption growth. Rather, the identity and weights of agents who are

marginal for asset pricing keeps changing. We develop a novel empirical methodology to infer

the consumption growth of the “representative, marginal agent” in the absence of perfect

risk sharing. By utilizing a minimal part of the model structure, the methodology is flexible

enough to account in a comprehensive manner for a multitude of factors (different cohort

sizes, age-dependent life-cycle effects, demographic shifts in the population, different cohort

productivities, etc.). Equally importantly, the methodology utilizes a few repeated cross

sections of data to infer a long time series path of the marginal agent’s consumption growth.

We show that the marginal agent’s consumption growth in the absence of perfect risk sharing

exhibits substantially stronger persistence and long-run variance than a representative agent

model would suggest.

We next describe the theoretical structure and the empirical methodology in greater

detail.

The framework is a continuous-time, overlapping generations economy. Agents arrive

continuously and are either “workers” or “entrepreneurs.” The difference lies exclusively in

the stochastic properties of their endowments: Workers obtain a stochastic path of wages over

1Throughout the paper “locally deterministic” refers to a time-differentiable process. By definition, such
a process has no diffusion component, but a possibly stochastic drift process. This means that the volatility
of ever shorter increments disappears in the limit.
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their life-times, while entrepreneurs come endowed with the shares of a newly created firm

that produces a stochastic stream of dividends. To illustrate the difference with the standard

representative agent models, all shocks in this economy are re-distributional: They affect the

fraction of dividend (resp. labor) income that is obtained by firms (resp. workers) born at

different times, while aggregate labor and dividend income and aggregate consumption are

deterministic process all growing at the same constant rate. Moreover, to distinguish our

setup from the one employed by Constantinides and Duffie (1996), the shares of labor or

dividend income accruing to a given cohort of investors are locally deterministic processes,

i.e., their volatility vanishes as the time interval becomes small; however, these processes are

random over the long run.

In this setup we introduce a) imperfect inter-cohort risk sharing and b) recursive pref-

erences with preferences for early resolution of uncertainty. We utilize this framework two

perform two exercises, a theoretical and an empirical.

Our theoretical exercise parallels the exercise in Constantinides and Duffie (1996). Specif-

ically, we show the following “possibility” result: Share processes exist that support (essen-

tially) any given stationary processes for both the market price of risk and the price-dividend

ratio. The main difference between the construction in Constantinides and Duffie (1996) and

our paper pertains to the time-series implications for inequality measures, such as the cross-

sectional variance of consumption. Constantinides and Duffie (1996) rely on heterogenous

period-by-period changes in individual consumption-growth dispersion, which lead to period-

by-period movements in inequality; by contrast, we rely on dispersion and uncertainty in the

integrated consumption growth experienced by cohorts born at different times. As a result

in our approach inequality measures are substantially less volatile on a period-by-period ba-

sis, but quite persistent. An important byproduct of our possibility result is that it makes

the model quite tractable. We show how to judiciously postulate a functional form for the

stochastic processes followed by the dividend and labor shares, so that we can obtain a simple

closed form solution for asset prices.

For the empirical exercise, we infer the persistent component of the marginal agent’s

consumption process that is driven by the re-distributional shocks, arising either by different
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cohort sizes or productivities. The novel aspect of this technique is that the time series prop-

erties of the persistent component are inferred from cross-sectional rather than time-series

data. Specifically, the procedure involves estimating a regression whereby cross-sectional

consumption is regressed on time, age, and cohort dummies. Using the information in age

and cohort effects, we can re-construct a time series path of the consumption growth that

the marginal agents (i.e., the surviving agents between times t and t+ 1) must have experi-

enced over the sample. Since this technique does not rely on time-series filtering methods,

the estimation error disappears as the number of observations inside each cohort tends to

infinity.

To illustrate the quantitative implications of the model, we calibrate it, document its

quantitative properties, and compare them to the data. We show that the model produces

realistic risk premiums, return predictability, interest rate levels, and volatility, even though

consumption and dividends have small annual volatility. We also illustrate that the cross

sectional consumption variance has negligible volatility but follows a near-unit-root process,

consistent with the data.

We conclude the paper with a theoretical result that is meant to illustrate some of the

conceptual differences between representative-agent and heterogeneous-agent modeling of

long-run risks. Specifically, we show that in our model long-run fluctuations in individual

consumption growth may be caused by, rather than be causal for, asset-price fluctuations. To

this end we employ a variant of our model in which new company creation is endogenous and

reacts to current prices. We show that in such a model all uncertainty can arise endogenously,

due to coordinated shifts in agents’ anticipations of future discount rates, which manifest

themselves in asset-price fluctuations. These asset-price fluctuations lead to endogenous con-

sumption dynamics that justify the assumed anticipations, making the assumed expectation

of long run consumption changes self-confirming. Importantly, this result does not rely on

bubbles or money, the usual suspects for indeterminacy in overlapping generations models

and may obtain in an economy in which the average interest rate is higher than the growth

rate.
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1.1 Relation to the literature

The theoretical exercise of the paper is similar to Constantinides and Duffie (1996). Like

Constantinides and Duffie (1996), we show how to construct a process for inequality that

can help address asset pricing puzzles. However, our approach does not rely on volatile year-

over-year changes in dispersion, but rather on low frequency movements in cross-sectional

income and consumption dispersion.

The model we employ is a stochastic, endowment version of the Blanchard (1985) per-

petual youth model. The attractiveness of this framework is that it allows a meaningful

discussion of imperfect risk sharing across cohorts, but sidesteps the technical complica-

tions of more conventional overlapping generations models, where the wealth distribution

across different cohorts becomes a state variable.2 By sidestepping this complication, we can

tractably model a continuum of co-existing cohorts and continuous trading, while retaining

tractability.

Gârleanu et al. (2012) also use a perpetual youth model with stochastic fluctuations in

the labor income and profit shares shares of different cohorts. A shortcoming of Gârleanu

et al. (2012) is that there is no time-variation in the Sharpe ratio, equity premium, return

volatility etc. Moreover, the continuous-time limit of Gârleanu et al. (2012) would imply that

there is no finite-rate specification for the arrival of new wealth.3 This feature would imply

volatile short run changes in consumption cohort effects, a difficulty that we overcome in the

present model. In addition, we present a novel technique to empirically identify the impact

of redistributive shocks on the consumption growth of marginal agents using exclusively

cross-sectional data.

The paper also relates to the literature on long run risks, which was initiated by Bansal

and Yaron (2004). The point we make in this paper is complementary to Bansal and Yaron

(2004). We show that risk sharing imperfections may imply uncertain long run growth

rates for the marginal agent, even though aggregate consumption and dividends are both

2Indicative examples of such papers are Constantinides et al. (2002), Gomes and Michaelides (2005),
Storesletten et al. (2007), and Piazzesi and Schneider (2009). The literature on demographic shocks to asset
prices, which we don’t attempt to summarize here, is also (remotely) related to the present paper.

3The Gamma process, which that paper employs, is a discontinuous process in its continuous time limit.
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deterministic.4

There is a voluminous literature that utilizes time-, age- and cohort- decompositions in

repeated cross-sections. We do not attempt to summarize this literature here. One common

issue in that literature is that linear trends in time-, age-, and cohort- effects cannot be

separated. We contribute to that literature by showing that despite this issue, it is possible

to identify the consumption evolution of the “marginal agent” over a sample length that

is equal to the number of cohort dummies, rather than time-dummies. To the best of our

knowledge, this result is new, and its applicability extends beyond the specific asset pricing

application that we consider in this paper.

The last section of our paper relates to the literature on indeterminacy in overlapping

generations models. Even though there are numerous ways to obtain indeterminacy in macro

models, a distinguishing feature of our approach is that it does not require bubbles, money, or

increasing returns to scale. Rather, the mechanism relies on anticipations of future discount

rates, whose impact on cross-sectional inequality renders them self-sustaining.

2 Model

We present the baseline model in two steps. In a first step we lay out the assumptions of

the model assuming that agents have expected utility, logarithmic preferences. In a second

step we extend the analysis to recursive preferences.

2.1 Consumers

Time is continuous. Each agent faces a constant hazard rate of death λ > 0 throughout her

life, so that a fraction λ of the population perishes at each instant. A new cohort of mass λ

is born per unit of time, so that the total population remains at λ
∫ t
−∞ e

−λ(t−s)ds = 1.

Consumers maximize the utility they derive from their stream of consumption. In Sec-

tion 3.3, where we derive the main result, the preferences take the form of recursive utility

4A similar intuition is present in Kogan et al. (2016). The focus of our paper is different, however:
We utilize a simpler model, and focus on obtaining an in-depth understanding of both the theoretical and
empirical connections between the lack of inter-cohort risk sharing and asset pricing.
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with unitary intertemporal elasticity of substitution (IES). In Sections 3.1–3.2 we illustrate

our approach in the special case of logarithmic utility, i.e., consumers maximize

Es

[∫ ∞
s

e−ρ(t−s) log (ct,s) dt

]
, (1)

where s is the time of their birth and t is calendar time.

Consumers have no bequest (or gift) motives for simplicity.

2.2 Endowments

Following a long tradition in asset pricing, we consider an endowment economy. The total

endowment of the economy is denoted by Yt and evolves exogenously according to

Ẏt
Yt
≡ g, (2)

where g > 0. We intentionally model the aggregate endowment as a deterministic, constant-

growth process in order to isolate the effect of redistribution shocks.5 In this section we

specify how this aggregate endowment accrues to the agents populating the economy.

At birth, agents are of two types, to which we refer as “entrepreneurs” and “workers.”

Entrepreneurs are a fraction ε of the population. Per unit of time a mass λε of en-

trepreneurs is born. An entrepreneur born at time s introduces a new firm into the market,

whose time t > s dividends are equal toDt,s
λε

, where Dt,s is the total dividend stream accruing

to all firms born at time s and is given by

Dt,s = αYtη
d
se
−

∫ t
s η

d
udu (3)

for all t ≥ s. The term α ∈ (0, 1) is a constant, while ηdt ≥ 0 is assumed to follow a

non-negative diffusion

dηdt = µdtdt+ σdt dBt.

5Extending the analysis to allow for a more general aggregate endowment process is straightforward.
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Figure 1: Illustration of Dt,s for a constant ηdt .

In equation (3) we can interpret α as the fraction of output that is paid out as divi-

dends, and ηdse
−

∫ t
s η

d
udu ≥ 0 as the fraction of dividends accruing to firms of vintage s, since∫ t

−∞ η
d
se
−

∫ t
s η

l
ududs = 1 for any path of ηdt .

6 Accordingly, aggregating across firms of all

vintages gives

DA
t ≡

∫ t

−∞
Dt,sds = αYt

∫ t

−∞
ηse
−

∫ t
s η

l
ududs = αYt. (4)

Figure 2.2 illustrates the time-paths of dividends for firms of different vintages in the

simple case where ηdt = ηd is a constant. The figure shows that firms belonging to any given

cohort s account for a smaller and smaller fraction of aggregate dividends as time t goes by.

This is an empirically motivated feature of the model.

We note that even though we have specified the allocation of dividends as a primitive of

the model, such a specification would arise naturally in any standard creative destruction

6Specifically, this statement holds true for paths of ηdt satisfying
∫ t
−∞ ηdsds =∞. For the type of stochastic

processes that we shall consider for ηdt this property will hold almost surely.
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model where new firms embody ideas for producing consumption goods that are rivalrous to

previous firms.

We next turn to workers. The specification of workers’ endowments mirrors the one for

dividends and is a simple extension of the specification in Blanchard (1985). Specifically, per

unit of time a mass (1 − ε)λ is born. Accordingly, the time-t density of surviving workers

who were born at time s is given by lt,s = λ (1− ε) e−λ(t−s). The time-t endowment wt,s of a

worker who was born at time s ≤ t is given by

wt,s ≡
(1− α)Ytη

l
se
−

∫ t
s η

l
udu

lt,s
, (5)

where ηlt ≥ 0 is assumed to follow a non-negative diffusion

dηlt = µltdt+ σltdBt.

As with dividend income, the term ηlse
−

∫ t
s η

l
udu can be interpreted as the share of aggregate

earnings that accrues to the cohort of workers born at time s. Repeating the observations

we made earlier, we have

∫ t

−∞
wt,slt,sds = (1− α)Yt.

2.3 Markets

Markets are dynamically complete. Investors can trade in instantaneously maturing riskless

bonds in zero net supply, which pay an interest rate rt. Consumers can also trade claims

on all existing firms (normalized to unit supply). Finally, investors can access a market for

annuities through competitive insurance companies as in Blanchard (1985), allowing them

to receive an income stream of λWt,s per unit of time, where Wt,s is the consumer’s financial

wealth. In exchange, the insurance company collects the agent’s financial wealth when she

dies. Entering such a contract is optimal for all agents, given the absence of bequest motives.
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A worker’s dynamic budget constraint is given by

dWt,s = (rt + λ)Wt,sdt+ wt,sdt+ θt,s
(
dPt +DA

t dt− rtPtdt
)
, (6)

where Pt is the value of the market portfolio at time t and θt,s is the number of shares of the

market portfolio. Specification (6) assumes that the consumer trades only in shares of the

market portfolio, rather than individual firms. This is without loss of generality in our setup,

since all existing firms have identical dividend growth rates, and hence any firm (and any

portfolio of firms) must have the same return, otherwise there would be an arbitrage. So,

in order to save notation, we simply assume that the consumer trades shares of the market

index.

For a worker, Wt,t = 0. An entrepreneur’s dynamic budget constraint is identical, except

that the term wt,s is replaced by zero and the initial wealth Wt,t is given by the value of the

firm that the entrepreneur creates.

2.4 Equilibrium

The equilibrium definition is standard. We let cet,s (resp. cwt,s) denote the time-t consumption

of an entrepreneur (resp. worker) born at time s and θet,s (θwt,s) her holding of stock. With

ct,s = εcet,s + (1− ε) cwt,s the per-capita consumption of cohort s and, similarly, θt,s = εθet,s +

(1− ε) θwt,s, we look for consumption processes, asset allocations θt,s, asset prices Pt,s, and

an interest rate rt such that a) consumers maximize (1) subject to (6), b) the goods market

clears, i.e., λ
∫ t
−∞ e

−λ(t−s)ct,s = Yt, and c) assets markets clear, i.e.,
∫ t
−∞ λe

−λ(t−s)θt,sds = 1

and
∫ t
−∞ λe

−λ(t−s)(Wt,s − θt,sPt)ds = 0.

Once we have determined the market-clearing price of the market index Pt, it is straight-

forward to determine the price of any individual firm by the absence of arbitrage. Since

all existing stocks experience the same dividend growth rates, their price-to-dividend ratios
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must be the same and therefore7

Pt,s = Pt
Dt,s

DA
t

= Ptη
d
se
−

∫ t
s η

d
udu.

3 Solution and Analysis

This section contains the theoretical results of the paper. This section mirrors the spirit of

the exercise performed in Constantinides and Duffie (1996). Similar to Constantinides and

Duffie (1996), we establish the existence of share processes ηlt and ηdt that can support given

processes for the asset pricing quantities as equilibrium outcomes.

The section is divided into four subsections. In subsection 3.1 we derive, under the

logarithmic-preference assumption, a key relation linking the processes ηdt and ηlt to the

dynamics of the price-dividend ratio, which we denote by q. We use this relation in subsection

3.2 to establish the existence of processes ηdt and ηlt that can support any given process for

q as an equilibrium outcome. In subsection 3.3 we enrich the setup to allow for recursive

preferences and show how to obtain any (joint) dynamics for the price-dividend ratio and

the market price of risk (Sharpe ratio) in equilibrium.

Besides providing a comprehensive mapping from assumptions on ηlt and ηdt to the equi-

librium processes for the price-dividend ratio and the market price of risk, the propositions

of this section have a practical implication: They can help determine the functional forms

to assume for the diffusions ηdt and ηlt to ensure a given (closed-form) expression for the

price-dividend ratio and the Sharpe ratio. We illustrate this statement with two examples.

The last subsection (3.4) concludes with a discussion of the implications of the model

for the joint dynamics of inequality and asset prices and highlights the differences of our

framework from the literature.

7We note in passing that the market-clearing condition
∫ t
−∞ λe−λ(t−s)θt,sds = 1 directly implies that the

price Pt,s′ clears the market for stocks of vintage s′ for any s′. Indeed, by holding the market portfolio a

consumer born at time s allocates a weight equal to wt,s′ = ηds′e
−

∫ t
s′ η

d
udu to stocks of vintage s′ , and hence

holds
wt,s′Wt,s

Pt,s′
shares of firm s′. Aggregating accross consumers and noting that wt,s′ =

Pt,s′

Pt
implies that∫ t

−∞ λe−λ(t−s)
(
wt,s′Wt,s

Pt,s′

)
ds =

∫ t
−∞ λe−λ(t−s)Wt,sds

Pt
= 1.
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3.1 Logarithmic utility

We start by conjecturing that in this economy investors’ consumption processes are locally

deterministic and since agents have expected utility preferences, there are no risk premia

and the equilibrium stochastic discount factor mt follows the dynamics

dmt

mt

= −rtdt,

for an interest rate process that will be determined in equilibrium. (In subsection 3.3 we

allow agents to have recursive preferences, and show that the stochastic discount factor

exhibits a positive market price of risk). We employ the following definition.

Definition 1 Let qdt,s denote the ratio of the present value of the dividend stream Du,s to the

current dividend:

qdt,s ≡
Et
∫∞
t

mu
mt
Du,sdu

Dt,s

. (7)

Similarly, we define the respective valuation ratio for earnings, qlt,s:

qlt,s ≡
Et
∫∞
t
e−λ(u−t)mu

mt
wu,sdu

wt,s
. (8)

Remark 1 Both qdt,s and qlt,s are independent of s, since Du,s
Dt,s

and wu,slu,s
wt,slt,s

are not functions

of s. Accordingly, we shall write q·t instead of q·t,s.

We will refer to qdt as the price-to-dividend ratio. We note the following simplification

due to unitary IES.

Lemma 1 Let β ≡ ρ+ λ. In any (bubble-free) equilibrium,

αqdt + (1− α) qlt =
1

β
. (9)

Equation (9) is intuitive. It states that the sum of the present values of all dividend

income accruing to existing firms
(
qdtαYt

)
and all earnings accruing to existing agents
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(
qlt (1− α)Yt

)
equals the present value of the aggregate consumption of existing agents (Ct

β
).

By Lemma 1, qlt can be expressed as a simple (affine) function of qdt . Therefore, from now

on we shall concentrate our efforts on determining qdt and we’ll simplify notation by writing

qt instead of qdt .

The goal of this section is to solve for the equilibrium quantities rt and, especially, qt as

functions of the input variables ηdt and ηlt. The result to take away is Lemma 4, which we

use in the next subsection to provide an answer to the main question of the paper, namely

the construction of a mapping from the dynamics of qt to those of ηdt and ηlt. The remainder

of the subsection works towards establishing Lemma 4.

Applying Ito’s Lemma to (7) yields the drift of the diffusion process qt as8

µq,t ≡
(
rt − g + ηdt

)
qt − 1. (10)

Equation (10) is an arbitrage relation between stocks and bonds. After some re-arranging,

it states that the expected percentage capital gain on stocks, µq
q

, plus the dividend yield, 1
q
,

minus the depreciation (or appreciation) rate ηd − g, should equal the interest rate r.

The drift of qt depends on the equilibrium interest rate rt. To determine this equilibrium

interest rate, we proceed in three steps.

First, the Euler equation for agents with log preferences implies that the consumption

dynamics of any agent are given by9

ċt,s
ct,s

= − (ρ− rt) , (11)

which also implies that ċt,s
ct,s

is independent of s.

Second, as we show in the appendix, the market clearing condition for aggregate con-

8To see this, note that (7) implies that mtq
d
t,sDt,s +

∫ t
−∞muDu,sdu must be a martingale, and hence the

drift of this expression must be zero.
9For a derivation of the Euler equation in our perpetual youth model we refer to Gârleanu and Panageas

(2015).
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sumption implies that the consumption growth of an existing agent equals

ċt,s
ct,s

= g + λ− λct,t
Yt
, (12)

which is very intuitive: the growth in consumption to an existing agent consists of the

growth in aggregate consumption (g), plus the consumption share that perishing agents do

not consume (λ), minus the consumption shares accruing to newly born agents (λct,t/Yt).

Finally, the intertemporal budget constraint at the time of a consumer’s birth leads to:

Lemma 2 Let ϕt ≡ ηdt − ηlt. The arriving agents’ consumption is given by

ct,t
Yt

=
β

λ

(
(1− α) ηltq

l
t + αηdt q

d
t

)
(13)

=
1

λ

(
ηlt + αβqtϕt

)
. (14)

Equation (13) states that the per-capita consumption of an arriving cohort of agents is

given by the consumption-to-wealth ratio for an investor with unit elasticity of substitution,

β, multiplied by the sum of the per-capita value of new firms, αηdt qtYt, and the cohort’s

present value of labor income at birth, (1− α) ηltq
l
tYt. Equation (14) follows from Lemma 1.

Combining equations (11), (12), and (14) leads to

Lemma 3 The equilibrium interest rate is given by

rt = β + g − ηlt − αβϕtqt. (15)

Unlike in a representative-agent economy, where the interest rate would be constant and

equal to ρ + g, in our economy the interest rate is stochastic, since ϕt, η
l
t, and qt are all

random. This is due to the fact that even though aggregate consumption is deterministic,

any given agent’s consumption has random drift.

Having solved for the equilibrium interest rate, we can now substitute (15) into (10) to

obtain the following important result.
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Lemma 4 The drift of q is given by

µq,t = (β + ϕt) qt − βαϕtq2
t − 1. (16)

Equation (16) is central for our purposes, since it encapsulates all the equilibrium re-

quirements that our model places on the drift of the price-dividend ratio. Indeed, it is the

main equation that we use to prove the main results of the paper.

3.2 Obtaining a process for qt as an equilibrium outcome

In this section we ask whether, taking two functions f and σ as given, one can specify a

Markovian diffusion for ϕt = ηdt − ηlt such that the equilibrium process for qt is given by

dqt = f (qt) dt+ σ (qt) dBt. (17)

We leave some technical details for the appendix, and present here the main argument,

followed by an illustrative example and a general proposition.

Any process ϕt that supports (17) as an equilibrium must satisfy equation (16) with

µq,t = f (qt). We use this equation to define a function ϕ that relates ϕt to qt:

ϕt = ϕ (qt) =
1− βqt + f (qt)

qt (1− βαqt)
. (18)

We assume that ϕ thus defined is a strictly decreasing function, so that its inverse exists.

(We note that simple differentiation of (18) shows that ϕ decreases for q ≤ 1
2

1
αβ

. Hence,

setting qmax < 1
2

1
αβ

, or choosing a function f that has a sufficiently negative first derivative,

will ensure that ϕ is strictly decreasing.)

The dynamics of the process ϕt are easily written as an application of Ito’s Lemma.
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Important, the argument qt equals ϕ−1(ϕt), so that ϕt follows as Markov process:

dϕt = ϕ′
(
ϕ−1 (ϕt)

)(
f
(
ϕ−1 (ϕt)

)
+

1

2
σ2
(
ϕ−1 (ϕt)

)ϕ′′ (ϕ−1 (ϕt))

ϕ′ (ϕ−1 (ϕt))

)
︸ ︷︷ ︸

≡µϕ(ϕt)

dt

+ ϕ′
(
ϕ−1 (ϕt)

)
σ
(
ϕ−1 (ϕt)

)︸ ︷︷ ︸
≡σϕ(ϕt)

dBt. (19)

Equation (19) provides the answer to the question that we posed at the outset. Specifi-

cally, if we started out with the primitive assumption that ϕt follows the Markov diffusion

dϕt = µϕ(ϕt)dt+ σϕ(ϕt)dBt, (20)

with µϕ(ϕt) and σϕ(ϕt) defined in equation (19), then — by construction — the equilibrium

dynamics of the price-dividend ratio are given by (17).

Before stating a formal general result, we illustrate the above ideas with a concrete

example that allows closed-form expressions for the functions ϕ and ϕ−1.

Example 1 Suppose that the targeted valuation ratio is given by qt = a1 + a2xt, where

dxt = (−v1xt + v2 (1− xt)) dt− σx
√
xt (1− xt)dBt (21)

and a1, a2, v1, v2, and σx are positive constants. It is known (see, e.g., Karlin and Taylor

(1981), p. 221) that xt has support in [0, 1] as long as v1 and v2 are larger than σ2
x

2
.

In this example, equation (18) becomes

ϕ (qt) =
1− βqt + a2v2 − (v1 + v2) (qt − a1)

qt (1− βαq)
=

1− β(a0 + a1xt) + a2v2 − a2 (v1 + v2)xt
(a1 + a2xt) (1− βα(a1 + a2xt))

.

The second equality above provides the dynamics of ϕt that support the price dividend ratio

qt = a1 + a2xt as an equilibrium function.

The price-dividend ratio (i.e., the inverse function qt = ϕ−1(ϕt) can be computed from
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the first equality as

ϕ−1 (ϕt) =
1

2βα

ϕt + β + v1 + v2

ϕt
−

√(
ϕt + β + v1 + v2

ϕt

)2

− 4βα

ϕt
(1 + a2v2 + α1 (v1 + v2))

 .

Using the above expression for ϕ−1 (ϕt) inside (19) allows us to express ϕt as a (Markovian)

stochastic differential equation for ϕt that supports qt = a1 + a2xt as an equilibrium process

for the price-dividend ratio.

The following proposition provides the general result.

Proposition 1 Suppose that technical Assumption 1 in the appendix is satisfied, and that

ϕ (q) in equation (18) is decreasing. Then the equilibrium stochastic process for qt is given

by (17) if, and only if, ϕt follows the (Markovian) dynamics (19). Moreover, qt is stationary

and takes values in [qmin, qmax].

Proposition 1 states that one can support a wide range of diffusions for qt as an equilibrium

outcome, even though aggregate consumption and dividends are both deterministic. A

technical assumption is offered in the appendix to ensure a stationary distribution for qt

supported by [qmin, qmax].

We conclude with two remarks. First, the process ϕt that supports a given equilibrium

stochastic process for qt is unique. Second, the process qt only determines ϕt = ηdt − ηlt.

The individual processes ηdt and ηlt can be chosen freely as long as their difference obeys the

dynamics (19). For instance, one choice is to set ηlt = ηl = ϕ (qmax) and ηdt = ηl + ϕt.

3.3 Recursive preferences and risk premiums

The central purpose of the previous section is to illustrate our approach to reverse engineering

the redistribution processes ηd and ηl to obtained desired asset-pricing implications. In

the context of the expected-utility model, these implications are subject to an important

limitation: Any agent’s consumption is locally deterministic and so is their marginal utility,

and therefore the market price of risk in this economy is zero.
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Since the market price of risk is an equilibrium quantity of central importance to the

determination of asset prices, in this section we allow for recursive preferences and show

how to support any given dynamics for the price-dividend ratio and the market price of risk

jointly. The construction of the appropriate processes ηdt and ηlt is conceptually quite similar

to the construction in the previous section. Hence, in order to avoid repetition, we simply

state the main results and refer the reader to the appendix for the derivations.

We start by introducing the more general preferences needed for a non-zero risk pre-

mium. Specifically, we continue to assume that investors have unit intertemporal elasticity

of substitution, but allow for a risk aversion higher than one. In mathematical terms, taking

into account the consumer’s death probability, her instantaneous utility flow is given by the

aggregator

f (ct,s,Vt,s) = βγVt,s
(
log (ct,s)− γ−1 log (γVt,s)

)
, (22)

in that

Vt,s = Et

[∫ ∞
t

f (cu,s, Vu,s) du

]
. (23)

Here, Vt,s is a consumer’s value function and γ < 0 is a parameter that controls the risk

aversion of the investor. Utilities of this form are introduced and discussed extensively in

Duffie and Epstein (1992). They correspond to the continuous-time limit of Epstein-Zin-Weil

utilities with unit elasticity of substitution.

Since markets are dynamically complete for existing agents, the hazard rate of death is

constant, and their preferences continue to be homothetic, it follows that ċt,s
ct,s

is independent

of the cohort s to which the consumer belongs. Accordingly, equation (12) continues to

hold and so do Lemmas 1 and 2, which follow from agents’ budget constraints. Therefore,

combining (12) with Lemma 2 yields

ċt,s
ct,s

= λ+ g − νt (24)
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where νt, the fraction of consumption accruing to new agents, is defined as

νt ≡ (1− αβqt)ηlt + αβqtη
d
t = ηlt + αβqtϕt, (25)

with ϕt defined in Lemma 2. By Lemma 1, it follows that αβqt ∈ [0, 1] and hence νt is a

convex combination of ηlt and ηdt . Since ċt,s
ct,s

is independent of s, we shall henceforth write ċt
ct

.

The only object that changes when agents have recursive preferences is the stochastic

discount factor, described by the following result.

Lemma 5 Define the process Zt as the solution to the backward stochastic differential equa-

tion

Zt ≡ Et

∫ ∞
t

e−β(u−t)
(
γ

(
ċu
cu

)
+

1

2
σ2
Z,u

)
du, (26)

where σZ,t is the volatility of Zt. Then the stochastic discount factor evolves according to

dmt

mt

= −rtdt− κtdBt,

where rt, the interest rate in this economy, continues to be given by equation (15), while κt

is the market price of risk in this economy and is given by κt = −σZ,t.

Recursive preferences imply a risk premium. Intuitively, a risk premium arises because

investors worry not only about the immediate impact of redistribution risks, but also about

the long run impact of these risks on their consumption. This long run impact is captured

by the definition of Zt and the magnitude of the market price of risk (or Sharpe ratio) κt

reflects the volatility of Zt.

We next ask a question similar to the one we asked in the previous subsection. Is it

possible to choose diffusion processes for ηlt and ηdt to support given stock-market dynamics

(q) and given dynamics of the Sharpe ratio (κ)?

To provide an answer to this question, we proceed as in the previous section. Specifically,

we fix functions fZ , σZ , fq, and σq and intervals [Zmin, Zmax] and [qmin, qmax] and try to

determine a (vector) Markov process (ηlt, η
d
t ) such that the equilibrium process Zt — to target
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a particular Sharpe ratio κ, all we need is that the process Zt have volatility σZ (Zt) = −κt
— has support in [Zmin, Zmax] and follows the dynamics

dZt = fZ (Zt) + σZ (Zt) dBt, (27)

while the process for qt has support in [qmin, qmax] and follows the dynamics

dqt = fq (qt) + σq (qt) dBt. (28)

As we show in the appendix, the equilibrium dynamics of Zt and qt obey equations (27)

and (28) when and only when the functions fZ and fq satisfy the relations

fZ (Zt) = βZt + γνt −
1

2
σ2
Z(Zt)− γ(λ+ g) (29)

fq (qt) = (β + ϕt) qt − βαϕtq2
t − 1− σZ(Zt)σq(qt). (30)

Comparing the right-hand sides of (30) and (16) shows that the two expressions are identical,

except for the last term in equation (30) which captures the presence of an equity premium.

Solving for ν from equation (29) and for ϕ from equation (30) leads to

ν(Z) =
1

γ

(
fZ (Z) +

1

2
σ2
Z(Z)− βZ

)
+ λ+ g, (31)

ϕ (q, Z) =
1− βq + fq (q) + σZ (Z)σq (q)

q (1− βαq)
. (32)

Once again, we wish to be able to invert this mapping, which we can do under the

conditions given in the following lemma.

Lemma 6 Suppose that dν
dZ

> 0 for all Z ∈
[
Zmin, Zmax

]
and also ∂ϕ

∂q
< 0 for any Z ∈[

Zmin, Zmax
]

and q ∈
[
qmin, qmax

]
. Then the mapping (31)–(32) is invertible.

Given invertibility, we obtain, from Ito’s Lemma, two (jointly Markov) diffusion processes

for νt and ϕt that support (29) and (30) as equilibrium outcomes. The values of ηdt and ηlt
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follow easily as solutions to the linear 2× 2 system ϕt = ηdt − ηlt and equation (25):10

ηdt = νt + (1− αβqt)ϕt (33)

ηlt = νt − αβqtϕt. (34)

We record the formal result:

Proposition 2 Consider intervals [qmin, qmax] ⊂
(

0, 1
αβ

)
and

[
Zmin, Zmax

]
and continuous

functions fZ, fq, σZ, and σq such that the assumptions of Lemma 6 hold. Then if (and only

if) νt follows the (Markovian) dynamics (79) in the Appendix and the analogous ones for ϕt,

the equilibrium stochastic process for Zt and qt are given by the diffusions (27) with support[
Zmin, Zmax

]
and (28) with support [qmin, qmax].

The main goal of Proposition 2 is to provide an explicit mapping between assumptions

on the share processes ηdt and ηlt and the resulting diffusion processes for the Sharpe ratio

and the price-to-dividend ratio. The restrictions placed on these latter two processes by the

assumptions of Lemma 6 are rather mild and in practical applications amount to simple

parametric restrictions, as the next example illustrates.

Example 2 Suppose that xt follows the process (21) and that we wish to obtain Zt = b1+b2xt

and qt = a1 + a2xt as equilibrium outcomes with b1 = γ
β
(λ + g) and some constants a1 > 0,

a2 > 0, and b2 < 0.

In that case equation (31) implies

νt =
1

γ

(
b2v2 − (v1 + v2) (Zt − b1) +

σ2
x

2
(Zt − b1) (b2 + b1 − Zt)− β(Zt − b1)

)
(35)

=
b2

γ

(
v2 − (v1 + v2)xt +

b2σ
2
x

2
xt(1− xt)− βxt

)
. (36)

10A possible issue with (33) and (34) is that ηdt and ηlt could be negative. In that case redefine νt as νt+L,
where the constant L is large enough to ensure that the resulting values for ηdt and ηlt are both non-negative.
(Such a value always exists, because νt and ϕt are continuous functions of Zt, qt, which take values on a
bounded set, so that ηdt and ηlt are bounded below). Since the volatility of Zt is unaffected, simply increasing
ηdt and ηlt by L supports an equilibrium with the same dynamics for qt and the Sharpe ratio.
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We require

v1 + v2 +
b2σ

2
x

2
+ β > 0

so that the right hand side of (35) decreases in Zt for all Zt ≥ b1 + b2, so that the inverse

function Zt = ν−1 (νt) exists, and νt can be written as a (Markovian) stochastic differential

equation.11 With this specification the Sharpe ratio is given by |b2|
√
xt(1− xt).

The dynamics of ϕt that generate qt = a1 + a2xt follow from equation (32), namely

ϕt =
1− βqt + a2v2 − (v1 + v2) (qt − a1) + b2

a2
σ2
x(qt − a1) (a1 + a2 − qt)

qt (1− βαqt)
(37)

=
1− β(a1 + a2xt) + a2v2 − a2 (v1 + v2)xt + a2b2σ

2
xxt(1− xt)

(a1 + a2xt) (1− βα(a1 + a2xt))
(38)

We assume that parameters are such that the right-hand side of (37) is decreasing in

qt, so that the relation between ϕt and qt is invertible. Accordingly, ϕt can be written as a

(Markovian) stochastic differential equation.12 We note here that a2b2 < 0 means that the

Sharpe ratio is negatively related to the price-dividend ratio.

As a final remark, we note that we have assumed throughout that Zt and qdt (and by

implication ηdt and ηlt) are driven by the same Brownian motion. It is straightforward to

extend the analysis to allow Zt and qdt to be driven by separate Brownian motions with some

correlation coefficient ρ.13

11Its inverse is given by

Zt = ν−1 (νt) = b1 +

σ2
x

2 b2 − v1 − v2 − β +

√(
v1 + v2 + β − σ2

x

2 b2

)2

+ 2σ2
x

(
b2v2 − γ

β νt

)
σ2
x

.

Using the same steps as the ones we used to arrive at (19), one can derive the stochastic differential equation
for dνt.

12A sufficient condition is that v1 + v2 + b2σ
2
x + β > 0 and a1 + a2 <

1
2αβ .

13The only modification required in that case is that the term σZσq in equations (30) and (32) needs to
be changed to ρσZσq. As a result, equation (37) in Example 2 would feature Z on the right-hand side, as
well, so that qt follows as a function of both ϕ and Z, and therefore ϕ and ν.
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3.4 Relation to the literarure

Proposition 2 is a “possibility” result, similar to the one provided in Constantinides and

Duffie (1996). It shows that the model is –at least in principle– able to produce a wide range

of dynamics for the price-dividend and the Sharpe ratio despite constant consumption and

dividend growth.

It is an empirical matter to establish whether the share processes ηlt and ηdt that are re-

quired to reproduce the empirically observed asset pricing moments are empirically plausible

or not. We address this question in the next section.

Before proceeding, we conclude this section with two observations about how this model

differs from Constantinides and Duffie (1996). One obvious difference is that we do not

require independent innovations to the stochastic discount factor, and show how to accom-

modate instead a Markovian structure.

The more important difference between the two models (and indeed to many other models

of heterogeneous agents) pertains to the dynamic behavior of inequality. To see this, it is

useful to define the cross-sectional variance of log consumption as

Gt = λ

∫ t

−∞
e−λ(t−s)

(
log (ct,s)− λ

∫ t

−∞
e−λ(t−u) log (ct,u) du

)2

ds.

Time-differentiating Gt we obtain the following dynamics

dGt = −λGtdt+ λ

(
log (ct,t)− λ

∫ t

−∞
e−λ(t−u) log (ct,u) du

)2

dt (39)

An immediate implication of the above equation is that Gt is a locally deterministic process,

i.e. has no diffusion component. Accordingly, when integrated over short periods of time (say

a quarter or a year), this process will appear substantially less volatile than asset returns

and will exhibit an essentially zero correlation with asset returns. Inspection of the first

term on the right hand side of (39) shows that the process Gt is quite persistent, since it

mean-reverts at the rate λ, the rate of population death. By contrast, the mean reversion of

the price-to-dividend ratio need not be λ, that is the price-dividend ratio may exhibit faster
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mean reversion than the cross-sectional variance of log consumption. This is an attractive

feature of this model, since measures of inequality in the data tend to exhibit small year-

over-year changes, but near unit root persistence. We also note that this dynamic behavior

of inequality is qualitatively different from other models of heterogeneous agents as well

(such as Gârleanu and Panageas, 2015): In these models there is strong contemporaneous

correlation between asset returns and cross sectional inequality, which is absent here.

4 Empirical Implications

The discussion so far was focused on the theoretical possibility of supporting some given

dynamics for the price-to-dividend ratio and the market price of risk as equilibrium outcomes.

In the process, we derived a practical method for determining the functional forms for the

dynamics of the share processes that result in closed form dynamics for the price-dividend

ratio and the Sharpe ratio.

In this section we show how to measure these share processes in the data and illustrate

some basic qualitative implications of the model. Specifically in section 4.1 we show how to

measure ηdt using stock market data and in section 4.2 we show how to measure νt (which is

a convex combination of ηdt and ηlt) using cross-sectional consumption data.

In section 5 we calibrate the dynamics of the processes ηdt and νt so as to match their

empirical counterparts and examine the resulting asset price dynamics.

4.1 The measurement of ηdt

A straightforward empirical proxy for ηdt implied by the model is the ratio of the market

value of additions to the market index to the total market value of the index:

ηdt =
Dt,t

Dt

=

Market cap

of new additions︷︸︸︷
Pt,t
Pt︸︷︷︸

Total market cap

. (40)
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Figure 2: Total real logarithm of S&P 500 dividends per share, real log-aggregate consumption and
real log-aggregate dividends. The CPI is used as a deflator for all series. The line “Index Dividends
+ New Cap” is equal to real log-dividends per share plus the cumulative (log) gross growth in the
shares of the index that are due to the addition of new firms. Sources: R. Shiller’s website, FRED,
Personal Dividend Income series, and CRSPSift.

This is the measure that we use for our calibration exercise. (We provide further details

in section 5).

As a parenthetical remark, we find it interesting to illustrate an implication of the model

in the data. Specifically, we note that according to the model ηdt is also the discrepancy

between aggregate dividend growth and the dividend growth rate of the market portfolio:

ηdt =
ḊA
t

DA
t︸︷︷︸

Aggregate

dividend growth

−
∫ t

−∞
πs
Ḋt,s

Dt s

ds︸ ︷︷ ︸
Dividend growth of a

self-financing strategy

, (41)

where πs is the set of market weights (or any weights integrating to one for that matter).

Figure 2 illustrates equation (41) in the data. The solid line in the figure depicts the (log)

dividends of the S&P 500 since its inception. The figure also depicts the National Income and

Product Account (NIPA) aggregate consumption series and NIPA aggregate dividend series.
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The figure suggests that aggregate dividends and aggregate consumption are co-trending,

while the index dividends appear follow a markedly slower growth path. If, however, we add

the percentage increase of the market capitalization of the index that is due to additions

every year (the right hand side of equation (40)) to the series labeled “index” dividends, we

obtain a series that is very close to the aggregate NIPA dividend series, consistent with the

implication of equations (40) and (41).14

4.2 Cohort effects and the measurement of νt

The origin of a positive market price of risk in this model is that a given individual “marginal

agent’s” consumption growth ( ċt,s
ct,s

) differs from aggregate (per capita) consumption growth.15

To summarize, the main difference between the two concepts is that the first concept follows

the consumption growth of a given cohort, whereas the second concept aggregates everyone’s

consumption at each point in time and follows the consumption growth of that aggregate.

In this subsection we wish to i) provide a way to measure the consumption growth of the

marginal agent and examine its statistical properties, ii) show that the discrepancy between

marginal and per capita consumption growth is largely independent from fluctuations in

aggregate per capita consumption growth, and iii) to provide support for the relation between

the behaviour of the real (expected) interest rate and marginal agent consumption growth.

We start with some notation. Specifically, we define aggregate consumption as

CA
t =

∫ t

−∞
Λ (t, s) ct,sds, (42)

where Λ (t, s) is the surviving time-t population measure that was born at time s. In the

model Λ (t, s) = λe−λ(t−s) in order to simplify the model. However, for measurement purposes

we will allow a general Λ (t, s).

Letting ωt,s = Λ(t,s)ct,s
CAt

denote the time-t consumption share of cohort s, time-differentiating

14Some discrepancies arise because aggregate dividends is based on NIPA data, which include listed and
non-listed companies.

15Inside the model aggregate and per capita consumption growth are identical, since population is constant.
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(42), and re-arranging gives

∫ t

−∞
ω (t, s)

dct,s
ct,s

ds =
dCA

t

CA
t

−
∫ t

−∞
ω (t, s)

dΛ (t, s)

Λ (t, s)
ds− ω (t, t) dt. (43)

We note that for measurement purposes we will allow aggregate consumption (and marginal

agent consumption) to follow a general stochastic process, which may not be time-differentiable

(such as a diffusion). (This is reflected in the notation dCA
t rather than ĊA

t dt and dct,s rather

than ċt,sdt.)

As mentioned above, the main insights of the paper rely on the fact that that marginal-

agent consumption growth
∫ t
−∞ ω (t, s) dct,s

ct,s
ds differs from aggregate consumption growth

dCAt
CAt

. In the remainder of this section, we wish to use only a minimal part of the model

structure in order to measure this discrepancy in the data. The main challenge with this

measurement is that while there is long time-series (NIPA) data on aggregate consumption

growth
dCAt
CAt

and (life-table) data on Λ (t, s) , there is no long time series data on ct,s. (Cross

sectional consumption data starts from the eighties onwards).

In order to overcome this problem we use the structure of the model. The Euler equation

ċt,s
ct,s

= rt − ρ implies that consumption can be written in the form

log ct,s = As︸︷︷︸
“cohort effect”

+ Lt︸︷︷︸
“time effect”

+ Gt−s︸︷︷︸
“age effect”

. (44)

Inside the model, these components equal to Lt =
∫ t
rudu, As = log cs,s − Ls, Gt−s =

−ρ(t− s). However, a time-, age-, and cohort- decomposition of the form (44) is not special

to this model. It would readily extend to a wide class of models that imply risk sharing

across the cohorts of agents that are marginal at each point in time.

Equation (44) makes it possible to use exclusively cross sectional data to reconstruct a

path of the discrepancy between “marginal-agent consumption growth”
∫ t
−∞ ω (t, s) dct,s

ct,s
ds

and aggregate consumption growth. The following Lemma shows how:

Lemma 7 Assume that there exist processes As, Lt and a function of age Gt−s so that log ct,s
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is given by (44). Define

Ft ≡
∫ t

−∞
Λ (t, s) eAs+Gt−sds. (45)

Then we have the following relations

∫ t

−∞
ω (t, s)

dct,s
ct,s

ds−
∫ t

−∞
ω (t, s) dGt,s = dLt =

dCA
t

CA
t

− dFt
Ft

(46)

Corollary 1 If dGt−s = −ρdt then

∫ t

−∞
ω (t, s)

dct,s
ct,s

ds = dLt − ρdt

Lemma 7 suggests an indirect approach of inferring the time effects Lt, which capture the

common, age independent variation in the consumption growth of all marginal agents: Fix

two times t and t− 1 (say this year and last year) and suppose that the econometrician has

information about the consumption of cohorts born at times s = t, .t − 1, ..t − T, ..etc. At

first pass, it would seem impossible to measure a time series of the time-effects Lt; it would

seem that for such a task the econometrician would need to have as many cross sections as

the time dummies that she wishes to estimate. Lemma 7 circumvents this problem by using

estimates on a sequence of cohort dummies As and age effects Gt−s, s = t, .t−1, ..t−T, ..etc.

(which can be estimated with as many as two cross sections) to infer a whole time series path

of Lt . Specifically, with estimates of the cohort and age dummies, one can easily compute

a time series of Ft,Ft−1, Ft−2, ... by using the discrete time approximation

Ft =
∑

s=−∞...t

Λ (t, s) eAs+Gt−s ,

Ft−1 =
∑

s=−∞...t−1

Λ (t− 1, s) eAs+Gt−1−s , ..., etc.

Assuming that the econometrician also has access to a time series of aggregate consumption

data, it becomes now possible to utilize the second equality in (46) to reconstruct the path

of Lt.
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We conclude with two remarks.

First, we note that the quantity dFt
Ft

can only be identified up to an additive constant.

The reason is that time-, age-, and cohort- effects can only be identified up to a linear term

in the data, i.e., the data do not allow one to separate the model of equation (44) from the

alternative model

log ct,s = As + χs︸ ︷︷ ︸
modified cohort effect

+ Lt − χt︸ ︷︷ ︸
modified time effect

+Gt−s + χ (t− s)︸ ︷︷ ︸
modified age effect

,

where χ is an arbitrary constant. Because of this reason dFt
Ft

in equation (83) and dLt can

only be identified up to an additive constant.16 This is not a major obstacle for our purposes,

since we are interesting in the time-variation rather than the level of dLt.

Second, we note that inside our model the variation in the time effects dLt would coincide

with marginal agent consumption growth
∫ t
−∞ ω (t, s) dct,s

ct,s
ds, up to an additive constant (see

corollary 1). When we estimate the model in the data, however, we do not impose that age

effects are simply given by a linear trend; we estimate them without restriction. Lemma 7

shows how to infer dLt for arbitrary estimates of age effects. One issue that arises when

age effects are not simply a linear function of age is that each cohort will experience both a

(stochastic) common variation in its consumption but also a (determinisitic) age variation.

Hence forth we will focus exclusively on dLt as our measure of marginal agent consumption

growth, since in our model variations in the investment opportunity set are related to the

common, stochastic changes in consumption growth 17 We note in passing that for the results

16As we show in the appendix dFt
Ft

=
∫ t
−∞ ωt,s

(
dΛ(t,s)
Λ(t,s) + dGt−s

)
ds + ωt,tdt, and since dGt−s is available

only up to an additive constant, dFtFt is only availble up to an additive constant.
17If we were to extend our model by introducing an age-specific subjective discount factor ρt−s we would

simply modify the Euler relation to
ċt,s
ct,s

= r − ρt−s. Upon integrating we obtain the following time-, age-,

and cohort- decomposition:

log ct,s = log cs,s −Ms︸ ︷︷ ︸
Cohort Effect As

+ Mt︸︷︷︸
Time effect Lt

−
∫ t−s

0

ρudu︸ ︷︷ ︸
Age Effect Gt−s

, (47)

where Mt =
∫ t
rudu. The introduction of age effects does not change the relation between Lt and the

(integrated) interest rate Mt.
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Figure 3: Left plot: Yearly per capita consumption growth of the marginal agent ∆Lt = ∆ logCAt −
∆ logFt (left scale) and yearly per capita consumption growth ∆ logCAt −∆ logNt, (right scale).
Right plot: Same plot, but for 10-year moving averages of consumption growth.

we present next, it makes essentially no difference whether we add
∫ t
−∞ ω (t, s) dGt,s to dLt

or not.

We next describe briefly the data and how we implement our measurement procedure.

We relegate a more detailed description of the data, the sample choice, and the estimation

procedure to the appendix.

To compute dLt from equation (46) we need data on aggregate consumption growth
dCAt
CAt

,

population of different cohorts at different points in time Λ (t, s), and finally cross sectional

consumption data to estimate the cohort effects As and the age effects Gt−s.

Our measure of aggregate consumption growth is from the National Income and Product

Accounts (NIPA). We use the consumption of services and non-durables, deflated by the

respective deflators. We use annual data (since 1929), as our cohort and age effects can

only be measured at annual frequency. For most of our illustrative results we focus on the

post-1950 part of the sample, simply because consumption data tend to be less volatile post

world war II. However, for the econometric results of table 1, we use the full sample.

The demographic life table data Λ (t, s) , is from the census. For the cross sectional con-

sumption data we use the Consumer Expenditure survey (CEX). We used the data processed
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and compiled by John Sabelhaus (as available on the NBER website) from 1980 to 2003 and

then extended that data to the latest available cross section (2016). As is common in the

literature, we included only households that completed all the four surveys. We chose to

include incomplete income respondents. (However, whether we include or drop incomplete

income respondents does not matter for the results we report). For our measure of age we

used the age of the reference person at the initial CEX interview, and defined “cohort s” as

the set of people who were 20 years old at time s. For our expenditure measure, we made

similar choices as Sabelhaus. To cross-validate our consumption measures, we used the time

period from 1996 to 2003, where the Sabelhaus dataset and our data overlap. The estimated

cohort and age effects we obtained for either sample were essentially the same. The appendix

contains further details on the computations.

Figure 3 plots the estimated consumption growth of marginal agents ∆Lt = ∆ logCA
t −

∆ logFt, where ∆ is the first difference operator at annual frequency. To compare, the

figure also plots per capita consumption growth ∆ logCA
t − ∆ logNt, where Nt is the US

population at time t. Clearly, the two series look quite similar at annual frequencies, since in

the short run the movements in the two series are dominated by their common component,

namely aggregate consumption growth∆ logCA
t . However, the two time series look noticeably

different when we time aggregate them over 10-year-long moving average growth rates.

To understand these time series properties , Figure 4 plots the difference between marginal

and per-capita consumption growth ∆ logNt − ∆ logFt, which corresponds to −νt in our

model. It is evident that this time series has small year-over-year volatility, but is quite

persistent. This is in contrast to the common component of the two time series (aggregate

consumption growth ∆ logCA
t ), which is comparatively more volatile on a year-over-year

basis, but far less persistent. By averaging over longer periods, the less persistent aggregate

consumption growth fades in importance compared to the less volatile, but more persistent

difference between the two series ∆ logNt −∆ logFt.

Table 1 provides a formal econometric framework to model the joint time series properties

of i) per capita consumption growth and ii) the difference between marginal and per capita
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Figure 4: Difference between marginal agent consumption growth and per capita consumption
growth.

∆ logCA
t −∆ logNt ∆ logNt −∆ logFt

Lag ∆ logCA
t −∆ logNt 0.4449 -0.0207

(0.0905) (0.2867)
Lag ∆ logNt −∆ logFt 0.0147 0.8834

(0.0152) (0.0480)
R2 0.22 0.80
σε 0.0182 0.0030
N(obs) 87 87

Table 1: Bivariate Vector Autoregression of i)per capita consumption growth (∆ logCAt −∆ logNt

) and ii) the difference between marginal and per capita consumption growth (∆ logNt−∆ logFt).

consumption growth rate as a bivariate first order vector autoregression ∆ logCA
t −∆ logNt

∆ logNt −∆ logFt

 =

 ∆ logCA
t−1 −∆ logNt−1

∆ logNt−1 −∆ logFt−1

B +

 εt

ut

 .
Using the obtained estimates for B and the covariance matrix of the residuals Σ, we

compute the long run covariance matrix of the two time series

Ω =
[
I +B +B2 + ...

]
Σ
[
I +B +B2 + ...

]′
=

1

100
×

 0.1082 −0.0077

−0.0077 0.0646
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Figure 5: Short term interest rate, inflation, ex-ante inflation expectations. Sources: Interest
rates: Robert E. Shiller, Online long term data on stock and bond returns, CPI inflation: Bureau
of Economic Analysis, Inflation expectations: Philadelphia FED.

There are two conclusions we wish to draw from the equation immediately above. First,

the fact that the off diagonal elements of Ω are essentially zero implies that the two time

series are practically uncorrelated. Hence, the re-distributional fluctuations in ∆ logNt −

∆ logFt (which correspond to νt in our model) are distinct from long run consumption

growth fluctuations in per capita consumption growth. Phrased simply, the redistributional

risks that arise from imperfect risk sharing are a separate source of long run consumption

uncertainty, and fluctuations in aggregate growth don’t offset them, which is a feature of our

model.

Second, adding together per capita consumption growth ∆ logCA
t −∆ logNt and ∆ logNt−

∆ logFt to arrive at a marginal agent’s consumption growth implies that the log run vari-

ance of consumption growth of the marginal agent [1, 1] Ω [1, 1]′ is about 50% higher than the

long run variance that would be implied by per capita consumption growth. (This number

remains roughly unchanged if we only consider post 1950s data).

Having obtained a measure of νt = ∆ logNt − ∆ logFt , and its time series properties,
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we have the empirical targets for the calibration exercise that follows.

We conclude this section by presenting some evidence that is not directly useful for

the calibration, but relates to a testable implications of the model, namely the connection

between our measure of marginal agent consumption growth and the expected real interest

rate.

To measure the expected real interest rate, we use the short term nominal interest rate

from Robert Shiller’s online data set minus the (ex ante) expected inflation rate as formed in

December of the preceding year (Source: Philadelphia FED Inflation expectations survey).

Figure 5 plots the nominal interest rate, the ex ante inflation expectation for the respective

year, and the realized CPI inflation for the year.

The top left plot of figure 6 plots the expected real interest rate and marginal agent

consumption growth for the respective year. Clearly the two series differ, because in reality

there are shocks to aggregate consumption that our model abstracts from. However, we would

expect that if the real interest rate reflects the expected (rather than the realized) marginal

agent consumption growth, then we should find that the co-movement between the two series

rises as we time aggregate the two series over longer horizons. Indeed, this is what the top

right plot of Figure 6 shows. 10-year moving averages of expected consumption growth and

real expected interest rates exhibit very similar fluctuations (the correlation coefficient is

around 0.9). The bottom two plots show that, by comparison, this co-movement is weaker

for per capita consumption growth.

Figure 7 shows that the steady increase of the R2 when regressing marginal agent con-

sumption growth on the expected real interest rate is unlikely to be the result of randomness,

by performing a bootstrap exercise enforcing the null hypothesis that the two series are un-

correlated.18

In the next section we evaluate the model’s quantitative ability to reproduce stylized

asset-pricing facts.

18Specifically, we draw 10,000 random time series of marginal agent consumption growth with replacement,
time-aggregate both the real interest rate and the marginal agent consumption growth for each sample and
compute the R2 for each of those 10,000 samples.
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Figure 6: Top left plot: Expected real interest rate at the beginning of each year and marginal
agent consumption growth over the year. Top right plot: 10-year moving averages yearly marginal
agent consumption growth and 10-year moving average of real expected real rate. Bottom left and
right plots: Identical to the top plots, except that marginal agent consumption growth is replaced
with per capita consumption growth.

5 Calibration

The exercise we perform is straightforward. First, we choose functional forms for the dy-

namics of ηlt and ηdt . These functional forms are chosen judiciously to support closed-form

solutions for the dynamics of the price-dividend ratio qdt and the Sharpe ratio κt. Second,

we choose the parameters governing the dynamics of ηlt and ηdt to match the empirical mo-

ments of ηdt and νt in the data. (Note that by equations (34) and (33) there is a one-to-one

correspondence between the pair ηlt, η
d
t and ηdt , νt). Then we examine the resulting moments
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Figure 7: Top left plot: R2 of Regression of 1,2,3..,12 year moving average of marginal consumption
growth on 1,2,3...,12 moving average of the real expected interest rate. The solid line refers to the
data, the dotted line refers to the 95% confidence bands obtained by drawing 10,000 random time
series of marginal agent consumption growth with replacement from the data, time-aggregating
both the real interest rate and the marginal agent consumption growth for each sample, computing
the R2 for each of those 10,000 samples, and reporting the top 95-th percentile of R2.

of asset-price dynamics and compare them to the data.

Specifically, we employ a functional form specification similar to Example 2. Using the

definition of xt in equation (21), we specify νt as in equation (36). Then by construction,

the equilibrium Sharpe ratio is given by |b2|
√
xt(1− xt). The only modification to example

2 is that we wish that the logarithm (rather than the level of qt) be linear in xt, so that

log(qdt ) = a1 + a2xt, and accordingly Ito’s Lemma implies that the drift of qdt be given by

fq(q
d
t )

qdt
= v1(a1− log(qdt ))+v2(a2− log(qdt )+a1)+

σ2
x

2
(log(qdt )−a1)(a2− log(qdt )+a1). (48)

Plugging this expression into (32) provides the dynamics for ϕt. The pair (ϕt, νt) is (joint)

Markov for the parameters we choose in the calibration. These parameters are listed in Table

2.

We fix preference parameters to β = 0.03 (sum of discount- and death- rates) and γ = −8,

which implies a risk aversion of 1−γ = 9. We set α to a level that reflects the share of capital

income in output (0.3). The aggregate growth rate is set to 0.025, in line with historical
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φ1 0.012 β 0.03 γ 8
φ2 0.078 α 0.3 g 0.025
σx 0.12 a1 1.1 a2 2.25
b2 7

Table 2: Parameters used in the model calibration.

Data Model

Median arrival rate of new firms 2.2% 2.44%
(1.45%)

Standard deviation of the arrival rate of new firms 1.6% 2.00%
(0.92%)

Autocorrelation of the arrival rate of new firms 0.77 0.89
(0.0532)

Median value of νt 3.08%
(1.45%)

Standard deviation of of νt 0.55 % 0.58%
(0.21%)

Autocorrelation of imputed νt 0.89 0.89
(0.0514)

Table 3: Targeted moments: Model and Data. We simulate 1000 paths of similar length as the
data, and compute each of the six moments for every path. We then report the mean and standard
deviation (across the 1000) paths for each moment. The term “arrival rate of new firms” refers to
the ratio of the value of the market value of additions to the market portfolio to the total value of
the market portfolio.

data. We choose the six parameters v1, v2, σx, b2, a1, and a2 to (approximately) match six

moments, namely the mean, standard deviation, and autocorrelation of the inferred values

of νt and ηdt in the data.

Table 3 shows that these parameter choices allow us to plausibly reproduce the targeted

empirical moments within our model. To account for estimation error, we do not only report

average values of the targeted moments within our model, but also the standard deviation

for the model-implied values, when we simulate our model over similar sample lengths to the

data. As can be seen, the moments in the data are within two standard deviations of their

simulated means inside the model. Figure 8 provides an alternative, graphical illustration of

Table 3 by comparing the empirical and the simulated distributions of νt and ϕt.

Having determined the parameters to match the moments of the redistribution processes,
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Figure 8: Left plot: Histogram of (de-meaned) inferred values of νt and kernel density of the
respective quantity inside the model. Right plot: Histogram of the market capitalization of new
index additions over the existing market capitalization of the index (de-meaned) and kernel density
of the respective quantity inside the model. To obtain the model-implied quantities, we simulate
1000 paths of length identical to the length of the data sample, and de-mean the simulated data
separately on each sample path, to account for sampling error in the computation of the means.
We then compare the distribution of the de-meaned simulated data to the de-meaned empirical
data.

we next examine what these parameter choices imply for asset pricing moments. Table 4

provides a comparison between the model-implied unconditional moments and the respective

moments in the data. In reporting the results we follow the approach of Barro (2006) to relate

the results of our model (which produces implications for an all-equity financed firm) to the

data (where equity is levered). Specifically, we use the well known Modigliani-Miller formula

relating the returns of levered equity to those of unleveled equity, along with the historically

observed debt-to-equity ratio, to report model-implied levered returns. (Specifically, we set

the ratio of levered to unleveled equity returns to be equal to 1.7, as in Barro (2006).)

Inspection of Table 4 shows that the model accounts for a sizable fraction of all asset

pricing moments. To put these numbers in the proper relation to the literature, it is worth

highlighting that aggregate consumption and dividend growth are constant in this model.
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Data Model

Aggregate consumption growth rate 2.3% 2.3%
Standard deviation of consumption growth rate 3.3 0
Sharpe ratio 0.29 0.26
Stock market volatility 18.2 14.32%
Equity premium 5.2% 4.13%
Average interest rate 2.8% 2.37%
Standard deviation of real interest rate 0.92% 0.72%
Average (log) PD ratio 2.9 3.05
Standard deviation of (log) PD ratio 0.27 0.21
Autocorrelation of (log) PD ratio 0.89 0.92

Table 4: Unconditional moments for the data and the model. The data for the average equity pre-
mium, the volatility of returns, and the level of the interest rate are from the long historical sample
available from the website of R. Shiller (http://www.econ.yale.edu/?shiller/data/chapt26.xls). The
volatility of the real rate is inferred from the yields of 5-year constant maturity TIPS.

The numbers should therefore be interpreted as the asset-pricing moments that would obtain

in an economy where one abstracts from all aggregate sources of uncertainty and examines

the impact of the redistribution processes in isolation.

Table 4 only pertains to unconditional moments. To evaluate the model’s ability to

account for variations in conditional moments we turn to Figure 9 and Table 5. Figure 9

plots the equity premium, market price of risk, interest rate, and stock-return volatility as a

function of the log-price-earnings ratio. The Sharpe ratio and the equity premium are both

declining functions of the log-price-earnings ratio. This counter-cyclicality is responsible for

the model’s ability to reproduce the predictability relations documented in Table 5. This

table reports results of simulated predictability regressions inside the model and compares the

results with the data. The main takeaway of the table is that the model-implied predictability

is close to the respective time-variation in the data.

The model implies only modest annual volatility of the cross sectional variance of log

consumption, and it does not require that the log price-dividend ratio and the cross-sectional

variance of log consumption have similar persistence. Figure 10 helps visualize these points.

The figure plots a simulated path of the cross sectional variance of log consumption over a

sample that is similar in length to the post-war sample. It also plots the log price-dividend
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Figure 9: Calibration results. Equity premium, market price of risk (Sharpe ratio), interest rate,
and stock return volatility for the baseline parametrization. We plot each variable against the
price-to-earnings ratio log(qdt ). The range of values of log(qdt ) correspond to the interval between
the bottom 1% and the top 99% percentiles of the stationary distribution of log(qdt ).

ratio (on the right scale). There are a few patterns that emerge from this graph, which

are consistent with the data. The year-over-year changes in inequality (as measured by the

cross-sectional variance of log consumption) are negligible compared to the time variation

of the log-price dividend ratio. The two time-series operate at different frequencies, with

inequality being substantially more persistent — essentially close to a random walk.

These patterns are very much consistent with the data. In the data, consumption in-

equality only changes by a few basis points on a yearly basis.19 Moreover, in the data

inequality measures behave like unit root processes, consistent with Figure 10. These fea-

tures distinguish this model from Constantinides and Duffie (1996), where the mechanism

19For instance, Krueger and Perri report that the cross sectional variance of log consumption changed
from about 0.18 to about 0.23 from 1980 to 2003.
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Year β (Data) β (Model) R2(Data) R2(Model)

1 -0.130 -0.092 0.040 0.038
[-0.235 -0.003] [0.000 0.134]

3 -0.350 -0.251 0.090 0.098
[-0.573 -0.031] [0.002 0.255]

5 -0.600 -0.376 0.180 0.144
[-0.820 -0.089] [0.011 0.350]

7 -0.750 -0.476 0.230 0.180
[-0.893 -0.070] [0.006 0.395]

Table 5: Long-horizon regressions of excess returns on the log P/D ratio. The simulated
data are based on 1000 independent simulations of 100-year long samples. For each of these
100-year long simulated samples, we run predictive regressions of the form logRe

t→t+h =
α + β log(Pt/Dt) , where logRe

t→t+h denotes the time-t gross excess return over the next h
years. We report the mean values for the coefficient β and the R2 of these regressions, along
with the respective [0.025, 0.975] percentiles.

becomes quantitatively powerful for large year-over-year variation in cross-sectional inequal-

ity. These features also distinguish this paper from models that rely on (preference, belief, or

investment-opportunity) heterogeneity, which tend to imply that the price dividend ratio has

the same persistence as consumption inequality. Both in the data and in our model, the au-

tocorrelation coefficient for the price-dividend ratio is around 0.9, while the autocorrelation

coefficient for the cross-sectional variance of log consumption is essentially one.

6 Endogenous displacement and intrinsic shocks

In this section we show that when the displacement process is endogeneized, the result-

ing model can feature (real) equilibrium indeterminacy. Accordingly, shocks to consumers’

expectations about future discount rates can be self-propagating and become a source of

asset price fluctuations, even if there are no extrinsic shocks to the economy. Importantly,

real indeterminacy arises despite the absence of “bubbles” in this model, a result that is of

independent theoretical interest.

Since the goal of this section is mostly illustrative, we assume that investors have expected

utility preferences rather than recursive preferences, as in the baseline model of Section 2.
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Figure 10: An indicative, model-implied path of the Price-Earnings ratio (left scale) and the
cross-sectional standard deviation of log consumption (right scale).

Moreover, we assume that ηlt = ηl is constant. The only departure from the baseline model

is that the displacement process is endogenous. Specifically, at the time of their birth only a

fraction ε < 1 of arriving agents have the ability to become entrepreneurs. These potential

entrepreneurs, which we index by i ∈ [0, ε], are faced with two choices at birth: a) the “safe”

choice of introducing a company that produces dividends

D
(i)
t,s = ψαYte

−
∫ t
s η

d
udu (49)

for all t ≥ s, where ψ > 0, and b) the “risky” choice of introducing a company that is

successful with probability π ∈ (0, 1), as reflected in its dividend process

D
(i)
t,s =

 ξiαYte
−

∫ t
s η

d
udu with probability π > 0

0 with probability 1− π
(50)

for times t ≥ s. The quantity ξi is entrepreneur-specific and known to the entrepreneur

before she makes her choice. Without loss of generality, we assume that ξi : [0, ε]→ R+ is a
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decreasing function.

If the firm ends up being worthless, then the entrepreneur must become a worker for the

remainder of her life, thus financing a positive consumption stream. The choice between

the safe and the risky options is made once, at birth, and the uncertainty associated with

the risky choice is resolved immediately and publicly after the entrepreneur makes the risky

choice.

To make matters interesting, we assume πξ (ε) > ψ. This assumption implies that a

risk-neutral entrepreneur would always prefer to make the risky choice, since the expected

dividends of the risky choice exceed the ones of the safe choice even for the entrepreneur

with the least productive risky tree ξ (ε). With risk-averse entrepreneurs, however, there is

a meaningful tradeoff.

The rest of the assumptions of the model remain the same. In particular, to keep the

aggregate dividend a constant function of aggregate consumption, we continue to assume

Dt,t

αYt
= ηdt . (51)

The only difference is that now ηdt is endogenous and depends on the prevailing valuation

ratios. Specifically, if a measure ζt ≤ ε of entrepreneurs chooses the risky choice, then

aggregating gives

Dt,t =

∫ ε

0

D
(i)
t,tdi = αYt

(
π

∫ ζt

0

ξidi+ (ε− ζt)ψ
)
. (52)

Combining (51) with (52) gives

ηdt =

(
π

∫ ζt

0

ξidi+ (ε− ζt)ψ
)
. (53)

The next lemma is key for our purposes.

Lemma 8 The measure ζt of agents choosing the risky options is a decreasing function of

qt
qlt
. Accordingly, by equation (53) ηdt = η (qt) with η′ < 0.

Lemma 8 is intuitive: A smaller ratio of qt
qlt

makes an entrepreneur more willing to take
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Figure 11: An illustration of Proposition 3.

risk, since — even if the tree turns out to be worthless — the present value of her earnings

will now be larger. By Lemma 1, qt
qlt

= (1− α) qt
1
β
−αqt

is a monotonically increasing function

of qt, and hence Lemma 8 follows.

With Lemma 8 in hand, and assuming that there are no extrinsic shocks to the economy,

we can proceed to construct a deterministic equilibrium. Specifically, repeating identical

steps to Section 3, the dynamics of qt continue to be given by

q̇dt = µ (qt) ≡ (β + η (qt)) qt − βαϕ (qt)× (qt)
2 − 1, (54)

with the only difference that now η (qt) = ηd (qt)− ηl is endogenous to qt rather than being

an exogenous process. We obtain the following proposition.

Proposition 3 For any three real numbers 0 < q1 < q2 < q3 <
1
αβ

, there exist parameters

under which qi, i ∈ {1, 2, 3}, are roots of µ(q) with µ′ (q1) > 0, µ′ (q2) < 0, and µ′ (q3) > 0.

Figure 11 illustrates Proposition 3. The figure shows that q̇t is positive between q1 and

q2 and negative between q2 and q3. An immediate implication is that the dynamic system

(54) has a stable steady state. Any initial value qt0 ∈ (q1, q3) is associated with a different
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equilibrium transition path to the steady state q2. Interestingly, all of these paths constitute

different, perfect-foresight equilibria and the economic structure cannot rule out any of them.

Indeterminacy arises because different expectations about future discount rates become

self-fulfilling. Say for instance that everyone becomes convinced that interest rates will be

lower on the transition path than at the steady state. This redistributes consumption to the

arriving cohorts of agents by raising the present value of their human capital and increasing

the creation of new firms, which appropriate profits from existing firms. Hence, low discount

rates redistribute wealth from the old to the young, and reduce the consumption growth of

existing cohorts who are marginal in asset markets, thus confirming the anticipation of low

rates.

An immediate implication of the multiplicity identified above is the potential for so-called

“sunspot” equilibria, i.e., stochastic equilibria in which uncertainty is not about preferences,

endowments, etc., but rather reflects random fluctuations in agents’ (self-fulfilling) percep-

tions about the equilibrium paths that the economy will follow. To construct such equilibria,

we introduce a standard brownian motion Bt. This Brownian motion reflects random “noise”

that is extrinsic to the economy; however, everyone understands (and knows that everyone

else also understands) that this noise acts as a coordination device for investor expectations.

The next proposition shows the existence of equilibria, whereby investor perceptions that

the noise Bt is useful in coordinating expectations ends up becoming self-fulfilling, in the

sense that it affects both asset price dynamics and equilibrium consumption allocations.

Proposition 4 For q1 and q3 as in Proposition 3, take an interval [qmin, qmax] ⊂ [q1, q3] with

µ (qmin) > 0 and µ (qmax) < 0. Then choose a bounded function σq : [qmin, qmax] → R+ with

the properties σq (qmin) = σq (qmax) = 0 and

lim
q→qmax

σ2
q (q)

qmax − q
= v1 < 2 |µ (qmax)| , lim

q→qmin

σ2
q (q)

q − qmin
= v2 < 2

∣∣µ (qmin
)∣∣ . (55)

Then there exists an equilibrium whereby the equilibrium stochastic process for qt is given by
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the diffusion

dqt = µ (qt) dt+ σq (qt) dBt. (56)

In such an equilibrium qt possesses a stationary distribution, qlt continues to be given by (9),

and rt continues to satisfy (15).

Proposition 4 is reminiscent of Proposition 1. Indeed, similar to Section 3, if we wished

to support a given drift function for µ(qt) as an equilibrium outcome, we could just make as-

sumptions on the distribution of the risky trees ξi so that the resulting function ϕ (qt) is given

by (18). The extrinsic-uncertainty (shocks are technological) and the intrinsic-uncertainty

(the shocks affect belief formation, with the displacement process being endogenous) versions

of the model would be observationally equivalent.

7 Conclusion

In this paper we propose a simple mechanism to relate low frequency movements in in-

equality with volatile asset price movements. We exploit the structure of an overlapping

generations economy, which allows different cohorts of agents to experience different (and

random) consumption growth paths over their lifetimes, even though aggregate consumption

evolves deterministically. Combining this observation with recursive preferences, we prove a

possibility result (for the model’s ability to match asset pricing phenomena) that is similar

in spirit to Constantinides and Duffie (1996). However, we use a different set of assumptions

on agents’ endowments, which imply non-volatile, but persistent, inequality.

We also develop an empirical strategy to infer the persistent components of consumption

growth by utilizing a time, age, and cohort decomposition of cross-sectional consumption

data. Since it does not require time-series information, this technique can be implemented

using readily available data sources, such as the CEX.

Finally, we show the theoretical possibility that volatility of asset prices can become a

self-fulfilling prophecy, if one extends the model to allow for endogenous firm creation. In this
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version of the model uncertain long-run variations in consumption growth of the marginal

agent may be jointly “caused”, rather than be causal, for fluctuations in asset prices. This

feature of the model helps illustrate a conceptual difference with representative agent models,

where only extrinsic uncertainty can affect asset prices.
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A Proofs

Proof of Lemma 1. The absence of bubbles together with the assumption of a unit

elasticity of substitution implies that aggregate consumption is given by Ct = β
(
W̄t + H̄t

)
,

where

W̄t =

∫ t

−∞
qdt,sDt,sds = αqdt Yt (57)

is the present value of all dividends to be paid by existing firms. Similarly, the total value

of all human capital of existing agents is

H̄t =

∫ t

−∞
qlt,slt,swt,sds = (1− α) qltYt. (58)

Combining goods market clearing (Ct = Yt) with (57) and (58) and re-arranging leads to (9).

Proof of Lemma 2. The present value of all newly-born workers’ wages is given by

qlt (1− α) ηlYt, while the present value of all newly created firms is αηdt qtYt. The sum of these

quantities gives the total wealth of newly born agents. Given that the consumption-to-wealth

ratio for investors is β, the per-capita consumption of the newly born, as a proportion of

total consumption, follows as given by (13).

Proof of Lemma 3. The only step of the proof not made completely explicit in the

proof is the one yielding equation (12). To show this relation, time-differentiate aggregate

consumption Ct = λ
∫ t
−∞ e

−λ(t−s)ct,sds to get

Ċt = −λCt + λ

∫ t

−∞
e−λ(t−s)ċt,s + λct,t = −λCt + ċt,s + λct,t. (59)
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Proof of Lemma 4. Contained in the text.

The following technical restrictions on f and σ ensure existence of stationary q.

Assumption 1 The functions f and σ are Lipschitz continuous on the bounded interval

[qmin, qmax] ⊂ (0, 1
αβ

). Moreover, f is twice differentiable, monotonically decreasing, and

satisfies f (qmin) > 0 and f (qmax) < 0. Finally, σ(q) ≥ 0, σ (qmin) = σ (qmax) = 0, and

lim
q→qmax

σ2 (q)

qmax − q
< 2 |f (qmax)| , lim

q→qmin

σ2 (q)

q − qmin
< 2

∣∣f (qmin
)∣∣ . (60)

Proof of Proposition 1. Let’s start with a solution q̂ to the stochastic differential

equation (17). By construction, the process ϕ(q̂t) solves the SDE (19). Since ϕt is bounded,

we can construct two positive processes ηlt and ηdt such that ηdt − ηlt = ϕt.

Posit that qdt = qt = q̂t and qlt as given by Lemma 1. Further, conjecture the interest rate

rt as given by equation (15).

Given the dynamics of qt, the definition of ϕ(·), and the definition of rt, pricing equa-

tion (10) is satisfied. Further, using also the definition of qlt, which implies αdqdt +(1−α)dqlt =

0, we obtain the analogous pricing equation for qlt:

E[dqlt] =
(
rt − g + ηdt

)
qlt − 1. (61)

Agents’ consumption optimality require ct,t = βWt,t, yielding Lemma 2, as well as the

Euler equation (11). Starting with equation (11), then applying Lemma 2 and equation (15)
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in succession, we obtain

Ct =

∫ t

−∞
λe−λ(t−s)e

∫ t
s (ru−ρ)ducs,sds (62)

=

∫ t

−∞
e
∫ t
s (ru−β)du

(
ηlt + αβqtϕt

)
Ysds (63)

=

∫ t

−∞
e
∫ t
s (ru−β−g)du (β + g − rs)Ytds (64)

= Yt, (65)

given that r is bounded above away from β+g. Proposed consumption processes are therefore

optimal and clear the consumption market, given the interest rate.

Finally, with qdt and qlt the valuation ratios, the total wealth in the economy is

1

β
Ct =

1

β
Yt = αqdt Yt + (1− α) qltYt. (66)

Given that the newly born agents’ wealth equals (1− α) ηlqlt + αηdt qt, the change in wealth

of all agents alive at time t equals, with t̄ fixed equal to t,

β−1Ct(rt − β)dt = β−1gYtdt−
(
(1− α) ηlqlt + αηdt qt

)
dt (67)

= d

(
qdt

∫ t̄

−∞
Dt,sds

)
|t̄=t

+ d

(
qlt

∫ t̄

−∞
lt,swt,sds

)
|t̄=t

+ Ytdt− Ctdt, (68)

which states that the (representative) agent alive at t invests her entire wealth by buying

all available shares, and does not use the bond market — thus, asset markets clear. Equa-

tion (68) holds because (1− α) qlt +αqdt = β−1 and because of the dynamics of Dt,s and wt,s,

i.e., equations (3) and (5).

Uniqueness of the process ϕt is a direct consequence of the analysis in the text, in par-

ticular equation (16).

We end the proof with a technical detail — a sketch of an argument that shows that qt

is stationary. We make use of results in Karlin and Taylor (1981). Specifically, we start by
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defining

s (q) ≡ exp

{
−
∫ q 2A (ξ)

σ2 (ξ)
dξ

}
,

noting that by assumption (60) there exists v̄ > 1 such that, for ε small enough and q ∈

(qmax − ε, qmax) we have

s (q)

s (qmax − ε)
= exp

{
−
∫ q

qmax−ε

2A (ξ)

σ2(ξ)
dξ

}
< exp

{
−
∫ q

qmax−ε

v̄

qmax − ξ
dξ

}
=

(
q

qmax − ε

)−v̄
.

Hence, for q “close” to qmax the function s (q) (and accordingly the speed measure

S (q) =
∫ q
s (η) dη) behaves as in Example 5 on page 221 in Karlin and Taylor (1981). (A

similar argument applies to the boundary q = qmin). It then follows that the boundaries qmin

and qmax are entrance boundaries whenever condition (60) holds and a stationary distribu-

tion exists.

Proof of Lemma 5. The fact that mt is a (spanned) stochastic discount factor (SDF)

means

d log(mt) = −rtdt−
κ2
t

2
dt− κtdBt, (69)

where κt is the market price of risk (the maximal Sharpe ratio). In the special case when

preferences are specified by (22), and given the existence of annuities, the dynamics of the

process log(mt) are

d log(mt) = β (γ log(ct)− log(γVt)) dt− ρdt+ d log(γVt)− d log(ct). (70)

An agent’s value function V is homogeneous of degree γ in the her total wealth W,

which is the sum of her financial wealth and the present value of her future earnings. We
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consequently write

Vt(W ) =
W γ

γ
eZ̃t (71)

for an appropriate process Z̃. Furthermore, from the envelope condition we have

γ

W
Vt =

∂Vt
∂W

= fc =
βγVt
c

,

giving c = βW .

For any s < t, the definition of Vt implies

Vt +

∫ t

s

βγVu

(
log (cu)−

1

γ
log(γVu)

)
du = Et

∫ ∞
s

βγVu

(
log (cu)−

1

γ
log(γVu)

)
du.

Since the right-hand side is a martingale, the drift of the left-hand side equals zero, implying

dVt = −
(
βγVt

(
log (cu)− γ−1 log(γVu)

))
dt+ σV dBt

and therefore

d log(γVt) =

(
µV
V
− 1

2

σ2
V

V 2

)
dt+

σV
V
dBt (72)

= −βγ
(
log(c)− γ−1 log(γV )

)
dt− 1

2

σ2
V

V 2
dt+

σV
V
dBt. (73)

Plugging this last formula in (70), we obtain

d log(mt) = −βdt− 1

2

σ2
V

V 2
dt− d log(ct) +

σV
V
dBt.

Comparison with (69), along with the fact that aggregate consumption growth is determin-
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istic and as a result individual consumption growth needs to be locally deterministic implies

σV
V

= −κt (74)

ċt = (rt − ρ)ct. (75)

Consumption ct is therefore locally deterministic, and so is Wt = β−1ct, which, upon using

equation (71), leads to

σV
V

= σZ̃ = −κt.

Note that the dynamics of consumption depend only on qt as long as rt has this property,

giving the value function Z̃ as a function of qt, as well. We go further and compute the

function Z̃ to derive κ = −σZ̃ = −Z̃qσq. Specifically, from the martingale condition,

µV
V

= −βγ
(
log(c)− γ−1 log(γV )

)
= −βγ

(
log(β)− γ−1Z̃

)
. (76)

Using (71) and the fact that ct = βWt implies that

d log (γVt) = dZ̃t + γd log ct. (77)

Since log ct is locally deterministic, it follows that σV
V

= σZ̃ .

Combining (77), (73), and (76), and letting Zt = Z̃t − γ log(β), we obtain

dZt = −γd log ct − βZdt−
1

2
σ2
Zdt+ σZdBt. (78)

Integrating, and noting that σZ is bounded, gives equation (26).

Proof of Lemma 6. Since the right hand side of (31) depends only on Zt, it is immediate
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that strict monotonicity is equivalent to invertibility. Fixing Zt and therefore νt,
∂ϕ(qt,Zt)

∂qt
< 0

implies that there is a unique qt = ϕ−1 (ϕt, νt).

Proof of Proposition 2. The proof of the proposition follows the same logic as that of

Proposition 1. In the interest of completeness, we start by invoking Ito’s Lemma to write

down the SDE for ν:

dνt = ν ′
(
ν−1 (νt)

)(
fZ
(
ν−1 (νt)

)
+
σ2
Z (ν−1 (νt))

2

ν ′′ (ν−1 (νt))

ν ′ (ν−1 (νt))

)
dt

+ ν ′
(
ν−1 (νt)

)
σZ
(
ν−1 (νt)

)
dBt (79)

Similiarly, one can write the dynamics of

ϕt = ϕ(qt, Zt) (80)

based on the dynamics of qt and Zt, and then plug in qt = ϕ−1(ϕt, νt) and Zt = ν−1(νt).

The existence of the inverse functions ν−1 and ϕ−1 is ensured by Lemma 6. To avoid

repetition, we only justify two key statements in the text, namely equations (29) and (30).

As before, the definition of qt implies

mtqtDt,s +

∫ t

s

mtDt,s = Et

∫ ∞
s

muDu,sdu (81)

is a martingale. Using Ito’s Lemma and κt = −σZ,t yields equation (30).

From equation (78), and using equation (24), the drift of Zt equals

βZt − γ
ċt
ct
− 1

2
σ2
Z(Zt) = βZt − γ(λ+ ρ− νt)−

1

2
σ2
Z(Zt), (82)

which is equated to fZ(Zt) to yield equation (29).
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Proof of Lemma 7. Re-writing ct,s as

ct ,s = eAs+Lt+Gt−s ,

computing dct,s
ct,s

, multiplying by ω(t, s) and integrating gives the first equality in (46). To

obtain the second equality note that

dFt
Ft

=

∫ t

−∞

(
dΛ (t, s)

Λ (t, s)
+ dGt−s

)(
Λ (t, s) eAs+Gt−s∫ t

−∞ Λ (t, s) eAs+Gt−sds

)
ds+

Λ (t, t) eAt+G0∫ t
−∞ Λ (t, s) eAs+Gt−sds

dt

=

∫ t

−∞
ωt,s

(
dΛ (t, s)

Λ (t, s)
+ dGt−s

)
ds+ ωt,tdt, (83)

where the second line of the above equation follows from

ωt,s =
Λ (t, s) ct,s

Ct
=

eAs+Lt+Gt−s∫ t
−∞ Λ (t, s) eAs+Lt+Gt−sds

=
eAs+Gt−s∫ t

−∞ Λ (t, s) eAs+Gt−sds
.

Using (83) inside (43) leads to the second equality in (46).

Proof of Lemma 8. Since the value function of a newly-born person is logarithmic in

wealth, the index i ∈ [0, ε] of the entrepreneur who is indifferent between the risky and the

riskless choice is given by

π log [ξ (i) qtαYt] + (1− π) log

[
qlt

ηl (1− α)

1− ε+ (1− π) i
Yt

]
= log [ψqtαYt] . (84)

The left hand side gives the value function of trying the risky choice which succeeds with

probability π and fails with probability (1− π), in which case the enterpreneur shares the

labor income accruing to her cohort. The right hand side is the (certain) payoff of the riskless

choice. Simplifying and re-arranging gives

(1− π) log

[
qt
qlt

]
= π log [ξ (i)α] + log

[
ηl (1− α)

1− ε+ (1− π) i

]
− log [ψα] (85)

The right hand side of the above equation is a decreasing function of i. Hence the value of i

that makes the above equation hold is decreasing in qt
qlt
. An implication of Lemma 1 is that
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qt
qlt

is increasing in qt, which concludes the proof.

Proof of Proposition 3. Let B (q; η̄) ≡ (β + η̄) q − βαη̄q2 − 1 and define the function

η̄∗(q) =
1− βq

q(1− αβq)
(86)

for q ∈ (0, 1
αβ

). By construction, B(q; η̄∗(q)) = 0. It is easy to verify (e.g., by direct

differentiation) that η̄∗ decreases strictly. Note also that ∂
∂η̄
B(q; η̄) = q(1− αβq) > 0.

Let η̄(q) be continuously differentiable and decreasing with the following properties: (i)

η̄(qi) = η̄∗(qi) for i ∈ {1, 2, 3}; (ii) η̄′(qi) > η̄∗′(qi), i ∈ {1, 3}; (iii) η̄′(q2) < η̄∗′(q2). Given

that ∂
∂η̄
B > 0, these properties ensure that the proposition holds. (Note that properties (ii)

and (iii) require that η̄ be flatter than η̄∗ around the extreme q̄i, and steeper around q2.)

Turning now to the model primitives under which η̄ takes the form chosen above, we

note that equation (85) can solved uniquely for ξ(ζ(q)) as a function of q and ζ(q) (over an

appropriate range). We also have

η̄(q) = π

∫ ζ(q)

0

ξidi+ (ε− ζ(q))ψ − (ηl + g), (87)

which implies

η̄′(q) = (πξ(ζ(q))− ψ) ζ ′(q), (88)

or

ζ ′(q) =
η̄′(q)

πξ(ζ(q))− ψ
. (89)

Given ξ(ζ(q)) from (85), this is a first-order ODE in ζ(q).

We wish that a decreasing solution exists on [q1, q3] with image in [0, ε]. To ensure the

existence of such a solution, we can build one as follows under appropriate parameter choices.

Let ζ(q3) = 0, and pick ηl + g so that (87) is satisfied. Note now that, from (85), for ηl low
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enough ξ can be bounded below uniformly by an arbitrarily large value. Consequently the

value of ζ, obtained by solving (integrating) equation (89), can be kept as small as desired.

Proof of Proposition 4. Equations (11) and (15) continue to be valid irrespective of

whether qt is stochastic or not. So do Lemmas 2, 1, and 8. Accordingly qlt and rt continue

to be given by (9) and (15) respectively. Applying Ito’s Lemma to (7), while substituting

rt from (15) implies that the drift of qt in any stochastic equilibrium must necessarily be

given by A (qt). Moreover, if the dynamics of qt are given by (56), the Feynman-Kac formula

implies that qt satisfies (7). In a nutshell, if agents perceive that the dynamics of asset prices

are given by (56), then the resulting optimal dynamics of consumption will be such that the

market-clearing interest rate will be given by (15) and the equilibrium (arbitrage-free) price

of each firm will indeed be given by qtDt,s.
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