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Abstract

Between 1940 and 1980, the wage gap between poorer US cities and richer ones shrank at

an annual rate of roughly 1.4%. After 1980, however, there was no further regional convergence

overall. In this paper, I quantify the contributions of skill-biased technical change and agglom-

eration to ending cross-city wage convergence within the US between 1980 and 2010. I develop

and estimate a dynamic spatial equilibrium model that looks at the causes of regional conver-

gence and divergence. The motivation behind my model choice is novel empirical regularities

regarding the evolution of the skill premium and migration patterns over time and across space.

The model successfully matches the quantitative features of the US regional wage convergence.

Moreover, among others, it also reproduces “The Great Divergence” of skills across US cities,

the secular decline in migration, and the increase in wage dispersion. Further, the counterfactual

analysis indicates that the interaction between skill-biased technical change and agglomeration

explains much of the change in cross-city wage differentials.
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1 Introduction

Technological innovation was a major shock to the labor market toward the end of the twentieth

century. It increased the wage differential between educated and less educated workers at the na-

tional level. At local level, for the majority of the twentieth century, poorer US cities had grown

faster and were catching up with richer cities. However, in the 1980s, simultaneously with the tech-

nological innovation shock, cities with a lot of highly educated workers like Boston, San Francisco,

and New York began to diverge. And this pattern was driven mostly by highly skilled workers.

Highly educated workers kept clustering in the big cities amplifying the geographic differences,

this, in turn, gave them less incentive to move away from larger and more educated cities, reducing

the overall mobility rates. Although extensive literature has analyzed the impact of technological

innovation at national level, curiously, little is known about its impact at regional level.

In this paper, I show that technological innovation contributed to explain, among others, three

key moments of the data: (i) the decline in wage convergence across cities; (ii) the “Great Divergence

of Skills”; (iii) the secular decline in geographic mobility. The key element in this phenomenon

was the interaction between skill-biased technology and local agglomeration forces. Technological

change gave an incentive to agglomerate where there was previously a higher concentration of skills.

When highly skilled workers clustered together in these places, their wages rose even more. This

made cities like Boston, San Francisco, and New York grow much faster than the others. Overall,

these cities become amplifiers of the differences caused by skill-biased technological innovations.

Skill-biased technical change (SBTC) is the name assigned from the literature to the technolog-

ical innovation that increased the relative demand for skills since 1980 (Katz and Murphy 1992).

In turn, SBTC led to a growth in earnings inequality (e.g., Card and DiNardo 2002, Levy and

Murnane 1992, Bound and Johnson 1992). National skill premia show similarly timed patterns in

regional convergence and in the divergence of wages. In fact, at the regional level, between 1940

and 1980, wages in poorer US cities grew faster than wages in richer cities by 1.4% per year.1

This wage convergence ended in 1980, and from 1980 to 2010 wages grew at similar rates in cities

of different income levels. Figure 1 plots the annual average wage growth (demeaned) against its

initial wage level in log (demeaned). The slope of the line, which estimates the β-convergence rate,

is 0.014 between 1940 and 1980 but between 1980 and 2010, it goes to zero and is not statistically

significant.2

The main contributions of this paper are threefold. First, I uncover novel empirical regularities

regarding the evolution of regional convergence, skill premium and migration patterns over time

and across space in the last 70 years. Second, through the lens of a spatial equilibrium model

1Notice that in the introduction, I use “cities” to refer to “Metropolitan Statistical Areas”, which are my
unit of geography. A definition is provided in section 2.

2Berry and Glaeser (2005) are the first to point to this decline in convergence across cities after 1980.
Ganong and Shoag (2017) show a similar decline in convergence for income per capita across US states after
1980.
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Figure 1: Wage Convergence across Cities before and after 1980
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1980−2010

Note: This figure plots each city’s (demeaned) annual average wage growth against its (demeaned)
initial wage level. The left side depicts 1940-1980; the right side depicts 1980-2010. The size of each
city’s circle is proportionate to its initial population. The red line depicts a weighted least square
bi-variate regression. Data come from the 2010 US Census and the 2010 American Community
Survey.

with skills and productivity evolution over time, I provide a mechanism based on the interaction

of national changes in SBTC and local agglomeration forces that jointly matches the trends in

wages over time and across space as well as the increase in spatial wage dispersion, “The Great

Divergence” of skills and the secular decline in migration, among others moments of the data. Third,

through an estimation and a calibration exercises, I quantify the contribution of the channels in the

aforementioned patterns in the data. The main counterfactual analysis shows that the interaction

of agglomeration and SBTC explains approximately 80% of the decline in regional convergence

between 1980 and 2010.

The paper consists of three parts. In the first part, I identify a new set of facts about the

evolution of wages and quantities by skill across cities during the last 70 years. First, I show that

the end of wage convergence occurred only for highly skilled workers. Prior to 1980, the wage

convergence rate for highly skilled workers and less skilled (non-college educated) workers was the

same. Since 1980, the wages of less skilled workers have continued to converge at 1.4% annually,

while the rate of wage convergence for highly skilled workers is 0%. Thus, any account of the end
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of convergence must distinguish between skill groups. Second, I show that in the last two decades,

the relative price of skill has become positively correlated with relative quantities across cities.

Specifically, after 1980, the correlation between the college ratio and the skill premium is positive

across cities. Third, I show that since 1980, migration destinations of highly skilled workers have

shifted towards already skill-abundant cities. These facts indicate that performance differences

between highly skilled and less skilled workers played a crucial role in the cessation of regional

wage convergence. Due to differences in their initial skill composition, some cities benefited more

from SBTC. These facts are also consistent with the idea that demand forces become stronger than

supply forces at the local level and then push the wages of highly skilled workers up more in cities

where their concentration is higher.

Motivated by the new set of facts, in the second part of the paper, I develop a theoretical

framework with skill-biased productivity shocks, local agglomeration spillover, and selective location

decisions. The model nests two streams in the literature. First, in the spirit of Rosen (1979), Roback

(1982), and Diamond (2016), I model local labor markets in which workers, highly skilled and less

skilled, sample locations to live in that are heterogeneous along wages, rents, local amenities, and

population in each sample period. Local markets are different in worker productivity depending on

the agglomeration effect of population and skill concentration and in their exogenous productivity.

Second, I follow the literature pioneered by Desmet and Rossi-Hansberg (2014) and Desmet et al.

(2018) to introduce a dynamic component to a geography model. As I find, neither of these two

models alone can account for regional trends in wages and in employment based on the agents’

skills. These models falls short because the spatial equilibrium model lacks dynamism and the

growth model lacks heterogeneity.

The model here allows trends in either direction. Convergence forces enter through a technology

diffusion process as in Desmet and Rossi-Hansberg (2014). The key divergence forces are SBTC and

agglomeration. To match the data and to account for other potential arguments, I also introduce

other divergence forces such as costly migration and housing.3

I use a dynamic framework in general equilibrium with a final tradable sector, a set of interme-

diate inputs, and housing. Agglomeration affects all the intermediates equally. The productivity

of the workers is skill-biased in two ways, an exogenous skill-biased force and an endogenous com-

ponent that depends on the skill concentration of the city and its population. Households decide

where to live and when to move, and they have a permanent loss in utility. They also decide how

much to consume of the tradable and non-tradable goods.

The interaction of SBTC and agglomeration economies means that more educated locations

have a larger skill premium. Highly and less skilled workers have some degree of complementarity,

so, agglomeration effects raise the wages of all the workers. The differential increase in the wages

3Ganong and Shoag (2017) propose a mechanism based on housing regulations to explain the decline of
wage convergence. Thus, I compare how much convergence there would be in the model if I did not account
for housing.
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of highly skilled workers makes the migration patterns for highly and less skilled workers diverge:

highly skilled workers migrate to educated cities more than less skilled workers do. Migration has

a twofold effect. First, if more workers migrate to a location, the marginal productivity of each

decrease and hence, the returns decrease. Second, when more highly skilled workers move to a

location, productivity goes up because of agglomeration effects, which raises the wages of all the

workers especially those of the highly skilled workers.4

Therefore, technological innovation that is interacted with agglomeration forces counterbalances

the convergence forces that were driving regional convergence before 1980. If technology were not

skill-biased, the convergence forces would favor the poorer cities by pushing them toward the

productivity frontier.

In the third part of the paper, I apply the model to the data. For the quantitative application,

I build on Autor and Dorn (2013) to measure SBTC at the city level.5 Autor and Dorn (2013)

analyze the effect of computer innovation on the differences in the outputs of regional labor mar-

kets. Specifically, the arrival of computers mostly affects those occupations that are very routinized

because machines can replace workers. Therefore, the effect of computers is heterogeneous across

locations depending on how many highly skilled and less skilled workers hold very routinized occu-

pations. Moreover, the industry’s structure of routine intensive occupations can only predict the

degree of specialization in the local labor market 10 years out. This limitation is the motivation for

using a city’s composition of routine intensive occupations and industries to capture the movements

in the productivity of the workers and in the labor demand of the firms. The identifying assumption

is that SBTC shocks, land unavailability, and the housing regulations are orthogonal to changes

in local productivity. Following a similar identification strategy as in Diamond (2016), I struc-

turally estimate the model using a GMM estimation procedure. I create moment conditions using

equilibrium conditions from the model and local shocks that capture the skill-biased productivity

component interacted with housing elasticities. I estimate the elasticity of population with respect

to wages, which the prior research has not done. I find that an increase in a city’s population raises

the wages of both highly skilled and less skilled workers. I then supplement the estimates from the

model with others borrowed from the literature to calibrate the model and solve it numerically.

The model has a good fit with the patterns of wage convergence in the last 70 years. In

particular, it matches very closely the end of the wage convergence for the highly skilled workers

after 1980 and the continuation of wage convergence for less skilled workers. Next, I construct

counterfactual exercises by “turning off”, step-wise, the divergence forces in the model. The results

show that approximately 80% of the observed decline in wage convergence among highly skilled

workers is due to technology becoming more skill biased. Further, the decomposition of this exercise

4The definition of skill premium that I use is the difference between the wages of the highly skilled workers
and those of less skilled workers.

5Autor and Dorn (2013) study the effect of routinization on the polarization of employment and wages.
They also argue that their shock fits the overall increase in the skill premium.
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for highly skilled and less skilled workers indicates that if no shock had occurred, convergence would

have been, on average, higher for highly skilled workers than for less skilled workers.

The model also matches other non-targeted moments closely such as the increase in wage dis-

persion across cities between 1964 and 2009 in Hsieh and Moretti (2015). Moreover, through the

lens of the model I show that the increase in wage dispersion across cities in the last 40 years

happened solely among highly skilled workers. Hsieh and Moretti (2015) show that the increase

in spatial wage dispersion is due to restrictive housing regulations in highly productive cities, like

New York and San Francisco, in a context where they compare housing and amenities. I compare

how much the increase in spatial wage dispersion is due to housing, migration costs, agglomeration,

or SBTC. The results show that SBTC explains the biggest share of the increase in spatial wage

dispersion. This result is novel and supplements the findings of Hsieh and Moretti (2015).

Besides the matching features of wages, the model matches the skill ratio. Notably, it shows

that while there was convergence in the skill ratio before 1980, afterwards there was divergence,

which Moretti (2012) calls “The Great Divergence”.

The recent works that most closely relate to this paper study the increase in the spatial dis-

persion of US cities and states and the “Great Divergence” of skills, such as Berry and Glaeser

(2005), Moretti (2012), Hsieh et al. (2013), Eeckhout et al. (2014), Hsieh and Moretti (2015),

Diamond (2016), Ganong and Shoag (2017), Baum-Snow et al. (Forthcoming) and Fajgelbaum

and Gaubert (2018). My paper complements these findings by highlighting the importance of skill-

biased technology that is interacted with local agglomeration forces to explain the decline in regional

convergence, the “Great Divergence” of skills and other secular changes; besides highlighting novel

empirical evidence on skill sorting of migrants over the last 70 years.

Additionally, this paper complements the literature on regional convergence across countries

and states that is inspired by the seminal works of Baumol (1986), Barro and i Martin (1992), and

Barro and Sala-i Martin (1997); and continued with Bernard and Jones (1996), Caselli and Coleman

(2001), Comin and Ferrer (Forthcoming), and Gennaioli et al. (2014). My paper complements this

literature in several dimensions. First, I provide a realistic model, rather than a North-South model.

Second, I propose a framework that has both convergence and divergence forces built in that can

match the data both on prices and quantities.

A growing literature, beginning with Katz and Murphy (1992) and continued by Krusell et al.

(2000), has considered the impact of skill-biased technology on wages and inequality. Other works

such as Berry and Glaeser (2005), Beaudry et al. (2010), and Autor and Dorn (2013) are more

closely related to my paper because along with considering skill-biased technology as a national

shock, they also focus on its local implications. In particular, Acemoglu and Autor (2011a) suggest

using the difference between the definition of “tasks” and “skills” as a principal method to capture

job polarization when discussing the skill premium.

This paper is also related to the agglomeration literature based on Krugman (1991). More

recent papers in this literature are Greenstone et al. (2010), Behrens et al. (2014) and Ahlfeldt
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et al. (2015). Duranton and Puga (2004) and Davis and Dingel (2014) propose, instead, a micro-

foundation of agglomeration economies of skill. This paper complements the estimation and the

long-run role of spatial agglomeration. In specific, it fits in the subset of this literature that makes

use of spatial equilibrium models in general equilibrium to account for agglomeration forces (e.g.,

Redding and Rossi-Hansberg 2017, Desmet et al. 2018, Nagy 2016).

Methodologically, this paper relates to the literature that uses exogenous variation in local

productivity to identify effects of labor demand as in Diamond (2016), Autor and Dorn (2013),

Notowidigdo (2011), and Suárez Serrato and Zidar (2016). Overall, this paper complements all the

papers above by: 1) the exploration of novel facts regarding the differential ending of convergence

by skill groups, wage inequality at the regional level, and migration destinations over the last 70

years; 2) the incorporation and estimation of agglomeration effects of skill and size in a dynamic

general equilibrium model and their quantification with heterogeneous skills.

The remainder of the paper is organized as follows. Section 2 describes the data and the

empirical analysis. Section 3 proposes a theoretical framework. In Section 4, I calibrate the model

that estimates the core parameters. In Section 5, I solve the model and conduct a counterfactual

analysis. Section 6 explores other potential complementary channels. Section 7 concludes with a

brief summary and future directions.

2 Data and Empirical Regularities

In this section, I briefly discuss the data and I report some facts for the last 70 years. To the best of

my knowledge, facts in sections 2.2, 2.3 and 2.4 are novel to the literature while fact 2.5 reproduces

the “Great Divergence” of skills documented previously extending it to a longer time horizon.

2.1 Data

My analysis draws on the Census Integrated Public Use Micro Samples (IPUMS) for the years

1940, 1950, 1960, 1970, 1980, 1990, and 2000; and the American Community Survey (ACS) for

2010 (Ruggles et al. (2015)).6 In order to construct measures of migration, I use the March Current

Population Survey (CPS) data that is a monthly US household survey conducted jointly with the

US Census Bureau and the Bureau of Labor Statistics. The focus is on household and demographic

questions. I use measures of geographic constraints and land use regulations from Saiz (2010).

More details about the data and the definitions of the variables are in the appendix.

6The Census samples for 1980, 1990, and 2000 include 5% of the US population; the 1970 Census and
ACS sample include 1% of the population; and the 1950 Census sample includes approximately 0.2% of the
population.
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2.2 The End of Wage Convergence for Highly Skilled Workers after 1980

Figure 2 shows that the cross-MSA wage convergence rates between 1940 and 1980 were the same

for highly skilled and less skilled workers. But, they differ strongly after 1980. Between 1980 and

2010, the wage convergence rate occurred only among less skilled workers but not for highly skilled

workers.

To illustrate these patterns, I run the same “convergence” regression as in Baumol (1986):

wkjt − wkjτ
(t− τ)

= α+ βkwkjτ + ε (1)

where k is the skill group, highly skilled H or less skilled L; j is the MSA; and t is the final year of

the analysis and τ is the initial year. wkjτ is the log hourly wage by skill group k in MSA j at time

τ . The dependent variable is the annual average wage growth of log hourly wages between τ and t.

All the regressions are weighted by initial population size. If the estimates of βk are negative and

statistically significant, then there is wage convergence and the convergence rate is exactly βk. If

they are positive and statistically significant, then there is wage divergence. In Figure 2, I plot the

observations at the MSA level by skill group k and then the line fit, where βH and βL-convergence

rates are the slope of the lines. The blue dashed line is the β-convergence for L, and the red solid

line is the β-convergence for H. Each circle is an observation by MSA and skill group. I label the

10 biggest US MSAs in red for the observation of the less skilled and in blue for the highly skilled

workers, respectively.

Between 1940 and 1980, there was no difference between cross-MSAs wage convergence rates,

βH and βL. Between 1980 and 2010, the convergence rate βL was still negative and statistically

significant, but βH was not. This difference means that the end of convergence was driven only

by the wages of highly skilled workers, because the wages of less skilled workers still converged

across MSAs. In Panel B of Table 1, I report the estimates of βL and βH in the two different

periods both for population weighted and non-population weighted regressions. For the population

weighted regression, βL and βH are, respectively, -0.0123 and -0.0143 between 1940 and 1980.

Both estimates are statistically significant. However, the estimates of βL and βH between 1980

and 2010 are respectively, -0.0169 and 0.000636. The estimate of βL is statistically significant but

the estimate of βH is not statistically different from zero. In the appendix, I run several robustness

tests for this fact. First, I estimate the rolling convergence for the highly skilled and the less skilled

workers separately for 10- and 20-year windows. Second, I run the same regression as above for

compositionally adjusted wages.7

7The results are very robust to different specifications.
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Figure 2: Wage Convergence across MSAs before and after 1980 by Skill Group
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Note: This figure plots each MSA’s annual average wage growth (demeaned) against its (demeaned)
initial wage level by skill type (highly skilled and less skilled workers). The left depicts 1940-1980;
the right depicts 1980-2010. Each MSA’s circle size is proportionate to its initial population size
by skill group. The red solid and the blue dashed line in each graph depict a weighted least square
bi-variate regression, respectively, for less and highly skilled workers. The size of the underlying
MSA is represented by the size of the circle in the figure.

2.3 Skill Premium By Skill Ratio Over Time

The skill premium used to be lower in skill abundant places, but in recent years the skill premium

is higher in skill abundant places as shown in figure 3. I define skill premium as the difference

between the wages of the workers that are highly skilled and the workers that are less skilled. I run

the following regression:

ln

(
ŵHjt
ŵLjt

)
=

2010∑
t=1940

βt

(
Hjt

Ljt

)
+ φj + φt + εjt (2)

where ŵHjt and ŵLjt are the compositionally adjusted wages for MSA j at time t respectively

for highly skilled and less skilled workers. φj is the MSA fixed effect, and φt is the time fixed effect.
Hjt
Ljt

is the ratio of the total number of workers that are highly skilled to that of less skilled workers

in MSA j at time t. I run the regression for t = {1940, 1950, 1960, 1970, 1980, 1990, 2000, 2010}.
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Once I run the regression for each year of the Census, I plot the estimate for the coefficient βt for

each year. This coefficient can be interpreted as an increase of one standard deviation in
Hjt
Ljt

that

is going to affect the skill premium by βt standard deviations. In figure 3, there is a clear pattern

for the growth of the skill premium by MSA education. In Table 2, I report the estimates of βt that

control for population. Baum-Snow and Pavan (2013) find that at least 23% of the overall increase

in the variance of log hourly wages in the US from 1979 to 2007 is explained by the more rapid

growth in the variance of log wages in larger locations relative to smaller locations after controlling

for the skill composition of the workforce across MSAs of different sizes. This evidence reinforces

the presence of growing agglomeration economies and motivates the decision to introduce them in

the theoretical framework, both for population and for skill-ratio.

Figure 3: Skill Premium by MSA Education Levels

−
2

−
1

0
1

2

1940 1960 1980 2000 2020
census year

95% CI β

Note: This figure plots the estimate of the coefficient β for the regression 2. On the horizontal axis, I have
the decades from 1940 to 2010. While, on the vertical axis, I have estimates of coefficient β for each decade
from 1940 to 2010. Moreover, there is a line starting at zero on the vertical axis.

2.4 Migration

In this subsection, I use the CPS data. This data set has better migration information than the

IPUMS extracted Census data. The information is reported more frequently than the IPUMS

extracted Census data. Moreover, the information is more detailed and shows whether the workers

10



migrate across MSAs, not only states, as the IPUMS extracted Census data do. As a robustness

check, I run the same exercise with the migration measure computed as the difference between the

individuals born in a state minus the individuals currently living there. The results in qualitative

terms stay the same.

The research on migration has proven that educated workers migrate more than less-educated

workers. But where are they actually migrating to? Are they migrating to less educated places

to take advantage of the scarcity of a highly skilled labor force? In order to assess which type

of workers migrate more to highly educated MSAs, I run a difference-in-difference analysis as in

equation (3).

1

(
Migrantijt

)
= α+ β1 (Hijt) + γ

Hjt

Ljt
+

2013∑
t=1963

δt1 (Hijt) ∗

(
Hjt

Ljt

)
+ ΓXijt + φj + φt + µijt (3)

The dependent variable in this equation is whether worker i in MSA j at time t is a migrant or not.

The variable equals one if the worker is a migrant. On the right-hand side, there is an indicator

variable Hijt that equals one if the worker is highly skilled and zero otherwise. The second variable

is the skill ratio H
L in each MSA at each time. Third, there is the interaction between the first two

variables. Regression 3 also includes MSA and time fixed effects. I use the estimated coefficient δt

to compute the marginal effect of being a highly skilled worker and being in a more skilled MSA on

the probability of being a migrant. The Xijt represents the economic demographics of the workers

such as age, gender, race, and nationality.8

I run regression 3 both as a linear and a logit model. I focus on the marginal effect of δt to find

the impact of the probability of worker i in MSA j at time t of being a migrant or not given MSA

j’s skill ratio that is interacted with the worker being highly skilled. I run the same regression with

the CPS where the information about the migration status of the worker is available for the years

from 1962-2010 except for 1972-1975 and 1976-1979. In the appendix, I run the same exercise using

Census data extracted from the IPUMS. Each observation in figure 4 corresponds to the coefficient

δt in regression (3). I use this as a robustness check. Then, to make evaluations consistent with

the Census data and to rule out potential biases because of the cycles, I take the average of the

estimate for each decade for the available data. For instance, for the 1960s, I take the average of

the data available up to 1965. For the 1970s, I take the average of the estimates from 1966 to 1975

and so on.

Figure 4 shows that the marginal propensity to migrate conditional on being a highly skilled

worker and moving to a highly skilled MSA increases over time. Thus, in relative terms highly

skilled workers concentrate more and more over time in the more educated MSAs. This finding

goes well in accordance with the hypothesis that highly skilled workers concentrate more and more

8The more detailed description is the same as the one I did for the compositionally adjusted wages.
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in educated MSAs. Table 3 shows the evolution over time of the marginal effect of being highly

skilled and being in a highly educated MSA on being a migrant.

Figure 4: Migration Rate by Destination Education Level
0

.1
.2

.3
 

1960 1970 1980 1990 2000 2010
Survey year

δt 95% con. interval

Note: This figure plots the estimate of the coefficient δ for the regression 3. On the horizontal axis, I have
the years from 1962 to 2010. While, on the vertical axis, I have estimates of coefficient δ for each year from
1962 to 2010. Moreover, there is a line starting at zero on the vertical axis.

2.5 Skill Ratio: The Convergence and “The Great Divergence” after 1980

What happened to the distribution of highly and less skilled workers over time across space? Moretti

(2004), Berry and Glaeser (2005), Diamond (2016), and Moretti (2012) show that the skill ratio of

workers between 1980 and 2010 was diverging across MSAs. Moretti (2012) coins the term “The

Great Divergence” to stress how the skills diverge over space. But what happened to the skill ratio

before 1970? Was the skill distribution converging across MSAs when wages were converging? To

answer this question, I look at the convergence rates of the skill ratio over the last 70 years, not

just between 1970 and 2000 as in the literature. I estimate the following specification:

ln

[
Hjt

Ljt
− Hjτ

Ljτ

]
1

(t− τ)
= α+ βskillln

Hjτ

Ljτ
+ ε (4)
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where Hjt and Ljt are, respectively, the number of highly and less skilled workers living in MSA

j at time t and the initial period τ . The dependent variable is the average annual growth of the

skill ratio between τ and t. With this regression, I can assess the extent to which growth in the

skill ratio is related to the initial skill ratio. This regression is analogous to the regressions run in

Figures 1 and 2 but for quantities rather than for wages. I run this regression over different periods

using the Census and ACS data. In Figure 5, I plot the observations at the MSA level and then

the line fit, where βskill-convergence rates are the slope of the lines. Each circle is an observation

by MSA. I label the 10 biggest US MSAs. Between 1940 and 1980, the βskill-convergence rate was

negative and statistically significant. However, as suggested in the literature, between 1980 and

2010, the βskill-convergence rate was positive and statistically significant that indicates divergence.

Table 4 has the results from decomposing the years in shorter periods. The results show that the

distribution of highly skilled and less skilled workers across MSAs was converging between 1940

and 1980 and then started to diverge between 1980 and 2010. Panel A shows the results when the

difference between t and τ is 10 years. While in Panel B, the same difference is set at 20 years.

Panel A shows that the estimated coefficients are negative and statistically significant until 1970,

then they become not significant for 1970-1980 and 1980-1990. Further, between 1990-2000 and

2000-2010 they become positive and statistically significant. A 1% increase in the college share

ratio increases the change in the college share by 0.07% and 0.04%, respectively, between 1990-

2000 and 2000-2010. In Panel B, the results are quite similar, but in column (1) the coefficient is

positive and statistically significant. That coefficient is actually calculated for 1940 to 1970 since

data for 1960 is not available. Therefore, in a 30-year time span, the results should have reversed

for other reasons. But, the coefficient between 1950 and 1980 is negative and statistically significant

as expected. In particular, a 1% increase in the college ratio in 1950 decreases the change in the

college ratio between 1980 and 1980 by 0.32%.
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Figure 5: Skill Convergence across MSAs before and after 1980
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Note: This figure plots each MSA’s annual average skill growth (demeaned) against its (demeaned)
initial skill level. The left depicts 1940-1980; the right depicts 1980-2010. Each MSA’s circle size is
proportionate to its initial population size. The red line depicts a weighted least square bi-variate
regression. The size of the underlying MSA is represented by the size of the circle in the figure.
The line in each graph represents a weighted regression line from the bi-variate regression.
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3 A dynamic spatial equilibrium model with heterogeneous skills

The empirical analysis indicates that the skill composition might explain the patterns observed

in the skill premium and cross-MSA migration. It also emphasizes the way in which the role of

the skill composition changes over time. These observations also show that agglomeration and

SBTC effects might be relevant in explaining why spatial wage convergence decreases. But how

can these effects be disentangled? How important is each of these mechanisms? To answer these

questions, I use a dynamic model of cities based on the current spatial equilibrium literature, which

was pioneered by Rosen (1979) and Roback (1982), and is nested with the literature on economic

growth. Specifically, this framework uses several features from Diamond (2016) and Desmet et al.

(2018). It departs from Diamond (2016) in several aspects. First, I add a dynamic component

resembling Desmet et al. (2018). Second, I add a set of intermediate sectors.9 Third, I emphasize

the agglomeration effects on the production side of the economy by disentangling population and

skill elasticities. I allow the prices of the rents to change across space for the composite good. This

flexibility means I can obtain a series of rents and local prices after 1940.10 Fourth, I shift the focus

away from the micro aspects of location choice, such as distance from the native state and local

preferences for amenities. I also do not estimate the model for multiple groups.11 At the same

time, this model borrows its dynamic structure from Desmet et al. (2018). However, it departs

from the latter by adding heterogeneous agents, intermediate goods, and a housing sector.

There are two types k of households, highly skilled H and less skilled L. In each time period

t, where t ∈ T they decide how much to consume and which location j to pick for living. There is

a set of J locations. The labor of H and L are the only two factors of production. Each worker

provides, inelastically, one unit of labor in the location where he or she lives for which he or she

is compensated with a wage. Each location produces a tradable good T , a set of non-tradable

intermediates, d ∈ D, and housing O. The production of tradable T employs both highly and less

skilled labor. The productivity terms are different for the two sectors’ production functions. The

endogenous component is a function of the ratio of highly skilled workers to less skilled workers, and

population. Moreover, worker productivity is different across locations. The housing production is

a reduced form of the prices.

9Adding intermediate inputs in the model allows to have a better connection between the theory and the
estimation in the following section since the empirical strategy exploits industry composition of the cities.

10This work contributes to the spatial economics literature that currently lacks a measure of local prices
back in time.

11While Diamond (2016) focuses on welfare and on the heterogeneity of workers, this paper asks a long-run
macro aggregate question.
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3.1 Preferences and agents’ choices

In each period, agents derive utility from consuming a tradable good T and housing O according

to Stone-Geary preferences with a subsistence level housing Ō.12 Agents also derive utility from

exogenous amenities Akjt and from living in more highly skilled cities with higher (Hjt/Ljt) to

some exponent γp. The period utility of an agent i of type k ∈ {H,L} who resides in location j at

time t and lives in a series of locations j̄ = (j0, ..., jt−1) in all previous periods is given by

uikjtj̄ = uikjt

t∏
s=1

mk(js−1, js)
−1

where uikjt is the utility which depends only on the current location j of the agents; and mk(jt−1, jt)

is the migration cost of type k from moving from location jt−1 to location jt, which is also a

permanent utility loss for moving from js−1 in s− 1 to js in s. The utility uikjt is given by

uikjt = θln(Tkjt) + (1− θ)(Okjt − Ō) +Akjt + γp(Hjt/Ljt) + ζijt

where ζ is a taste shock distributed according to a Gumbell (or Type I Extreme Value) distribution.

Thus,

Pr[ζijt] = e−e
(−ζijt)

I assume that ζijt is i.i.d. across locations, individuals, and time. Agents discount the future

at rate β and so the welfare of an individual i in the first period is given by
∑

t β
tuitjj̄ where jit

denotes the location at time t, j̄ denotes the history of previous locations, and ji0 is given. Agents

earn a wage Wkjt from their work. Every period, after observing their idiosyncratic taste shock,

agents decide where to live that is subject to mobility costs mk. These costs are paid in terms

of a permanent percentage decline in utility. I use the same assumption about the separability of

moving costs as in Desmet et al. (2018) such that mk(s, j) = mk1(s)mk2(j) with mk(j, j) = 1 for

all j ∈ S. This assumption turns out to be extremely useful for the feasibility of the model because

it means that agents’ choice of location depends only on current variables and not their location

history.13 Therefore, I rewrite the agents’ problem in a recursive formulation. The value function

for an agent living in location j after observing a distribution of the taste shock in all locations is

12The preferences present a degree of non-homotheticity to be consistent with Ganong and Shoag (2017).
This will allow to make a fair quantitative comparison with the housing mechanism. The main qualitative
predictions of the model would not change if there was not non-homotheticity.

13Caliendo et al. solve the migration problem dynamically by keeping track of the distribution of workers
across locations by using a “hat algebra” method. One extension of the current model would be to incorporate
that decision on top of the current features. However, in order to use their method, I would need to measure
the migration flows across cities in 1940. Unfortunately, these data are not currently available to the best of
my knowledge.
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given by

Vkt(j, ζ
′
i) =maxj′

[
Vikj′t

mk(j, j′)
+ βE

(
Vkt+1(j′, ζ ′′i )

mk(j, j′)

)]

=
1

mk1(j)
maxj′

[
Vikj′t
mk2(j′)

+ βE

(
Vkt+1(j′, ζ ′′i )

mk2(j′)

)]

=
1

mk1(j)
maxj′

[
Vikj′t
mk2(j′)

+ βE

(
maxj′′

[
Vikj′′t+2

mk2(j′′)
+ βE

(
Vkt+2(j′′, ζ ′′i )

mk2(j′′)

)])]

From the last line of equation 3.1, it follows that the choice of current location is independent

of past and future locations. This independence means that the value function can be rewritten,

which isolates the current component as a static problem.14 Thus,

maxj′

[
Vikj′t
mk2(j′)

]

After deciding location j′, the agent solves the following static problem:

Vikj′t = maxTkj′t,Okj′t [θln(Tkj′t) + (1− θ)(ln(Okj′t − Ōkj′t) +Aj′t + γp(Hj′t/Lj′t) + ζij′t]

s.t. Tkj′t +Okj′tRj′t = Wkj′t

The indirect utility of agent i of type k at time t living in MSA j can be written as

Vikjt =

[
θln(θWkjt −RjtŌ) + (1− θ)ln

(
(1− θ)

Wkjt

Rjt
+ Ō

)
+Akjt + γpln (Hjt/Ljt) + ζijt

]
k is the skill group of the individual, which can be “highly skilled” Hjt or “less skilled” Ljt.

wkjt is the log of the wages for each skill type k in location j at time t.

Using the properties of the Gumbell distribution and following McFadden (1973), I derive the

number of workers of types H and L living in each location j at time t.

Hjt =
exp(δHjt/m2H(j))∑S
s exp(δHst/m2H(s))

(5)

Ljt =
exp(δLjt/m2L(j))∑S
s exp(δLst/m2L(s))

(6)

14The derivation above follows from Desmet et al. (2018).
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where

δkjt = θln(Wkjt −RjtŌ) + (1− θ)[ln((1− θ)
Wkjt

Rjt
+ Ō] +Akjt + γpln (Hjt/Ljt) (7)

3.2 Technology

In the next subsection, I describe the production technology of the final tradable sector, T ; the

non-tradable intermediates; and the housing sector, O. The final good is produced using all the

intermediates jointly in a CES fashion. The local market produces intermediates and housing. The

intermediates are produced using a CES with highly skilled and less skilled labor. The housing

sector is produced depending on the price of the housing sector as in Ganong and Shoag (2017).

Because the tradable good T is freely tradable across locations, the price of T , PTjt = pTjt, ∀j,
that means it is the same across locations and is assumed to be a nummeraire.

3.3 Final Good Production

The final good is produced combining all the intermediate d jointly in a CES fashion where the

elasticity is given by α, and the share used in the production function is µd. In particular,

Tjt =
(∑

j

µdY
α
djt

)1/α
3.3.1 Intermediates Sector

The production function in equation 8 is a CES that uses two types of labor Hdjt and Ldjt as

imperfect substitute inputs.15

Ydjt = [ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ , ∀ j = {1, ..., N} (8)

ηHdjt and ηLdjt denote the productivity of H and L, respectively, in sector d at location j for

time t. Productivity is divided into an exogenous and an endogenous component.16

Departing from the standard formulation of a CES as in Katz and Murphy (1992), I follow the

recent literature on agglomeration in order to make productivity dependent on both endogenous

and exogenous components. Endogenous differences in productivity depend on the industry mix in

15I do not include physical capital in this model since my focus is on the composition of the labor force and
human capital. However, the consequences of including capital might differ depending on whether capital is
mobile or immobile.

16Applying a change in variable as in Diamond (2016), Ydjt can be rewritten as a function of data
(wLjt, wHjt, Hdjt, Ldjt, Hjt, Ljt) and parameters (ρ, γL, γH , φL, φH). More details are given in the ap-
pendix in section B.3.
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the location. As Diamond (2016) argues, the literature on social returns to education has shown

that areas with a higher concentration of college graduates are more productive due to knowledge

spillover.17 Adding knowledge spillover through endogenous productivity that derives from the

skill ratio is supported also by my empirical findings, as in section 2. These two facts suggest that

1) the higher the skill ratio, the higher the wage premium in the location and 2) highly skilled

workers migrate to cities with a higher skill ratio more frequently than do less educated workers.

These two facts embrace the hypothesis that knowledge spillover can be higher in cities with a

higher concentration of highly skilled workers. Simultaneously, following Davis and Dingel (2014)

and Baum-Snow et al. (Forthcoming), the spillover effects also appear with respect to population,

not just the skill ratio.18 It follows that the expressions for ηHdjt and ηLdjt are:

ηHdjt =

(
Hjt

Ljt

)γH
(Ljt +Hjt)

φHSλ
H

Ht exp(ξHdjt)

ηLdjt =

(
Hjt

Ljt

)γL
(Ljt +Hjt)

φLSλ
L

Lt exp(ξLdjt)

where Skt is the exogenous skill-biased technology component for k ∈ {H,L}.19 The exogenous

productivity component is ξkdjt. ξkdjt at time 0 is given and then evolves according to:

ξkdjt = ξγ2kdjt−1

[ ∫
s
ω(j, s)ξkdst−1ds

]1−γ2
(9)

where ω(j, s) is a symmetric measure of distance between location j and location s and γ2 ∈
[0, 1].20 If γ2 < 1, then the productivity in location j is dependent on the productivity of the other

locations. This dependence will introduce convergence into the model through spatial knowledge

diffusion.

The profits π of the firm come from the following maximization problem:

πdjt = maxl, hpdjt[ηLdjtl
ρ + ηHdjth

ρ]
1
ρ −WHjth−WLjtl

where l and h are, respectively, the amount of less and highly skilled labor used by one firm

17In the current version of Diamond (2016), spillovers are not modeled with parametric formulation but
more importance is given to utility spillovers. My paper, however, benefits by modeling productivity spillovers
with specific functional forms, especially for the counterfactual analysis.

18To guarantee the existence of a steady state, I will need to derive sufficient conditions to be imposed on
the agglomeration effect.

19In the Appendix, I present a version of the model with endogenous SBTC modeled as technology adoption
in line with Beaudry et al. (2010). However, this version does not reproduce features that I see in the data,
such as correlation between the skill premium and local supply of skilled labor.

20As a robustness test, I numerically test this productivity process, holding ω constant such that
∫
S
ωds =

1. The results are qualitatively unchanged.
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that produces the intermediate good d. pdjt is the price at which the intermediate d is sold. A

free entry condition drives profits to zero since the firms keep entering until the profits are equal to

zero. Therefore, a firm choosing its production in period t knows that its current and future profits

are going to equal zero. This result is extremely useful in solving the model. It means that the

dynamic model becomes a repeated static model, which facilitates numerical solution of the model.

Since the labor markets are perfectly competitive, the wage in each location is equal to the

marginal product of labor as shown in equations 10 and 11, which derive the first-order condition

of the firms.

WHjt = pdjtηHdjt[ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ
−1
Hρ−1
djt (10)

WLjt = pdjtηLdjt[ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ
−1
Lρ−1
djt (11)

3.3.2 Housing Market

The supply of housing is a convex function of its price. The higher the price of housing, the higher

the supply.21

Ojt = Rµjt

where the exponent µ represents the elasticity of housing and R is the rental rate of houses in

location j at time t. This equation mimics the housing sector following Ganong and Shoag (2017).

The idea behind this expression is that regulations affect the elasticity of supply as a direct cost

shock. Local housing demand follows from the household problem and is given by:

Hjt

[
Ō + (1− θ)

WHjt

Rjt

]
+ Ljt

[
Ō + (1− θ)

WLjt

Rjt

]
(12)

3.4 Equilibrium

I define the dynamic competitive equilibrium of this model as follows:

Definition The equilibrium consists of a set of allocations {{Ldjt, Hdjt}Dd=1}Jj=1 and a set of

prices {{Pdjt}Dd=1, Rjt}Jj=1, wages {WHjt,WLjt}Jj=1, such that given {{ξLdj0, ξHdj0}Dd=1}Jj=1, {{ALjt, AHjt}Tt=1}Jj=1,

a set of parameters normalizing Pjt = Pt = 1 and
∑

j (Ljt +Hjt) = 1 in each time period t:

1. Given migration costs and idiosyncratic preferences, workers choose their location and con-

sumption to maximize the utility satisfying equations 5, 6 and 7;

2. Firms maximize profits such that equations 10, 11 hold;

21To create fully dynamic housing model with investment decisions along the lines of Glaeser and Gyourko
(2006) is a possible extension of the paper. However, to avoid moving the focus of the paper away from skill-
biased technology and agglomeration, I keep the housing market as simple as possible. This simplification
also enhances comparability to Ganong and Shoag (2017). I run some simulations fluctuating the value of
the parameter µ to very large levels and to small levels to check how the housing would respond.
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3. There is free entry for firms into the tradable sector such that π = 0;

4. Labor markets clear such that 5 and 6 hold;

5. Housing markets clear such that the demand of equation 12 is equal to the supply in equation

3.3.2

Rµjt = Hjt

[
Ō + (1− θ)

WHjt

Rjt

]
+ Ljt

[
Ō + (1− θ)

WLjt

Rjt

]
6. Total labor supplies are the sum of labor demanded in each intermediate such that

Ljt =

D∑
d=1

Ldjt and Hjt =

D∑
d=1

Hdjt

7. Technology evolves according to 9.

3.5 Discussion

Introducing this persistent productivity formulation with spatial diffusion helps to generate con-

vergence directly in the model, as in Barro and Sala-i Martin (1997), Caselli and Coleman (2001),

and Desmet et al. (2018). Unlike a model that compares steady-states, convergence generated with

a diffusion mechanism is better suited to the explanation in Barro and Sala-i Martin (1997) that

argues that a neoclassical model with friction to capital mobility reproduces the convergence rates

across countries and within the US. Caselli and Coleman (2001) construct a dynamic model in which

total factor productivity (TFP) grows faster in agriculture, there are declining costs of acquiring

human capital, and farm goods are a necessary good. These two models introduce convergence

through two different mechanisms. Also, Caliendo (2011) and Bajona and Kehoe (2010) show that

convergence can be proven in a dynamic Hecksher-Ohlin model. The convergence produced by an

idea-diffusion process might be related to a declining cost of human capital or to physical capital

mobility, as in the literature.

The upside of the model used here is that it extends the existing spatial equilibrium models

by adding a dynamic component. This addition allows me to view income convergence through

the lens of technological diffusion rather than TFP residuals, as would be the case in a static

model. Workers draw idiosyncratic shocks every period that incentivizes them to switch cities.

In a model with no agglomeration forces, a positive number of workers would find it optimal to

switch cities, and the model would have positive flows of workers across cities, even in the absence

of productivity shocks. This feature of the model accords well with the data in which the flows

of workers are always positive. Net flows increase as a fraction of workers move to the relatively

more productive sector that then decreases the difference in utility values across cities. In the

next period, when taste shocks are drawn again, there is still positive net reallocation, but the net

reallocation declines as the difference in values across cities declines. This process continues until
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the new desired allocation is achieved and flows return to zero. However, while preference shocks

act as a dispersion force as just described, if agglomeration economies are stronger, there could be

multiple equilibria. Therefore, other congestion forces serve to match the data.

This model features labor as the only production input. There is no physical capital. While

physical capital is important in the production of goods, it is not crucial for the purposes of this

paper. But, how would physical capital bias the results of this model? This answer depends on

the mobility of capital and on the complementarity or substitutability of capital with highly skilled

labor. If physical capital is freely tradable such that rental rates are equalized across locations,

then the model would draw the same conclusions as it does without capital.

3.6 Existence and Uniqueness

Because of the endogenous productivity channels, this model might allow for multiple equilibria.

These equilibria might happen if the agglomeration forces are strong enough that the workers ag-

glomerate all together in the same locations. To avoid this problem, I must impose restrictions on

the parameters governing the production function such that the agglomeration forces are compen-

sated for by dispersion forces. Allen and Arkolakis (2014) prove the existence and uniqueness of an

equilibrium in a static model with agglomeration forces. Desmet et al. (2018) extend the proof to a

dynamic model with only one type of agent. Both studies find that the strength of agglomeration

and dispersion externalities are crucial in guaranteeing the uniqueness and existence of a spatial

equilibrium. Unfortunately, the proofs of Allen and Arkolakis (2014) and Desmet et al. (2018) do

not apply and cannot be extended to a case with heterogeneous labor aggregated in a CES fashion.

Therefore, I proceed with solving the model for several sets of agglomeration parameters. These

simulations show that the values of the agglomeration parameters for which the model has multiple

equilibria are definitely higher than the ones I estimate in section 4.1.

4 Estimation and Calibration of the Model

The numerical computation of the equilibrium of the model involves recruiting values for all pa-

rameters used in the equations above in addition to the values for initial productivity levels, ξkj0

an Skt for k ∈ {H,L}. After obtaining these parameters, I compute the dynamic equilibrium

by iterating a system of equations. In order to calibrate the model, I estimate the 9 parame-

ters {θ, γp, γL, γH , ρ, φH , φL, λH , λL} internally within the framework. There are two main reasons

why I choose estimation over external calibration for the core parameters. First, using param-

eters from the literature that studies other periods produces inaccuracies. Second, in order to

conduct a quantitative rather than a qualitative analysis, I need to disentangle the quantitative

importance of each of the model’s parameters. In particular, I need to distinguish the effect of

agglomeration forces from the effects produced by SBTC. Therefore, an identification procedure is
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necessary to clarify the individual importance of each parameter. I calibrate the other parameters

{m2H ,m2L, µ, Ō, γ2, α, µd,∀d} with data from the literature.

4.1 Estimation of the Model

To estimate the model, I extend it to allow Skt for k ∈ {H,L} to be location j specific that becomes

Skjt for k ∈ {H,L}. This extension allows for extra variation generated by the city to estimate the

parameters. From the wage equations of the tradable sector, it follows that the exogenous change

in productivity is divided into two main components. On the one hand, there are skill-biased

productivity shocks ∆SHjt and ∆SLjt that act as divergence forces while, on the other hand, the

other skill-neutral component ξHt and ξLt pushes poorer cities to reach the productivity frontier

more quickly. An important assumption is the linearity between the technology component ∆SHjt

and ∆SLjt and the exogenous productivity ξHjt and ξLjt.

4.1.1 Skill-Biased Productivity Shock

Autor and Dorn (2013) rank commuting zones by the intensity of the routine occupations.22 The

authors build an index of routinization in which they categorize all occupations by their intensity

of routinization. Each occupation υ is defined as routinized if the RTI (or routine task intensity) is

higher than the 66th percentile. If an occupation is defined as routinized, the arrival of computers

will have a large effect on it because routine occupations and computers are substitutes. For

instance, the car industry in Detroit was very affected by skill-biased technology (or routinization,

in specific) because the share of laborers working in routine-intensive occupations was very high

for both highly skilled and the less skilled workers. Using the same approach, I construct the RTI

for both highly and less skilled workers in each occupation, as shown in equations 13 and 14.

∆SLjt =

Υ∑
υ=1

(
Ljυt
Ljt
− Ljυt−10

Ljt−10

)
1 (RTIυ > RTIP66) (13)

∆SHjt =
Υ∑
υ=1

(
Hjυt

Hjt
− Hjυt−10

Hjt−10

)
1 (RTIυ > RTIP66) (14)

Autor and Dorn (2013) find that when the price of computers starts falling, workers in routinized

occupations, who are substitutable by computers, see their wages erode. Therefore, MSAs that

specialized in routine occupations, both for highly and less skilled workers, experience relative

wage declines. ∆Skjt capture this idea well through the measure of routinization. Using this same

approach, I build the RTI in each occupation both for the highly skilled and the less skilled workers

as in equations 13 and 14. ∆SHjt and ∆SLjt are two good proxies for how SBTC affects cities

22For a full definition of commuting zones, refer to the following link from the United States Department
of Agriculture: http://www.ers.usda.gov/data-products/commuting-zones-and-labor-market-areas/
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in different ways depending on their composition.23 Figure 6 shows the evolution over time of

the aggregate measures. However, this is not a good measure of a productivity shock because it

Figure 6: ∆SHjt and ∆SLjt aggregate over time
−
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correlates with contemporaneous and local changes that could affect wages. Following the approach

of Autor and Dorn (2013), I use national employment changes both for the highly skilled and less

skilled workers that are interacted with the share of RTI for the local industry 10 years ago as

instruments for ∆SLjt and ∆SHjt. These instruments can be described as:

∆S̃Hjt−10 =
∑
d

(Hd−jt −Hd−jt−10) (Rdjt−10)

∆S̃Ljt−10 =
∑
d

(Ld−jt − Ld−jt−10) (Rdjt−10)

23While this approach provides a good proxy for the local impact of SBTC, it might not be the only one.
Computer prices might represent the arrival of computers and demonstrate how different cities are affected
differently by computer adoption. Beaudry et al. (2010) uses this approach. However, the available data
stops in 2000. This shortfall prevents me from recreating the full analysis through 2010 and is insufficient
to estimate my model. For this reason, I use Autor and Dorn (2013) approach, which is very flexible with
data and allows me to build an index for all years in the analysis.
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where −j is all cities in the sample other than MSA j, d is industries in the economy, and t is time.

Hd−jt and Ld−jt are, respectively, the number of highly skilled and less skilled workers in each

industry d at the national level at time t that excludes MSA j to avoid mechanical correlations.

Hd−jt−10 and Ld−jt−10 are the same lagged 10 years. Rdjt−10 is the share of routine occupations

among workers in each industry in a specific MSA j. Unlike Autor and Dorn (2013), I create both

the index and the instrument for highly skilled H and less skilled L. In this way, I produce extra

variation in the data and use the differential impact of technological shocks on the two categories

of workers. Differently from Autor and Dorn (2013) that aims at capturing the polarization, here

I also want to capture the skill differences. These instrumental variables, ∆ŜLjt−10 and ∆ŜLjt−10,

are useful in the estimation of the parameters of the model and in the construction of the moment

condition.

Table 5 presents the first-stage estimates for these instrumental variables. The predictive rela-

tionship between ∆SH and ∆ŜH is sizable and highly significant with F-statistics of 10 or above

in each decade as shown in Panel A. The predictive relationship between ∆S and ∆ŜL is sizable

and highly significant with F-statistics of 10 or above for the decades after 1980. However, the F-

statistics for the 1950s, 1970s, and 1980s are less than 10. In particular, in the 1970s, the F-statistic

is less than 7.24

4.1.2 Labor Demand

In order to estimate labor demand I use moment conditions that start from the labor demand

curves for highly and less skilled workers. The change in productivity levels that interact with

changes in demand shocks help to identify the core parameters. Using these conditions, I create a

moment in order to estimate the set of parameters: {γH , γL, φH , φL, ρ, λH , λL}.
For this purpose, I start by taking the logs and the first differences of equations 11, 10, which,

respectively, give:

∆wLjt = (1− ρ)∆lnYdjt(ρ, γH, γL, φH, φL) + (ρ− 1)∆lnLdjt + γL∆ln
Hjt

Ljt
+

+φL∆ln (Hjt + Ljt) + λL∆SLjt + ∆ξLdjt

∆wHjt = (1− ρ)∆lnYdjt(ρ, γH, γL, φH, φL) + (ρ− 1)∆lnHdjt + γH∆ln
Hjt

Ljt
+

+φH∆ln (Hjt + Ljt) + λH∆SHjt + ∆ξHdjt

As in Diamond (2016) and Suárez Serrato and Zidar (2016), the identification strategy follows

from the changes in the labor supply that are uncorrelated with local productivity. Also, the

interaction of SBTC shocks with the cities’ housing supply elasticities leads to variation in the

24As a robustness test, I estimate the model without the 1950s and the parameter estimates are unchanged.
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labor supply that is uncorrelated with the unobserved changes in local productivity. The housing

supply affects the migration decisions in response to a labor demand shock. Differential housing

supply elasticities generate exogenous variation in the labor supply. I compare two cities, one has

a very elastic housing supply and the other has a very inelastic one, both experience an increase

in labor demand; and workers move to take advantage of these increases. But, once they move,

the MSA with more inelastic housing will have a higher increase in housing prices. Therefore, the

rent increase will prevent more in-migration in the MSA with higher housing prices for the same

level of labor demand shock that offsets the increase in wage through the labor-demand channel.

Specifically, the exclusion restrictions are:25

E(∆ξHdjt∆Zjt) = 0

E(∆ξLdjt∆Zjt) = 0

Instruments: ∆Zjt =

 ∆ŜLjt ∆ŜHjt

∆ŜLjtx
reg
j ∆ŜHjtx

reg
j

∆ŜLjtx
unav
j ∆ŜHjtx

unav
j



The moment conditions are jointly combined with identifying cities’ supply curves and workers’

labor supply to cities. Finally, they will be jointly estimated with a two-step GMM procedure.

4.1.3 Labor Supply

As specified above, the indirect utility for agent i of type k living in MSA j at time t can be written

as

Vikjt = δkjt + ζijt

where

δkjt =

[
θln(Wkjt −RjtŌ)+

(1− θ)
[
ln(1− θ)

Wkjt

Rjt
+ Ō)

]
+ (1− θ)

[
ln((1− θ)Wkjt −RjtŌ)

]
+

+γpln (Hjt/Ljt) +Akjt

]
The fact that the model does not rely on the agents’ history simplifies the estimation procedure

25To improve the estimation, I supplement the routinization shock with a ”classic” Bartik instrument.
This instrument increases the precision of the estimators.
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by causing it to resemble a static framework. The estimation of the labor supply follows from the

decision of the agents on where to live in each period. Because the utility component δkjt does

not depend on individual worker characteristics, the estimates for each type k is exactly equal

to the ln population of each demographic group observed living in the MSA. Therefore, this is a

simplification with respect to Berry et al. (2004). I take the difference in mean utility δkjt over

time to get:

∆δkjt = θln
Wkjt −RjtŌ

(Wkjt−10 −Rjt−10Ō)
+

+(1− θ)
ln(1− θ)Wkjt

Rjt
+ Ō

ln(1− θ)Wkjt−10

Rjt−10
+ Ō

+ (1− θ)
ln((1− θ)Wkjt −RjtŌ)

ln((1− θ)Wkjt−10 −Rjt−10Ō)
+

+γpln ∆(Hjt/Ljt) + ∆Akjt

Identifying workers’ preferences for wages, rent, non-traded local goods, housing, and amenities

requires variation in these MSA characteristics that is uncorrelated with local unobservable ameni-

ties ∆Akjt. This reasoning follows Diamond (2016). Specifically, I use SBTC shocks and their

interaction with the characteristics of the supply elasticity. For the exclusion restriction to be sat-

isfied, the set of instruments needs to be uncorrelated with unobserved exogenous changes in the

MSA’s local amenities. The key idea is that since SBTC shocks are driven by national changes in

industrial productivity, these shocks are unrelated to changes in local exogenous amenities. These

instruments can be supplemented with data to provide extra power in the identification process.

In particular, I obtain the share of household expenditure on non-tradable goods, θ, from the lit-

erature. I also estimate the model without using the externally calibrated data by relying only on

the instruments for identification. In particular, the moment restrictions are:

E(∆AHjt∆Zjt) = 0

E(∆ALjt∆Zjt) = 0

Instruments: ∆Zjt =

 ∆ŜLjt ∆ŜHjt

∆ŜLjtx
reg
j ∆ŜHjtx

reg
j

∆ŜLjtx
unav
j ∆ŜHjtx

unav
j



All parameters are jointly estimated in a 2-stage GMM where standard errors are clustered at

the MSA level and there are decade fixed effects to account for national changes. Further, I test

whether the over-identification restrictions can be jointly satisfied.26

26To improve the precision of the estimates, I also add standard Bartik shocks in the instrumental set as
in Diamond (2016).
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4.2 Migration Costs

By taking the differences in δkjt, migration costs mk2(j) are eliminated since they do not vary

over time. Therefore, another strategy is needed to calibrate the migration costs. Following the

literature, I can use the estimate from Notowidigdo (2011) that provides separate migration costs

for highly and less skilled workers. Notowidigdo (2011) uses an exponential function to estimate

migration costs. The functional form he estimates is as follows:

mk2j =
σkexp(βkxj)− 1

βk

where xj relates to MSA characteristics such as population. This functional form is very flexible

since, despite having only two parameters, it has advantageous curvature features.

4.2.1 Estimation Results and Robustness

I use a GMM estimation procedure with data at the MSA level for 1940-2010 with data every 10

years and 14 industries. The results are reported in Table 6 where I run several specifications to

test the sensitivity of the model. Column (1) reports the main specification, while column (2)-(6),

report some robustness tests to check the sensitivity of the parameters to specifying the model in

a slightly different way. Specifically, I focus on specifying differently the agglomeration forces to

check how they interact with each other in the context of the model. The results of the estimates,

overall, are thus in accordance with the literature. I estimate an elasticity of substitution between

highly and less skilled labor of 2.13 in column (1). In the other columns, the estimates vary from

1.82 to 3.5, which are consistent with the literature. The results related to endogenous spillover of

skills, γH and γL, are similar to Diamond (2016)who uses similar functional forms. The estimates

show that the returns to education are strong for highly skilled workers. In particular, I find that

a 1% increase in the share of highly skilled workers raises their wages by 0.616% but increases the

return for less skilled workers. Two novel parameters are φH and φL, the endogenous effect of

population productivity. An increase in a MSA’s population, on the other hand, does not affect

the wages of highly skilled workers in column (1). But, columns (2)-(6) indicate that a 1% increase

in a city’s population decreases the highly skilled workers’ wages between 0.262% and 0.646%.

These estimates are similar to the one in Diamond (2016) who finds a value of 0.647%-0.697%. In

column (1), the effect on the wages of less skilled workers is estimated to be negative such that a

1% increase in the city’s population decreases their wages by 0.111%. In columns (2)-(6), the effect

is reversed and a 1% increase in the city’s population decreases their wages by 0.142%-0.187%.

These estimates do differ slightly from Diamond (2016) who finds that a larger number for the

wages of less skilled workers in absolute value. Similar estimates are also conducted by Moretti

(2004) who finds that a 1% increase in MSA’s college employment ratio leads to a 0.10% increase

in the wages of highly skilled workers and a 0.16% increase in the wages of less skilled workers.
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Baum-Snow and Pavan (2013) estimate that at least 23% of the overall increase in the variance of

log hourly wages in the US from 1979 to 2007 is explained by the more rapid growth in the variance

of log wages in larger locations relative to smaller locations. My results are well in accordance

with their findings. I also report estimates of the labor supply. The share of tradable T versus

the share of housing in the utility function of the workers, θ, varies from 0.468 and 0.577. This

range indicates that about half of the expenditures are on housing. Overall, these estimates show

that workers, in general, prefer cities with higher wages, lower rents, higher college share. A 1%

increase in the skill ratio increases the local highly and less skilled working population by 0.679%.

This value is lower than that in Diamond (2016) and Albouy (2012). However, the periods and

identification strategies used here are not the same as those used in these prior papers, which might

be the reason why the value on housing is lower. In columns (3)-(6), I split the spillover effect of

the college ratio on utility by skill group. I find that by splitting them, the effect is positive and

statistically significant for highly skilled workers and ranges from 1.884% to 1.938% and is negative

for low skill-workers going from -0.420% to -0.351%. I also report the estimate for the coefficient

for the SBTC measure. This estimate serves as a scale of the effect. I report it separately for the

case in which I estimate it as being the same for highly and less skilled workers. The estimates

range between -0.125 to -0.014. However, when I separate the estimate for high and low, I find

that the estimates tend to be larger for the high than for the low as reported in column (3). I run

a test of the over-identifying restrictions to assess whether my instruments are jointly uncorrelated

with unobserved local amenity changes and unobserved local productivity changes. I cannot reject

the hypothesis that my instruments are jointly uncorrelated with unobserved local amenity changes

and unobserved local productivity changes with p-values larger than 0.05 in columns (1) and (2).

4.2.2 Other Calibrated Parameters

To complete the calibration of the model and compute its equilibrium, I borrow the other parameters

from the literature. These values are reported in Table 7. To include housing in the model with

non-homothetic preferences, I also include a subsistence level of housing, Ō, from Ganong and

Shoag (2017), which is set to match the Engel curve for housing. To complete the housing sector, I

estimate a value for the elasticity of housing, µ. This elasticity is also borrowed from Ganong and

Shoag (2017). I chose this elasticity to generate a one-to-one relationship between log prices and

log per capita incomes in order to match the relationship from the data. The elasticity is equal to

0.4. This parameter decreases to 0.135 for the cities with higher regulations after 1980.

I borrow the parameter for the technology evolution process γ2, which relates to the relationship

between growth and population distribution, from Desmet et al. (2018). The parameters of the

migration cost function, which is exponential, are different for highly skilled and the less skilled

workers. I borrow these estimates from Notowidigdo (2011), which uses an identification strategy

based on Bartik instruments. Given this functional form, it turns out that the migration costs are

about 1.16 that is higher for less skilled workers than for highly skilled workers whose costs are
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equal to one. Another set of migration costs could have been estimated by using the same approach

as in Desmet et al. (2018). While Desmet et al. (2018) uses this procedure for one type of workers,

the analysis could be extended to two types of workers.27

5 Model Simulation and Counterfactuals

In this section, I first describe how I do the estimation. Second, I provide more details as to how I

achieve the numerical computation of the equilibrium. Third, I show how the model matches the

non-targeted moments in the decline in β-convergence. Specifically, the model fits well the decline

in spatial convergence for highly skilled workers. Fourth, I conduct a quantitative decomposition

of each mechanism’s effect on the decline in convergence. Fifth, I investigate whether the model

matches other non-targeted moments such as the “The Great Divergence” of skills, the secular

decline in migration, and the increase in wage dispersion among others.

The estimation procedure obtains the values for all 10 model parameters, the initial productivity

terms, and SBTC. Next, I compute the equilibrium of the model by solving a system of equations

for every period t that incorporates the productivity values from the previous period.

The model can be reduced to 46 equations, as shown in the appendix. Given that the anal-

ysis includes 240 cities, the iteration procedure contains 11,040 equations for each period t. The

equilibrium conditions correspond to equations 10, 11, 5, and 6. Because of the large number of

cities, the problem is highly dimensional. An extra complication to the model is the endogenous

agglomeration effects that could induce the system of equations to explode. However, the estimates

respect the restrictions imposed by the system and are stable. As a robustness test, I conduct a

sensitivity analysis and check whether the variation in the parameters changes the results substan-

tially and whether the system maintains wage convergence. More details about these conditions

can be found in appendix’s section B.1.

5.1 Model vs. Data

Overall, the model provides a good fit to the patterns found in the previous subsections. Specifically,

with the wages for highly and less skilled workers that the model produces, I run the same regression

within my model as I did with the data in section 2. In fact, I also estimate in the model the βk-

convergence using the specification 1 proposed in section 2, which follows Baumol (1986). Then, I

show that the model provides a good fit to the convergence patterns found earlier. I construct the

evolution of the β-convergence for average wages and for wages of highly- and less skilled workers,

which follows equation 1.

27Extending the migration cost algorithm is not the primary focus of this paper and, therefore, it is left
for future work. The sensitivity analysis indicates that the migration costs do not change the non-targeted
moments much.
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In Figure 7, I plot the estimated β-convergence from the model and from the data to compare

them. I average out the estimates of βH - and βL-convergence weighted by the population shares.

The x-axis of figure 7 report the final year of the convergence equation 1, therefore, the analysis

covers both the period pre and after 1980. Overall, the match is satisfactory. The estimates from

the data and the model differ only by 0.005% points.

The left (right) plot in figure 8 compares the βH(βL)-convergence rates over time both in the

data and in the model. The estimates are very close over time. The model performs very well in

fitting the wage convergence patterns in the non-targeted moment and the decline of convergence

for the high(low)-skill group.

Figure 7: Model Matching the Data on Wage Convergence
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Note: This figure shows a rolling estimate of the β-convergence over 20 years. The solid line is the
data for which we have observations every 10 years (that I smooth over time), while the dashed line
is the estimate of the β-convergence from the model for which we can compute a yearly estimate.

5.2 Quantitative Decomposition

After ensuring that the model fits the data, I calculate several counterfactual scenarios for the

β, βH , and βL convergence rates to assess the quantitative contributions of each of the model’s

mechanisms. Specifically, I proceed stepwise and sequentially “turn off” each component of the

model that contributes to the decline in wage convergence over time.
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Figure 8: Model Matching the Data on High and Less skilled Wage Convergence
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Note: This figure on the left (right) shows a rolling estimate of the βH(βL)-convergence over 30
years. The solid line is the data for which I smooth the 20-year rolling estimate, while the dashed
line is the estimate of the β-convergence from the model for which I compute a yearly estimate.

My counterfactual of interest is comparing estimates of β, βH and βL over time in the baseline

model with the estimates that I obtain once I “turn off” the mechanisms step-wise after 1980. Plot

(a) of figure 9 shows the 10-year window β convergence starting with 1979 as first year, When

I set γH , γL, φH , φL, γp to 0 after 1980, the change is quite dramatic suggesting that β would

have increased substantially initially but it would have set around -1.3% in 2010. When I turn

off also SBTC, as in plot (b), by setting λH and λL to 0, the model predicts that overall β would

have decreased less on impact than accounting for agglomeration forces alone. In plot (c) and (d),

respectively, I set migration cost, mH2 and mL2, to 0 after 1980 and housing elasticity η to be

the same as in the previous period, and Ō to 0. I find that they move the convergence rate by

only few percentage points. Overall, the largest decline is explained by the interaction between

agglomeration and SBTC. In figure 10, I run the same exercise as above, just isolating how βH

changes over time in the different scenarios. Plot (a) shows a similar pattern to plot (a) of figure

9 with an overall decrease in convergence ending at -.5% in 2010. In plot (b), when turning off

also SBTC foirces, the overall convergence rate would have declined to -1.75%. In plot (c) and (d),

respectively, I find that they move the convergence rate by only few percentage points as for β.
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In figure 11, I run the same exercise for βL. In plot (a), I find that if agglomeration forces had

been set to 0, then, overall, βL would have decreased to almost -4% and finalized to -2.5% in 2010.

However, in plot (b), when I also shut down SBTC forces, the exercise shows that convergence in

the last 10-year window would have decreased more than in the baseline, approximately to -.5%.

In plot (c) and (d), respectively, I find that they move the convergence rate by only few percentage

points as for β and βH . The β-convergence between 1980 and 2010 is estimated to be -1.5% a year.

Overall, the main finding is that the bulk of the decline in convergence after 1980 can be attributed

to the interaction between SBTC and the agglomeration forces.

The main takeaway of this counterfactual analysis demonstrate that the convergence rate with

endogenous productivity channels and SBTC are about 1.2% a year. But, if I shut down the

productivity channel, nominal wage convergence is about 1.1% a year.

5.3 Wage Dispersion Increase Over Time

Hsieh and Moretti (2015) show that wage dispersion across US cities increased substantially between

1964 and 2009. As in table 11, the model shows that wage dispersion in the US has increased

substantially over the last 30 years in accordance with the findings in Hsieh and Moretti (2015).

My model supplements this finding by predicting differences in wage dispersion between highly

skilled and less skilled workers. Figure 17 suggests that the variance increased only in the highly

skilled group but it decreased in the less skilled group. As shown in table 11, the variance between

1964 and 2009 increased by 519% in the highly skilled group. Instead, it decreased by 82% for the

less skilled group. I run some counterfactual analysis by shutting down agglomeration forces as in

section 5.2 and I find that if the agglomeration economies had been set to 0, then, the increase in

wage variance would have gone up only by 19% for the highly skilled as shown in column (2). In

column (3), I also shut down the SBTC finding that variance would have decreased both for the

highly and for the less skilled workers if sone of these forces had been in place. Column (4) and

(5), respectively, housing costs and migration, suggest that the contribution to variance in wages

is close to null, quantitatively.

5.4 The Convergence and Divergence of Skill ratio over time

Using model generated data, I estimate specification 4 and compare the outcomes in the model

and in the data in figure 16. The model reproduces shows a βskill convergence rate going from

-2.5% in 1970 to -.5% in 2010. Overall, βskill declines much faster despite the last period, where it

coincides with the model. Overall, this finding suggest that the model is consistent with this other

non-targeted moment, which means that it reproduces not only features of the wage data, such

as the decline in cross-MSA wage convergence, but also features of employment data, such as the

divergence in the skill ratio.
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Figure 9: Quantitative Decomposition of Wage Convergence
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Note: This figure shows the counterfactual exercises in which I turn off the agglomeration forces
in subplot (a), SBTC in subplot (b), migration cost in subplot (c), and housing in subplot (d) one
after another.
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Figure 10: Quantitative Decomposition of Highly Skilled Wage Convergence
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Note: This figure shows the counterfactual exercises in which I turn off agglomeration forces in
subplot (a), SBTC in subplot (b), migration cost in subplot (c), and finally housing in subplot (d)
one after another.
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Figure 11: Quantitative Decomposition of Less Skilled Wage Convergence
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Note: This figure shows the counterfactual exercises in which I turn off agglomeration forces in
subplot (a), SBTC in subplot (b), migration cost in subplot (c) and finally housing in subplot (d)
one after another.
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5.5 Decline in Gross Migration Flows over time

The decline in geographic migration is another important structural change that happened in the

US in the last several years. In the early 1990s, about 3% of Americans moved between states each

year. But, today that rate has fallen by half. Gross flows of people have declined by around 50%

over the last 20 years. Schulhofer-Wohl and Kaplan (2017) provide and test a theory of reduction

in the geographic specificity of occupations coupled with information technology and inexpensive

travel. They find that these two mechanisms together can explain at least half of the decline in

gross migration since 1991. Can my framework help to explain the decline in gross migration flow?

Technological innovation increases the sorting of skilled workers into skilled cities, and once workers

are sorted, their incentive to move will decrease over time since it will be harder to find a city with

similar wages. If, moreover, the technological shock persists over time, then this effect will become

even stronger by decreasing migration even further. For instance, suppose that a highly skilled

worker lived in San Francisco in the 1980s. When the technology shock arrives, the highly skilled

worker would have less incentive to move because San Francisco would have the highest wages for

him or her. Another highly skilled worker, who currently lives in Detroit, decides to move to San

Francisco. Over time, the incentive to migrate decreases because the workers will have a better

match in their current MSA. This is supported by the evidence that the migration rate for skilled

workers decreased more than the migration rate for less skilled workers. Figure 14 shows that the

model matches the data for the trends in the migration rate over time.

5.5.1 Sorting of Highly Skilled Migrants to Rich Cities

In section 2, I show that highly skilled workers move more and more to highly skilled MSAs. In

this subsection, I check how the model matches this feature of the data. The model, however, does

not distinguish migrants from non-migrants. But, it does calculate the migration rates by taking

the differences in the population of a MSA over time. To check how the model matches, I generate

data on changes in the population of highly skilled H in MSA j and on average wages of MSA j,

then, I run the following regression:

∆Hjt = α+
2010∑
t=1941

δHt lnHjt + εt

In figure 15, I plot the estimates of δHt for each year. The results show that the MSA with

higher average wages, had a decrease in the number of highly skilled migrants between 1940 and

1980. Specifically, a 1% increase in wages generates an approximately 1.4% decrease in the highly

skilled migrants. However, the relationship between 1980 and 2010 goes in the opposite direction.

Moreover, it increases exponentially over time. In 2010, a 1% increase in local wage increased the
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number of highly skilled migrants by 2%.

5.6 Real Wages Convergence

With data on wages and local prices generated by the model, I calculate the real wages in each city

by dividing the nominal wage by the price index. In figure 12, I plot the evolution of the β estimate

for real wages. I find that the model reproduces a decline in the real wages’ convergence as well

as in nominal wages. Unfortunately, the literature on real wages historically is quite thin since the

availability of data on local prices is very limited. The slope of the decline reproduced by the model

is similar to the one in the data as the left plot shows. The majority of the decline follows from

the decline in the convergence of the highly skilled real wages. The real wage convergence for the

less skilled workers is still around 2% a year.

Figure 12: Model matching data on Real Wage Convergence
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6 Other Potential Explanations

There are several potential explanations that are complementary to the SBTC and agglomeration

conjecture. In this section, I explore the changes in policy such as housing, unionization, Right

to Work Laws, and international trade together with the industry’s composition and the firms’

decisions on location.
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6.1 Housing Regulation

Ganong and Shoag (2017) provide a explanation based on housing prices that suggests that the

US states where housing prices increased the most are also the ones where the migration declined.

Hence, because migration increases convergence, the decline in migration to this area, which is also

the richest, also decreased the income convergence rate. As also stated in their paper, the housing

prices and SBTC could be complementary. For this reason, in order to decide how to disentangle

them, I add a housing sector to the model to compare the housing effects with my key mechanisms.

Additionally, I conduct an empirical test that shows that even in the areas where the housing

restrictions are high, there is a strong difference in the convergence rate of wages for the highly

skilled and the less skilled groups. I construct figure 2 for the MSAs that were in states where

the housing prices went up dramatically because of housing regulations. Figure 18 shows that the

effect of regulations on the decline in income convergence looks quite similar to the one without

any restriction. Thus, I can conclude that there is room also for the SBTC in the group of states

where housing prices are high.

6.2 Innovation and Financial Sector

Another potential and complementary explanation is that technological innovation might have

caused a sectoral effect rather than a skill-biased effect. Such an effect would cause productivity

increases in highly innovative industries such as communication. Therefore, cities with a higher

concentration of innovative industries benefit more from the technological change. To control

for the importance of the IT sector, I estimate conditional convergence in wages between 1980

and 2010.28 The results reported in Table 9 show that unconditional wage convergence is not

statistically significant in column A. However, when I add a control for the IT sector in column B,

the coefficient for wages in 1980 becomes positive and statistically significant. In column C, I add a

control for highly skilled wages, and the coefficient on initial wages in 1980 increases in magnitude.

This evidence shows that adding sectoral differences in technological intensity have the effect of

amplifying the decline in spatial convergence. The framework developed above takes into account

these sectoral differences by including a highly skilled and less skilled sectors.

In addition to sectoral innovation shifts, changes in firms’ relocation decisions over time can

contribute to the decline in wage convergence. More skilled firms might begin to move to richer

places but then reverse their decision and move to poorer cities to take advantage of lower costs.

In order to investigate whether firms’ location decisions change over time requires firm-level data.

Faberman and Freedman (2016) use longitudinal establishment data for the US during the years

1992-1997. They do not find that spillover is important for firms’ decisions to locate in urban

areas rather than other areas. Unfortunately, the data on the firms’ locations back to 1940 are not

28I define IT sector by looking at the codes of the IND1990 variable in the IPUMS data set and select
industries that are more technology-oriented.
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available. In this regard, I use publicly available data at the industry level to test whether more

skilled occupations have become increasingly concentrated in more skilled cities over time. If this is

the case, it might mean that in addition to the sorting of highly skilled workers into highly skilled

cities, there is also sorting of highly skilled firms into highly skilled cities. To test this hypothesis

empirically, I run the following regression to obtain the marginal effects by decade

Skill concentrationkjt = α+

T∑
t=1950

βt

(
Hjt

Ljt

)
+ φt + φj + εkjt

where k is the industry, j is the MSA, and t is time. The φt are time fixed effects, and φj are

MSA fixed effects. I build the measure of “Skill concentration” by calculating the ratio between

the number of skilled workers over the number of total workers that are in industry k in location j

at time t. This hypothesis is confirmed in the data. In figure 19, I plot the coefficient βt over time.

The figure shows that a more skill-concentrated MSA becomes more strongly correlated with skill

concentration at the industry level. This concentration is evidence of sorting not just of workers

but also of industries and thus, firms.

6.3 Right to Work Laws and Unions

In Southern and Western US, 26 states have passed Right to Work Laws since 1940. These laws

permit workers to work without having to join a union. The Right to Work Laws might have a

spatial effect of increasing the wages of less skilled workers in the states where they were imple-

mented. In fact, Holmes (1998) shows that state policies play a role in the location of an industry.

However, only 26 states have adopted right to work laws and figure 20 shows that the majority

of the states passed these laws in the 1950s and 1960s, long before the secular decline in wage

convergence. Besides the Right to Work Laws, union membership has gone up substantially in the

US, and this growth might have directly affected the wage convergence rate. In order to account

for this growth, I use data on unions from CPS survey aggregated at state level starting in 1990.

Table 12 reports the estimates of wage convergence’s regression at the state level between 1990

and 2010. I find that controlling for the presence of unions does not increase the β estimates. If

anything, it actually decreases it.

6.4 International Trade

Besides SBTC, there is evidence that international trade has an effect on the increase in the skill

premium at national level (Feenstra and Hanson 1999). As a consequence, this trade might have

an effect on the slowdown in regional convergence as well. However, Feenstra and Hanson (1999)

find that there is no large effect of international trade, such as outsourcing, on the skill premium.

Instead, Autor et al. (2015) find that the increase in the import penetration from China affected

employment rates in the commuting zones where the penetration from China was higher. However,
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outsourcing had modest effects on the skill premium and imports from China. Therefore, while this

demand might also be relevant, the timeline and the magnitude of the effect does not explain the

strong slowdown in the regional convergence of wages. However, I do run the wage convergence’s

regression at the state level while controlling for the import penetration from China as in Autor

et al. (2015). The results show that controlling for the trade shock does not affect the speed at

which wages converge.

7 Conclusions and Potential Extensions

In this paper, I show that the decline in wage convergence among MSAs that is observed after 1980

is largely due to the decline in wage convergence among highly skilled workers, whereas the wage

convergence among less skilled workers does not decline at all. Thus, any account of the end of

convergence must distinguish between skill groups. Motivated by this observation, I explain the

decline in cities’ wage convergence by focusing on the role of the interaction between SBTC and

agglomeration.

I provide a dynamic spatial equilibrium model with heterogeneous agents, local agglomeration

spillover, skill-biased productivity shocks, and selective migration. I motivate the assumptions of

the models with three novel empirical facts that link together the skill premium, skill concentration,

and internal migration: 1) wage convergence declines only among highly skilled workers after 1980;

2) the skill premium is higher in educated cities after 1990; and 3) over time, highly skilled workers

begin to migrate to educated cities relatively more than less skilled workers.

I estimate the model with a GMM estimation procedure that uses a SBTC shock and housing

regulations as sources of exogenous variation. The model estimates are consistent with the con-

clusions in the literature. Further, I use model estimates to calibrate some parameters and other

parameters from the literature to compute the equilibrium of the model. The calibrated model pro-

vides a good fit to the data and shows that both SBTC and agglomeration play an important role

in explaining the decline in wage convergence among the highly skilled workers. The main findings

show that SBTC explains approximately 80% of the decline in cross-MSA wage convergence in the

US after 1980.

Moreover, the model is able to match other non-targeted moments such as the increase in wage

dispersion over the last 40 years that is documented by Hsieh and Moretti (2015), “The Great

Divergence” in skills addressed by Moretti (2012), and the secular decline in geographic migration.

This paper is pioneer in studying the interaction between agglomeration and SBTC, especially

in the long-run. Moreover, to the best of my knowledge, it is also one of the first to explain jointly

several key moments of the data that changed dramatically aound 1980. Understanding what

stopped income convergence across the US regions and increased income inequality for different

levels of skills might have important policy implications especially for the regions that are not able

to grow like richer regions. Dealing with sustaining the growth in the richest MSAs and arresting
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decline in poorer MSAs is an important challenge for policy makers. Moreover, understanding

regional inequality contributes to understanding the skill premium between highly skilled and less

skilled workers. However, the mechanism proposed cannot entirely explain the decline in conver-

gence and the change in the skill premium because of the complexity of the phenomenons, I also

think that it captures an important component of them and it might also have external validity

when I ask why cross-country convergence does not hold as Barro and i Martin (1992) show. This

paper plants the seeds for a broader research agenda. Among others, five open questions are in

need of answers. First, methodologically, how can we incorporate more features of the data in these

large spatial quantitative frameworks. Second, what are the political and voting implications of

such increasing geographical differences. Third, the framework of this paper is flexible enough that

it can be extended to perform several types of analysis, including a cross-within-country analysis.

Preliminary work indicates the speed of regional convergence has increased across countries but it

has decreased within countries. Fourth, productivity differences across space and migration deci-

sion can be explained by adding human capital accumulation to this class model. Fifth, despite

the lack of historical price level data at city level, more welfare analysis can be conducted to see

the welfare implications of increasing wage and employment inequality and decline in migration.
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A Appendix

A.1 Definitions

MSA The unit of geography is the metropolitan statistical area (MSA) that is “a region

consisting of a large urban core together with surrounding communities that have a high degree of

economic and social integration with the urban core.” I rank the MSAs by share of highly skilled

workers over less skilled workers. I define “highly skilled” MSAs as those that have a concentration

of highly skilled workers larger than the national average. The remainder are defined as “less

skilled” MSAs. I refer to MSAs as cities in the first part of the paper for a less technical discussion.

There are two main reasons why I pick MSAs over states or over counties. First, MSAs are the

smallest unit of analysis for which I can measure wages by skill group, number of highly and less

skilled, rent by skill group back to 1940. Second, MSAs are consistent with the mechanism I want

to explain in this paper. For instance, agglomeration happens in San Francisco, not in California.

The Census consistently includes 240 MSAs across all four decades from 1980 to 2010 but from

1940 to 1970. Following the definitions of metropolitan and micropolitan statistical areas, I try to

homogenize the definitions of MSAs over time. However, this is not possible for all cites.29

Highly and Less skilled Workers I follow the previous work such as Acemoglu and Autor

(2011b) that use education as a proxy for skills. Then, I create two groups: “highly skilled” workers

are the ones who have at least a 4-year bachelor’s degree while “less skilled” workers are those whose

education is less than that.

Composition Adjusted Wages I compute hourly wages at the individual level as annual

wages divided by the number of hours worked in the last year. My estimation sample consists of

individuals between 21 and 55 years of age who were employed at least 40 weeks per year and were

not self-employed. However, for a robustness check, I relax the sample restrictions and, qualitatively,

the results are unchanged. To conduct my analysis, I do a compositional adjustment to the wage

measure reported in the Census data. This is possible thanks to the high dimensionality of the

available data. I adjust the wages for age, sex, nativity, and race. The changing composition of

workers could explain some of the variation in nominal wages across MSAs over time. To account

for this, I run the following regression on the Census and ACS data to create a composition adjusted

wage measure (at least based on observables):

wijt = γt + ΓtXit + εijt

29Most of my analyzes are also run at the state level, which eliminates any concern of time comparability.
The results of the analysis that follow are very similar for states and MSAs. In future work, I plan to improve
the time homogenization and also compare my results with those conducted at the level of commuting zones
(Refer to section 4.1.1 for a definition of commuting zones).
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where wijt is the log of hourly wages of worker i living in MSA j at time t. The workers charac-

teristics are grouped in the variable that I call Xit. The Xit includes dummies for age (21-30,31-

40,41-50,51-55), one dummy for gender, a US born dummy (whether the worker was US born or

not), and a series of race dummies with being white the omitted group. In my controls I do not

include the education status of the worker since I am going to compute the skill premium for college

graduate versus less than college graduate workers.

Migration Rates I construct migration rates using data from March CPS. The reason why

I take this data is that they are better suited than the Census data for this task. Unfortunately,

information on migration is quite sparse in the Census. My estimation sample consists of all

individuals between 16 and 55 years of age for which I have observations for the years from 1962

to 2009 available in the March CPS, with the exclusion of 1972-1975 and 1977-1979. I compute

the migration rate in two ways. First, I use information collected in the CPS. I code someone

as migrant if they migrated from a different MSA within the last year. I count all the workers

that migrated by year, highly skilled (yes or no), and MSA weighted by their population shares

in the MSA. Then, I divide this number by the population in the MSA. This procedure gives me

the migration share for each MSA by education for each year in the sample available from CPS.

To make sure that my approach is robust to other ways of computing the migration shares, I also

calculate the number of workers living in a MSA minus the number of workers that were actually

born in that MSA. The population in the MSA then divides everything. The results that I will

show in the next section are robust to both approaches. In order to avoid potential biases because

of the change in composition of the labor force (besides education), I control for sex, age, race, and

citizenship when I run regression 3.
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A.2 Tables

Table 1: Wage Convergence Rates

Panel A: Convergence Rate

(1) (2) (3) (4) (5) (6)
1940-1980 1980-2010 1980-2010-IV 1940-1980 1980-2010 1980-2010-IV

Log hourly wage, 1940 -0.0127∗∗∗ -0.0159∗∗∗

(-12.44) (-20.54)
Log hourly wage, 1980 -0.00122 0.00333 -0.00891∗∗ -0.00164

(-0.25) (0.46) (-2.91) (-0.25)

Panel B: Convergence Rate by Skills

1940-1980 1980-2010
No College College No College College

Panel B.1
Log hourly wage, 1940 -0.0123∗∗∗ -0.0149∗∗∗

(-14.32) (-12.63)
Log hourly wage, 1980 -0.0169∗∗∗ 0.000638

(-9.70) (0.30)

Panel B.2

Log hourly wage, 1940 -0.0143∗∗∗ -0.0216∗∗∗

(-16.48) (-21.30)

Log hourly wage, 1980 -0.0200∗∗∗ -0.00785∗∗∗

(-12.31) (-3.87)

N 132 132 247 247

Note: This table reports the estimates of the β-convergence plotted in figures 1 and 2. In Panel A,
I report the estimate of the β coefficient for the whole sample underlying figure 1. In column (1),
there are β estimates for 1940-1980, and the observations are population weighted. Column (2) has
the same estimation but for 1980-2010. In columns (4) and (5), the estimations are not population
weighted. Column (3)-(6) have the population weighted(unweighted) estimates for the IV regression
where wages in 1970 are the instrument. In Panel B.1, I report the estimates of the β-convergence
corresponding to figure 2. In column (1), I report the estimate for less skilled workers for 1940 and
1980; in column (2), for college graduates in the same time period. In columns (3) and (4), the
estimates are once again for the two groups, but for the 1980-2010 period. In Panel B.2, I report the
same estimates as in Panel B.1, but the observations are not population weighted. All the standard
errors are robust. T-stats are in parenthesis. The ***, **, and * represent statistical significance
at the 0.001, 0.01, and 0.05 levels respectively. The dependent variable in each regression is the
annual average wage growth between the initial and final year reported at the top.
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Table 2: Skill Premium by College Ratio of Cities over Time

(1) (2)
Skill Premium Skill Premium

College Ratio in 1940 -0.0631 (-0.43) 0.0775 (1.29)
College Ratio in 1950 -0.0475 (-0.51) 0.0199 (0.30)
College Ratio in 1970 -0.0505 (-0.39) 0.0132 (0.10)
College Ratio in 1980 -0.0824 (-1.08) 0.0308 (0.39)
College Ratio in 1990 -0.267∗∗∗ (-3.85) -0.138 (-1.50)
College Ratio in 2000 0.0621 (0.85) 0.186 (1.93)
College Ratio in 2010 0.217∗∗ (2.99) 0.316∗∗∗ (3.45)
Population 0.100∗∗∗ (7.52)

Time fixed effects yes yes
N 1480 1480

Note: This table reports the coefficients for the OLSs. The dependent variable is the skill premium measured

as the difference between the log wages of college graduates and less skilled workers. The only difference

between column (1) and column (2) is that I control for population in column (1). The t-statistics are

presented in parentheses. Observations are clustered at the state level. The ***, **, and * represent

statistical significance at the 0.001, 0.01, and 0.05 levels respectively.
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Table 3: Migration over Time by College Ratio of Cities by Year

(1) (2)
Migrant Migrant

Migrant
Coll. Ratio*High Skill in 1964 0.0275 (1.07) 0.0136 (0.51)
Coll. Ratio*High Skill in 1965 0.0744∗∗∗ (4.63) 0.0589∗∗∗ (3.54)
Coll. Ratio*High Skill in 1966 0.0590∗∗∗ (3.45) 0.0481∗∗ (3.02)
Coll. Ratio*High Skill in 1967 0.102∗∗∗ (5.35) 0.0926∗∗∗ (5.25)
Coll. Ratio*High Skill in 1968 0.0997∗∗∗ (5.41) 0.0920∗∗∗ (4.87)
Coll. Ratio*High Skill in 1969 0.0918∗∗∗ (3.32) 0.0799∗∗ (2.99)
Coll. Ratio*High Skill in 1970 0.0697∗∗∗ (5.61) 0.0630∗∗∗ (4.81)
Coll. Ratio*High Skill in 1971 0.0886∗∗∗ (5.53) 0.0770∗∗∗ (4.66)
Coll. Ratio*High Skill in 1976 0.0398 (1.38) 0.0238 (0.81)
Coll. Ratio*High Skill in 1980 0.221∗∗∗ (3.90) 0.212∗∗∗ (3.76)
Coll. Ratio*High Skill in 1981 0.0983∗∗∗ (3.54) 0.0882∗∗ (3.07)
Coll. Ratio*High Skill in 1982 0.134∗∗ (3.27) 0.125∗∗ (3.00)
Coll. Ratio*High Skill in 1983 0.0779∗∗∗ (5.35) 0.0728∗∗∗ (4.83)
Coll. Ratio*High Skill in 1984 0.0951∗∗∗ (6.03) 0.0898∗∗∗ (5.10)
Coll. Ratio*High Skill in 1985 0.193∗∗∗ (3.37) 0.193∗∗∗ (3.31)
Coll. Ratio*High Skill in 1986 0.0897∗∗∗ (6.06) 0.0854∗∗∗ (5.73)
Coll. Ratio*High Skill in 1987 0.0708∗∗ (2.85) 0.0719∗∗ (2.96)
Coll. Ratio*High Skill in 1988 0.0688∗∗∗ (3.52) 0.0693∗∗∗ (3.62)
Coll. Ratio*High Skill in 1989 0.0791∗∗∗ (4.23) 0.0798∗∗∗ (4.29)
Coll. Ratio*High Skill in 1990 0.0795∗∗∗ (4.94) 0.0813∗∗∗ (5.16)
Coll. Ratio*High Skill in 1991 0.0601∗∗ (2.70) 0.0644∗∗ (2.82)
Coll. Ratio*High Skill in 1992 0.118∗∗∗ (4.86) 0.105∗∗∗ (4.33)
Coll. Ratio*High Skill in 1993 0.107∗∗∗ (4.02) 0.0942∗∗∗ (3.53)
Coll. Ratio*High Skill in 1994 0.115∗∗∗ (5.29) 0.108∗∗∗ (4.89)
Coll. Ratio*High Skill in 1995 0.0136 (0.54) 0.00593 (0.23)
Coll. Ratio*High Skill in 1996 0.123∗∗∗ (6.07) 0.108∗∗∗ (5.22)
Coll. Ratio*High Skill in 1997 0.0971∗∗∗ (4.63) 0.0857∗∗∗ (4.02)
Coll. Ratio*High Skill in 1998 0.133∗∗∗ (6.66) 0.120∗∗∗ (5.77)
Coll. Ratio*High Skill in 1999 0.103∗∗∗ (4.69) 0.0939∗∗∗ (4.21)
Coll. Ratio*High Skill in 2000 0.122∗∗∗ (3.40) 0.112∗∗ (2.97)
Coll. Ratio*High Skill in 2001 0.0817∗∗ (2.87) 0.0757∗∗ (2.60)
Coll. Ratio*High Skill in 2002 0.124∗∗∗ (4.62) 0.116∗∗∗ (4.35)
Coll. Ratio*High Skill in 2003 0.0828∗∗ (2.62) 0.0771∗ (2.38)
Coll. Ratio*High Skill in 2004 0.0927∗∗∗ (3.39) 0.0863∗∗ (3.02)
Coll. Ratio*High Skill in 2005 0.0792∗∗ (3.22) 0.0714∗∗ (2.87)
Coll. Ratio*High Skill in 2006 0.0974∗∗∗ (3.98) 0.0915∗∗∗ (3.70)
Coll. Ratio*High Skill in 2007 0.0986∗∗∗ (4.23) 0.0928∗∗∗ (3.95)
Coll. Ratio*High Skill in 2008 0.115∗∗∗ (5.28) 0.108∗∗∗ (4.87)

Time fixed effects yes yes
Controls No yes
N 1411802 1411802

This table reports the marginal effects for every year for the probit regressions. The dependent
variable is the decision on whether to move or not. Standard errors are presented in parentheses
and are clustered at the state-level. The ***, **, and * represent statistical significance at the
0.001, 0.01, and 0.05 levels respectively. Column (2) is identical to column (1) except that column
(1) controls for population.
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Table 4: ∆H
L vs. Initial H

L in the Data

(1) (2) (3) (4) (5) (6)
1940-1950 1950-1970 1970-1980 1980-1990 1990-2000 2000-2010

Panel A
H
L -0.218∗ -0.439∗∗∗ 0.0355 -0.00158 0.0708∗∗∗ 0.0401∗

(0.115) (0.0887) (0.0587) (0.0305) (0.0238) (0.0218)

1950-1970 1950-1980 1970-1990 1980-2000 1990-2010

Panel B
H
L 0.240∗∗ -0.320∗∗∗ 0.0970 0.0770∗∗ 0.0797∗∗

(0.117) (0.0963) (0.0808) (0.0390) (0.0386)

N 103 143 119 247 238

Note: Panel A shows the estimates of running the initial H
L on the growth over 10 years, ∆H

L .
Panel B replicates the same analysis as Panel A for the growth over 20 years, ∆H

L . Standard errors
are in brackets. The ***, **, and * represent statistical significance at the 0.001, 0.01, and 0.05
levels respectively.

Table 5: First-Stage Estimates of Models for Routine Occupation Share Measures

(1) (2) (3) (4) (5) (6)

Panel A: Dep. Variable SHjt

∆ŜHjt 3.046∗∗∗ 3.643∗∗∗ 2.852∗∗∗ 4.418∗∗∗ 3.062∗∗∗ 3.043∗∗∗

(0.620) (1.024) (0.632) (1.118) (0.719) (0.737)
F 24.12 12.65 20.34 15.63 18.14 17.06

Panel B: Dep. Variable SLjt
∆ŜLjt 1.021∗∗∗ 0.891∗∗ 0.850∗∗∗ 2.483∗∗∗ 2.535∗∗∗ 2.511∗∗∗

(0.341) (0.344) (0.285) (0.531) (0.527) (0.591)

F 8.975 6.709 8.891 21.86 23.15 18.06
N 144 119 270 249 283 283

Note: In this table I report the first-stage estimates between the instrumental variable and the
measure of skill bias. Standard errors are in brackets. In column (1), I run the regression for 1950
and in column (2)-(6) for 1970-2010. The sample does not contain 1960. In panel A, I report the
results for highly skilled workers and in panel B for the less skilled workers. The ***, **, and *
represent statistical significance at the 0.001, 0.005, and 0.01 levels respectively.
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Table 6: Model Estimates for 1940-2010

(1) (2) (3) (4) (5) (6)

ρ 0.531∗ 0.388∗∗∗ 0.451∗∗ 0.558∗∗ 0.716∗ 0.394∗∗∗

(0.310) (0.149) (0.196) (0.270) (0.395) (0.091)
γH 0.616∗∗∗ 0.592∗∗∗ 0.435 0.513∗ 0.431 0.717∗∗∗

(0.231) (0.199) (0.292) (0.266) (0.349) (0.103)
γL -0.185 0.003 0.030 -0.023 -0.056 -0.163

(0.117) (0.083) (0.069) (0.089) (0.091) (0.122)
φH -0.137 -0.646∗∗∗ -0.454∗∗∗ -0.471∗∗∗ -0.262∗

(0.088) (0.180) (0.152) (0.165) (0.158)
φL -0.111∗∗ 0.142∗∗∗ 0.156∗∗∗ 0.187∗∗∗ 0.164∗∗∗

(0.047) (0.040) (0.040) (0.043) (0.041)

θ 0.503∗∗∗ 0.577∗∗∗ 0.513∗∗∗ 0.490∗∗∗ 0.468∗∗∗ 0.482∗∗∗

(0.107) (0.090) (0.104) (0.106) (0.104) (0.105)
γp 0.679∗∗∗

(0.130)
γpH 1.918∗∗∗ 1.933∗∗∗ 1.938∗∗∗ 1.884∗∗∗

(0.166) (0.170) (0.168) (0.171)
γpL -0.420∗∗∗ -0.354∗∗∗ -0.351∗∗∗ -0.372∗∗∗

(0.124) (0.127) (0.128) (0.132)

λ -0.014 -0.084∗∗ -0.114∗∗∗ -0.125∗∗∗

(0.062) (0.036) (0.037) (0.039)
λH 0.037 0.285∗ -0.063

(0.032) (0.147) (0.100)
λL 0.034 -0.168∗∗∗ 0.096

(0.057) (0.041) (0.069)

Observations 823 823 823 823 823 823

Note: In this table, I report the moments and the estimates of the model. The ***, **, and *
represent statistical significance at the 0.001, 0.005, and 0.01 levels respectively.

Table 7: Externally calibrated Parameters

Parameter Value Literature

Subsistance level of Housing: Ō 0.25 Ganong and Shoag (2017)
Elasticity of Supply Housing: µ 0.4 Ganong and Shoag (2017)
Share of technology: γ2 0.99 Desmet et al. (2018)
Migration costs: σL and βL -.065 and -.861 Notowidigdo (2011) (2013)
Migration costs: σH and βH -.066 and -1.044 Notowidigdo (2011) (2013)
Share of each Intermediate: α 0.51 Burstein et al. (2017)
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Table 8: ∆H
L vs. Initial H

L in the Model

(1) (2) (3) (4) (5) (6) (7)
1940-1950 1950-1960 1960-1970 1970-1980 1980-1990 1990-2000 2000-2010

H
L -0.245∗∗∗ -0.244∗∗∗ -0.244∗∗∗ -0.212∗∗∗ 0.332∗∗∗ 0.170∗∗∗ 0.0826∗∗∗

(0.00248) (0.00259) (0.00271) (0.00861) (0.0289) (0.00983) (0.00493)

Note: Column (1) shows the estimates of running the initial H
L in 1940 on the growth over the 30

years, ∆H
L between 1940 and 1970. Columns from (2) to (7) show the estimates of running the

initial H
L on the growth over 20 years for each period from 1960-1980 until 1990-2010.

Table 9: Convergence Rates by Skills and IT

(1) (2) (3)
A B C

Log hourly wages 1980 -0.0000389 0.00593∗∗ -0.0126∗∗∗

(-0.02) (2.95) (-10.58)
IT 0.00656∗∗∗ 0.00538∗∗∗

(13.49) (16.54)
col degree 0.0106∗∗∗

(19.85)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The dependent variable in this table is ∆wjt for location j at time t. The initial period is
1980 and the final period is 2010. In column A, I run it against wages in the initial period 1980.
In column B, I control for the IT sector dummy. In column C, I control for the college degree.

Table 10: Change in β of High and Low Skill Model estimates over Time

Full No Agglom. No SBTC No Housing No Migr. Cost

∆β -55.63 -41.15 -41.93 -42.88 -42.99
∆βH -106.88 -93.73 -2.94 -5.54 -5.75
∆βL -12.94 2.88 -72.88 -73.63 -73.66

Note: The first row of the table shows the results for the change in β overall between 1980 and
2010 in the model. The second(third) row has the results for the increase in βH (βL) in the model.
In each column I vary from the full model to removing step-wise the elements of the model.
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Table 11: Change in Variance of High and Low Skill Model over Time

Full No Agglom. No SBTC No Housing No Migr. Cost

∆Var(W) 46.23 -73.19 -87.34 -87.96 -88.15
∆Var(WH) 519.87 19.03 -58.36 -60.90 -60.58
∆Var(WL) -82.45 -98.24 -95.21 -95.23 -95.56

Note: The first row of the table has the results for the increase in wage dispersion overall between
1964 and 2009 in the model. The second(third) row has the results for the increase in wage variance
for highly and lees skilled workers between 1964 and 2009 in the model. In each column I vary from
the full model to removing step-wise the elements of the model.

Table 12: Wage Convergence with Unions Controls

(1) (2) (3) (4)

Log hourly wage, 1980 -0.00840*** -0.00723** -0.00604** -0.00454
(-2.76) (-2.31) (-2.28) (-1.63)

Union -0.0413** -0.0427**
(-2.27) (-2.28)

Pop. Weight Yes Yes
Observation 147.00 147.00 147.00 147.00
R square 0.26 0.30 0.14 0.19

Note: This regression shows the coefficient for the decline in wage growth between 1990 and 2010
on the initial wage in 1990, conditioning on the union presence by state. All the observations are
clustered at the state level.
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Table 13: Wage Convergence with Import Penetration from China

(1) (2) (3) (4)
(1) (2) (3) (4)

Log hourly wage, 1980 -0.00840*** -0.00760** -0.00604** -0.00539**
(-2.74) (-2.58) (-2.26) (-2.12)

China Import Penetr. -0.000320 -0.000373
(-1.34) (-1.42)

Pop. Weight Yes Yes
Observation 49.00 48.00 49.00 48.00
R square 0.26 0.27 0.14 0.16

Note: This regression shows the coefficient for a regression of wage growth between 1990 and 2010
on the initial wage in 1990, conditioning on the import penetration from China by state. All the
observations are clustered at the state level.
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A.3 Figures
Figure 13: Skill Premium by MSA Population Levels
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Note: This figure plots the estimate of the coefficient β for the regression 2. On the horizontal axis, I have
the decades from 1940 to 2010, while on the vertical axis, I have the estimate of coefficient β for each decade
from 1940 to 2010. Moreover, there is a line starting at zero on the vertical axis.
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Figure 14: Migration Rate Over Time
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Note: This figure shows the evolution of the migration rate for highly skilled and less skilled workers
over time for both the model and the data. On the left, I plot the migration rates generated by
the model with a cross and those generated by the data with a circle. On the right plot, I plot the
migration rates for less skilled workers.

Figure 15: Sorting Over Time
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Note: This figure shows the evolution of the estimates of δHt in equation 5.5.1.
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Figure 16: The “Great Divergence” in Skills: Data vs. Model
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Note: This figure shows the evolution of the estimates of βskillt in equation 4 both in the data and
in the model.

Figure 17: Variance of High and Low Skill Model over Time
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Figure 18: Wage Convergence across MSAs before and after 1980 by Skill Group - Low housing
elasticity states
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Note: This figure shows two scatter plots of log wages by MSA in the initial year against the annual
average growth of wages in the final year by skill type (highly skilled and less skilled workers) in
cities that are in states with low housing elasticities. In particular, on the left-hand side (right-hand
side), I plot the demeaned log wages in 1940 (1980) by MSA against the annual average growth of
wages between 1940 (1980) and 1980 (2010) by skill type (highly skilled and less skilled workers).
The size of the underlying MSA is represented by the size of the circle in the figure. The line in
each graph represents a weighted regression line from the bi-variate regression.
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Figure 19: Industry Sorting over time
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Note: This figure plots the estimated effect of skill concentration at the MSA level and at the
industry level. The line is computed using the estimates of the skill ratio at the MSA level (β),
using specification 6.2.

Figure 20: Right To Work Laws
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Note: This histogram plots the number of states that passed the “Right to Work Laws” by decade
starting with the 1940s.
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B Theory Appendix

This appendix supplements the theoretical framework presented in Section 3 in several respects.

In subsection B.1, I describe the algorithm for solving the system of equations and obtaining

the solution to the model. Subsection B.2 presents a version of the model in which skill-biased

technology, instead of being a local exogenous shock, is modeled as endogenous technology adoption.

And, subsection B.3 derives an alternative expression for YT .

B.1 Description of the Computational Algorithm

In order to recover the equilibrium quantities and prices for period t, it is necessary to solve the full

model numerically. I can reduce the equilibrium conditions by the following six, which are reported

again below for the sake of clarity:

WHjt = (ηHdjt)[ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ
−1
Hρ−1
djt (15)

WLjt = (ηLdjt)[ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ
−1
Lρ−1
djt (16)

Rµjt = Hjt

[
Ō + (1− θ)

WHjt

Rjt

]
+ Ljt

[
Ō + (1− θ)

WLjt

Rjt

]
(17)

All d ∈ D intermediate market sectors clear:

Pdjt
αPjt

= [ηLdjtL
ρ
djt + ηHdjtH

ρ
djt]

1
ρ

From the decision on the location of the labor market , labor market clearing becomes

Hjt =
exp(δHjt/m2H(j))∑S
s exp(δHst/m2H(s))

(18)

Ljt =
exp(δLjt/m2L(j))∑S
s exp(δLst/m2L(s))

(19)

where

δkjt =

[
θln(Wkjt −RjtH̄)+

(1− θ)[ln((1− θ)
Wkjt

Rjt
+ Ō] + (1− θ)ln((1− θ)(Wkjt −RjtŌ)]+

+Akjt + γpln (Hjt/Ljt)

] (20)
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and

Ljt =

D∑
d=1

Ldjt and Hjt =

D∑
d=1

Hdjt

I end up with a system of 46 equations in 46 unknowns {WHjt, WLjt, Hdjt, Ldjt, Rjt Pdjt ∀j and ∀d}
for each MSA. Since the analysis includes 240 cities and 14 industries, I have a system of 46x240=11,040

equations. I solve this system using an iteration algorithm. The algorithm consists of the following

steps:

1. Given the set of parameters {γH , γL, φH , φL, ρ, γ2, λ
H , λL, θ, γp}, the sequences of SHt and SLt

and the sequences of AHjt and ALjt, the initial productivity ξLdj0 and ξHdj0 for all j cities

and for all industries d;

2. Start by guessing an allocation of {Hdj0, Ldj0}J,Dj=1,d=1;

3. For each location, compute an equilibrium allocation hj , output Ydj wages WHj and WLj and

Pdj ;

4. Using the information on prices, compute {Hj,Lj}Jj=1}

5. Check whether the distance between the values of {Hj , Lj}Jj=1 and the guesses {Hj0, Lj0}Jj=1

are smaller than an exogenously given tolerance level equal to e−10.

6. If so, then stop. If not, consider {Hj , Lj}Jj=1 as the new guess and restart the loop. Continue

the procedure until the distance is smaller than the tolerance level e−10.

I solve the model for 70 periods where time t is a year. In the first 40 periods, SHjt and SLjt

are set to zero, then I set the value from the data from S and λ come from the model estimation.

Start looking for the equilibrium at time t = 0 and give a value for ξHj0 and ξLj0 where ξHj0 > ξLj0 for

all j generated by the estimation of the residuals of the wage equations in year 1940.

Although the complex structure of the model does not allow me to derive conditions under which

the algorithm converges to an equilibrium distribution of population, simulation results indicate

that the algorithm displays good convergence properties unless either agglomeration or dispersion

forces are very strong. In particular, the algorithm always converges to equilibrium in a broad

neighborhood around the parameter values chosen in the calibration.

B.2 Model with Endogenous Innovation Rate

The model specified above provides for a SBTC that is exogenous and differs for each location j.

However, I could allow SBTC to be modeled as “technological adoption” following Beaudry et al.

(2010). When computers arrive, firms need to decide whether to adopt them (PC) or stick with

their current technology (K). This new technology is assumed to be skill-biased relative to the
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old technology because for the same level of prices, the new technology uses skilled labor more

intensively. In particular, where there is a higher concentration of highly skilled workers, there is

also a higher ratio of computers per worker.

The production function with the old technology K is equal to

Yd = K(1−α)[aHρ + (1− a)L1−ρ]
α
ρ (21)

Suppose that the production function of good Yd location j with the new technology PC is equal

to

Yd = PC(1−α)[bHρ + (1− b)L1−ρ]
α
ρ (22)

where a < b < 1, which are personal computers. The firms need to decide the optimal amount

of PC they want to pick. However, the decision of how much PC to choose increases with H
L .

Before the availability of the PC technology, location j that had higher supply of skilled labor also

had relatively low wages (because of a congestion effect on skills). Therefore, the return to skill

increases most in locations that choose to adopt PC most intensively. However, the relationship

between skill supply and return to skill is weakly decreasing. After the arrival of the PC technology,

the relationship between the supply of skill and the return to skill is given by

ln
WH

WL
=



ln

[
aHρ−1

(1−a)Lρ−1

]
if H

L ≤ φ
L

ln

[
aφLρ−1

(1−a)

]
= ln

[
bφHρ−1

(1−b)

]
if φL < H

L < φH

ln

[
bHρ−1

(1−b)Lρ−1

]
if H

L ≥ φ
H

(23)

where φH and φL are the critical values of the skill ratio such that if a location is characterized

by H
L < φL, then it retains the old technology. If H

L > φH , then the location switches to the

new technology. Equation 2 shows that when a firm keeps the old technology, the relationship

between the skill ratio and skill premium is negative, as if the firm had already switched to the

new technology. However, when the firm is in transition between the old and new technologies, this

relationship is equal to zero. This prediction of the model goes against fact 1 in figure 3. In fact,

in figure 3, the relationship between the supply of skills and the skill premium becomes positive in

the decade after 2000 and, overall, there is a positive trend. Therefore, a model with exogenous

technological innovation seems better able to describe the data. It could also be the case that in

order to obtain a positive relationship, I need a model that combines technological adoption and

endogenous agglomeration forces.
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B.3 Rewriting YT

In order to estimate the needed parameters, I compute the unobserved changes in cities’ productivi-

ties, given the parameters of labor demand {ρ, γH , γL, φH , φL} and the data {wHjt, wLjt, Ljt, Hjt, Ldjt, Hdjt}.
In order to make this transformation, I follow Diamond (2016) by taking the ratio of highly skilled

wages to less skilled wages in location j:

wHjt
wLjt

=
ξHdjtY

1−ρ
djt Hρ−1

djt

(
Hjt
Ljt

)γH
(Hjt + Ljt)

φH

ξLdjtY
1−ρ
djt Lρ−1

djt

(
Hjt
Ljt

)γL
(Hjt + Ljt)

φL
=⇒

I use a change in the variable where defining highly skilled and less skilled prodictivities as

ξHdjt = θ(1− λdjt)

ξLdjt = θ(λdjt)

This definition means that the skill premium can be written as:

wHjt
wLjt

=
θ

1
α (1− λdjt)Y 1−ρ

djt Hρ−1
jt

(
Hjt
Ljt

)γH
(Hjt + Ljt)

φH

θ
1
αλdjtY

1−ρ
djt Lρ−1

djt

(
Hjt
Ljt

)γL
(Hjt + Ljt)

φL

wHjt
wLjt

=
(Hjt + Ljt)

φH−φL HγH−γL
jt Hρ−1

djt L
−γH+γL

jt (1− λdjt)
λdjtL

ρ−1
djt

wHjtL
ρ−1
djt λdjt = (Hjt + Ljt)

φH−φL HγH−γL
jt Hρ−1

djt L
−γH+γL

jt (1− λdjt) =⇒

=⇒ λdjt

[
wHjtL

ρ−1
djt + (Hjt + Ljt)

φH−φL HγH−γL
jt Hρ−1

djt L
−γH+γL

jt

]
=

(Hjt + Ljt)
φH−φL HγH−γL

jt Hρ−1
djt L

−γH+γL

jt wLjt =⇒

=⇒ Ydjt =

(
(Ljt+Hjt)

γpHwLjtH
γHL−γ

L
Hρ−1
djt L

ρ
djt+(Ljt+Hjt)

γpHwHjtH
ρ
djtH

γH
jt Lρ−1

djt L
−γL
jt

(Ljt+Hjt)γpH−γpLwLjtH
ρ−1
djt H

γH−γL
jt +L

γL−γH
jt +wHjtL

ρ−1
djt L

γL−γH
jt

) 1
ρ

This formulation of Ydjt is used in the estimation since it does not include the productivity

terms SH , SL, ξH and ξL.
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C Online Data Appendix

In this subsection, I first describe in detail the data sets I use for the analysis. Second, I run several

robustness checks for the decline in regional convergence.

C.0.1 Data Description

My two main data sets are the US Census data extracted from IPUMS. I use the 1% sample for 1940,

1% sample for 1950, metropolitan sample for 1970, 5% sample for 1980, 5% sample for 1990, and

the 5% sample for 2000. Then, for 2010, I use information from the American Consumption Survey

(ACS) extracted from IPUMS. I use information on wages, education, age, race, ethnicity, rents,

birthplace, migration, population, industries, occupation, MSA, and state. All of this information

is also available in the ACS data for 2010. I collect the same information from the CPS data set.

The CPS is a monthly US household survey conducted jointly by the US Census Bureau and the

Bureau of Labor Statistics. I use the observation for the month of March. The CPS data set is

used mainly for the analysis on migration. My geographic unit of analysis is the MSA. An MSA

is a “region consisting of a large urban core together with surrounding communities that have a

high degree of economic and social integration with the urban core.” I also use two more data sets,

one for the measure of Wharton land use regulation index (WLURI), aggregated by Saiz (2010) at

the MSA level, and the other for the measure of RTI developed by Autor and Dorn (2013). The

latter uses information on the task intensity of the occupation from the ”O*NET” data set, which

is available for download at http://online.onetcenter.org/.30.

C.0.2 Robustness Checks

Before turning to the robustness tests, I provide one more time the specification for the β-convergence

estimation that I use throughout the paper following the specification in 1. In most of the specifi-

cations, the observations are weighted by the initial size of the location j.

I run several robustness tests starting with the ones illustrated in figure 1 and in figure 2. I

change the unit of analysis from cities to counties in figure 21. In figure 21, I plot the estimated

convergence rates. In plot A, the estimate uses a 10-year rolling period, while plot B uses a 20-year

rolling period. The convergence rate is negative and statistically significant until 1987 in plot A,

while it is negative and statistically significant until 1997 in plot B. Both estimates show that the

first period in which convergence ceased to be significant is 1978. This fact aligns with the findings

of Higgins et al. (2006) who finds that there was convergence between 1970 and 1990. However,

departing from this prior work, I conduct an analysis in which the period is extended and find

that the convergence across counties follows the same patterns as the convergence across cities and

states.

30For a more detailed description of the RTI measure, please refer to Autor and Dorn (2013)
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As a second robustness check, I show that the rate of convergence stops being significant and

robust only if the initial year is after 1980. For this reason, I compute the rolling 20- and 30-year

wage convergence as shown in figure 22 from 1940 onward. Then, I decompose it by skill group.

Panels ((c))-((d)) and ((e))-((f)) of figure 22 show, respectively, results for the highly skilled and

the less skilled groups. The rolling convergence rate β is negative and statistically different from

zero until 1980, but then, it starts becoming positive but is still not significant. Finally, between

1990 and 2010, it becomes positive and statistically different from zero. But, when I decompose

by skill groups, the highly skilled workers show the same patterns as the aggregate convergence

rate. Instead, the convergence rate for the less skilled group remains negative independently of the

period. It actually becomes even stronger over time.

As a third robustness check, I reproduce figures 1 and 2 with compositionally adjusted wages.

I control whether after using compositionally adjusted wages, the convergence rates change. As

shown in figure 24, the convergence rates do not change substantially after adjusting for skill

composition. Finally, another test is to see whether real wage convergence changes in the same

way as nominal wage convergence. The caveat in looking at real wage convergence is that the data

on local prices are very scarce, especially before 1980. For this reason, I use self-reported monthly

rental prices as a proxy for local prices. As you can see in figure 23, real wage convergence decreases

even more than nominal wage convergence after 1980. In particular, decomposing by skill groups,

the convergence rate is approximately zero in the less skilled group but becomes positive in the

highly skilled group.

One reason why the convergence patterns might have changed could be because the definition of

cities available between 1980 and 2010 is not perfectly identical to the one between 1940 and 1980.

To make sure that it is not these different samples driving the slowdown in convergence, I estimate

the unconditional cities’ wage convergence between 1980 and 2010 by using the 127 cities available

in 1940-1980. Table 15 shows the convergence rate after 1940 for the reduced sample. The results

show that if I use only cities available before 1980, the convergence rate is even lower. Second, I

look at the decline in wage convergence after adjusting for the skill-biased technical change shock.

I run the following regression:

∆wjt = βo + βwjt−τ + αH∆SHjt + αL∆SLjt (24)

where t is 2010 and tau is 30 years. After controlling for the technology shock, I get conditional

convergence = -1.1% a year. This rate indicates that without taking into account the mechanisms

of the model, SBTC affects the decline in wage convergence.
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Figure 21: Convergence by county over time

((a)) 10-year

−
3

−
2

−
1

0
1

1980 1990 2000 2010 2020
year

((b)) 20-year

−
.6

−
.4

−
.2

0
.2

.4

1990 1995 2000 2005 2010 2015
year

Note: Plot A shows the convergence rate at the county level for a 10-year rolling window that
starts in 1969. Plot B shows the convergence rate at the county level for a 20-year rolling window
that starts in 1969. Data for this analysis are from the Bureau of Economic Analysis Regional
Economics Accounts. In each estimate the cities are weighted by their population. On the y-axis
the coefficient is reported in percentage terms.
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Figure 22: Convergence Rate Over Time - Overall and by Groups
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Note: This figure shows the beta coefficient of the regression of the initial wage on the log wage
changes using a 20-year and a 30-year rolling window. In each estimate the cities are weighted by
their population. On the y-axis the coefficient is reported in percentage terms. Plots ((a)) and
((b)) are for the aggregate estimate of β, Plots ((c))-((d)) and ((e))-((f)) are, respectively, for βH

and βL.
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Table 14: Convergence Rates - Restricted Sample

(1) (2)
∆1940−1980 ∆ 80−08

Log(wage1940) -0.0109∗∗∗

(-10.53)
Log(wage1980) -0.00116

(-0.25)
Constant -0.0217∗∗∗ -0.0147∗∗∗

(-137.22) (-24.45)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: I estimate the β convergence rate for the restricted sample with only 127 cities. In column
(1), I estimate it for the 1940-1980 time period and in column (2) for the 1980-2010 time period.
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Figure 23: Real Wage Convergence
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Note: This figure shows two scatter plots of the log wages by MSA in the initial year against the
annual average growth of the wages in the final year. The wages are divided by the rental prices
in the MSA. The rental price is taken from the self-reported Census data. In particular, on the
left-hand side (right-hand side), I plot the demeaned log wages in 1940 (1980) by MSA against the
annual average growth of wages between 1940 (1980) and 1980 (2010). The size of the underlying
MSA is represented by the size of the circle in the figure. The line in each graph represents a
weighted regression line from the bi-variate regression.
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Figure 24: Compositionally Adjusted Wage Convergence
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Note: This figure shows two scatter plots of the log wages by MSA in the initial year against the
annual average growth of wages in the final year. Wages are adjusted by individual characteristics,
sex, race, age, marital status, before taking the MSA average. In particular, on the left-hand
side (right-hand side), I plot the demeaned log wages in 1940 (1980) by MSA against the annual
average growth of the wages between 1940 (1980) and 1980 (2010). The size of the underlying MSA
is represented by the size of the circle in the figure. The line in each graph represents a weighted
regression line from the bi-variate regression.
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Table 15: Convergence Rates - Robustness

Panel A

(1) (2) (3) (4)
1940-1980 1980-2010 1940-1980 1980-2010

Log hourly wage, 1940 -0.0185∗∗∗ -0.0189∗∗∗

(-13.21) (-12.99)
Log hourly wage, 1980 0.00374 -0.00423∗

(0.96) (-2.20)

Panel B

(1) (2) (3) (4)
∆w40−80 pw ∆w pw80−10 ∆w40−80 ∆w80−10

Log(wage1940) -0.0143∗∗∗ -0.0164∗∗∗

(-16.69) (-26.63)
Log(wage1980) -0.00333 -0.0101∗∗∗

(-0.72) (-3.76)

This table show the estimate of the β-convergence of the OLS. Columns (1) and (2) show the
estimates, respectively, for 1940-1980 and 1980-2010 by using population weighted observations.
Columns (3) and (4) show the estimates, respectively, for 1940-1980 and 1980-2010 by using un-
weighted population observations. Panel A shows the estimates of the β-convergence for local
wages adjusted by the rent in each MSA. Panel B shows the estimate of the β-convergence for
compositionally adjusted wages.
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Table 16: Convergence Rates by Skill- Robustness

(1) (2) (3) (4)
No,’40-’80 Yes,’40-’80 No,’80-’10 Yes,’80-’10

Panel A
Log wage ’40 -0.0127∗∗∗ -0.0181∗∗∗

(-7.01) (-11.12)
Log wage ’80 0.000369 0.00764∗∗∗

(0.36) (3.92)

(1) (2) (3) (4)
No,’40-’80 Yes,’40-’80 No,’80-’10 Yes,’80-’10

Panel B
Log wage ’40 -0.0203∗∗∗ -0.0232∗∗∗

(-13.82) (-19.35)
Log wage ’80 -0.00425∗∗ -0.00584∗

(-2.94) (-2.36)

(1) (2) (3) (4)
No,’40-’80 Yes,’40-’80 No,’80-’10 Yes,’80-’10

Panel C
Log wage ’40 -0.0152∗∗∗ -0.0133∗∗∗

(-21.13) (-11.78)
Log wage ’80 -0.0173∗∗∗ -0.000381

(-10.65) (-0.19)

(1) (2) (3) (4)
No,’40-’80 Yes,’40-’80 No,’80-’10 Yes,’80-’10

Panel D
Log wage ’40 -0.0163∗∗∗ -0.0202∗∗∗

(-25.22) (-19.86)
Log wage ’80 -0.0189∗∗∗ -0.0104∗∗∗

(-11.96) (-5.52)

Note: This table shows the estimate of the β-convergence of the OLS. Columns (1) and (2) show
the estimates, respectively, for “No” college degree and for “Yes” college degree workers for the
years 1940-1980. Columns (3) and (4) show the estimates, respectively, for “No” college degree
and for “Yes” college degree workers for the years 1980-2010. Panel A has the estimates of the
β-convergence by skill for local wages adjusted by the rent in each MSA. Panel B has the same
estimates as in Panel A but the observations are not weighted by local population. Panel C has the
estimate of the β-convergence for compositionally adjusted wages. Panel D has the same results
but the observations are not weighted by MSA population.
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C.1 More Empirical Evidence on the workers’ skills, wages and migration pre-

mium

Fact: Migration Premium negatively correlated with wages of local pre-1980, positively correlation

afterwards.

Migration Premium I define a new variable that I call the migration premium. In a nutshell,

the migration premium is the difference between the wages of the migrants and the wages of the

locals in a specific year and in a specific location. As above, I define migrants as all the workers

who moved within the last year and locals the ones who did not. For the worker to be a migrant, he

or she needs to have changed state in the last year. I compute the average of the compositionally

adjusted wages for the workers who changed their state. Then, I compute the average of the

compositionally adjusted wages for the workers that were already residing in that state before the

previous year.

In figure 25, I look at the migration premium over time across states. For each of the years in

the CPS sample, I run the following specification:

ln

(
ŵmigrantjt

ŵjt

)
= αt + βt ln(ŵjt) + εt

I run this specification for all the years of the sample in which the information on migration is

available on CPS. Each regression is weighted by state population. Notice that the same results

hold also for population.

In figure 25, the migration premium is defined as the difference between the wages of the

migrants and the wages of the locals. The migration premium reported in figure 25 is adjusted

for age, sex, race, nativity, and marital status. This figure shows that the migration premium is

negatively correlated with the wage level of the state while the relationship becomes positive in

1980. I interpret this empirical finding as showing that the advantage of migrating until 1970 was

higher in poorer states. While, later it became higher in the richer states.
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Figure 25: Migration Premium by State over Time
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This figure reports the standardized coefficient β of the regression
 Migration Premium{t,i}=α+β(ln(wage))t,i+ε run for each MSA

Migration Premium over time

Note: This figure shows a scatter plot of the log of the wages in the state in the first period t against the migration
premium based on the measure of the difference between the wages of the migrants and the wages of the locals for the
same year. The size of the underlying state is represented by the size of the circle in the figure. The line represents
a weighted regression line from the bi-variate regression.
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