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Abstract

We investigate learning at the workplace. To do so, we use German administrative data that con-

tain information on the entire workforce of the sample establishments. We document that having

more highly paid coworkers is strongly associated with future wage growth. We then show how wage

growth is affected by other characteristics of the distribution of coworkers. We then develop a novel

way to structurally estimate a coworker learning function within a benchmark model of idea flows

in a competitive labor market. Our quantitative approach imposes minimal restrictions on firms’

production functions, can be implemented on a very short panel, and allows for potentially rich and

flexible coworker learning functions. We demonstrate the approach using several different specifica-

tions and find that, in line with our reduced form work, learning from more knowledgeable coworkers

is significant and increases with knowledge gaps. In contrast, learning is less sensitive to less knowl-

edgeable coworkers. Our estimated model can be used to examine the relationship between changes

in the organization of work brought about by technological change and both earnings inequality and

aggregate growth.
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1 Introduction

Social interactions are an essential part of an individual’s life. These interactions are po-

tentially an important source of learning. Furthermore, since working adults spend most

of their time awake working, or interacting with coworkers, it is natural that most of this

learning is the result of interactions with coworkers. It is plausible that this form of learning

constitutes the largest and most important knowledge acquisition mechanism in society. One

that transmits and diffuses the practical productive knowledge that individuals use every day

in their productive endeavors. Little is known about this type of knowledge transfer in the

workplace. Who learns from whom? How much? What is the labor market value of this

learning? How does this learning change as we change the organization of production in the

economy? We aim to provide answers to some of these questions.

In this paper we investigate learning at the workplace. We are interested in understanding

how individuals learn from coworkers with different levels of knowledge and the implications

of this form of learning for individual and aggregate outcomes. To do so, we first develop

a benchmark model of idea flows in a competitive labor market. Workers produce in teams

and, while doing so, learn from each other. The model has the key feature that a worker’s

pay reflects both her knowledge and a compensating differential for the opportunity to learn

from her coworkers. In contrast, the labor market compensates those who provide their

coworkers with learning opportunities.

Before structurally connecting the model with the data we start by analyzing the empir-

ical relationship between the wage growth of an individual and the wages of her coworkers

in a reduced form. To discipline the key features of this relationship we use German ad-

ministrative data that contain the employment biographies of the entire workforce of the

establishments in the sample. We use a variety of empirical specifications that allow us to

understand which features of the distribution of wages are related to an individual’s wage

growth.

Our findings indicate that more highly paid coworkers substantially increase future wage

growth. Furthermore, the transmission depends on particular features of the wage distribu-

tion. The data suggest little congestion from less well paid workers and a roughly symmetric
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positive learning from those higher up in the wage distribution. We also show that the effects

we find are present across the wage distribution.

Although suggestive of significant learning from coworkers, these findings could in prin-

ciple also be consistent with other features of wage setting mechanisms in the labor market.

To address these possibilities we offer a battery of checks which suggest that these find-

ings do not purely reflect mean reversion, back-loading, or other firm-specific factors by

separately analyzing switchers and stayers, plant closings, using information about worker

tenure, and studying the nonlinearities in the empirical relationship between wage growth

and the distribution of coworkers.

We then revisit our model which yields a mapping between the reduced-form evidence

on wages and the underlying knowledge and learning of individuals. Hence, we structurally

estimate a parametric version of our model using a simple learning function that can account

for the most important reduced form patterns we document. We develop a novel way to

estimate the parameters of this function using the matched employer-employee information

for the German labor market. The result is a structurally estimated ‘learning function’ that

maps an agent’s learning to the knowledge distribution of her coworkers.

Our model and estimation strategy rely on some standard, but relatively strong, assump-

tions like complete markets, perfect competition, and no aggregate shocks. However, it is

quite general on the set of firm technologies, complementarities across workers, and the spec-

ification of the learning function. Furthermore, it can be implemented on very short panels

requiring only two observations per worker. As such, we view the structure we impose, and

the empirical results we obtain with it, as a natural benchmark.

Using this benchmark model we find that agents learn little from less knowledgeable

workers and they learn significantly from those with more knowledge, particularly from the

most knowledgeable members of their teams. On average, about 4.3% of the total com-

pensation of workers comes in the form of learning from coworkers in the same establish-

ment and occupation. We further document an apparent tension between firms’ production

requirements—which are reflected in the equilibrium composition of teams—and coworker

learning: Coworker knowledge flows would more than double if workers were to be grouped

in teams randomly.
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Our estimated model can be used to study a variety of phenomena that might affect team

composition and therefore individual learning. For example, one can study how changes in

the organization of work brought about by technological change affect earnings inequality,

life cycle wage profiles, and the aggregate rate of growth.

There is a large literature in macroeconomics that has used learning from others as the

key mechanism to generate aggregate growth. Lucas (2009) proposes a theory of growth

based on random meetings between agents in the entire population. Lucas and Moll (2014)

and Perla and Tonetti (2014) extend these models to add a time allocation choice, while

Jovanovic and Rob (1989), Jovanovic and MacDonald (1994), and König et al. (2016) focus

on the innovation/imitation margin. Other models like Sampson (2015), Perla et al. (2015),

and Luttmer et al. (2014) also generate growth through adoption of ideas from others. As

Alvarez et al. (2013) and Buera and Oberfield (2016) show, the selection of what particular

ideas an individual or firm confronts, as determined for example by trade flows, is essential to

shape the growth properties of these models. This literature considers random learning from

the population, or a selected group of the population, but it has not incorporated learning

from coworkers. The importance of studying this form of selection in learning is evident,

but challenging. For starters, it requires modeling explicitly teams of coworkers that are

heterogeneous across firms. Caicedo et al. (2016) introduce learning in an economy where

production is organized in heterogeneous production hierarchies as in Garicano and Rossi-

Hansberg (2006), but learning is not limited to agents within the organization. Jovanovic

(2014) studies learning in teams of two, while Burstein and Monge-Naranjo (2009) study

an environment in which a manager hires identical workers and imparts knowledge to those

workers.1 We go further than these papers in that we model learning within teams and

provide direct evidence of its importance, its characteristics, as well as providing a structural

estimation of the key parameters of the model.

While much of the empirical literature has focused on contemporaneous peer effects (Mas

and Moretti (2009) and Cornelissen et al. (2017)), empirical studies of learning within teams

is much more limited. Nix (2015) argues that increasing the average education of ones peers

1Anderson and Smith (2010) study matching with dynamic types which can also be interpreted as a
model of learning in teams of two.
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raises one’s earnings in subsequent years. Akcigit et al. (2018) argue that increasing one’s

exposure to star patenters raises the likelihood of patenting and the quality of one’s patents.

In related and complementary work, Herkenhoff et al. (2018) build on a frictional sorting

setup to investigate learning with production complementarities. Like us, they detect strong

coworker spillovers. The main difference between the papers is that our empirical strategy

builds on a competitive labor market and our analysis focuses in particular on the role of

the within-team distribution of knowledge for the transmission process.

The remainder of this paper is organized as follows. Section 2 presents a general but

simple model of an economy in which agents learn from their coworkers. The theory is

useful in specifying exactly the concept of learning we have in mind and its implications. In

Section 3 we introduce our German matched employer-employee data and present a number

of reduced-form findings about the relationship between the wage of an individual, the wages

of her co-workers and an individual’s wage growth. Section 4 goes deeper and parameterizes

the learning function in our theory from Section 2 in order to structurally estimate the model.

Section 5 concludes.

2 Theory

Consider an economy populated by a unit mass of heterogenous individuals with knowledge

z ∈ Z = [0, z̄]. Individuals have a probability δ of dying each period. Each period a

mass δ of new individuals is born. Newborns start with a level of knowledge z drawn from

a distribution B0 (·). Agents supply labor inelastically, consume, and discount the future

according to a discount factor β. Agents are employed in firms where they obtain a wage

and where they can learn from other coworkers. An agent z, working in a firm that employs

the agent as well as a vector of coworkers z̃ will draw her next period’s knowledge from

a distribution G (z′|z, z̃). Markets are complete, so agents maximize the expected present

value of income.

Since individuals learn from coworkers, the wage she is willing to accept depends on how

much she might learn from coworkers. There will therefore be a wage schedule w (z, z̃) that

is paid to a worker with knowledge z that works with a vector of coworkers z̃.
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All firms produce the same consumption goods. Potential firms pay a fixed cost c in

goods, after which they draw technology a ∈ A from a distribution A (·). A firm with

technology a produces according to the production function F (z; a). Firms take the wage

schedule as given and hire a vector of workers z. Differences across technologies need not

be Hicks-neutral or even factor augmenting; production technologies may also vary in their

complementarities across workers with different levels of knowledge. Hence different firms

will, in general, make different choices of z.

2.1 Firms

Let W (z) be the total wage bill of a firm that hires the vector of workers z. If z = {zi}ni=1 for

some n, then W (z) =
∑n

i=1 w (zi, z̃−i), where z̃−i is the set of i’s coworkers. A firm chooses

the set of workers to maximize profit

π (a) = max
z
F (z; a)−W (z) . (1)

Let z (a) = arg max zF (z; a)−W (z) denote a’s optimal choice.2

2.2 Individuals

Agents decide where to work each period given wages and the learning opportunities across

firms. Let Z̃ be the set of all possible vectors of coworkers. The expected present value of

earnings for an agent with knowledge z is given simply by

V (z) = max
z̃∈Z̃

w (z; z̃) + β

∫ ∞
0

V (z′) dG (z′|z, z̃) . (2)

Namely, individuals choose where to work to maximize their wage, plus the future stream

of wages given their learning opportunities in the firm. In general it will be the case that

equilibrium wages will adjust so that workers are indifferent about working in a set of firms.

Furthermore, since firms take the wage schedule as given, it must be the case that if a firm

2Note that the firm is choosing both the type of workers, zi, and the number of workers n. Together
these choices determine the vector z.
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wants to hire a vector of workers (z, z̃) then the wage schedule must capture what it would

cost to hire those workers. The wage schedule must therefore satisfy

w (z; z̃) = V (z)− β
∫ ∞

0

V (z′) dG (z′|z, z̃) (3)

for any z, z̃. A simple implication is that for any z̃, z̃′

w (z; z̃)− w (z; z̃′) = −β
[∫ ∞

0

V (z′) dG (z′|z, z̃)−
∫ ∞

0

V (z′) dG (z′|z, z̃′)
]
. (4)

Namely, firms with distinct sets of employees pay different wages to identical individuals to

compensate for differences in their learning. If an individual would learn a lot at a firm, the

firm can pay a low wage and sill attract her. In this sense wages incorporate compensating

differentials.

2.3 Labor Market Clearing and Free Entry

Let B (z) be the fraction of workers with knowledge no greater than z. For any vector z,

let N (z, z) denote the number of elements of z that are weakly less than z. Labor market

clearing requires that for each z,

B (z) = m

∫
a

N (z (a) , z) dA (a) , (5)

where m denotes the mass of firms in the economy.

Free entry requires that ∫
a

[π (a)− c] dA (a) = 0. (6)

2.4 The Distribution of Knowledge

Given the choices of firms, we can define O (z̃|z) : Z̃×Z → [0, 1] to be the fraction of workers

with knowledge z that, in equilibrium, have a vector of coworker knowledge that is strictly

dominated by the vector z̃. Then the fraction of workers with knowledge no greater than z

next period are those who are born with knowledge weakly less than z, and those who did
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not learn enough from coworkers to push them to knowledge above z. Namely,3

B (z) = δB0 (z) + (1− δ)
∫
x

∫
z̃∈Z̃

G (z|x, z̃) dO (z̃|x) dB (x) . (7)

2.5 Equilibrium

A stationary competitive equilibrium consists of a wage schedule w, a value function V , a

mass of firms m, firm choices z (a), a coworker vector Z̃ set, and a distribution of worker

knowledge B, such that

1. V and w satisfy (2) and (3);

2. z (a) solves (1), namely, maximizes the profit for a firm with technology a taking the

wage schedule as given;

3. The labor market clears for each z, so (5) is satisfied;

4. The free entry condition (6) holds;

5. The law of motion for B in (7) is satisfied.

2.6 Characterizing Equilibrium

We now turn to characterize some basic properties of an equilibrium. To do so we need

to impose some structure on the functions F and G. We state these properties in three

assumptions. Throughout, when we compare two ordered vectors of the same length, z1 < z2

means that each element of z2 is weakly greater than the corresponding element in z1, and

at least one element is strictly greater.

Assumption 1 F (z, a) is strictly increasing in each element of z: z1 < z2 implies F (z1, a) <

F (z2, a)

3Note that if the solution to the maximization in (2) is unique, then O (z̃|x) would be degenerate with
a mass point at z̃ chosen by individual x, z̃ (x), and so the integral in (7) would be

∫
x
G (z|x, z̃ (x)) dB (x).

Uniqueness of the solution of the maximization in (2) is neither guaranteed nor necessarily a desired property
in our model.
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Assumption 2 G is strictly decreasing in z and z̃: z̃1 < z̃2 implies that G (z′|z, z̃1) >

G (z′|z, z̃2).

Assumption 3 There is free disposal of knowledge

The first assumption implies more knowledgeable individuals always have an absolute

advantage in production. The second assumption is that if two individuals have the same

coworkers, the one with more knowledge this period will have stochastically more knowledge

next period. It also says that if two individuals have the same knowledge, the one with more

knowledgeable coworkers will have stochastically more knowledge next period.

These assumptions are sufficient to deliver the following results:

Lemma 1 Suppose there is a firm with productivity a such that (z, z̃) = z∗ (a). Then for

each z1 > z2 it must be that w (z1, z̃) > w (z2, z̃).

Proof. First, free disposal of knowledge ensures that V is weakly increasing. Second, the

fact that G is decreasing in z implies that w (z, z̃) is weakly decreasing in z̃. Finally, toward

a contradiction, suppose there was a z1 > z2 such that w (z1, z̃) ≤ w (z2, z̃). Then the firm

should hire z1 instead of z2. It would strictly increase output, it could pay that worker a

weakly lower wage, and it could weakly lower the wage of all other workers.

Proposition 1 V (z) strictly increasing in z.

Proof. For any wage schedule, the operator T V (z) = maxz̃∈Z̃w (z, z̃)+β
∫∞

0
V (z′) dG (z′|z, z̃)

is a contraction because it satisfies Blackwell’s sufficient conditions. To show that the V is

strictly increasing, it is sufficient to show that if V is weakly increasing, T V is strictly in-

creasing. To see this, consider z1 < z2. Market clearing ensures that there is a firm that

hires z1, and let z̃1 be the the coworkers of z1 in at least one such firm. Then this along with
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Lemma 1 imply

T V (z1) = w (z1, z̃1) + β

∫ ∞
0

V (z′) dG (z′|z1, z̃1)

< w (z2, z̃1) + β

∫ ∞
0

V (z′) dG (z′|z1, z̃1)

≤ w (z2, z̃1) + β

∫ ∞
0

V (z′) dG (z′|z2, z̃1)

≤ max
z̃∈Z̃

w (z2, z̃) + β

∫ ∞
0

V (z′) dG (z′|z2, z̃)

= T V (z2)

where the first inequality follows from Lemma 1 and the second inequality from the as-

sumption that G (·|z, z̃) is decreasing in z and the presumption that V is weakly increasing

Proposition 2 z̃1 < z̃2 implies that w (z, z̃1) > w (z, z̃2).

Proof. This follows directly from the assumption that G is decreasing in z, Proposition 1,

and (4).

Proposition 3 Within a team, a worker that earns a higher wage has more knowledge.

Proof. Consider two workers in the same team, with respective knowledge z1 > z2. Let z̃

denote the vector of the rest of their coworkers. Then we have that

w (z2, (z1, z̃)) < w (z1, (z1, z̃)) < w (z1, (z2, z̃))

where the first inequality follows from Lemma 1 and the second inequality follows from

Proposition 2.

Finally, we show how a worker’s wage is related to her marginal product. Firms choose

a vector of workers z to maximize profits. Hence, they solve

π (a) = max
n,{zi}ni=1

F (z; a)−
n∑

j=1

w (zj, z̃−j)
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If a firm wanted to choose a slightly more knowledgeable worker for the jth position. Opti-

mality implies

∂

∂zi
F (z; a)−

∑
j 6=i

w (zj, z̃−j)

∂zi
=
∂w (zi, z̃−i)

∂zi

The marginal cost to a firm of having its ith worker have a bit more knowledge is ∂w(zi,z̃−i)
∂zi

.

The marginal benefit equals the sum of its marginal product and the change in wages the

firm must pay its other workers.

Since (3) must hold for any z̃, we can differentiate with respect to coworker i’s knowledge

to get
∂w (zj, z̃−j)

∂zi
= −βdE [V (z′) |zj, z̃−j]

dzi

We can thus write the optimal condition for the firm to be

∂w (zi, z̃−j)

∂zi
=

∂

∂zi
F (z; a) + β

∑
j 6=i

d

dzi
E [V (z′) |zj, z̃−j] .

Thus the marginal value of a worker’s knowledge to the firm reflects both the marginal

product of the knowledge and the marginal increase in coworkers’ learning.

3 Reduced-Form Evidence

We next use German social security data to investigate the relationship between coworker

(relative) wages and individual wage growth. Our goal is to provide empirical discipline on

the learning function G (z′|z, z̃).

To do so, we begin in a reduced-form fashion relating individual wage growth to the

within-team wage distribution using various flexible reduced-form specifications. We are

particularly interested in two questions: First, do future wages rise more steeply if one’s

coworkers are more highly paid. Second, if so, how does the response of wage growth co-

move with key features of the wage distribution around a worker. We further offer various

robustness checks with a particular focus on ruling out two alternatives to learning which

could be driving our results, namely a back-loaded wage structure and mean reversion.
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While none of the reduced-form specifications is tightly grounded in our theory, we

nonetheless argue that the resulting picture is useful in guiding the more structural ap-

proach that follows. Of course, the lack of an empirical identification strategy implies that

these results cannot be understood as causal and so remain simply a suggestive statement

about equilibrium relationships. The next step is to use the structure of our theory and the

suggested specification of the learning function to estimate the model.

Our structural approach builds on the baseline framework developed in Section 2. In

particular, we specify a flexible but parsimonious parametric form for the learning function

G (z′|z, z̃) in light of our reduced form evidence. We then implement a simple routine to

discipline the parameters of G(·) using only panel information on wages and peer groups.

3.1 Summary Statistics

We begin by briefly describing the dataset along key dimensions. The longitudinal version of

the Linked-Employer-Employee-Data of the IAB (LIAB) contains information on the com-

plete workforce of a subset of German establishments. The sample establishments are the

ones selected—at least once—in an annually conducted survey between 2000 and 2008. The

employee part of the dataset then contains the employment biographies from 1993 to 2010 of

all individuals which were, for at least one day, employed at one of the sample establishments

between 1999 and 2009. The employment biographies come in spell format and contain in-

formation, among other things, on a worker’s establishment, occupation, and average daily

earnings along with a rich set of observables (age, gender, job and employment tenure, edu-

cation, location,..). We organize the remaining dataset as an annual panel. Specifically, the

annual observation recorded (employer, average daily wage,..) for each individual pertains

to the spell which overlaps a particular reference date (January 31st).4 We will refer to the

spell overlapping this reference date as the reference spell.

To construct a baseline sample, we then proceed as follows. We select only those es-

tablishments which were surveyed in each year between 2000 and 2008. We then include

those individuals who were employed at one of those establishments at the reference date

4As an alternative for wages, we can also compute the average daily wage over the full year, potentially
spanning multiple employers.
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during at least one year between 2000 and 2008. This leaves us with the employment biogra-

phies (between 1993 and 2010) of the full workforce (at a reference date) of a large number

of establishments. We further drop workers in apprenticeship, internships, and part-time

employment.

Throughout, we work with the following two different ways of defining a peer group.

Team Definition 1: All workers in the same establishment.

Team Definition 2: All workers in the same establishment and occupation.

Size Distribution Figure 1 plots the unweighted size distribution for both team defi-

nitions for the year 2000. We restrict attention to teams that have size ≥ 2. The team

size distribution is naturally more compressed under the second, narrower, team definition,

but for both definitions a sizable fraction of teams are fairly large. The remaining sample

contains 4119 establishments with average size 143. When working with the second team

definition we have a total of 21383 teams with an average size of 23.

0 20 40 60 80
Establishment Size

0

0.05

0.1

Unweighted Histograms | Size > 1

0 20 40 60 80
Team Size (Team= Est x Occ)

0

0.05

0.1

Figure 1 Size Distribution of Teams, two different team definitions.
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Wage Distribution Figure 2 plots the histogram of the average daily earnings during the

year-2000 reference spell in Euros.5 The two “mass-points” reflect that the earnings data

are censored at the social security contribution ceiling (which is lower in Eastern Germany).

As a consequence, roughly 5% of our wage observations are censored.6 A simple variance

decomposition implies that the within team component accounts for 47.2% of the overall

variance in wages under team definition 1 and 22.8% under team definition 2.

0 50 100 150
Average Daily Wage on Selection Spell (00 Euros)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

10th Pct: 55.1
Median: 86.9
90th Pct: 138.1
Mean: 90.3 Euros

Figure 2 Wages during reference spell

Wage Gap to Coworkers We are interested in gauging how a worker’s future wage

growth comoves with her coworker’s (relative) wages. Let the wage of individual i in year t

be denoted by wi,t and the (leave-out) average wage of individual i’s peers/team-members

be denoted by w̄i,t . We then define ŵi,t ≡ log
(

w̄i,t

wi,t

)
. Figure 3 plots the histogram of wage

gaps for each team definition. Under the first team definition, ŵ has mean .026 and -.26,

.04, and .29 as the 10th, 50th, and 90th percentile when pooled across all years. Under

the second team definition, ŵ has mean .011 and -.17, .00, and .20 as the 10th, 50th, and

90th percentile. Naturally, within-team wage dispersion is smaller under the narrower team

5We drop wage observations below the 1st and above the 99th percentile.
6While there exist imputation methods we instead treat the censored observations as actual wage obser-

vations and do not correct for the censoring.
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definition.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Log Gap to Avg Peer

0
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Distance to Peers

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Log Gap to Avg Peer (Team Def 2)
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4
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10th Pct:
Median:
90th Pct:
Mean:

10th Pct:
Median:
90th Pct:
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10th Pct:
Median:
90th Pct:
Mean:

Figure 3 Distribution of wages gaps, two different team definitions.

Wage Growth We next construct n−year ahead annualized real wage growth (denoted

∆wn
i,t) which averages around 1% over all horizons when pooled across years t. The 10th,

50th, and 90th percentile for n = 1 are -6%, .6%, 8%, respectively, while the same deciles

are -1.6%, .9%, and 3.6% for n = 5.

Correlations We compute a set of correlations of various wage moments at the team level.

Specifically, Table I reports the correlation matrix of team average pay, team pay dispersion,

team mean-median ratio (skewness), team size, and max wage at the team. All entries of the

matrix are positive except the correlation between team average pay and the mean-median

ratio.7

7A natural interpretation is that highly productive teams have a skewed wage distribution with very
highly paid managers.
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Mean Wage Wage sd Mean/median Team size Max wage
Mean Wage 1
Wage sd 0.51 1
Mean/median −0.01 0.20 1
Team size 0.48 0.39 0.21 1
Max wage 0.84 0.71 0.28 0.67 1

Table I Pairwise correlations at the team level, team definition 1. All variables in logs

3.2 Regression Framework

We begin with the following baseline specification which we implement separately for various

horizons n,

∆wn
i,t = α + βŵi,t + ωo + ωa + ωe + ωg + ωt + εi,t. (8)

In doing so, we pool the observations across all years t, controlling for a vector of time

invariant occupation, age, education, gender, and year fixed effects Unless otherwise indicated

that is the set of fixed effects used in all specifications. The results for n > 2 use only a

subset of years t. For instance, for n = 10 we are restricted to exclusively use information

about peers in the year 2000 (since we observe workers until 2010). Likewise, for n = 5 we

can use all years between 2000 and 2005 .

We report the parameter estimates for team definition 2 in Table II, clustering standard

errors at the establishment level. We first note that our findings suggest quantitatively large

effects. ŵ has a standard deviation of .155 in the pooled sample, suggesting that a one

standard deviation increase in ŵ is related to an increase in expected wage growth over the

next year of one percentage point. At longer horizons, the average annualized growth rate

is lower. This would be natural in the context of learning, as agents likely learn less as they

gradually become more knowledgeable.

We next contrast these results with the corresponding results for team definition 1. As can

be seen from Table III, the coefficients are somewhat smaller at all horizons for the broader

team definition. These baseline results are thus consistent with learning from coworkers. The

larger estimates when we use the second team definition are likely the result of more intense

interactions between coworkers within occupations. From here on we restrict our attention
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Horizon in Years

1 2 3 5 10

ŵ 0.063∗∗∗ 0.047∗∗∗ 0.039∗∗∗ 0.032∗∗∗ 0.024∗∗∗

(0.0030) (0.0022) (0.0020) (0.0017) (0.0015)

R2 0.064 0.112 0.148 0.203 0.261
Observations 3544350 2911038 2384726 1576536 270837

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification (8). Team definition 2. Column titles indicate horizon n.

Table II Baseline Estimation Results

Horizon in Years

1 2 3 5 10

ŵ 0.052∗∗∗ 0.040∗∗∗ 0.034∗∗∗ 0.028∗∗∗ 0.023∗∗∗

(0.0024) (0.0019) (0.0017) (0.0015) (0.0014)

R2 0.062 0.111 0.147 0.203 0.269
Observations 3672797 3013010 2465708 1626954 278289

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Identical to table II but applying team definition 1.

Table III Baseline Results, Broader Team Definition.

to team definition 2. We separately report all results for the alternative team definition in

the Appendix.

We next offer several robustness checks. The first set of checks varies specification and

sample selection. We also show that the effects we find are present and large across the wage

distribution. We then show that there is a strong asymmetry in the patterns: wage growth

is more strongly associated with the wage gap to higher paid workers than with the gap to

lower paid workers. Finally, we aim to show that the results in Table II are not driven by

back-loading or mean reversion. We first show that the patterns are robust to controlling

for tenure. We then show that the patterns are still strong among those that switch firms.
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Different Subsamples

Benchmark Size> 4 Size=2 Men Only Age> 45 Age< 35

ŵ 0.039∗∗∗ 0.042∗∗∗ 0.014∗∗∗ 0.046∗∗∗ 0.028∗∗∗ 0.056∗∗∗

(0.0020) (0.0022) (0.00080) (0.0021) (0.0012) (0.0032)

R2 0.148 0.153 0.091 0.153 0.095 0.155
Observations 2384726 2224894 60708 1700439 868537 534214

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification 8 under various sample selection modifications as indicated in
column title. Team definition 2 at horizon n = 3 years.

Table IV Changing Sample Construction.

3.2.1 Robustness

We choose as benchmark for all our robustness results the coefficient estimate at n = 3

for team definition 2, β̂ = .039. We then run specification (8) for various modified sample

selection criteria and report the results in table IV. For instance, the second column reports

β̂ when estimated on a sample of workers who are in teams of size > 4 at the reference date.

Our baseline results appear mostly insensitive to these modifications. However, it is clear

that older workers seem to benefit less from more highly paid coworkers compared to younger

workers.

We also check the robustness of our results to the inclusion of controls. To do so, we omit

various fixed effects from the regression as indicated in table V. In addition to the differences

in estimates by age category in IV, the sensitivity of wage growth to wage gap is larger when

we omit age fixed effects. We revisit this issue when discussing wage back-loading below.

The estimates seem robust with respect to other worker characteristics.

3.2.2 Across the Wage Distribution

We next show that the forces we document are present everywhere in the wage distribution.

In particular, we run the same baseline specification separately for workers in different deciles

of the population wage distribution.8

8Of course, we use the full peer group in the construction of the independent variable as always.
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(1) (2) (3)
Age Occupation Education

ŵ 0.049∗∗∗ 0.038∗∗∗ 0.038∗∗∗

(0.0021) (0.0019) (0.0021)

R2 0.126 0.122 0.146
Observations 2384728 2384728 2481963

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification 8 under various fixed effect combinations. Column title indicate
omitted fixed effects. Team definition 2 at horizon n = 3 years.

Table V Baseline results under varying fixed effects.

Decile of the Wage Distribution

1 2 3 4 5 6 7 8 9 10

ŵ 0.039∗∗∗ 0.051∗∗∗ 0.045∗∗∗ 0.036∗∗∗ 0.033∗∗∗ 0.034∗∗∗ 0.036∗∗∗ 0.037∗∗∗ 0.049∗∗∗ 0.012∗∗∗

(0.0028) (0.0030) (0.0038) (0.0044) (0.0045) (0.0043) (0.0044) (0.0059) (0.0071) (0.0027)

R2 0.185 0.228 0.254 0.218 0.189 0.195 0.170 0.172 0.198 0.088
Observations 13975 23508 27579 29574 30443 30699 31156 31101 30237 30641

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification (8) separately for different deciles of the wage distribution in
the baseline sample in year t. Team definition 2 at horizon n = 3 years.

Table VI Baseline results for different deciles of the wage distribution.

The results are reported in Table VI. The results are fairly stable across the wage dis-

tribution.9 We conclude that, having more highly paid coworkers is associated with future

wage growth, largely independent of the current level of wages. This is informative for the

modeling choices we make below and also strongly suggests that our baseline findings do not

reflect a form of economy-wide mean reversion in wages.

9The dropoff at the top decile is an artifact of the censoring. It also suggests that our treatment of the
censored observation discussed above leads us to underestimate the strength of learning. Further, the fact
that the number of observations is substantially smaller for the bottom deciles reflects that those workers
are more marginally attached to the labor market and are therefore more frequently not employed at the
reference spell n years ahead.
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3.2.3 Asymmetries: The Role of the Distribution of Teammates

The previous results measure only whether the wage gap between a worker and her average

coworkers is associated with wage growth. We are particularly interested in how the com-

position of one’s coworkers affects wage growth. Hence, we document next how the results

presented in the previous subsection depend on characteristics of the wage distribution sur-

rounding a worker. In particular, we try to shed light on whether these forces are symmetric

from above and below, whether team size matters, and whether we can detect congestion

and nonlinearities.

To this end, we employ various interactions, use flexible specifications that allow for

nonlinearities, and measure the wage distribution in a team in more flexible parametric

ways. Two broad features emerge: First, the level of wages of coworkers “below” in the

wage distribution matters less for future wage growth. That is, most gains derive from those

above in the wage distribution; we interpret this as evidence of little congestion effects in the

learning process. Second, increasing the wage of those higher up in the wage distribution

has a positive effect that declines somewhat as one moves to more distant coworkers. That

is, marginally increasing the wage of a peer in close proximity benefits a worker more than

increasing the wage of the top wage earner in the team.

Adding Interactions We begin by interacting ŵ with log team size, within-team wage

dispersion, wage skewness, and the number as well as fraction of those more highly paid in

the team. We report the results in Table VII.

We first highlight that size is insignificant. Thus, while there seems to be something

special about very small teams as indicated in Table IV, overall learning seems to be in-

dependent of team size. This scale independence is an important input when choosing a

parametric form for the learning process.

The remaining interactions suggest that, given ŵ, a less dispersed, less skewed distribution

of wages increases future wage growth. Likewise, if there are more workers to learn from,

that is workers higher up in the wage distribution, knowledge transmission also accelerates.

We highlight, however, that these results could in principle be driven by two different forces.

Either they could reflect the influence of the shape of the knowledge distribution a worker
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(1) (2) (3) (4) (5)

ŵ 0.026∗∗∗ 0.067∗∗∗ 0.042∗∗∗ 0.019∗∗∗ 0.0024
(0.0060) (0.0035) (0.0019) (0.0049) (0.0016)

ŵ × Size 0.0032
(0.0019)

ŵ × Wage Dispersion -0.13∗∗∗

(0.012)

ŵ × Mean-Median 0.18∗∗∗

(0.022)

ŵ × # Above 0.0048∗

(0.0020)

ŵ × % Above 0.044∗∗∗

(0.0026)

R2 0.149 0.151 0.151 0.151 0.156
Observations 2384726 2384726 2384726 2222579 2384726

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification (8) with the inclusion of additional interactions. Size is measured
as log team size, wage dispersion is measured as the standard deviation of log wages, inverse skewness is
measured as the log of the median/mean ratio. The forth column interacts with the log of the number
of team-members above worker i in terms of wages, column (5) does so for the fraction. All regressions
control for size, wage dispersion and skewness. Team definition 2 at horizon n = 3 years.

Table VII Baseline results interacted.
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(1) (2) (3)

ŵ+ 0.041∗∗∗ 0.043∗∗∗

(0.0028) (0.0034)

ŵ− 0.020∗∗∗ 0.018∗∗∗

(0.0014) (0.0018)

R2 0.131 0.121 0.136
Observations 2237206 2297090 2126790

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Column (3) reports the results from specification 9. Columns (2) and (1) only use information
about those less well and those better paid, respectively. Team definition 2 at horizon n = 3 years.

Table VIII Splitting peers into those better and less well paid.

can learn from in which case they would suggest that workers learn more from those in close

proximity. Alternatively, they may merely reflect that peers “above” and “below” yield

distinct learning outcomes. In order to investigate further this possibility we next separately

study the roles of agents that earn more than an individual and seem to play the role of her

“teachers” and those that earn less and therefore play a role as her “students”.

Teammates Above and Below To study the differential role of teammates that earn

more and those that earn less, we now split the peer group into those more highly and less

well paid and run

∆wn
i,t = α + β1ŵ

+
i,t + β2ŵ

−
i,t + ωo + ωa + ωe + ωg + ωt + εi,t. (9)

Here ŵ+
i,t denotes the log wage distance of individual i to the mean wage of her more highly

paid coworkers in period t while ŵ−i,t denotes the corresponding distance to the mean wage

of her less well paid coworkers.

Table XVI suggests that the marginal returns to improving peers above in the wage

distribution far exceed the marginal returns to improving those below which suggests two

main lessons.

This evidence suggests that learning from those with lower wages plays only a limited role.
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It also suggest that having worse-paid coworkers does not hinder learning from others through

congestion. Further, it suggests that our baseline results are driven primarily by learning

from those higher up in the team-wage distribution. These observations are corroborated by

the results we present next.

A More Flexible Specification We end the reduced-form exploration with an exercise

that attempts to approximate the wage distribution surrounding a worker in a flexible way.

To do so, we bin a worker’s peers into 11 brackets. The bottom bracket takes those peers

with wage such that log(wj) − log(wi) < −.5 while the top bracket takes those peers with

log(wj)− log(wi) > .5. All other workers are grouped into 9 equally spaced bins in-between.

We then compute, for each individual i, the fraction of her coworkers in each bin and regress

wage growth at various horizons on the bin-weights along with our standard controls and

fixed effects. We present the results in figure 4 and report the underlying table in the

appendix section A.1.10

Figure 4 plots the marginal response of n-year ahead annualized real wage growth to

increasing the weight on each of the 10 bins (relative to increasing the weight on bin 1 which

is the omitted category). To interpret, moving 10% of one’s peers from the bottom bin into

the highest bin reduces 3-year ahead average wage growth by about .4 percentage points.

That is, it represents the marginal effect of having more coworkers in that bin relative to

bin 1. The figure does so separately for various other horizons n. The figure confirms the

findings from the previous exercises: Those who are less well paid (those in bins 6 and under)

have little effect on a worker’s future wage growth. In contrast, workers seem to benefit from

additional highly paid workers in the peer group (those in bins 7 and higher). Note that, while

workers benefit more from more highly paid peers the effects are less than proportional. This

mimics our findings from the interaction specifications above which suggest that knowledge

flows more efficiently from those in close proximity relative to those far above in the wage

distribution. Nevertheless, we stress that the effects are monotonically increasing (almost

everywhere) above implying that one learns more from workers further out in the wage

distribution.

10We note that so far we only have those results for the first, broader team definition.
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The bottom panel of Figure 4 also confirms the results from above which suggest that

learning from higher earners is strongest over the one year horizon and declines monoton-

ically as we extend the horizon of analysis. We conclude by pointing out that additional

interaction specifications suggest that the results presented in Figure 4 are stable across

agents in different percentiles of the wage distribution.

-.2 0 .2 .4 >.5
0

2

4

6 10-4

5 years
95% bounds

-.2 0 .2 .4 >.5
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2
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1 yr
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Figure 4 Dependent variable: n-year ahead average annualized wage growth expressed
in percentage points. We plot the coefficients from a regression of wage growth on the
fractions (multiplied by 100) of the team in the respective bins. The top panel only plots
n = 5 along with the 95% confidence bands. The bottom panel plots estimates for different
horizons. The lowest bin with log (wj)− log (wi) < −.5 is the omitted category. All workers
with log (wj) − log (wi) > .5 are in one single bin as indicated by the vertical dashed line.
Standard errors clustered at the establishment level. The figure uses Team Definition 1.

3.2.4 Tenure and Backloading

Besides coworker learning there are two other prime mechanisms that could be driving the

patterns uncovered in Table II. First, certain plausible wage back-loading patterns could
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Horizon in Years

1 2 3 5 10

ŵ 0.063∗∗∗ 0.046∗∗∗ 0.038∗∗∗ 0.031∗∗∗ 0.023∗∗∗

(0.0013) (0.00095) (0.00085) (0.00078) (0.0011)

Tenure Quintile=2 -0.0035∗∗∗ -0.0031∗∗∗ -0.0027∗∗∗ -0.0022∗∗∗ -0.00068∗

(0.00059) (0.00049) (0.00037) (0.00032) (0.00031)

Tenure Quintile=3 -0.0032∗∗∗ -0.0034∗∗∗ -0.0030∗∗∗ -0.0023∗∗∗ -0.00046
(0.00067) (0.00053) (0.00043) (0.00038) (0.00041)

Tenure Quintile=4 -0.0036∗∗∗ -0.0031∗∗∗ -0.0026∗∗∗ -0.0022∗∗∗ -0.0031∗∗∗

(0.00087) (0.00066) (0.00050) (0.00042) (0.00042)

Tenure Quintile=5 -0.0031∗∗ -0.0040∗∗∗ -0.0038∗∗∗ -0.0033∗∗∗ -0.0035∗∗∗

(0.00097) (0.00074) (0.00056) (0.00047) (0.00043)

R2 0.064 0.113 0.149 0.204 0.267
Observations 3544350 2911038 2384726 1576536 270837

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification 8 controlling for tenure.

Table IX Baseline results controlling for job tenure.

give rise to the results. In particular, firms could attempt to retain workers by offering wage

schedules that pay relatively more in the future. Firms could have incentives to do so if it

is costly to hire new workers and workers search on the job. This would, for instance, be

the case in an environment similar to Burdett and Coles (2003) or Postel-Vinay and Robin

(2002).

To address this we add controls for job tenure into the baseline specification and report

the results in Table IX. The basic picture remains the same. Below, we also show that

workers that switch teams benefit even more from having better coworkers. This alternative

piece of evidence also helps rule out back-loading as a key driver of our findings.

3.2.5 Movers

ADD MOVER RESULTS HERE
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4 Structural Estimation

We now turn to a structural estimation of the amount of learning within teams. One of

the key problems interpreting the results in the previous section is that wages do not equal

knowledge. In order to go beyond reduced-form relationships between the distribution of

wages and wage growth and determine the implications of our findings for learning, we need

a theory that allows us to map one into the other. We use the theory developed in Section 2

to do so. Our main objective is to estimate the “learning function” G(·). Below we describe

a strategy to recover G(·) from panel data that includes teams’ wages, and implement our

strategy using our German data.

4.1 Identifying Learning Parameters

Our identification strategy requires a panel of at least two years of matched employer-

employee data that includes wages. We rely only on the worker’s Bellman equation,

V (z) = w (z, z̃) + βE [V (z′) |z, z̃] (10)

which is the result of the worker’s maximization. Equation (10) depends on the assumptions

of stationarity, perpetual youth, perfect competition, and complete markets.11 However, we

do not need to place any assumptions on the set of firms that are active, or features of the

technologies that firms use beyond those in Assumptions 1 to 3. The set of technologies and

firms in the economy determine the set of teams we observe in equilibrium, but our strategy

simply uses the set of observed teams.

We first note that z does not have a natural cardinality. We are therefore free to choose

a convenient one: If V (z) is the value function in the current equilibrium, we choose a

11Our approach allows for a number of generalizations. For example, if markets are so incomplete that
agents cannot save or borrow, we can simply replace the current return in (10) with a known increasing and
concave function of the wage.
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cardinality of z so that V (z) = z. Then, (10) becomes

z = w (z, z̃) + βE [z′|z, z̃]

= w (z, z̃) + β

∫ ∞
0

z′dG (z′|z, z̃)

or

zi = wi + βE [z′i|zi, z̃−i] (11)

= wi + β

∫ ∞
0

z′idG (z′i|zi, z̃−i) .

Our strategy hinges on the following two observations. First, if we know, for each worker

i, z′i, zi, and z̃−i, we can directly identify G. Conversely, if we know G, we can invert (11)

and solve for zi as a function of a worker’s wage and the wages of her coworkers; for a team

of size N , (11) for each of the N team members delivers a system of N equations in N

unknowns (zi for each team member). Together these equations provide several moment

conditions that can be used to identify G using GMM.

Operationally, we choose a functional form for G (z′|z, z̃; θ), with parameters θ, and we

calibrate β externally. Starting from period t, we can decompose next period’s knowledge,

z′, into expected and unexpected components. Namely,

z′i = E (zi, z̃−i) + εi, (12)

where E (zi, z̃−i) is the conditional expectation and εi is the expectational error. We then

use the moment conditions built from

E [εi|zi, z̃−i] = 0.

Below we specialize to the case where E (zi, z̃−i) = E [z′i|zi, z̃−i] is a linear combination of

several moments of {mk (zi, z̃−i)}Kk=1 so that E (zi, z̃−i) =
∑K

k=1 θkmk (zi, z̃−i). In such a case,

26



we would have K parameters {θk} and K natural moment conditions

E [mk (zi, z̃−i) εi] = 0, k = 1, ..., K (13)

Formally, if a team has N workers, then given θ and w, (11) provide N equations for the N

unknowns of {zi}. Therefore given the wages wt and a vector of team assignments rt, we

can construct Z (wt, rt, θ) to be the I × 1 vector of all workers’ knowledge at t. Given this,

we can construct M (wt, rt, θ) to be the I × k matrix of moments so that the i, k entry of

M (wt, rt, θ) is mk (zi, z̃−i) where zi, z̃−i are the knowledge of i and her coworkers implied by

the wages, wt, the assignment rt, and parameters θ. Then the k moments conditions (13)

can be stacked as

E
[
M (wt, rt, θ)

T (Z (wt+1, rt+1, θ)−M (wt, rt, θ) θ)
]

= 0. (14)

We solve for θ using an iterative two-step procedure that exploits the panel structure

of our data along with the intertemporal restrictions inherent in the learning function (12).

We first guess parameters θguess. Given this guess, we can back out the types z in a team

solely from information on wages.12 In other words, we invert (11) to solve for all workers’

knowledge, Z (wt, rt, θ). We do this by finding a fixed point z of the operator

T (z) =

{
wi + β

∫
z′dG (z′|zi, z̃−i; θ)

}
i

We can then use the wages at time t + 1 to solve for all workers knowledge at t + 1,

Z (wt+1, rt+1, θ). With this, we have the implied values of zi, z̃−i, and z′i for each worker. We

then use these knowledge levels to estimate θ using a linear regression

zit+1 =
K∑
k=1

θkmk (zit, z̃−it) + εit.

If our estimated θ̂ = θguess then we have found a fixed point. This fixed point is a solution

12As discussed in the theory section above, the vector of types z is the solution to the firm problem in (1).
Here, we simply use the composition of teams observed in the data.
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to (14). In practice we use θ̂ to update our guess and iterate until we find a fixed point.

While we currently do not have a proof of identification, this method has always uncov-

ered the true parameter values in Monte Carlo simulations and has always converged when

implemented on the matched German data.

4.2 Results

Guided by our reduced form findings, we focus on the following parametric form for the

conditional expectation, that implicitly determines G(·),

E [z′i|zi, z̃−i] =

∫ ∞
0

z′idG (z′i|zi, z̃−i; θ) =
1

N − 1

∑
j 6=i

ziΘ

(
zj
zi

)
(15)

where N is the worker’s team size and Θ (·) is weakly increasing functions. Below we let Θ (·)

be piece-wise linear. We focus on the expected value because this is the only feature of the

function G needed to invert the Bellman equation and recover the workers’ knowledge. This

functional form could be motivated by a variant of the model in Lucas (2009) in which a

worker is equally likely to attain knowledge from any coworker, and the function Θ describes

how the worker’s learning depends on the gap between the worker and the coworker. In

contrast to Lucas (2009), however, here agents only learn from coworkers, not from the

whole population.

We begin by studying the parametric learning function Θ (x) =

 1 + θ0 + θ̄ (x− 1) , x ≥ 1

1 + θ0 + θ (x− 1) , x < 1
,

or

E [z′i − zi|zi, z̃−i] = θ0zi +
1

N − 1

θ ∑
zj<zi

(zj − zi) + θ̄
∑
zj≥zi

(zj − zi)

 . (16)

This learning function allows for asymmetric learning from types zj on a worker zi depending

on whether zj > zi or vice versa. It also sets allows for a constant time trend in skill growth,

θ0.

In updating our guess for θ =
{
θ̄, θ, θ0

}
, we make use of the linear structure of the learning

function and regress z′i − zi on zi,
1

N−1

∑
zj<zi

(zj − zi), and 1
N−1

∑
zj>zi

(zj − zi). Note that

all the information used in this regression is constructed from the purely cross-sectional
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Team Definition

1 2

θ̄ .0702 .0932
(.0005) (.0008)

θ .0076 .0395
(.0004) (.0006)

θ0 .0015 .0041
(.0001) (.0001)

Observations 3327679 3198654

GMM standard errors in parentheses

Notes: GMM standard errors in parentheses.

Table X Parametric estimation results for the learning function (16).

dimension of the data in the first step.

For this baseline learning function, we report our parameter estimates along with the

associated standard errors in Table XIII.13

Choosing the expected present value of earnings as the cardinality of z allows for a natural

interpretation of these estimates. In particular, the point estimates suggest that raising the

average expected present value of earnings of a worker’s more highly paid coworkers in the

establishment by $1 raises that workers expected present value of earnings by $0.07 over

the next year. In turn, doing so for the coworkers that are less well paid only increases

expected present value of earnings by less than 1 cent. This implies that there are only very

small learning effects coming from these workers, and there is no evidence of congestion.

Naturally, we find somewhat larger effects for the narrower team definition.14 Clearly, these

point estimates are very much consistent with the reduced form patterns discussed in the

previous section.

Finally, while α is precisely estimated and strictly positive it is very small for both team

definitions. One reason for why we find essentially no trend growth in wages beyond what

13The only other parameter we need to choose is β which we set to .95 (annual) here. The results presented
here are not very sensitive to this choice. All results are currently for the second, narrower, team definition.

14One important observation across all specifications we have worked with is that θ is substantially larger
for team definition 2.
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arises from learning is that the average real wage growth during the period covered in our

dataset was very limited as discussed above.

The next step is to generalize the specification of G to allow for additional flexibility in

order to capture potential nonlinearities in coworker learning. Hence, we specify the learning

function to be defined by Θ (1) = θ0 and

Θ′ (x) =


θ̄2, x ≥ 1 + b

θ̄1, 1 ≤ x < 1 + b

θ, x < 1

Θ is a continuous and piecewise linear function with kinks at x = 1 and x = b, and corre-

sponds to the conditional expectation

E [z′i − zi|zi, z̃−i] = θ0zi+
1

N − 1

{ ∑
zj<zi

θ (zj − zi) + (17)

∑
zj>zi

[
θ̄1 (zj − zi) + 1zj>(1+b)zi

(
θ̄2 − θ̄1

)
(zj − zi − bzi)

]}

where 1 denotes the indicator function. This piece-wise linear function incorporates ad-

ditional flexibility yet still allows us to linearly project z′ − z on the right-hand-side to

update the four parameters of the learning function {θ0, θ, θ̄1, θ̄2}.15 When implementing

this learning function, we set b such that it groups all workers with expected present value

type zj > 1.1zi into the bin that has slope θ̄2.

So far, we only have results for team definition 2. They are reported in table XIV.

Our estimates for θ0 and θ are hardly changed by the modification of the learning function.

That is, as before, changing the wages of those team members with lower type affects an

individual’s expected wage growth little in comparison with those team members with more

knowledge. Likewise, the estimated trend growth remains minimal. Our results indicate

that θ̄1 > θ̄2, and so the marginal returns (in terms of future wage growth) to improving the

knowledge of those above in the wage distribution appears to be somewhat larger for those

15In light of our previous findings and due to computational limitations we have thus far restricted the
learning function to take a single parameter for the group zj < zi. This restriction could, in principle, be
relaxed.

30



Parametric Estimation Results

θ̄1 .1148
(.001)

θ̄2 .0905
(.0008)

θ .037
(.0005)

θ0 .0038
(.0001)

Observations 3198654

Standard errors in parentheses. Results for team definition 2 only.

Notes: GMM standard errors in parentheses.

Table XI Estimates for the learning function (17).

in closer proximity in the distribution of knowledge.

We conclude this subsection with two short exercises which cast light on the quantitative

importance of coworker learning and its interplay with how teams are formed.

4.2.1 Investment in Knowledge

An individual receives compensation in two ways: with wages and with knowledge. We can

use our estimated framework to gauge the quantitative importance of coworker learning in

the economy by comparing the value of knowledge flows to the value of wage payments.

Specifically, we compute the value of the annual flow of knowledge, β (z′i − z), where next

period’s knowledge z′i is given by equation (12) and compute its simple pooled average across

all individuals and years in our sample. We then subtract the pure trend component βθ0z

from this and contrast it with the pooled average of wages.

Doing so reveals that coworkers knowledge flows account for roughly 4.3% of the average

flow value workers receive, with the remaining 95.6% given by the wage.16 In other words,

agents invest on average 4.3% of their total compensation in learning from others at work.

We note that this is likely a conservative estimate given the narrow team definition.

16We note that when we do not subtract the trend component this number rises to 12.4%.
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Furthermore, there is naturally substantial heterogeneity in this breakdown across the

knowledge distribution. This number rises to 7.8% for the bottom decile of the knowledge

distribution reflecting the substantial room for learning at the bottom. In turn, it becomes

negative at the top decile, dropping to -.9% reflecting the mild negative effect of having

mostly less knowledgeable coworkers.

4.2.2 The Role of Sorting

In equilibrium, the team selected by a firm produces both output and knowledge. As a

result, the sorting of workers across firms reflects both of these goals. How does the sorting

that occurs in equilibrium affect the value of learning that occurs within teams? How much

would the total value of learning change if teams were formed randomly?

To assess the role of coworker sorting for learning, we conduct a simple experiment

where we randomly reshuffle workers across existing teams in the final coworker year in our

sample, 2008. We leave the team size distribution unaltered and compute, for all workers, a

counterfactual conditional expectation E
(
zi, z̃

cf
−i
)

for z′i where z̃cf
−i is worker i’s counterfactual

peer group.

We then contrast the average of the counterfactual conditional expectation with the av-

erage of the factual conditional expectation, E (zi, z̃−i). Doing so reveals that under random

sorting the average growth in z rises by 113%. Thus, workers are allocated to teams in a way

that hinders knowledge flows relative to a random sorting benchmark. We interpret this as

reflecting supermodularity in the production function, which results in positive assortative

matching of workers in teams. In other words, these findings seem to suggest a tension

between the contemporaneous requirements on the production side and the dynamic returns

from coworker learning.

4.2.3 An Alternative Interpretation

The equations characterizing an individuals value function centered around the idea that the

change in one’s knowledge depends on the distribution of knowledge among one’s coworkers.

Here we state there is an alternative interpretation of the equations that characterize learning

that is consistent with our empirical specification of learning.
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Suppose that z represents a vector of characteristics. For example these characteristics

could reflect different dimensions of knowledge. In such an environment, one possibility is

that learning is such that the change in one’s value function depended on the composition

of one’s coworkers’ value functions. Namely, in this case it is natural to assume that the

learning function depends on values, not on knowledge directly. Similarly, since in this

case knowledge cannot be equated to value, the procedure outlined above to obtain an

individual’s knowledge from a panel of wages simply recovers the values of all agents, as in

equation (10). Under this assumption, our methodology can be used exactly as described,

and our quantitative results would be unchanged. We would simply interpret the estimated

learning function as determining how the value of other agents determines the change in

value of a given individual.

5 Incorporating Other Observables

We now show how our methodology can be extended to a setting in which either produc-

tion function or the learning function (or even the value placed on knowledge) depends on

worker characteristics aside from knowledge. These characteristics may or may not evolve

endogenously. We require that the characteristics are observable.

An individual is described by knowledge z and a vector of observable characteristics x.

These evolve according to a joint Markov process. For example, x could consist of an indi-

vidual’s age, schooling, occupation, location, etc. The joint Markov process is characterized

by

G (z′, x′|z, x, {z̃, x̃})

The value function for an individual with state z, x is V (z;x) satisfying

V (z, x) = w (z, x; {z̃, x̃}) + β

∫ ∫
V (z′, x′)G (dz′, dx′|z, x, {z̃, x̃})

Thus both the production function and the learning function can depend on the individual

characteristics and those of her coworkers. The realized value function of worker i at time t
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is

vit = wit + β

∫ ∫
V (z′, x′)G (dz′, dx′|zit, xit, {z̃it, x̃it}) (18)

The key step is to transform the learning function from the knowledge space to the value

space. We require that V is strictly increasing in z for each x, and therefore has a partial

inverse Z (v, x) that satisfies v = V (Z (v, x) , x) and z = Z (V (z, x) , x). Further, define the

learning function in the value space as

Ĝ (v′, x′|v, x, ṽ, x̃) ≡ G
(
Z (v′, x′) , x′|Z (v, x) , x, Z̃ (ṽ, x̃) , x̃

)
where Z̃ (ṽ; x̃) is the vector of coworkers’ knowledge given their values and characteristics.

With this, we can write (18) as

vit = wit + β

∫ ∫
v′Ĝ (dv′, dx′|v, x, ṽ, x̃) (19)

5.1 Algorithm

We now show that is straightforward to extend the methodology described in the previous

section to estimate the function Ĝ. Let E be the conditional expectation:

E (v, x, ṽ, x̃) ≡ E [v′|v, x, ṽ, x̃] =

∫ ∫
v′Ĝ (dv′, dx′|v, x, ṽ, x̃)

so that the realized Bellman equation (19) can be written as

vit = wit + βE (vit, xit, ṽ−it, x̃−it) . (20)

If we observed {v′i, x′i, vi, xi, ṽ−i, x̃−i} for each worker, we could directly estimate E . And

conversely, if we knew E and we observed {wit, xit, x̃−i, x
′
i} for each worker, we could solve

for {vit} for each team using the system of equations given by (20) for each team member.

We can again cast this in terms of GMM. For example. suppose we assume E takes the
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form of a linear combination of moments {mn (v, x, ṽ, x̃)}Nn=1

E (v, x, ṽ, x̃) =
K∑
k=1

θkmk (v, x, ṽ, x̃)

Next, define the expectational error term εit+1 to be

εit+1 ≡ vit+1 − E [vit+1|vit, xit, ṽ−it, x̃−it]

= vit+1 − E (vit, xit, ṽ−it, x̃−it)

We can again build moment conditions to estimate θ from

E [εit+1|vit, xit, ṽit, x̃it] = 0.

Our natural moment conditions would be

E [εit+1mk (vit, xit, ṽit, x̃it)] = 0

Formally, given θ, we can solve for {vit} using (20). Given the entire vector of wages w,

observable characteristics x, and team assignments r, let Υ (w, x, r, θ) be the corresponding

values that have been solved for using (20) so that

{vit} = Υ (wt, xt, rt, θ) .

Given this, we can construct M (wt, xt, rt, θ) to be the I × k matrix of moments so that the

i, k entry of M (wt, xt, rt, θ) is mk (vi, xi, ṽ−i, x̃−i) where vi, ṽ−i are the values of i and her

coworkers implied by the wages, wt, the observable characteristics xt, the assignment rt, and

parameters θ. Then the k moments conditions (13) can be stacked as

E
[
M (wt, xt, rt, θ)

T (Υ (wt+1, xt, rt+1, θ)−M (wt, xt, rt, θ) θ)
]

= 0.
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5.2 Results

We illustrate this methodology by studying the differences in learning between young and old

workers. Let {y, o} indicate whether a worker is young or old. We implement the following

parametric form for the conditional expectation

Ey [v′i|vi, ṽ−i] = θ0,yvi + θ̄yy
1

N − 1

∑
vj>vi,j young

(vj − vi) + θ̄yo
1

N − 1

∑
vj>vi,j old

(vj − vi)(21)

Eo [v′i|vi, ṽ−i] = θ0,ovi + θ̄oy
1

N − 1

∑
vj>vi,j young

(vj − vi) + θ̄oo
1

N − 1

∑
vj>vi,j old

(vj − vi) .

This specification allows knowledge flows to depend on both the age group of the worker

and the age group of her coworker. For instance, θ̄yo captures the strength of the knowledge

flows from old to young coworkers. Furthermore, the specification allows for age group

specific trend growth. Note that this specification does not allow for any effects of coworkers

j with vj < vi.

In practice, we do not regroup workers across age groups and instead label them y when

younger than 40 in the year 2000. We then implement our routine on a short panel, using

only information from the years 2000-2002. The rest of the implementation follows exactly

the same routine outlined in the previous section.

We present our results in table XV. In line with our previous findings we find little trend

growth for either age group. We further find that each group learns more from itself, that is

the young learn more from the young than from the old and vice versa for the old. Finally,

the young learn substantially more than the old, likewise closely in line with our reduced

form findings.

6 Conclusion

We set out to study learning from coworkers. We found strong evidence that in fact this form

of learning is active. Our results are intuitive and natural. Workers learn only from agents

that are more knowledgeable than they are. Other, less knowledgeable coworkers neither help
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Parametric Estimation Results

trend growth young: θ0,y .0104
(.)

learning from young to young: θ̄yy .2077
(.)

learning from old to young: θ̄yo .1702
(.)

trend growth old: θ0,o .0038
(.)

learning from young to old: θ̄oy .0476
(.)

learning from old to old: θ̄oo .1035
(.)

Observations 912558

Standard errors still under construction. Results for team definition 2 only.

Notes: Old: 40 and older in year 2000.

Table XII Estimates for the learning function (21).

nor hinder their learning. We also find that learning from more knowledgeable workers is

increasing in the coworker’s knowledge. That is, it is better to work with more knowledgeable

teammates, and the benefits per unit of their knowledge seems to be increasing.

We hope that these findings are useful in encouraging work on more theories and empirical

research with learning from coworkers at their core. Our theory, although general in its

specification of technology and existing complementarities in production, does assume that

workers are simply income maximizers and that labor markets are competitive. It would

be valuable to refine estimates of the value of learning in the workplace by relaxing these

assumptions.

Finally, the importance of learning from coworkers implied by our findings suggests large

aggregate growth consequences of any economy-wide change that affects the composition of

teams. Many such changes come to mind, like, for example, technological improvements in

information and communication technology, other forms of skilled-biased technical change,

as well increased spatial segregation. Our results underscore the importance of studying
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these and other well-known trends in the economy from the point of view of their effect on

team formation and the resulting learning from coworkers.
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Appendix

A Additional reduced form empirical results

A.1 Figure 4

Horizon in Years

1 2 3 5 10

p 2 0.000043 0.000068∗ 0.000074∗ 0.000051 0.000028
(0.000037) (0.000032) (0.000035) (0.000034) (0.000021)

p 3 0.00018∗∗∗ 0.00014∗∗∗ 0.00015∗∗∗ 0.00012∗∗∗ 0.000049∗

(0.000031) (0.000019) (0.000016) (0.000015) (0.000019)

p 4 0.00011∗∗∗ 0.000097∗∗∗ 0.000094∗∗∗ 0.000068∗∗∗ 0.000051∗∗∗

(0.000021) (0.000015) (0.000013) (0.000013) (0.000015)

p 5 0.000026 0.000040 0.000050∗∗ 0.000052∗∗ 0.000077∗∗∗

(0.000026) (0.000021) (0.000018) (0.000017) (0.000016)

p 6 0.000021 0.000059∗∗∗ 0.000074∗∗∗ 0.000067∗∗∗ 0.000026∗

(0.000015) (0.000012) (0.000012) (0.000012) (0.000012)

p 7 0.00045∗∗∗ 0.00030∗∗∗ 0.00025∗∗∗ 0.00018∗∗∗ 0.00013∗∗∗

(0.000017) (0.000013) (0.000013) (0.000013) (0.000015)

p 8 0.00049∗∗∗ 0.00037∗∗∗ 0.00032∗∗∗ 0.00026∗∗∗ 0.00017∗∗∗

(0.000033) (0.000022) (0.000014) (0.000013) (0.000016)

p 9 0.00044∗∗∗ 0.00038∗∗∗ 0.00035∗∗∗ 0.00029∗∗∗ 0.00021∗∗∗

(0.000025) (0.000022) (0.000019) (0.000017) (0.000015)

p 10 0.00050∗∗∗ 0.00041∗∗∗ 0.00036∗∗∗ 0.00032∗∗∗ 0.00027∗∗∗

(0.000035) (0.000026) (0.000023) (0.000021) (0.000018)

p 11 0.00053∗∗∗ 0.00044∗∗∗ 0.00039∗∗∗ 0.00033∗∗∗ 0.00027∗∗∗

(0.000028) (0.000023) (0.000023) (0.000022) (0.000021)

R2 0.068 0.118 0.154 0.210 0.278
Observations 3680375 3018284 2469598 1629217 278415

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Each row reports the coefficient on the weight of bins 2 through 11 where the weight on the
bottom bin is the omitted category. Each column corresponds to one line in figure 4. Team definition 1.

Table XIII Results for figure 4.
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Different Subsamples

Benchmark Size> 4 Size=2 Men Only Age> 45 Age< 35

ŵ 0.034∗∗∗ 0.034∗∗∗ 0.0077∗ 0.040∗∗∗ 0.024∗∗∗ 0.048∗∗∗

(0.0017) (0.0017) (0.0033) (0.0020) (0.0010) (0.0029)

R2 0.147 0.148 0.175 0.154 0.094 0.154
Observations 2465708 2458090 2215 1754938 907704 545245

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification 8 under various sample selection modifications as indicated in
column title. Team definition 1 at horizon n = 3 years.

Table XIV Changing Sample Construction—Counterpart to table IV

(1) (2) (3)
Age Occupation Education

ŵ 0.042∗∗∗ 0.025∗∗∗ 0.032∗∗∗

(0.00078) (0.00067) (0.0008)

R2 0.124 0.112 0.145
Observations 2465710 2465710 2568620

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification 8 under various fixed effect combinations. Column title indicate
omitted fixed effects. Last column includes establishment fixed effects. Team definition 1 at horizon
n = 3 years.

Table XV Baseline results under varying fixed effects—Counterpart to table V

A.2 Tables for alternative team definition

This subsection reports all empirical results from the main body of the paper for the alter-

native team definition 1.
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Horizon in Years

1 2 3 5 10

ŵ 0.051∗∗∗ 0.039∗∗∗ 0.033∗∗∗ 0.028∗∗∗ 0.022∗∗∗

(0.0012) (0.00088) (0.00076) (0.00071) (0.0011)

Tenure Quintile=2 -0.0037∗∗∗ -0.0031∗∗∗ -0.0027∗∗∗ -0.0022∗∗∗ -0.00072∗

(0.00057) (0.00046) (0.00036) (0.00031) (0.00030)

Tenure Quintile=3 -0.0035∗∗∗ -0.0035∗∗∗ -0.0031∗∗∗ -0.0024∗∗∗ -0.00068
(0.00065) (0.00051) (0.00042) (0.00036) (0.00039)

Tenure Quintile=4 -0.0039∗∗∗ -0.0032∗∗∗ -0.0027∗∗∗ -0.0022∗∗∗ -0.0028∗∗∗

(0.00084) (0.00064) (0.00048) (0.00041) (0.00041)

Tenure Quintile=5 -0.0031∗∗ -0.0038∗∗∗ -0.0035∗∗∗ -0.0030∗∗∗ -0.0032∗∗∗

(0.00095) (0.00072) (0.00055) (0.00046) (0.00042)

R2 0.063 0.112 0.149 0.204 0.274
Observations 3672797 3013010 2465708 1626954 278289

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification 8 controlling for tenure.

Table XVI Baseline results controlling for job tenure—Counterpart to table IX

Horizon in years

1 2 3 5 10

ŵ 0.13∗∗∗ 0.07∗∗∗ 0.056∗∗∗ 0.047∗∗∗ 0.034∗∗∗

(0.0091) (0.0026) (0.0017) (0.0014) (0.002)

R2 0.172 0.132 0.172 0.257 0.390
Observations 4801 36588 30357 20464 3443

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification (8) on a sample of establishment switchers who experienced an
an interim unemployment spell. See definition in the main text.

Table XVII Baseline results for establishment switchers with an interim unemployment
spell. Counterpart to table X
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Horizon in years

1 2 3 5 10

ŵ 0.099 0.086∗∗∗ 0.055∗∗∗ 0.044∗∗∗ 0.073
(0.074) (0.001) (0.0075) (0.0066) (0.027)

R2 0.726 0.255 0.276 0.433 0.652
Observations 144 1371 1139 692 64

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification (8) on a sample of establishment switchers who experienced an
an interim unemployment spell. See definition in the main text.

Table XVIII Baseline results for establishment mass-layoff switchers. Counterpart to
table XI

Decile of the Wage Distribution

1 2 3 4 5 6 7 8 9 10

ŵ 0.034∗∗∗ 0.046∗∗∗ 0.041∗∗∗ 0.037∗∗∗ 0.033∗∗∗ 0.030∗∗∗ 0.031∗∗∗ 0.035∗∗∗ 0.037∗∗∗ 0.0071∗

(0.0025) (0.0028) (0.0033) (0.0043) (0.0046) (0.0047) (0.0055) (0.0066) (0.0074) (0.0029)

R2 0.180 0.226 0.251 0.218 0.188 0.190 0.165 0.170 0.185 0.079
Observations 15237 24877 28705 30506 31234 31505 31932 31930 31133 31006

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification (8) separately for different deciles of the wage distribution in
the baseline sample in year t. Team definition 2 at horizon n = 3 years.

Table XIX Baseline results for different deciles of the wage distribution. Counterpart to
table VI
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(1) (2) (3) (4) (5)

ŵ 0.0058 0.053∗∗∗ 0.038∗∗∗ 0.0053 0.011∗∗∗

(0.0063) (0.0041) (0.0021) (0.0041) (0.0021)

ŵ × Size 0.0046∗∗∗

(0.0013)

ŵ × Wage Dispersion -0.072∗∗∗

(0.012)

ŵ × Mean-Median 0.074∗∗∗

(0.022)

ŵ × # Above 0.0049∗∗∗

(0.00090)

ŵ × % Above 0.025∗∗∗

(0.0017)

R2 0.153 0.151 0.151 0.154 0.154
Observations 2465708 2465708 2465708 2440370 2465708

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: β̂ as estimated from specification (8) with the inclusion of additional interactions. Size is measured
as log team size, wage dispersion is measured as the standard deviation of log wages, inverse skewness is
measured as the log of the median/mean ratio. The forth column interacts with the log of the number
of team-members above worker i in terms of wages, column (5) does so for the fraction. All regressions
control for size, wage dispersion and skewness. Team definition 1 at horizon n = 3 years.

Table XX Baseline results interacted—Counterpart to table VII

(1) (2) (3)

ŵ+ 0.042∗∗∗ 0.041∗∗∗

(0.0027) (0.0028)

ŵ− 0.027∗∗∗ 0.020∗∗∗

(0.0019) (0.0020)

R2 0.134 0.124 0.140
Observations 2459982 2483277 2449107

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Column (3) reports the results from specification 9. Columns (2) and (1) only use information
about those less well and those better paid, respectively. Team definition 1 at horizon n = 3 years.

Table XXI Splitting peers into those better and less well paid—Counterpart to table VIII
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(1) (2)

ŵ+ 0.056∗∗∗ 0.048∗∗∗

(.0028) (.012)

ŵ− 0.0160∗∗∗ 0.017
(.0028) (.011)

Observations 29900 1131

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Column (1) reports the results from specification 9 restricting the sample to establishment
movers (within the year following the observation) with an intermittent unemployment spell. Column
(2) requires a simultaneous mass-layoff event at the employer. Team definition 1 at horizon n = 3 years.

Table XXII Splitting peers into those better and less well paid - movers only. —Counterpart
to table XII

46


	Introduction
	Theory
	Firms
	Individuals
	Labor Market Clearing and Free Entry
	The Distribution of Knowledge
	Equilibrium
	Characterizing Equilibrium

	Reduced-Form Evidence
	Summary Statistics
	Regression Framework
	Robustness
	Across the Wage Distribution
	Asymmetries: The Role of the Distribution of Teammates
	Tenure and Backloading
	Movers


	Structural Estimation
	Identifying Learning Parameters
	Results
	Investment in Knowledge
	The Role of Sorting
	An Alternative Interpretation


	Incorporating Other Observables
	Algorithm
	Results

	Conclusion
	Additional reduced form empirical results
	Figure 4
	Tables for alternative team definition


