
This work was supported by U.S. Department of Agriculture (58-3AEU-7-0074).
The views expressed in this paper are those of the authors and not necessarily those of their respective institutions.
CR and GK designed and performed the analysis and took the lead in writing of the paper. GK, JC, DC, AS, and CK
collected the data and contributed analysis tools. All authors contributed to the writing of the paper. The authors also
thank the 2018 Data Science for the Public Good program students Keren Chen, Hannah Brinkley, and Eirik Iversen
at Virginia Tech for their contributions.
*Corresponding author: crobbins@nsf.gov

 The Scope and Impact of Open Source Software as Intangible Capital:
 A Framework for Measurement with an Application Based on the use of R Packages

March 11, 20191
Carol A. Robbins*(1), Gizem Korkmaz (2), José Bayoán Santiago Calderón (3),

Daniel Chen (2), Aaron Schroeder (2), Claire Kelling (4), Stephanie Shipp (2), Sallie Keller (2)

Abstract

Open source software allows free access to digital tools and constitutes a part of intangible
investment with the qualities of public goods. Open source software (OSS) provides users with
an unknown amount of freely modifiable software tools and other useful products; they are
created both within the business sector and outside of it. Better accounting for the contribution
of public spending to investments in OSS, a vital component of science activity, motivates this
paper. We develop a bottom-up approach to document the scope and impact of OSS created by
all sectors of the economy by collecting data on OSS languages R and Python, as well as from
the Federal Government’s Code.gov.

Using lines of code and a standard model to estimate package developer time, we convert lines
of code to resource cost. We estimate that the resource cost for developing R and Python
packages exceeds three billion dollars, based on 2017 costs. We find that the base software for R
was downloaded over 1 million times in 2018, with more than 400 thousand of those from the
United States. Add-on components, or “packages” were downloaded over 600 million separate
times worldwide in 2018, and over 256 million times in the US. We analyze downloads and
reuses between software packages as measures of relative impact. We find that by either measure
ggplot, a graphics package, and Rccp, a package with C++ tools, are among the highest impact
packages. This methodology provides the first step to developing a set of prototype statistics for
the contribution of public investment in open source software; the bottom-up approach makes it
possible to begin identifying the sector of the contributors based on publicly available data. This
can provide an additional indicator of the outcomes of research dollars, currently characterized
primarily by patents and bibliometric indicators.

Key words: Open Source Software, Intangibles Measurement, National Accounts

1) National Center for Science and Engineering Statistics, National Science Foundation; 2) Social & Decision
Analytics Division, Biocomplexity Institute & Initiative, University of Virginia; 3) Claremont Graduate University;
4) Pennsylvania State University

1Earlier versions of this paper were presented August 21, 2018 at the International Association for Research on
Income and Wealth. [http://www.iariw.org/copenhagen/robbins.pdf] and November 19, 2019 at the 6th IMF
Statistical Forum: Measuring Economic Welfare in the Digital Age: What and How?
(https://www.imf.org/en/News/Seminars/Conferences/2018/04/06/6th-statistics-forum)

2

Introduction and Contribution

Open source software (OSS) is everywhere, both as specialized applications nurtured by devoted

user communities and as digital infrastructure underlying platforms used by millions daily. It is

computer software shared with a license in which the copyright holder provides the rights to

study, change, and distribute the software to anyone and for any purpose. OSS is developed,

maintained, and extended both within the private sector and outside of it, through the

contribution of independent developers as well as people from businesses, universities,

government research institutions, and nonprofits.

Many OSS projects create long-lived tools that are often outputs of public spending, a

kind of freely share-able intangible asset that in many cases have been developed outside the

business sector and subsequently used within the business sector. The scale and use of these

modifiable software tools highlight an aspect of technology diffusion and flow that is not

captured in market measures. Measures of creation and use of OSS would complement existing

science and technology indicators on peer-reviewed publications and patents that are calculated

from databases covering scientific articles and patent documents. Many well-developed

methodologies and extensions exist, and a research community continues to grow, invigorated by

improved computing power and algorithms. We are motivated to better account for both the

scale of OSS overall and the contribution of public spending to investments in open source

software, a vital component of science activity.

In this paper, we explore non-survey data to see how they may be used to measure the

scope and impact of OSS, focusing on the open source languages R and Python as prototypes.

Python is among the most common OSS languages and R has features for statistical analysis and

visualization that make it a no-cost substitute for proprietary software like SAS.

3

 Our data collection strategy combines data from multiple sources. We collect OSS data

that is disseminated online from archives, repositories and from the projects themselves. We start

with the location with the broadest coverage of the target languages, registries and package

managers, that host and distribute OSS, such as the Comprehensive R Archive Network (CRAN)

and the Python Package Index (PyPI). These online sources provide individual package files

containing metadata such as author, license, version, and dependencies (required packages to

function). We collect variables such as the number of complete R and Python packages available,

downloads per package, and reuses in other packages. The information includes source code

hosting platforms, such as GitHub, where these projects are developed and maintained. We

identify R and Python packages that are hosted on GitHub and collect data also on their

development activity (e.g., lines of code, contributors, code changes over time).

We have a two-pronged approach to measuring the scope and impact of OSS. First: we

estimate the resource cost associated with creating these packages and projects to indicate the

scale of the project. Following Boehm (1981, 2000), we use lines of code in a package as the

measure of effort to estimate the time spent on software development. Average compensation for

computer programmers and computer system analysts from Bureau of Labor Statistics wage data

and other costs based on national accounts methodologies allow us to estimate per package

resource costs for the R and Python packages on GitHub. Second: we use methods developed

for bibliometrics and patent analysis to study the impact of these projects. This involves counting

OSS software packages and projects as discrete units of output, analyzing the downloads, and

calculating the relationships between packages that imply re-use across packages. The

production and delivery of OSS through publicly accessible websites provide harvestable count

and linkage data for software languages and packages.

4

This paper is organized as follows. First, we explain how software is measured in the

national economic accounts and describe the project’s motivation through the landscape of open

source software and the platforms where it is shared. We then describe our approach to data

collection and preparation. We describe and present both counts and order of magnitude estimate

for the resource costs of OSS packages for R and Python. We rank packages by two different

types of impact and finish our paper with a look at the internet domains that are associated with

package maintainers.

Measurement of Software in the National Accounts.

Annual investment in software in the US as a nation is estimated at $381 billion a year in 2017,

according to the BEA (2018a, 2018b). About $38 billion of this is public sector investment

(federal labs and facilities, public universities, state and local government entities). Most

investment accounted for, more than $350 billion dollars, is for private sector investment in

software (Figure 1).

Figure 1 BEA’s Software Investment Measures for the US in 2017

5

Private investment is published in three categories, prepackaged, custom, and own-

account. OSS created with public funding would be part of the $17.7 billion in S&L investment

if funded by a public university, and part of the $10.7 billion if funded by the Federal

government. If funded by a private, nonprofit university or institution, it would be part of private

investment. What we don’t know is how much of any of this is for open source software. Macro-

level statistics don’t have the resolution to tell us.

As measured in the national accounts, software investment has three types, prepackaged,

custom, and own-account (inhouse work). For counting investment, prepackaged and custom

software are purchased inputs, product revenues should be an available data source. However,

production activity within firms and organizations also bring forward new software tools. As a

freely-shared software tool, OSS can be custom software or own-account. Own-account software

is not purchased or sold: it is new, or significantly-enhanced software created by business

enterprises or government units for their own use and its value is estimated based on in-house

expenditures for its creation (Parker and Grimm, 2000).

This software investment drives a wide range of economic and value creation activity that

challenges current measurement. Many digital products are used by consumers without a direct

payment: similar to network television programming, their costs are supported by advertising.

This kind of free content that is bundled with advertising can be understood as a barter

transaction, content in exchange for being exposed to the advertising. In the absence of a direct

price, this content created in the business sector can be valued based on its production cost

(Nakamura, Samuels, and Soloveichik, 2016 & 2017).

Software and databases can provide revenue in an additional way. In use, online

platforms collect data about users as well as transaction fees. These data are part of the value that

6

the platform provides. Li and co-authors (2018) describe several different types of online

platforms, including E-commerce, online resource sharing, e-financial services, and online social

network services, where data collection provides high value to the business. In these cases, the

cost and market-based approaches underestimate the value of data. Using an income approach,

they argue, better captures the variety of ways that firms monetize software and data.

 Beyond these categories, Corrado, Hulten, and Sichel (2005) provide a framework for

consistent accounting for a larger set of intangibles that generate future benefits, including brand

equity and investments in human and organizational capital. Further arguing that public

expenditures yielding long-lived returns should be understood as investment, Corrado, Haskell,

and Jona-Lasinio (2015) propose a public investment category: information, scientific, and

cultural assets. They argue that better accounting of public investment in intangibles would

provide a more complete picture of economic growth.

Open Source Software Related Definitions

Open source software (OSS): Computer software with its source code made available with a license in
which the copyright holder provides the rights to study, change, and distribute the software to anyone and for
any purpose. For this paper, we treat as open source any software language or package with an Open Source
Initiative (OSI)-approved license.

Own account software: A category of software investment in national economic accounts. Own-account
software is long-lasting software created for internal use, rather than as a market product.
Production Ready Release: A software package that is ready for production in its current ecosystem.
Registry: A location that hosts, manages, and distributes OSS. The Comprehensive R Archive Network
(CRAN) and PyPI for Python are examples.

Repository: An online hosting facility for maintaining versions of software programs. Source code hosting
facilities such as GitHub, SourceForge, Bitbucket, and GitLab are commonly used to develop, download,
review, and publish OSS projects and computer code.

Commits: With respect to OSS development, a commit is an incorporated improvement to existing code.

7

The Landscape of Open Source Software (OSS)

Beginning in the early 1980s, OSS projects have provided users with zero-dollar cost and freely

modifiable software tools. Table 1 lists some of the widely-used OSS projects and the year of

their initial release. LaTeX is typesetting software popular for its ease with mathematical

symbols, introduced in 1983 by the nonprofit research organization SRI. The Linux operating

system is the basis for many applications, including the most widely-used operating system

globally-- the Linux-based Android operating system (GlobalStats statcounter, 2018). Apache is

server software developed with federal and state funds at the National Center for

Supercomputing Applications in Illinois. As of July 2018, Apache is the most frequently used

HTTP server on the internet (W3Techs, 2018). Greenstein and Nagle (2014) estimated the

value of capital stock of Apache software in use in 2013 at between $2 and $12 billion.

Table 1. Major OSS Projects

Name Type Initial Release
LaTeX Typesetting 1983
Linux Operating System (OS) 1991
Apache HTTP Server Web server 1995
GIMP Raster graphics editor 1996
VLC media player Media player 2001
Mozilla Firefox Web browser 2002
QGIS Geographic information system (GIS) 2002
LLVM Compiler 2003
Mozilla Thunderbird Email client; Personal information manager 2003
WordPress Content Management System (CMS) 2005
Bootstrap Front-end framework 2011
LibreOffice Productivity Suite 2011
OpenBLAS BLAS implementation (Linear algebra) 2011
React JavaScript library 2013
TensorFlow Machine learning library 2015
Project Jupyter Shell 2015
Atom Text Editor; Source code editor 2016
Hugo Static Site Generator 2017

8

A lot of reuseable code is also created as part of the ongoing work of the Federal Government.

As of late July 2018, more than 4,000 separate software projects are shared for reuse on the

website, Code.gov, as part of an effort to make custom-developed code broadly available across

the Federal Government.

 Table 2. Contributions to Code.gov by lines of code.

Table 2 shows the number of projects listed by each Federal Government agency on

Code.gov. These projects include both code developed within the Federal Government and code

created through contracting. The table shows number of projects for each agency as well as lines

of code, commits (incorporated improvement to existing code), and contributors. Based on lines

9

of code, the Department of Energy (DOE) contributed the most, two large DOE projects are

Raven, statistical software for risk analysis in nuclear reactor systems, and Qball, which uses

molecular dynamics to compute the electronic structure of matter. The projects also include

applications built from existing OSS projects; for example, the US government’s data portal,

www.data.gov, is an OSS project built from WordPress.

Repositories and Source Code Hosting

While some government software is controlled through restrictive access requirements on

government-controlled repositories, as Table 2 shows, many of the Federal government’s OSS

projects are shared on GitHub. GitHub, SourceForge, and Bitbucket are the most widely-used

source code hosting platforms that allow OSS projects to be shared. These platforms are used to

develop, download, review, and publish OSS projects and computer code. They host both private

repositories and free accounts and provide access control and several collaboration features such

as bug tracking, web-hosting, feature requests, task management, and wikis for every project.

They use version control systems, such as Git, for tracking changes and coordinating work on

files among multiple developers. GitHub is by far the largest hosting facility, with 31 million

users and developers worldwide (Octoverse, 2018a). GitHub is shown with other sharing

platforms and their scale in users and projects in Table 3.

Table 3. Source Code Hosting Platforms and Users
Platform Company Users/Developers Number of Projects

GitHub.com Microsoft 31 million 96 million

Bitbucket.org Atlassian 5 million N/A

SourceForge.net Slashdot Media 3.7 million 500 thousand

GitLab.com GitLab 100 thousand 546 thousand

Notes:
GitHub.com: Octoverse, 2018a. “The State of the Octoverse.” https://octoverse.github.com/
Bitbucket.org: Bitbucket, 2017. “Bitbucket Cloud: 5 million developers and 900,000 teams.”
https://bitbucket.org/blog/bitbucket-cloud-5-million-developers-900000-teams. Retrieved 2017-03-25.
SourceForget.net: Alexa, 2018. "How popular is SourceForge.net?" alexa.com. Retrieved 2018-12-25.
GitLab.com: GitLab, 2016. "2015 was a great year at GitLab!" https://about.gitlab.com/2016/02/11/gitlab-
retrospective/. Retrieved 28 July 2016.

http://www.data.gov/

10

Counting Packages, Downloads, and Linkages

Public investment in the US in research, technology, and the tools needed for this work comes at

the cost of other national priorities, thus policymakers are interested in data that can help them

evaluate progress and impact. Neither progress nor impact is easy to measure in dollars. In

comparing science and engineering activity in the US and China, the National Science Board

highlights numbers of peer-reviewed science and engineering publications in addition to R&D

expenditures (NSB, 2018). Numbers of publications are an indicator of S&E activity, and

citations from other work to a focal publication are indicators of impact. For patents, Hall, Jaffe,

and Trajtenberg (2001) released an electronic data set for US Patent and Trademark Office

(USPTO) patents along with methodological information for its use in the NBER patent citation

file. An intersecting literature drives increasingly sophisticated analysis and visualization of data

sets released from patent offices across the world. Our methods build on these foundations as

well as the methods of extraction, interpretation and analysis of empirical data from software

source code described by Ghosh et al. (2002). These approaches have also been applied to

assign credit to OSS contributors.2

Data and Methods

We define OSS as computer software with its source code made available with a license

in which the copyright holder provides the rights to study, change, and distribute the software to

2 Depsy is a proof of concept project introduced in 2015 with NSF-funding that tracked the impact of research code
using citations and other impact measures (Piwowar and Priem, 2016). More recently, the IEEE uses similar
methods to create an indicator of the prevalence of different programming languages in the references of conference
and journal articles, taking advantage of their digital library, IEEE Xplore (IEEE Spectrum, 2018b).

11

anyone and for any purpose. For this paper, we treat as open source any software language or

package with an Open Source Initiative (OSI)-approved license.3

 Table 4. Licenses
Name License Initial Release
Perl Artistic-2.0 1987

Python Python-2.0 1990
Haskell BSD-3-Clause 1992

R GPL-2.0 1993
LUA MIT 1993
PHP PHP-3.0 1995

MySQL GPL-2.0 1995
Ruby BSD-2-Clause 1995
Scala BSD-3-Clause 2004

OpenJDK GPL-2.0 2007
Go BSD-3-Clause 2009

Rust MIT 2010
Julia MIT 2012
Swift Apache-2.0 2014

Table 4 lists the type of licenses and year of initial release for several popular OSS

languages. BSD (Berkeley Software Development) and MIT licenses were developed in these

universities. GPL is the GNU Public License, developed by Richard Stallman and the Free

Software Foundation (Tozzi, 2017). Artistic, PHP, Python, and Apache are project-specific

licenses that conform to the OSI standards.

There are hundreds of programming languages used for various purposes, with constantly

changing popularity rankings. Table 5 summarizes the most widely used rankings and the data

sources and methods used. We observe close (not perfect) alignment in the language

rankings based on the various methods.

3 The Open Source Initiative is an organization that reviews software licenses for compliance with this definition.

Notes:
BSD: Berkeley Software Distribution
MIT: Massachusetts Institute of Technology
GPL: GNU Public License
PHP: A special license for the PHP scripting language

12

Table 5. Comparison of Software Language Rankings
Popularity Ranking Language Coverage Data Sources Method Top 10 languages

(2018)
The IEEE Spectrum
Top Programming
Languages interactive
app covers contexts
that include social
chatter, open-source
code production, and
job postings (IEEE
Spectrum 2018a).

Starting from a list of over
300 programming
languages gathered from
GitHub, they remove
languages with a very low
number of search results
in Google and eventually
track 47 languages. (IEEE
Spectrum 2018b)

9 sources: Google
Search, Google Trends,
Twitter, GitHub, Stack
Overflow, Reddit,
Hacker News,
CareerBuilder, and IEEE
Xplore Digital Library
(with over 3.6 million
conference and journal
articles).

The popularity is
calculated by
searching the name
of the language in
the data sources,
e.g., number of hits
on Google Search,
mentions in the
journal articles.

Python, C++, Java,
C, C#, PHP, R,
Scala, Go,
MATLAB

TIOBE index is
created monthly and
maintained by the
TIOBE Company
based in the
Netherlands (TIOBE
2019a).

TIOBE tracks over 256
programming languages
that satisfy certain
requirements. such as
having an own entry in
Wikipedia and having at
least 5,000 hits on Google
(TIOBE 2019b).

25 most popular search
engines including
Google, MSN, Yahoo!,
Wikipedia and YouTube.

The ranking scores
are calculated by
counting hits, i.e.,
the number of web
pages with the
language name.

Java, C, Python,
C++, VB.Net,
JavaScript, C#,
PHP, SQL,
Objective-C

Stack Overflow
Developer Survey
(Stack OverFlow
2018). Stack
OverFlow is a forum-
based tool primarily
used to help solve
coding problems.

The ranking lists top 25
languages (the survey
question is not provided)

Survey of 101,592
software developers from
183 countries around the
world. Recruited
primarily through
channels owned by Stack
Overflow.

Survey question
asks respondents to
select all languages
that apply; 78,334
responses

JavaScript, HTML,
CSS, SQL, Java,
Bash/Shell,
Python, C#, PHP,
C++, C

Octoverse report by
GitHub Data Science
Team provides annual
trends and insights
into GitHub activity
(Octoverse 2018a).

337 unique programming
languages on GitHub
(Octoverse 2017)

GitHub repositories,
contributors and pull
requests (contributions to
an open development
project)

Based on the
opened pull requests
and by number of
unique contributors
to public and private
repositories tagged
with the primary
language (Octoverse
2018b)

JavaScript, Java,
Python, PHP, C++,
C#, Typescript,
Bash/Shell, C,
Ruby

The PYPL Popularity
of Programming
Language Index
(PYPL 2019)

The index is currently
limited to 22 languages

Google Trends Created by
analyzing hits of
language ‘tutorials’
on Google.

Python, Java,
JavaScript, C#, R,
C/C++, Objective-
C, Swift, PHP,
MATLAB

OpenHub is a public
directory that provides
statistics on different
free/libre and open-
source software
(FLOSS) projects
(OpenHub 2018).

Provides statistics on 112
languages

Active OSS projects on
OpenHub

Based on commits,
contributors, lines
of code changes,
and the total number
of new projects

Python, Bash/shell,
HTML, JavaScript,
C, C++, Java,
PHP, Ruby, Perl

Next we show more detail for two of these rankings, the IEEE Rating and the TIOBE

Index. As Table 5 shows, the IEEE Spectrum ranking is a weighted index of 11 metrics, Google

13

Trends, Twitter, GitHub, Stack Overflow, Reddit, Hacker News, CareerBuilder, Dice, and the

mentions of each language in IEEE Xplore Digital Library. TIOBE rankings (TIOBE stands for

“The Importance of Being Earnest”) are a measure of popularity of programming languages,

created monthly and maintained by the TIOBE Company.

Table 6. IEEE Rating and TIOBE Index for Programming Languages

Name IEEE spectrum TIOBE Index Developer
Initial

Release
Open vs.

Proprietary

Python 100 8.29%
Python Software Foundation (Non-

profit organization) 1990 Open

C++ 99.7 8.16% Bell Labs (Private company) 1985 Open

Java 97.5 16.90% Oracle Corporation 1995 Open

C 96.7 13.34% Bell Labs (Private company) 1972 Open

C# 89.4 3.28% Microsoft 2000 Open

PHP 84.9 2.68%
Zend Technologies (Private

company) 1995 Open

R 82.9 1.33%
R Foundation (Non-profit

organization) 1993 Open

Scala 82.6 n/a
École Polytechnique Fédérale de

Lausanne (University) 2004 Open

Go 76.4 1.12% Google 2009 Open

MATLAB 72.8 1.50% MathWorks 1984 Proprietary

JavaScript 72.1 3.30%
Mozilla Foundation (Non-profit

organization) 1995 Open

Ruby 71.4 1.10% Yukihiro Matsumoto, et al. 1995 Open

HTML 71.2 n/a W3C (Int'l Standards Organization) 1993 Open

Bash/Shell 66.1 n/a Brian Fox 1989 Open

Table 6 summarizes the top 15 languages based on IEEE Spectrum (IEEE Spectrum 2018a) and

TIOBE rankings (TIOBE 2019a), sorted by the former. The TIOBE Index includes languages

with more than 5,000 search hits on Google. The top 15 languages of TIOBE index listed in

14

Table 6 account for 73% of the search hits in Google for all languages, i.e., the webpages that

contain the name of the language. For example, Python accounts for 8.3% of the hits.

We focus on two programming languages, R and Python, that are themselves open source

and are also used by others in further development. The R language is a set of tools for statistical

analysis and mathematical modeling that has grown rapidly in the last decade. It is functionally a

substitute for statistical software such as SAS and SPSS, except that it can be used free of

charge. Since its release in 2000, users around the world have developed packages for it that are

shared with the whole R community. It was developed at the University of Auckland in New

Zealand by academics for use in their teaching laboratory; over time it had extended

development by others, including Hadley Wickham, at Rice and Stanford Universities (Ihaka,

1998, Wickham, n.d.). As additional contributors extend R’s functionality through additional

packages. the Comprehensive R Archive Network (CRAN) emerged at the Technical University

of Vienna in Austria; production ready packages are hosted from this site.

Python is one of the most widely-used programming languages mainly due to its simple

syntax that makes its code easy to learn and share, and its flexibility. Like R it is also used for data

analysis and visualization, however compared to R, Python's simplicity makes it a good general-

purpose language for other purposes, including scripting and web development. Some of the most

popular packages include django which is a tool for building web applications, pandas that

provides high-performance data structures and analysis tools; and scikit-learn used for machine

learning. Python is the successor to the ABC language (ABC, 2018), was developed by a Dutch

programmer at National Research Institute for Mathematics and Computer Science in Netherlands

(Centrum, 2018) in the late 1980s (Rossum, 2009). PyPI is an indexed repository for Python

15

packages. There are over 166K projects and 299K contributors on PyPI as of February 2019 (PyPI,

2019).

Data Collection and Preparation

Keller et al. (2018) describes the overall approach used here to explore data sources

beyond surveys to improve and extend indicators of science and engineering activity and of

innovation. This approach includes structured processes to discover, acquire, profile, clean, link,

explore the fitness-for-use, and statistically analyze the data. Here we gather and use publicly

available metadata about individual packages and their contributors, as well as information

within the code.

The natural way to obtain the information about the development of an OSS project is to

inspect the repository that hosts the code for that package or application. The first step is to catalog

all projects available to the programming language. This information is stored by a registry, where

all the packages are stored (the universe of packages for the language). For example,

Comprehensive R Archive Network (CRAN) and Python Package Index (PyPI) are registries used

to distribute the R and Python packages, respectively. Every programming language has the ability

to install additional packages from the registry by using that particular languages’ package

manager. Package managers take the package that the user wants to install and finds the package

in the registry. The package manager obtains all the information that is needed by using the

metadata stored on the registry, such as a unique identifier (usually the package name), a release

version to identify what version of the package should be retrieved, and the repository location

(where to find the actual code). The metadata stored on the registry also holds information such as

name, author, maintainer, license, description, dependencies, and project status. These are shown

in Figure 2.

16

Figure 2. Package Managers and Repositories

We use the registries of R and Python: (i) CRAN at https://cran.r-

project.org/web/packages/available_packages_by_name.html, and (ii) PyPI at

https://pypi.org/simple/. We use the information provided in the registries to identify the list of

packages that are production-ready, i.e., not in development stage (different heuristics were used

for different registries), and that have Open Source Initiative (OSI)-approved licenses (which is

given in the package registry metadata). Using the information in the metadata, we find the set of

packages that have their code bases on GitHub to obtain development activity and perform a lines-

of-code count for analysis. Table 7 shows the number of R and Python packages we collected from

their respective registries, the number of OSI-approved packages that are production ready, and

the subset of these packages that are also on GitHub. The number of packages used in our analysis

for each language is given in the final column.

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://pypi.org/search/

17

Table 7 Data Collection Summary

Data Collection

Language
Package
manager

Number of
packages

Production
ready

OSI-approved
& production
ready

Packages
on GitHub

Packages
on GitHub
(analysis)

R CRAN 13,719 13,350 13,143 4,407 4,358

Python PyPI 164,836 17,482 15,043 11,016 9,773

We collected information about 13,719 packages on CRAN on February 16, 2019,

successfully downloading 13,350 packages.4 We use license information and the production status

of the release versions of these packages provided on CRAN to obtain 13,143 production-ready

packages with OSI-approved licenses. Of these, we subset those also on GitHub, and obtain 4,364

R package repositories.

The initial list of 164,836 Python packages was obtained on January 23, 2019 from PyPI

(PyPI, 2019). The latest package source of each package was downloaded (between 2019-01-28

and 2019-01-30) and user-reported production status in the metadata source was used to identify

production-ready packages. We obtain a list of 17,482 production ready/stable and mature

Python packages. The license information of these packages is obtained using the libraries.io (a

web-service compiling and providing information on Python packages), resulting in 15,043

production ready packages with OSI-approved licenses. We use the package source to obtain the

GitHub repository locations of these packages (if exists), and we download 9,775 repositories on

March 1, 2019. Using the downloaded repositories of R and Python packages, we obtain

development information including the number of contributors, the lines of code (added and

deleted), number and time of commits (incorporated improvement to existing code from contributors),

4 In the time it takes us to download, as of February 28, 2019, we lose 244 packages that had an update during the
12-day period which led to the change in their URL’s on CRAN; hence they could not be downloaded.

http://libraries.io/

18

and profile of contributors. The lines of code can be used as a measure of output, as we will

describe.

Labor time, Cost and Impact Estimates

We are interested in resource cost estimates for OSS software that will be comparable

with expenditures for R&D and with fixed investment data in intellectual property products. The

US National Accounts production costs for own account software include those for analysis,

design, programming and testing, and exclude maintenance and repair (Parker and Grimm,

2000). As originally described, cost of production is the sum of labor costs and intermediate

inputs (such as materials and supplies and overhead). In US economic statistics, these costs are

estimated based on hours worked by computer programmers and system analysts in each

industry or government entity. The underlying assumption is that own-account software is

created as a fixed proportion of the work activity of these occupations. Mean wage rates,

adjusted for compensation costs that include fringe benefits are multiplied by the number of

computer programmers and system analysts in each industry.5

Constructive Cost Model (COCOMO)

The challenge of keeping large software projects on schedule and within budget

motivates a literature in cost estimation within software engineering (Sharma, Bhardwaj,

Sharma, 2011). Experience has shown that while costs can be estimated as a function of the

number of instructions, as software projects grow, effort increases nonlinearly. We observe

development of cost models that account for complexity, reliability, and scale in a variety of

5 Wage, employment and compensation are from the U.S. Bureau of Labor Statistics Occupational Employment
Survey data. To account for time spent on tasks other than software development, BEA uses an adjustment ratio
from a survey of software developers’ time. Non-labor costs for OSS development are estimated with industry
production ratios (Parker and Grimm 2000).

19

ways based on characteristics of the product, the platform, the contributors, and the project.

Examples of these estimation models include Constructive Cost model COCOMO II, the Putnam

Software Life Cycle Management model, and models based on function points (Boehm and

Valerdi, 2008). This is the approach that we use here.

The logic of the constructive cost model is that:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑠𝑠 =

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 .

The calibration factor represents the person months needed for a set number of lines of

code, unadjusted for effort factors. The effort multipliers account for complexity, reliability, and

scale for these models; they lead to increased cost. Translating this approach to our data on OSS,

the package-specific data we collected provides lines of code for each completed package.

In our use of this model, we multiply lines of code by a COCOMO II calibration factor

(Boehm et al., 2000) to estimate person-hours per package or project. The effort multipliers

from COCOMO II are parameters that we selected for the organic software class which consists

of software dealing with a well-known programming language and a small, but experienced team

of contributors. While we held these consistent across all packages, the model allows for these

parameters to be adjusted based on additional data.

Effort = 2.4(KLOC)1.05

Nominal development time = 2.5(Effort).38

Development cost = Monthly wage x Nominal development time

KLOC stands for kilo (thousand) lines of code. With these person-month calculations per

OSS package, we estimate a resource cost by multiplying by monthly wages for programming

occupations. Appendix Table 1 shows the steps and data sources for the estimation. To

summarize our method, we assume that the input time of contributors is roughly equivalent to the

20

average wage for computer programmers (from Bureau of Labor Statistics (BLS) (2017).

Occupational Employment Survey data) plus additional intermediate input and capital services

costs (from Bureau of Economic Analysis (BEA 2014). The per person month cost for OSS

contribution is obtained as $19,963, which is the amount used in our cost calculations.

Lines of Code

Lines of code track the scale of development activity for OSS packages. For each of the

13,143 R packages in Table 7, we counted the total number of lines in all the files that are included

in the CRAN package source. These files include source code, description files, manuals, data

files, citations, and images. With this method, we estimate the cost of almost all of the R packages

that are on CRAN, providing a broad measure of the number of production ready OSS packages

for the R language.

For a subset of these R packages, and for almost 10,000 Python packages, we collect more

detailed data from GitHub. The packages’ GitHub repositories provide development history

including information about line insertions and deletions for accepted change or commit. Using

the history of the repository, we obtain details of each commit which gives us the total number of

lines edited, thus capturing the resources and the effort that were put in the development of each

package. We can calculate costs with both the total number of lines edited (gross) and with the net

lines of code (insertions minus deletions). We focus on the net lines of code as this measure is

similar to the method (counting the number of lines in the package source files) used on the dataset

collected from CRAN on R packages.

Using net lines of code as a measure of effort and the parameters for a well-known

programming language and small, experienced team of contributors, we estimate the cost of all

packages that use R and Python, which we view as order of magnitude estimates. We obtain

21

power-law distributions for all languages. The density plots and the boxplots are given in Figure

3.

.

Figure 3 Distribution Costs across languages

Order of Magnitude Resource Cost Calculations for OSS Languages

Using the widest set of production-ready and OSI-approved R packages on CRAN and

summing across number of lines in the packages’ source files, we calculate a resource cost in

2017 dollars of $1.58 billion for 12,901 R packages. The packages with the highest cost

estimates are given in Table 8. Mapdata, the package with the highest number of lines, is a

supplement to other map packages, providing a high-resolution mapping tool. The mapdata

package source files include geometry files involving points and lines to draw maps that results

in a high count of lines. Hunspell is the spell-checker library used by other open-source

applications including web-browsers such as Google Chrome, Mozilla Firefox, and the package

includes dictionaries in English, among other languages. EdgarWebR is a package used for

accessing and parsing Securities and Exchange Commission (SEC) filings, and the source files of

22

the package include a lot of test code and data, which are very large files. The R packages that

are written in C language for efficiency needs (faster computation) such as the igraph package

used for network analysis, also have a large number of lines due to the structure (commonly used

coding practices) of this language.

Table 8. CRAN Packages’ Kilo lines and Estimated Resource Cost

Package Name Klines Estimated Cost in
Thousands of 2017$

All packages 100,216.787 1,579,689
mapdata 2,257.20 1,516
hunspell 756.9 980
edgarWebR 456.8 801
TCGA2STAT 376.9 742
igraph 364 732

Limiting our estimates to the packages on GitHub and using net lines of code, we find a

resource cost of $0.88 billion dollars for 4,364 R packages, and $1.56 billion for 9,775 Python

packages based on 2017 US wage rates (though, as we will show, contributors come from many

countries). The R and Python packages with the highest cost estimates are given in Table 9.

Among the top R packages, Archivist is used to store data artifacts, CollessLike for analyzing

genetic trees, readtext used for text files and ptwikiwords is a dataset with words used pages

from the Portuguese Wikipedia, and nasapower is used for global meteorology, surface solar

energy and climatology data. The high number of changes in lines of code is due to the database

files, images and datasets uploaded that are used for testing. Similarly, the top Python packages,

such as libsass (style files used for web-development), py3-ortools (research tools developed at

Google including programming algorithms), LSD-Bubble (used in astronomy), IotPy (used to

develop applications using sensors an social media data), and openquake.engine (computing

earthquake hazard and risk) include datasets and documentation.

23

Table 9. R and Python Packages on GitHub: Kilo lines of code (KLOC) and Estimated Resource
Cost

R Packages on GitHub Python Packages on GitHub

Package
Name KLOC

Estimated
Cost in

Thousands
of 2017$

Package Name KLOC

Estimated
Cost in

Thousands
of 2017$

All packages 282,167.871 883,209 All packages 611,601.568 1,560,374

archivist 28488.639 4,169 libsass 50340.53 5,233

CollessLike 15844.721 3,299 py3-ortools 37412.424 4,648

readtext 13888.309 3,130 LSD-Bubble 15270.398 3,251

ptwikiwords 11452.965 2,898 IotPy 14899.252 3,219

nasapower 10613.638 2,812 openquake.engine 13841.578 3,126

Packages on Code.gov

Using the same approach, we estimate the cost for the OSS projects on Code.gov that are hosted

on GitHub, shown earlier in Table 2. Since many of the projects contributed by Federal

Government organizations have been developed by contractors as custom software, this resource

cost is not an estimation of what the government actually paid for these software projects.

Rather, it gives an order of magnitude cost estimate consistent with own-account software that

allows comparison with the OSS language packages described in the previous section. We

estimated a resource cost for these 2.5 billion lines of code at about $1.1 billion dollars,

calculating all contributions at the rate of 2017 costs. This is a partial estimate of all the

contributed projects, because our calculation is only for those projects on GitHub.

 To sum up, we calculate between about a billion dollars and a billion and a half (0.88

billion and 1.58) resource cost for R, another 1.5 billion for Python and more than a billion for

Code.gov. These lines of code provide an ongoing set of snap shots of the scale of development

activity for OSS packages. As a unit of output has the virtue of be being comparable across

24

packages and projects, as long as it is counting the same objects within files. Our current method

does not yet distinguish between lines of computer instructions, documentation, generated

output, and data files.

Impact

OSS is generally distributed without cost, and so standard market measures of revenue cannot

provide an impact measure. Piwowar and Priem (2016) use downloads and citations to software

as measures of impact for Python and R packages. When software code is assigned a digital

object identifier (DOI), it can be cited along with other reference sources, providing an indicator

of impact to the scientific community. However, few academic papers actually cite software

(Piwowar and Priem (2016).

 Downloads provide an indicator of impact that is broader than scientific impact. Using

downloads as a measure of impact, Korkmaz, et al. (2018) analyze factors that affect the impact

of R and Python packages. They find that three network measures, outdegree, closeness

centrality, and pagerank significantly affect impact of packages. Outdegree is a count of reuses

across packages, while closeness centrality and pagerank assess more complex network

relationships.

Estimating Impact through Reuse: From the perspective of the users of OSS as a set of

tools, ‘reuse of packages’ is a measure of the impact and value through the network. The greater

the reuse by other packages, the greater the value. When an OSS package requires the code of a

second package to do its work, the first package is dependent on the second. For example, an R

package for statistics as well as an R package for inventory may be both be dependent on the

same visualization package, such as ggplot2. This reuse, through multiple dependencies and

imports, increases the visualization package’s impact. The reverse dependency, reuse, is used as

25

a measure of the impact. Table 9 show the R packages (OSI-approved and production ready)

with the highest number of reuses.

Table 9 Top packages (Impact Based on Reuse)

Package # Reuse
ggplot2 925
Rcpp 838
dplyr
stringr
plyr
magrittr

626
398
395
393

data.table 311
sp 308
reshape2 271
foreach 266

Note: The dependency information is obtained from the manifest files described earlier (it is given as
“depends” and “imports”). We consider both “imports” that load a package and “depends” that attach a
package for our dependency measure. Standard libraries that are supplied with R (e.g., stats, utils, graphics)
are removed.

Here we are considering only the number of packages that reuse a particular package as

its impact measure. When we consider these dependencies, a more complete analysis should

account for the interactions between all of these packages (not only the bilateral relationship

between two packages in isolation) and the structural features of these interactions. Network

analysis allows us to use various centrality measures (e.g., betweenness, pagerank) in addition to

the degree centrality (basic counts of dependencies) as impact measures and provides a fuller

picture of impact (see Korkmaz et al. 2018).

Estimating Impact through Downloads: Downloads is a measure of end-user impact.

Figure 5 shows total downloads of Base R from CRAN between 2013 and 2018; in 2018 base R

was downloaded over a million times over 400,000 of them in the US.

26

Figure 6. Downloads of Base R from CRAN 2013 – 2018

Figure 7. Downloads of R Packages 2013 – 2018

Figure 8. Downloads of R Packages 2013 – 2018

0
200,000
400,000
600,000
800,000

1,000,000
1,200,000

2013 2014 2015 2016 2017 2018
year US downloads Total downloads

0

5,000

10,000

15,000

20,000

0

200,000,000

400,000,000

600,000,000

800,000,000

2013 2014 2015 2016 2017 2018

R Package Downloads
over 600 million separate downloads worldwide

US downloads Total downloads Total packages, right axis

10,000

100,000

1,000,000

10,000,000

2013 2014 2015 2016 2017 2018

Exponential growth in Downloads of R Packages
Worldwide, 2013- 2018

ggplot2 Rcpp

27

The package downloads below are data collected from between 2013 and 2018. They

show the rapid growth overall in the use of these packages. Note that ggplot2 was the most

downloaded package in 2013 with 105,774 downloads (Table 10). In 2018 ggplot2 was

downloaded an order of magnitude more often, almost 2.5 million times.

Most Frequently Downloaded R Packages, 2013 and 2018

Package 2013 Package 2018
ggplot2 105,774 Rcpp 3,519,510
plyr 101,596 rlang 2,893,889
digest 99,774 stringi 2,610,184
stringr 98,086 stringr 2,511,011
colorspace 93,590 ggplot2 2,495,315
RColorBrewer 81,448 digest 2,453,958
reshape2 81,350 glue 2,296,688
scales 73,385 tibble 2,242,376
proto 71,698 pillar 2,222,364
munsell 71,483 yaml 2,207,621

Table 10. Top R Packages, Based on Downloads
Downloads is a direct, though noisy measure of impact. A single user may reload packages

several times for use on different platforms. However, downloads provide a clear measure of the

diffusion of packages.

Sectoral Story for R
OSS software is created as tools for the developer’s own use, as custom software created

in the market, and also as means for developers to signal their skills to potential employers.

Firms develop OSS as well; allowing them to sell complementary hardware or consulting

services (Lerner and Tirole, 2002). For example, for-profit vendors may offer a free download

of OSS along with commercial support or dedicated servers. Companies investing heavily in

OSS include Microsoft, Red Hat, and Oracle, Google, General Electric, Dell, Sony, Nokia,

Ericsson as well as non-technology specific companies like Volkswagen, Bosch, and BMW

28

(Nagle 2018). Microsoft’s 2018 purchase of GitHub shows industry sees further potential in

OSS.

 However, LaTeX, Linux, Apache, and R were all developed in university, government, or

nonprofit institutions, some outside of the US. To fully understand the inputs to the digital

economy that come from public funding, we need to understand how well the national accounts

are tracking OSS in all sectors. Figure 10 shows a sectoral framework that embeds OSS within

the scope of software investment. It starts with the BEA framework, then adds two rows and two

columns to the BEA categories. In the rows we add OSS as a subcategory of custom software it

is developed by a market producer, and as a subcategory of own-account software when it is

developed in house. Conceptually, BEA’s 2017 estimate of about $381 billion in software

investment should include OSS produced by businesses, government entities, and nonprofit

institutions. As described earlier, these BEA investment measures are based on receipts for

software sold in the market and, for own-account software, based on employment counts and

wage rates for computer programmers and systems analysts.

So how much OSS is created or funded by governments and nonprofits? While BEA

does not publish the composition of public investment in software, it’s methodology for public

investment is the same as for private, that is to say, software transactions and the count and

wages of computer programmers and system analysts. Since BEA the subcomponents of

government and nonprofit software investment are not released, we don’t actually know.

However, our analysis suggests to us that it may be substantially undermeasured. In a 2014

survey of United Kingdom research software engineers, defined as academics who write

software used by researchers, found that these software writers had their highest degree in

physical science (39.4%) compared with computer science (23.6%) (Philippe, et al, 2015).

29

,
Figure 9. Software Investment Framework, Augmented to Show OSS Producers

To identify the sectors where developers are contributing to OSS, we take a closer look at

the manifest data we collected from CRAN for R packages. We obtain 11,886 OSI-approved

production-ready packages from CRAN6 published between 2005-10-29 and 2018-06-18, and

collect information about these packages including the license, published data, authors and their

roles (creator or maintainer, contributor, copyright holder), and the email address of the

maintainers, dependencies (imports, suggests, depends), and URL’s to the repositories.

Every package has at least one author and one maintainer listed; they may be the same

person. The creator or maintainer is the person to be contacted if there are problems, hence they

must provide an email address. We use the email addresses to obtain information about the

location and organization of the creators. This approach gives us a lower boundary on university

contributions, and a substantial share of email addresses that are insufficient to identify sector.

In our dataset, we obtain 6,697 unique maintainers associated with 6,871 unique email

addresses (378 have more than one email addresses). There are 2,261 unique domains (e.g.,

6 https://cran.r-project.org/web/packages/available_packages_by_date.html

30

gmail.com, yahoo.com, outlook.com), and 103 top-level domains (e.g., .com, .edu, .org, .uk).

One third (32%) of maintainers have Gmail accounts; these can be from any sector. To get a

sense of geographical distribution, we obtain a complete list of all country top-level domains

maintained by the Internet Assigned Numbers Authority (IANA)7 Table 11 summarizes the

number of projects and number of creators for the most common top-level domains. The largest

share of package maintainers has .com email addresses; these provide little information about

geography or economic sector. However, 17% of both packages and maintainers have .edu

email addresses, and more than a third have email addresses that are country specific.

Table 11 Top-level Domains of R Package Maintainers on CRAN

Domain Packages Percent Maintainers Percent

Total 11,886.0 6,697

.com 4,964 42% 2,770 40%

.edu 1,981 17% 1,202 17%

.org 481 4% 184 3%

.net 168 1% 89 1%

.gov 69 1% 43 1%

.name 33 0% 3 0%

.info 8 0% 6 0%

.biz 6 0% 3 0%

.(country) 4,124 35% 2,495 36%

Germany (.de) 687 6% 427 6%

United Kingdom (.uk) 434 4% 267 4%

France (.fr) 398 3% 235 3%

Canada (.ca) 335 3% 160 2%

Australia (.au) 198 2% 109 2%

Italy (.it) 198 2% 129 2%

Switzerland (.ch) 172 1% 102 2%

Spain (.es) 166 1% 102 2%

Netherlands (.nl) 151 1% 89 1%

Austria (.at) 123.0 0.0 56.0 1%

7 https://www.worldstandards.eu/other/tlds/ IANA is responsible for the global coordination of the
DNS Root, IP addressing, and other Internet protocol resources.

https://www.worldstandards.eu/other/tlds/

31

A country domain is associated with 35% of contributions (packages) and 36% of the

maintainers. Table 11 also shows the top 10 countries (out of 88 countries) that have the highest

number of contributions (packages) and the number of maintainers. These exclude projects with

an associated .com email addresses (42% of all projects) Finally, we analyze the creators’ email

domains with .edu., we obtain 1,981 packages (16.7%) created by 1,202 maintainers.

Although we cannot parse the Gmail addresses by sector, we find almost 17% are

associated with university domains, and more than one third come from country domains. We

view these shares as a lower boundary on the sector’s contribution to OSS. We add two columns

on the right that show that a full accounting will need to include OSS created outside of work

and OSS created internationally.

32

Conclusion

 We have described the open source software ecosystem and showed how data gathered freely

from ISS registries and repositories can be used to estimate the resource costs and impact of

OSS. Data collected data from CRAN, PyPI. Code.gov and GitHub provide information about

the development activity of OSS projects. Cost models developed in software engineering, and

own-account investment measurement methods like those used by national accounts estimate the

resource cost of these projects/packages. We find that the resource cost for developing packages

for two well-known OSS programming languages, R and Python, exceeds $3 billion dollars.

Applying this approach to OSS projects available on Code.gov results in an estimated value of

more than $1 billion, based on 2017 costs.

From Resource Cost to Investment
Annual Investment: Resource cost estimates presented here for R and Python are aggregated across several
years and treated as though all expenditures were made in 2017. To move to annual investment measures,
each year’s resource costs will need to be deflated with prices for the appropriate year.

Deflators: GDP measures economic output after removing the impact of overall inflation. This is done
product by product using deflation with price indexes which reflect the movement of prices separate from
quality or volume. BEA deflates expenditures for prepackaged software with their producer price index for
software publishing. Custom software and own-account software are deflated with a weighted average of
the prepackaged software price and of an input-cost index based on BLS data on wage rates for computer
programmers and systems analysts and on intermediate input costs associated with the production of
software (BEA 2017).

Depreciation: Given that their useful life exceeds a year, expenditures for capital assets lead to
accumulation over time, less depreciation, which accounts for loss over time in utility. Physical capital loses
its value as its useful declines with wear and tear, and well as through obsolescence, as newer alternative
assets emerge. Intellectual property products, such as software, R&D and entertainment originals lose their
value through obsolescence. This can happen as costs for maintain the asset rise over time, or through a
crease in the value of services provided, despite a constant flow in the quantity of these services (Oulton and
Srinivasan, 2003). BEA uses an estimated 3-year service life for prepackaged software and a 5-year
estimated service life for custom and own-account software (Soleveichik and Wasshausen, 2013). Li and
Hall (2016) argue that for R&D investment, depreciation through obsolescence and competition can be
estimate through the decline in firm profits received from prior R&D investments.

http://code.gov/

33

While our work does not propose or imply any change the definition of Investment in BEA’s

GDP accounts, from the perspective of identifying sources of innovation and technology

diffusion, we see value in quantifying OSS created both in the market and outside of it, as well as

the international contribution. The value of our work for GDP measurement is in the use of

alternative methodology and source data that focuses on a subset of an investment category in

the national economics accounts. The bottom-up method we use may reveal some currently

unaccounted-for software investment—and that may be of broader interest because it would

affect the level and composition of software investment.

References

ABC. 2018. “ABC programming language.” Wikipedia, The Free Encyclopedia. Wikipedia, The
Free Encyclopedia, 30 Jul. 2018.
https://en.wikipedia.org/w/index.php?title=ABC_(programming_language)&oldid=852622792 (l
ast visited Feb. 4, 2019).

Boehm, Barry. 1981. Software Engineering Economics (Englewood Cliffs, NJ: Prentice-Hall,
1981): 533-35, 548-50.

Boehm, Barry, Abts, C., Brown, W. Chulani, S, Clark, B. Horowitz, E., Madachy, R, Reifer, D.
and Steece.B., 2000. Software Cost Estimation with COCOMO II (with CD-ROM). Englewood
Cliffs, NJ:Prentice-Hall

Boehm B., and R. Valerdi, 2008. Achievements and Challenges in Cocomo-Based Software
Resource Estimation. IEEE Software 25(5): 74-83 (2008)

Bureau of Economic Analysis. 2013. Preview of the 2013 Comprehensive Revision of the
National Income and Product Accounts: Changes in Definitions and Presentations. Survey of
Current Business, March 2013.

Bureau of Economic Analysis. 2014. “2007 Input-Output Tables,”
IOUse_Before_Redefinitions_PUR_2007_Summary

Bureau of Economic Analysis. 2017. Concepts and Methods of the U.S. National Income and
Product Accounts, November 2017.

Bureau of Economic Analysis. 2018a. Intellectual Property Products Fixed Asset Tables
(private), last updated November 28, 2018.

https://en.wikipedia.org/w/index.php?title=ABC_(programming_language)&oldid=852622792

34

Bureau of Economic Analysis. 2018b. Table 7.5B. Investment in Government Fixed Assets, Last
Revised November 20th, 2018

Bureau of Labor Statistics, 2017. Mean Annual Wage Series,
https://www.bls.gov/oes/2017/may/oes_nat.htm#15-0000

Centrum Wiskunde & Informatica. 2018. Wikipedia, The Free Encyclopedia. 23 Nov. 2018.
https://en.wikipedia.org/w/index.php?title=Centrum_Wiskunde_%26_Informatica&oldid=87020
0085 (last visited Feb. 4, 2019).

Corrado, C. Haskel, J. & Jona-Lasinio, C. 2015 Public Investment in Intangible Assets. EPWP
#15 – 01 Economics Program, [https://www.conference-
board.org/pdf_free/workingpapers/EPWP1501.pdf]

Corrado, Carol, Charles Hulten, and Daniel Sichel, 2005, “Measuring Capital and Technology:
An Expanded Framework,” in Measuring Capital in the New Economy, Carol Corrado, John
Haltiwanger, and Dan Sichel, editors, University of Chicago Press.

Ghosh, R. A. R. Glott, B. Krieger, and G. Robles. 2002. Free/Libre and Open Source Software:
Survey and Study Report. Part IV. [http://www.infonomics.nl/FLOSS/report/]

GlobalStats statcounter, 2018. “Operating System Market Share Worldwide Operating System
Market Share Worldwide - June 2018,” (http://gs.statcounter.com/os-market-share) Accessed
July 20, 2018.

Greenstein, S. and Ackermann, K. 2018. “The State of Open Source Server Software,” Working
Paper.

Greenstein, S. and Nagle, F. 2014. “Digital Dark Matter and the Economic Contribution of
Apache” Research Policy, 43(2014) 623-631Hall, B. H., A. B. Jaffe, and M. Trajtenberg, 2001.
"The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools." NBER
Working Paper 8498

IEEE Spectrum. 2018a. “Interactive: The Top Programming Languages 2018.”
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018

IEEE Spectrum. 2018b. “IEEE Top Programming Languages: Design, Methods, and Data
Sources.” https://spectrum.ieee.org/static/ieee-top-programming-languages-2018-methods

Keller, S., Korkmaz, G., Robbins, C., & Shipp, S. (2018). Opportunities to observe and measure
intangible inputs to innovation: Definitions, operationalization, and examples. Proceedings of the
National Academy of Sciences, 115(50), 12638-12645.

Korkmaz, G., Kelling, C., Robbins, C. and Keller, S.A. 2018. Modeling the Impact of R
Packages Using Dependency and Contributor Networks. In 2018 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM) pp. 511-514.

https://www.bls.gov/oes/2017/may/oes_nat.htm#15-0000
https://www.conference-board.org/pdf_free/workingpapers/EPWP1501.pdf
https://www.conference-board.org/pdf_free/workingpapers/EPWP1501.pdf
http://gs.statcounter.com/os-market-share
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/ieee-top-programming-languages-2018-methods

35

 [http://cmaptools.cicei.com:8002/rid=1203015502582_177114975_1313/BCG-
HACKERSURVEY.pdf]

Lerner, J. and J. Tirole, 2002. Some Simple Economics of Open Source. The Journal of
Industrial Economics 50 (2), 197-234.

Li, W, and Hall, B., 2018. The Depreciation of Business R&D and Capital, Review of Income
and Wealth, https://doi.org/10.1111/roiw.12380

Li, Wendy C.Y. ,Makoto Nirei and Kazufumi Yamana, 2018. “Value of Data: There’s No Such
Thing As A Free Lunch in the Digital Economy.” Paper prepared for the 6th IMF Statistical
Forum, Washington DC.
https://www.bea.gov/papers/pdf/USSoftware.pdf. Accessed July 26, 2018.

Nagle, Frank, 2017. Open Source Software and Firm Productivity, Harvard Business School
Research Paper No. 15-062.

Nakamura, Leonard Jon Samuels and Rachel Soloveichik, 2016. Valuing “Free” Media Across
Countries in GDP BEA Working Paper WP2016-3

Nakamura, Leonard, Jon Samuels, and Rachel Soloveichik, 2017. “Measuring the “Free” Digital
Economy within the GDP and Productivity Accounts.” BEA Working Paper WP2017-9

National Science Board, 2018. The Rise of China in Science and Engineering, two page fact
sheet: https://nsf.gov/nsb/sei/one-pagers/China-2018.pdf

Octoverse. 2017. “The State of the Octoverse 2017: The Fifteen Most Popular Languages on
GitHub.” https://octoverse.github.com/2017/

Octoverse. 2018a. “The State of the Octoverse.” https://octoverse.github.com

Octoverse. 2018b. “The State of the Octoverse: Top Programming Languages of 2018.”
https://github.blog/2018-11-15-state-of-the-octoverse-top-programming-languages/

OECD and Eurostat, 2005. Oslo Manual: Guidelines for Collecting and Interpreting Innovation
Data, third edition. OECD Publishing.

OECD 2010. Handbook on Deriving Capital Measures of Intellectual Property Products. OECD
Publishing.

 OECD/Eurostat, 2018, Oslo Manual 2018: Guidelines for Collecting, Reporting and Using Data
on Innovation,4th Edition, The Measurement of Scientific, Technological and Innovation
Activities, OECD. Publishing, Paris/Eurostat, Luxembourg.
https://doi.org/10.1787/9789264304604-en

https://www.bea.gov/papers/pdf/USSoftware.pdf
https://nsf.gov/nsb/sei/one-pagers/China-2018.pdf
https://octoverse.github.com/2017/
https://octoverse.github.com/2017/
https://github.blog/2018-11-15-state-of-the-octoverse-top-programming-languages/
https://doi.org/10.1787/9789264304604-en

36

Open Source Initiative, 1998. (https://opensource.org/osd).

OpenHub. 2018. “Compare Languages.” https://www.openhub.net/languages/compare

Oulton, Nicholas and Sylaja Srinivasan, 2003. Capital stocks, capital services, and depreciation:
an integrated framework. Bank of England Working Paper no. 192

Parker R. and Grimm B. 2000. “Recognition of Business and Government Expenditures for
Software as Investment: Methodology and Quantitative Impacts, 1959-98.”
(https://www.bea.gov/papers/pdf/software.pdf)

Piwowar, Heather and Jason Priem, 2016. Depsy: valuing the software that powers science.
https://github.com/Impactstory/depsy-research/blob/master/introducing_depsy.md

Philippe, O., N. Hong, and S. Hettrick. 2015. Preliminary Analysis of a Survey of UK Research
Software Engineers, http://ceur-ws.org/Vol-1686/WSSSPE4_paper_19.pdf

PyPI. 2019. “Python Package Index.” https://pypi.org/

PYPL. 2019. “PYPL Popularity of Programming Language.” http://pypl.github.io/PYPL.html

Rossum, V. Guido. 2009. “A Brief Timeline of Python.” https://python-
history.blogspot.com/2009/01/brief-timeline-of-python.html

Sharma, T., Bhardwaj, A, and Sharma, A. 2011. “A Comparative Study of COCOMO II and
Putnam models of Software Cost Estimation. International Journal of Scientific and Engineering
Research,” Volume 2, Issue 11, November 2011.

Soloveichik, Rachel, and David Wasshausen, 2013. Copyright‐Protected Assets in the National
Accounts.
https://sites.nationalacademies.org/cs/groups/pgasite/documents/webpage/pga_063401.pdf

TIOBE. 2019a. “TIOBE Index for January 2019.” https://www.tiobe.com/tiobe-index/

TIOBE. 2019b. “TIOBE Programming Community Index Definition.”
https://www.tiobe.com/tiobe-index/programming-languages-definition/

Tozzi, Christopher, 2017. For Fun and Profit, A History of the Free and Open Source Software
Revolution, MIT Press, Cambridge.

W3Techs. 2018. “Usage statistics and market share of Apache for websites.”
https://w3techs.com/technologies/details/ws-apache/all/all. Accessed July 23, 2018.
Wickham, Hadley. n.d. http://hadley.nz Accessed July 26, 2018

https://opensource.org/osd
https://www.openhub.net/languages/compare
https://www.bea.gov/papers/pdf/software.pdf
https://github.com/Impactstory/depsy-research/blob/master/introducing_depsy.md
http://ceur-ws.org/Vol-1686/WSSSPE4_paper_19.pdf
https://pypi.org/
http://pypl.github.io/PYPL.html
https://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
https://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
https://sites.nationalacademies.org/cs/groups/pgasite/documents/webpage/pga_063401.pdf
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/programming-languages-definition/
http://hadley.nz/

	The Scope and Impact of Open Source Software as Intangible Capital:
	A Framework for Measurement with an Application Based on the use of R Packages
	Carol A. Robbins*(1), Gizem Korkmaz (2), José Bayoán Santiago Calderón (3), Daniel Chen (2), Aaron Schroeder (2), Claire Kelling (4), Stephanie Shipp (2), Sallie Keller (2)
	Abstract
	Introduction and Contribution
	Measurement of Software in the National Accounts.
	The Landscape of Open Source Software (OSS)
	Table 1. Major OSS Projects
	A lot of reuseable code is also created as part of the ongoing work of the Federal Government. As of late July 2018, more than 4,000 separate software projects are shared for reuse on the website, Code.gov, as part of an effort to make custom-develope...
	Table 2. Contributions to Code.gov by lines of code.

	Repositories and Source Code Hosting
	Table 3. Source Code Hosting Platforms and Users
	Counting Packages, Downloads, and Linkages
	Data and Methods
	Table 4. Licenses
	Table 5. Comparison of Software Language Rankings

	Table 6. IEEE Rating and TIOBE Index for Programming Languages
	Data Collection and Preparation
	Figure 2. Package Managers and Repositories

	Table 7 Data Collection Summary
	Labor time, Cost and Impact Estimates
	Constructive Cost Model (COCOMO)

	The logic of the constructive cost model is that:
	Lines of Code
	Figure 3 Distribution Costs across languages
	Order of Magnitude Resource Cost Calculations for OSS Languages
	Table 8. CRAN Packages’ Kilo lines and Estimated Resource Cost
	Table 9. R and Python Packages on GitHub: Kilo lines of code (KLOC) and Estimated Resource Cost
	Impact
	Table 9 Top packages (Impact Based on Reuse)
	Figure 6. Downloads of Base R from CRAN 2013 – 2018
	Figure 7. Downloads of R Packages 2013 – 2018
	Figure 8. Downloads of R Packages 2013 – 2018
	Table 10. Top R Packages, Based on Downloads
	Downloads is a direct, though noisy measure of impact. A single user may reload packages several times for use on different platforms. However, downloads provide a clear measure of the diffusion of packages.

	Sectoral Story for R
	Table 11 Top-level Domains of R Package Maintainers on CRAN
	Conclusion
	References

