Search Distaste at the Highway Stop Level

Jonah B. Gelbach

Professor of Law

University of Pennsylvania Law School

Highway Search

"Benchmarking"
Papers: Compare
Search Prob Using
Covariate
Adjustment

Highway Search Becker Model

"Benchmarking"
Papers: Compare
Search Prob Using
Covariate
Adjustment

- Ayres & Waldfogel (1994)
- Lots of others

Generalized Roy/Potential Outcomes/Rubin Causal Model

Generalized Roy/Potential Outcomes/Rubin Causal Model

Becker Model Highway Search "Benchmarking" -KPT (2001); Persico & Todd (2006) — Ayres & Waldfogel (1994) **Papers: Compare** —Anwar & Fang (2006) — Lots of others **Search Prob Using** —Antonovics & Knight (2009) Covariate —Sanga (2009) Adjustment -Person et al (2017); Simoiu et al (2017) Arnold, Dobbie, & Yang (forthcoming) — Heckman & Vytlacil (1999) — Heckman & Vytlacil (2005) — Heckman, Urzua & Vytlacil (2006) — Brinch, Mogstad & Wiswall (2017) — Kowalski (2016)

Generalized Roy/Potential Outcomes/Rubin Causal Model

Becker Model Highway Search "Benchmarking" -KPT (2001); Persico & Todd (2006) — Ayres & Waldfogel (1994) **Papers: Compare** —Anwar & Fang (2006) — Lots of others **Search Prob Using** —Antonovics & Knight (2009) Covariate —Sanga (2009) Adjustment —Person et al (2017); Simoiu et al (2017) Arnold, — This paper Dobbie, — Marx (2018) & Yang (forthcoming) — Heckman & Vytlacil (1999) — Heckman & Vytlacil (2005) — Heckman, Urzua & Vytlacil (2006)

Generalized Roy/Potential Outcomes/Rubin Causal Model

— Brinch, Mogstad & Wiswall (2017)

— Kowalski (2016)

The Model

Highway stops by officer j occur exogenously

Highway stops by officer *j* occur exogenously Produce driver with misconduct probability *M*

Highway stops by officer j occur exogenously Produce driver with misconduct probability M Officer has search distaste δ

Search occurs if $M > \delta$

Highway stops by officer j occur exogenously Produce driver with misconduct probability MIf race is r & driver/stop characteristics X = x:

Search occurs if $M > \delta_{r,j}(x)$

Measure of stop-level discrimination:

Measure of stop-level discrimination:

Measure of stop-level discrimination:

$$\Delta_{j}(x; r_{2}, r_{1}) \equiv \delta_{r_{2},j}(x) - \delta_{r_{1},j}(x)$$

We can average this over X, over j, or both

So the ideal object of estimation is

$$\delta_{r,j}(x)$$

Assume

$$\delta_{r,j}(x) = \delta_r(x, \tilde{\mathbf{z}}_j),$$

where \tilde{z}_i is an instrumental variable.

Assume

$$\delta_{r,j}(x) = \delta_r(x, \tilde{\mathbf{z}}_j),$$

For stop i, use

$$\tilde{z}_j \equiv \frac{1}{N_j - 1} \sum_{k \neq i} D_k$$

Driver misconduct probability distribution

$$P(M \le m) = F_M(m)$$

Driver misconduct probability distribution Allowing differences by r and X:

Driver misconduct probability distribution Allowing differences by r and X:

$$P(M \leq m|r, X = x) = F_{M|X,r}(m|r, X = x)$$

$$P(M \leq m|X = x) = |F_{M|X}(m|X = x)$$

$$P(M \leq m|X = x) = |F_{M|X}(m|X = x)$$

1. Notice that \tilde{z} does not appear.

$$P(M \leq m|X = x) = |F_{M|X}(m|X = x)$$

2. KPT: This is degenerate—all mass at $m = \overline{h}$

$$P(M \leq m|X = x) = |F_{M|X}(m|X = x)$$

Time to define search & hit rates...

The search rate

$$s(\delta) = 1 - F_M(\delta)$$

The search rate and the hit rate

$$s(\delta) = 1 - F_M(\delta)$$

$$h(\delta) = \frac{\int_{\delta}^{1} m f_m(m) dm}{s(\delta)}$$

The unconditional hit rate

$$\int_{\delta}^{1} m f_{m}(m) dm$$

$$v(\delta) = s(\delta)h(\delta)$$

1. The hit rate and search rate are negatively related

- 1. The hit rate and search rate are negatively related
- 2. The slope of the unconditional hit rate identifies δ :

- 1. The hit rate and search rate are negatively related
- 2. The slope of the unconditional hit rate identifies δ :

$$\frac{dv}{d\delta} = -\delta f(\delta)$$

- 1. The hit rate and search rate are negatively related
- 2. The slope of the unconditional hit rate identifies δ :

$$\frac{dv}{d\delta} = -\delta f(\delta)$$

$$\frac{ds}{d\delta} = -f(\delta)$$

- 1. The hit rate and search rate are negatively related
- 2. The slope of the unconditional hit rate identifies δ :

$$\frac{\frac{dv}{d\delta}}{\frac{ds}{d\delta}} = -\delta f(\delta) \Longrightarrow \frac{dv}{ds} = \delta$$

$$\frac{ds}{d\delta} = -f(\delta)$$

- 1. The hit rate and search rate are negatively related
- 2. The slope of the unconditional hit rate identifies δ :

This is empirically useful: v(s) is E[Y|s]

Data

Florida data — From Anwar & Fang (2006)

- 906k stops from 2001
- 9k searches
- Data include lots of covariates
 - * Driver gender; time of day; location*
 - * Officer race & gender
 - * Out-of-state tags, number of passengers

Harris County data

- From Stanford Open Policing Project
- 600k stops from 2006-2015
- Also about 9k searches
- Fewer covariates available
 - * Driver gender; time of day; f.g. location

Specification test: Are h & s negatively related?

- Dependent variable is conditional hit dummy
- OLS coefficient on officer search rate
 - * Calculated using leave-one-out approach
 - * Search rate among others stopped by *j* (other covariates included, too)

Specification Test Results

Take-home points

1. Florida data support non-degenerate $F_{M|X}$

Take-home points

- 1. Florida data support non-degenerate $F_{M|X}$
- 2. Harris County data do not
 - —But KPT model also not supported
 - —T5 reports several significant coefficients
 - —Maybe I lack enough X for Harris County?

Take-home points

- 1. Florida data support non-degenerate $F_{M|X}$
- 2. Harris County data do not
 - —But KPT model also not supported
 - —T5 reports several significant coefficients
 - —Maybe I lack enough X for Harris County?
- 3. No support for estimating my model in Harris

Identification & Estimation

Identification of δ involves two key equations

$$P(D = 1|x, \tilde{z}_j) = 1 - F_{M|X}(\delta(x, \tilde{z}_j))$$

Propensity-score equation: At <u>least</u> identifies s

Identification of δ involves two key equations

$$P(D = 1|x, \tilde{z}_j) = 1 - F_{M|X}(\delta(x, \tilde{z}_j))$$

 $\frac{dv}{ds}$

Slope of UHR

 $= \delta(x, \tilde{z}_j)$

Object of interest

Identification of δ involves two key equations

$$P(D = 1|x, \tilde{z}_j) = 1 - F_{M|X}(\delta(x, \tilde{z}_j))$$

$$\frac{dv}{ds} = \frac{dE[Y = 1|x, P = s]}{ds} = \delta(x, \tilde{z}_j)$$

Slope of UHR

Heckman & Vytlacil's Local IV Parameter

Object of interest

Two Examples In Which δ is Identified

$$F_{M|X}(\delta|X=x) = F_0($$

$$F_{M|X}(\delta|X=x) = F_0(F_0^{-1}(\delta))$$

 δ -quantile of x-normalized misconduct distribution

$$F_{M|X}(\delta|X=x) = F_0(F_0^{-1}(\delta) - x\alpha_0)$$
$$\delta(x,\tilde{z}) = g(x\alpha_1 + \tilde{z}\gamma).$$

Strategy #1: Identification via nonlinearity Now suppose $F_0 = \Lambda$ (logistic) and $g = \Phi$

Strategy #1: Identification via nonlinearity

Now suppose $F_0 = \Lambda$ (logistic) and $g = \Phi$

Propensity score equation:

$$P(D=1|x,\tilde{z})=1-\Lambda\left(\ln\left(\frac{\Phi(x\alpha_1+\tilde{z}\gamma)}{1-\Phi(x\alpha_1+\tilde{z}\gamma)}\right)-x\alpha_0\right)$$

$F_{M|X}(\delta(x,\tilde{z})|X=x)$

$$1 - \Lambda \left(\ln \left(\frac{\Phi(\mathbf{x}\alpha_1 + \tilde{\mathbf{z}}\gamma)}{1 - \Phi(\mathbf{x}\alpha_1 + \tilde{\mathbf{z}}\gamma)} \right) \right)$$

$$= \frac{1}{\log \operatorname{it}(\delta(\mathbf{x},\tilde{\mathbf{z}}))}$$

Strategy #1: Identification via nonlinearity

Now suppose $F_0 = \Lambda$ (logistic) and $g = \Phi$

Propensity score equation:

$$P(D=1|x,\tilde{z})=1-\Lambda\left(\ln\left(\frac{\Phi(x\alpha_1+\tilde{z}\gamma)}{1-\Phi(x\alpha_1+\tilde{z}\gamma)}\right)-x\alpha_0\right)$$

Nonlinearity can be enough to identify $\alpha_1 \& \gamma$

Now suppose $F_0 = g$

Propensity score equation:

$$P(D=1|x,\tilde{z})=1-F_0(x(\alpha_1-\alpha_0)+\tilde{z}\gamma)$$

Can't distinguish α_1 & α_0 using only P-score eq

Now suppose $F_0 = g$

Unconditional hit rate slope equation:

$$\frac{dE[Y|x,P(Z)=s]}{ds} = F_0 \left(x\alpha_0 + F_0^{-1} (1-s) \right)$$

Now suppose $F_0 = g$

Unconditional hit rate slope equation:

$$\frac{dE[Y|x,P(Z)=s]}{ds} = F_0 \left(x\alpha_0 + F_0^{-1} (1-s) \right)$$

Now we integrate...

Now suppose $F_0 = g$

Unconditional hit rate slope equation:

$$E[Y|x, P = s] = x\alpha_2 + \int F_0(x\alpha_0 + F_0^{-1}(1 - s)) ds$$

Note the presence of both x and s inside the \int

Now suppose $F_0 = g$ is linear.

Then:

$$E[Y|x, P(Z) = s] = x\alpha_2 + (sx)\alpha_0 + Q(1-s)$$

Now suppose $F_0 = g$ is linear.

$$E[Y|x, P(Z) = s] = x\alpha_2 + (sx)\alpha_0 + Q(1-s)$$

We can do

- —Local regression: HUV (2006)
- —Global poly: Kowalski (2016); Brinch et al (2017)

Generalized Roy Model Representation

Connecting to the Generalized Roy Model

Let Y_d be "found with contraband" if D = d

Connecting to the Generalized Roy Model

Let Y_d be "found with contraband" if D=dHere is a GRM representation:

$$Y_0 = 0$$

 $Y_1 = 1[1 - U_1 \ge 0]$
 $D = 1[U_D \le \mu_D(Z)], U_D \sim \text{Unif}(0,1)$
 $U_1 = F_{M|X}(U_1^*|X = x) + U_D, U_1^* \sim \text{Unif}(0,1)$
 $\tilde{Z} \perp U_D|X,$

2 More Specification Tests

(1) Leveraging the P-score equation

$$-s = 1 - F_M(\delta) \Rightarrow ds = -f_M(\delta)d\delta < 0$$

—So δ decreasing in search prob.

(1) Leveraging the P-score equation

$$-s = 1 - F_M(\delta) \Rightarrow ds = -f_M(\delta)d\delta < 0$$

—So δ decreasing in search prob.

(2) Leveraging inframarginality

$$-E[Y|D=1] \geq E[\delta]$$

—So hit rate greater than average δ

Table 1: Means for variables used in analysis (Anwar & Fang Florida data) (generating time: Mon Jul 23 11:49:05 2018 from file summary-stats.ara, table 1.)

Carrel mate	Full sample	Black	Hispanic	White
Search rate Search was conducted	0.010	0.013	0.013	0.008
Hit rates				
Among only those searched	0.210	0.209	0.115	0.251

1. Model identifies taste parameters under some restrictions

- 1. Model identifies taste parameters under some restrictions
- 2. Also makes testable predictions, which aren't rejected in FL

- 1. Model identifies taste parameters under some restrictions
- 2. Also makes testable predictions, which aren't rejected in FL
- 3. Estimation is feasible

- 1. Model identifies taste parameters under some restrictions
- 2. Also makes testable predictions, which aren't rejected in FL
- 3. Estimation is feasible