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The Model



Highway stops by officer 𝒋 occur exogenously

Produce driver with misconduct probability 𝑴

Officer has search distaste 𝜹

Search occurs if 𝑴 > 𝜹
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Highway stops by officer 𝑗 occur exogenously

Produce driver with misconduct probability 𝑴

If race is 𝒓 & driver/stop characteristics 𝑿 = 𝒙:

Search occurs if 𝑴 > 𝜹𝒓,𝒋(𝒙)
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Measure of stop-level discrimination:

𝜟𝒋 𝒙; 𝒓𝟐, 𝒓𝟏 ≡ 𝜹𝒓𝟐,𝒋 𝒙 − 𝜹𝒓𝟏,𝒋 𝒙

We can average this over 𝑿, over 𝒋, or both



So the ideal object of estimation is

𝜹𝒓,𝒋 𝒙



Assume

𝜹𝒓,𝒋 𝒙 = 𝜹𝒓 𝒙,  𝒛𝒋 ,

where  𝒛𝒋 is an instrumental variable.



Assume

𝜹𝒓,𝒋 𝒙 = 𝜹𝒓 𝒙,  𝒛𝒋 ,

For stop 𝑖, use 

 𝒛𝒋 ≡
𝟏

𝑵𝒋 − 𝟏
 

𝒌≠𝒊

𝑫𝒌



Driver misconduct probability distribution

𝑷(𝑴 ≤ 𝒎)| = 𝑭𝑴 𝒎
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2. KPT: This is degenerate—all mass at 𝐦 =  𝒉



Driver misconduct probability distribution

I will often drop the 𝑟 subscript and focus on

𝑷 𝑴 ≤ 𝒎 𝑿 = 𝒙 = 𝑭𝑴|𝑿 𝒎 𝑿 = 𝒙

Time to define search & hit rates…



The search rate

𝒔 𝜹 = 𝟏 − 𝑭𝑴 𝜹

𝒉 𝜹 =
 𝜹

𝟏
𝒎𝒇𝒎 𝒎 𝒅𝒎

𝒔 𝜹
𝝊 𝜹 = 𝒔 𝜹 𝒉 𝜹



The search rate and the hit rate

𝒔 𝜹 = 𝟏 − 𝑭𝑴 𝜹

𝒉 𝜹 =
 𝜹

𝟏
𝒎𝒇𝒎 𝒎 𝒅𝒎

𝒔 𝜹
𝝊 𝜹 = 𝒔 𝜹 𝒉 𝜹



The unconditional hit rate

𝒔 𝜹 = 𝟏 − 𝑭𝑴 𝜹

𝒉 𝜹 =
 𝜹

𝟏
𝒎𝒇𝒎 𝒎 𝒅𝒎

𝒔 𝜹
𝝊 𝜹 = 𝒔 𝜹 𝒉 𝜹



Two key facts

1. The hit rate and search rate are negatively related

2. The slope of the unconditional hit rate identifies 𝜹: 
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Width = 𝛿



Two key facts

1. The hit rate and search rate are negatively related

2. The slope of the unconditional hit rate identifies 𝜹: 

𝒅𝝊

𝒅𝜹
= −𝜹𝒇(𝜹)

𝒅𝒔

𝒅𝜹
= −𝒇(𝜹)

⇒
𝒅𝝊

𝒅𝒔
= 𝜹

This is empirically useful: 𝝊(𝒔) is E[Y|s] 



Data



Florida data — From Anwar & Fang (2006)

— 906k stops from 2001

— 9k searches

— Data include lots of covariates

* Driver gender; time of day; location*

* Officer race & gender

* Out-of-state tags, number of passengers



Harris County data 

— From Stanford Open Policing Project 

— 600k stops from 2006-2015

— Also about 9k searches 

— Fewer covariates available

* Driver gender; time of day; f.g. location



Specification test: Are 𝒉 & 𝒔 negatively related?

— Dependent variable is conditional hit dummy 

— OLS coefficient on officer search rate

* Calculated using leave-one-out approach

* Search rate among others stopped by 𝒋

(other covariates included, too)



Specification Test Results



Florida estimates

all negative & 

significant 



Harris County 

estimates all 

either wrong-

signed or 

insignificant 

Florida estimates

all negative & 

significant 



Take-home points

1. Florida data support non-degenerate 𝑭𝑴|𝑿

2. Harris County data do not—But KPT model 

also not supported

—T5 reports several significant coefficients 

—Maybe I lack enough 𝑿 for Harris County?

3.   No support for estimating my model in Harris
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Identification & Estimation



Identification of 𝜹 involves two key equations

—S𝐮𝐩𝐩𝐨𝐬𝐞 𝜹𝒋 𝒙 = 𝜹 𝒙,  𝒛𝒋

𝑷(𝑫 = 𝟏|𝒙,  𝒛𝒋) = 𝟏 − 𝑭𝑴|𝑿 𝜹 𝒙,  𝒛𝒋

𝒅𝝊

𝒅𝒔
=

𝒅𝑬[𝒀 = 𝟏|𝒙,  𝒛𝒋]

𝒅𝒔
= 𝜹 𝒙,  𝒛𝒋

Propensity-score equation: At least identifies 𝒔



Identification of 𝜹 involves two key equations

—S𝐮𝐩𝐩𝐨𝐬𝐞 𝜹𝒋 𝒙 = 𝜹 𝒙,  𝒛𝒋

𝑷(𝑫 = 𝟏|𝒙,  𝒛𝒋) = 𝟏 − 𝑭𝑴|𝑿 𝜹 𝒙,  𝒛𝒋

𝒅𝝊

𝒅𝒔
=

𝒅𝑬[𝒀 = 𝟏|𝒙, 𝑷 = 𝒔]

𝒅𝒔
= 𝜹 𝒙,  𝒛𝒋

Slope 

of UHR

Object of 

interest



Identification of 𝜹 involves two key equations

—S𝐮𝐩𝐩𝐨𝐬𝐞 𝜹𝒋 𝒙 = 𝜹 𝒙,  𝒛𝒋

𝑷(𝑫 = 𝟏|𝒙,  𝒛𝒋) = 𝟏 − 𝑭𝑴|𝑿 𝜹 𝒙,  𝒛𝒋

𝒅𝝊

𝒅𝒔
=

𝒅𝑬[𝒀 = 𝟏|𝒙, 𝑷 = 𝒔]

𝒅𝒔
= 𝜹 𝒙,  𝒛𝒋

Slope 

of UHR

Heckman & Vytlacil’s

Local IV Parameter 

Object of 

interest



Two Examples In Which 𝜹 is Identified



Strategy #1: Identification via nonlinearity

Suppose the probability of search and 𝜹 satisfy
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Strategy #1: Identification via nonlinearity

Now suppose 𝑭𝟎 = 𝚲 (logistic) and 𝒈 = 𝚽

Propensity score equation:

𝑷 𝑫 = 𝟏 𝒙,  𝒛 = 𝟏 − 𝚲 𝐥𝐧
𝚽(𝐱𝜶𝟏+ 𝒛𝜸)

𝟏−𝚽(𝐱𝜶𝟏+ 𝒛𝜸)
− 𝒙𝜶𝟎

Nonlinearity can be enough to identify 𝜶𝟏 & 𝜸
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Strategy #1: Identification via nonlinearity

Now suppose 𝑭𝟎 = 𝚲 (logistic) and 𝒈 = 𝚽

Propensity score equation:
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Strategy #2: Identification/estimation via IV

Now suppose 𝑭𝟎 = 𝒈

Propensity score equation:

𝑷 𝑫 = 𝟏 𝒙,  𝒛 = 𝟏 − 𝐅𝟎 𝐱(𝜶𝟏 − 𝜶𝟎) +  𝒛𝜸

Can’t distinguish 𝜶𝟏 & 𝛼𝟎 using only P-score eq



Strategy #2: Identification/estimation via IV

Now suppose 𝑭𝟎 = 𝒈

Unconditional hit rate slope equation:

𝒅𝑬[𝒀|𝒙,𝑷 𝒁 =𝒔]

𝒅𝒔
= 𝐅𝟎 𝐱𝜶𝟎 + 𝐅𝟎

−𝟏 𝟏 − 𝐬



Strategy #2: Identification/estimation via IV

Now suppose 𝑭𝟎 = 𝒈

Unconditional hit rate slope equation:

𝒅𝑬[𝒀|𝒙,𝑷 𝒁 =𝒔]

𝒅𝒔
= 𝐅𝟎 𝐱𝜶𝟎 + 𝐅𝟎

−𝟏 𝟏 − 𝐬

Now we integrate…



Strategy #2: Identification/estimation via IV

Now suppose 𝑭𝟎 = 𝒈

Unconditional hit rate slope equation:

𝑬 𝒀 𝒙, 𝑷 = 𝒔 = 𝐱𝜶𝟐 +  𝑭𝟎 𝐱𝜶𝟎 + 𝐅𝟎
−𝟏 𝟏 − 𝐬 𝐝𝐬

Note the presence of both 𝒙 and 𝒔 inside the  



Strategy #2: Identification/estimation via IV

Now suppose 𝑭𝟎 = 𝒈 is linear.

Then:

𝑬 𝒀 𝒙, 𝑷(𝒁) = 𝒔 = 𝐱𝜶𝟐 + 𝐬𝐱 𝜶𝟎 + 𝑸(𝟏 − 𝒔)

We can do 

—Local regression: HUV (2006)

—Global poly: Kowalski (2016); Brinch et al (2017)



Strategy #2: Identification/estimation via IV

Now suppose 𝑭𝟎 = 𝒈 is linear.

Unconditional hit rate slope equation:

𝑬 𝒀 𝒙, 𝑷(𝒁) = 𝒔 = 𝐱𝜶𝟐 + 𝐬𝐱 𝜶𝟎 + 𝑸(𝟏 − 𝒔)

We can do 

—Local regression: HUV (2006)

—Global poly: Kowalski (2016); Brinch et al (2017)



Generalized Roy Model Representation



Connecting to the Generalized Roy Model

Let 𝒀𝒅 be “found with contraband” if 𝑫 = 𝒅



Connecting to the Generalized Roy Model

Let 𝒀𝒅 be “found with contraband” if 𝑫 = 𝒅

Here is a GRM representation:



2 More Specification Tests



(1) Leveraging the P-score equation 

—𝒔 = 𝟏 − 𝑭𝑴 𝜹 ⇒ 𝒅𝒔 = −𝒇𝑴 𝜹 𝒅𝜹 < 𝟎

—So 𝜹 decreasing in search prob.

(2) Leveraging inframarginality

—𝑬 𝒀 𝑫 = 𝟏 ≥ 𝑬[𝜹]

—So hit rate greater than average 𝜹
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What to Take Home

1. Model identifies taste parameters 

under some restrictions

2. Also makes testable predictions, 

which aren’t rejected in FL

3. Estimation is feasible 
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