The Interdependence of Bank Capital and Liquidity

E. Carletti † I. Goldstein ‡ A. Leonello *

 $^{\dagger} \textsc{Bocconi}$ University and CEPR

[‡]University of Pennsylvania

*European Central Bank

Disclaimer: The views expressed here are the authors' and do not reflect those of the ECB or the Eurosystem

Introduction

- Liquidity played a central role in the recent financial crises (e.g., Bernanke, 2008)
 - As a result, liquidity regulation (e.g., LCR, NSFR) was introduced to complement capital regulation
- Capital and liquidity requirements are meant to serve different purposes
 - The former deals with solvency issues, the latter with liquidity ones
- (In)solvency and (il)liquidity are closely intertwined concepts in triggering financial crises
- In light of these considerations, do capital and liquidity interact in affecting bank stability? If so, how?

What we do in the paper

- We present a model to analyze the interdependent effect of capital and liquidity on financial stability
- Need a model where
 - **Solvency** (spurred by bad fundamentals) and **liquidity** crises (due to coordination failure) can be told apart
 - Crisis probabilities are endogenously pinned down and depend on bank's balance sheet choice (leverage and asset liquidity)
 - (Rich) debt holders' payoffs depend on bank's balance sheet
 - Existing models (e.g., Diamond and Kashyap, 2016; Vives, 2014; Kashyap et al., 2017) do not have all these ingredients
- We develop a global-games framework à la Goldstein and Pauzner (2005) and derive
 - New results on the effects of capital and liquidity on bank stability
 - Some implications for capital and liquidity regulation

Sketch of the model

- Banks raise short term debt and equity, and choose portfolio with liquidity/return trade-off
- Debt holders receive imperfect information about the long term portfolio value, and decide whether to roll over or run
- Both solvency and liquidity crises occur, with probability uniquely determined as a function of bank balance sheet composition
- Two inefficiencies
 - Runs lead to inefficient liquidation of bank portfolios
 - Liquidation may entail losses due to fire sales

Results in a nutshell

- Capital and liquidity have ambiguous effects on the likelihood of crises, depending on
 - Nature of crises, i.e., solvency or liquidity
 - Initial bank balance sheet composition
- In particular,
 - Capital is detrimental only for banks with little capital/liquidity
 - Liquidity is beneficial only for banks with intermediate levels of capital/portfolio liquidity
- Regulation should consider both sides of bank balance sheet
 - Regulation can restore efficiency, only with small cost of capital and liquidity and good market funding conditions

The baseline model: Banks and investors

- Three dates (t = 0, 1, 2) economy with a continuum [0, 1] of banks and (risk-neutral) investors
- At date 0, banks raise a fraction k as capital and 1-k as short-term debt, and invests in a risky portfolio
 - ullet Capital entails a per unit cost ho>1
 - Debt holders are promised r_1 at date 1 and r_2 at date 2 in case of rollover, with $r_2 \ge r_1 \ge 1$, and obtain 1 in expectation
- Portfolio returns $\ell\chi\in[0,1]$ at date 1 and $R\left(\theta\right)\left(1-\alpha\ell\right)$ at date 2, where
 - ullet is a choice variable capturing bank portfolio liquidity ightarrow liquidity/return trade-off
 - $oldsymbol{\gamma} \in (0,1]$ represents market funding conditions
 - $\theta \sim U[0,1]$, $R'(\theta) > 0$ and $0 < \alpha \leq \overline{\alpha}$ is cost of liquidity

The baseline model: debt holders' information

 At the beginning of date 1, each debt holder receives a private signal s_i on the fundamental of the economy of the form

$$s_i = \theta + \varepsilon_i$$

with $\varepsilon_i \sim U[-\varepsilon, +\varepsilon]$ being i.i.d across agent and $\varepsilon \to 0$

- Based on the signal, debt holders decide whether to withdraw (run) at date 1 or roll over their debt
 - ullet They update their beliefs about heta and the others' actions
- The bank satisfies early redemptions by liquidating its portfolio
- Debt holders receive a pro-rata share, whenever bank proceeds are not enough to repay r_1 or r_2

Debt holders' rollover decision and crises

where $\underline{\theta}$ is the solution to

$$R(\theta)(1-\alpha\ell) = (1-k)r_1$$

and $heta^*$ to

$$\int_{n=0}^{\hat{n}(\theta)} r_2 + \int_{n=\hat{n}(\theta)}^{\bar{n}} \frac{R(\theta)(1-\alpha\ell)\left[1-\frac{(1-k)nr_1}{\ell\chi}\right]}{(1-k)(1-n)} = \int_{n=0}^{\bar{n}} r_1 + \int_{n=\bar{n}}^{1} \frac{\ell\chi}{(1-k)n}$$

Capital, liquidity and stability

• When $(1-k)r_1 = \ell \chi$ (i.e., for $k = k^{\max}(\ell)$), there are no strategic complementarities and $\theta^* \to \underline{\theta}$

Capital and bank fragility

- Capital is always beneficial for solvency crises
 - ullet More capital o more resources to pay debt holders at t=2
- But it is ambiguous for liquidity crises due to two opposing effects

• Initial balance sheet composition (i.e., k and ℓ) determines which effect dominates

Effect of capital on crisis probabilities

Liquidity and bank stability

- Liquidity is always detrimental for solvency crises
 - More liquidity → lower portfolio profitability at date 2
- But it is ambiguous for liquidity crises due to three different effects

$$\underbrace{-\int_{\widehat{n}(\theta)}^{\overline{n}} \frac{R\left(\theta\right) n r_1}{\ell^2 \chi\left(1-n\right)} dn}_{\text{Higher repayment}} + \underbrace{\int_{\widehat{n}(\theta)}^{\overline{n}} \frac{\alpha R\left(\theta\right)}{\left(1-k\right)\left(1-n\right)} dn}_{\text{Lower repayment}} \underbrace{+\int_{\overline{n}}^{1} \frac{\chi}{\left(1-k\right) n} dn}_{\text{Higher repayment}} \\ \text{at date 2 due to less} \\ \text{liquidation at date 1} \\ \text{lower profitability}$$

• Again, initial balance sheet composition (i.e., k and ℓ) determines which effect dominates

Effect of liquidity on crisis probabilities

The market equilibrium: The bank's choice

• Given debt holders' rollover decisions, at date 0 each bank chooses k, ℓ , r_1 and r_2 to maximize

$$\Pi^{\mathcal{B}} = \int_{ heta^*}^1 \left[R\left(heta
ight) \left(1 - lpha \ell
ight) - \left(1 - k
ight) r_2
ight] d heta - k
ho$$

subject to

$$\int_0^{ heta^*} rac{\ell \chi}{(1-k)} d heta + \int_{ heta^*}^1 r_2 d heta \geq 1 ext{ and } \Pi^B \geq 0$$

- The solution entails two inefficiencies
 - ullet Liquidity crises occur in equilibrium since $\left(1-k^B
 ight)r_1^B>\ell^B\chi$ holds
 - Banks sell assets to outside investors with finite wealth w
 - Liquidation can be inefficient and entail losses due to fire sales (i.e., $\chi(\ell, k, w) < 1$) if market conditions are tight (i.e., w small)

Regulatory intervention

• Regulator sets capital and liquidity requirements $\{k^R, \ell^R\}$ to maximize

$$\int_{0}^{\theta^{*}}\ell\chi\left(Q\right)d\theta+\int_{\theta^{*}}^{1}R\left(\theta\right)\left(1-\alpha\ell\right)d\theta$$

subject to

$$\mathit{r}_{1}^{\mathit{B}}$$
 , $\mathit{r}_{2}^{\mathit{B}} = rg \max \Pi^{\mathit{B}}$

$$\Pi^B \geq 0$$

- Eliminating both inefficiencies may **not** be feasible for given α , ρ and w
 - Limited investors' wealth w associated with severe fire sales
 - ullet Binding constraint $\Pi^B=0$ when lpha and ho are large

Conclusions

- Capital and liquidity present complicated intertemporal trade-offs, which affect solvency and liquidity crises differently
- Understanding all of them requires endogenizing crises probability and bank behavior, and distinguish between crises of different nature
- Higher capital and liquidity are not always beneficial, in particular for banks that are highly leveraged and hold illiquid portfolios
- Regulation should be based on both side of balance sheet
 - Joint capital and liquidity regulation can correct market inefficiencies, but this may not be feasible if market funding conditions are tight