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Abstract

We analyze the interdependent effects of bank capital and liquidity on financial stability in a global

game model, where banks are exposed to both solvency and liquidity crises with endogenously determined

probabilities. We show that capital and liquidity have ambiguous effects on fragility depending on the

nature of the crisis and the initial bank balance sheet composition. We then characterize banks’balance

sheet decisions and show that these may entail an ineffi cient liquidation of banks’portfolios and a fire

sale externality. Joint capital and liquidity regulation eliminates these ineffi ciencies only when the cost

of bank equity and liquidity is contained and market funding conditions are good.
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1 Introduction

The 2007-2009 financial crisis was a milestone for financial regulation, leading to significant reforms to the

existing capital regulation and the introduction of a new set of liquidity requirements. In particular, banks

have been required to hold higher capital buffers to reduce their exposure to solvency-driven crises and,

at the same time, to increase their liquidity holdings to reduce liquidity mismatch and the consequent risk

of liquidity-driven crises. The introduction of a new set of liquidity requirements, namely the Liquidity

Coverage Ratio (LCR) and the Net Stable Funding Ratio (NSFR), as complements to the existing and

improved capital-based regulation, has led to a debate in the academic and policy arena on the effective

need of all these regulatory tools, their interaction, as well as their potential contrasting effects for financial

stability.

Bank (il)liquidity and (in)solvency are closely intertwined concepts and often diffi cult to tell apart when

a crisis manifests. On the one hand, liquidity-driven crises can spur solvency issues; on the other hand, fears

about bank solvency may precipitate liquidity problems. Furthermore, when a crisis is underway and a bank

faces a large outflow of funds, it becomes very diffi cult to assess the ultimate source of these withdrawals,

which, in turn, may limit policymakers’ability to intervene effectively. It is precisely this close link between

solvency and liquidity crises that motivates the discussion about the joint effects that capital and liquidity

may have on financial stability.

To visualize the issue, consider a simple bank balance as in Table 1. Bank stability depends negatively

on both its leverage (i.e., D
L+I ) and the proportion of illiquid assets (i.e.,

I
I+L ): A bank with a larger share

of short-term funding and a larger proportion of illiquid assets is more exposed to roll over risk than a bank

with more equity and more liquid assets. It follows that increasing equity (E), while keeping constant the

asset side, has a similar effect on stability as increasing the proportion of liquid assets (L), while keeping

the liability side constant. This means that, in this example, capital and liquidity are substitutes in terms

of their effects on stability.

Assets Liabilities

Liquid assets (L) Short-term debt (D)

Illiquid assets (I) Equity (E)
Table 1: A simplified bank balance sheet

This simple example raises a number of important questions: what are the effects of changes in the level

of bank capitalization and portfolio liquidity on bank stability? Are these effects different depending on
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the nature of crises− whether they are solvency- or liquidity-driven− and on the bank initial balance sheet

composition?

To tackle these questions, we build a two-period model where banks issue short term debt and equity,

and invest in a risky portfolio consisting of both liquid and illiquid assets, whose final return depends on the

fundamentals of the economy. The portfolio composition shapes the trade-off between intermediate and final

date portfolio returns, whereby a higher proportion of liquid assets in the portfolio leads to a higher (safe)

return at the interim date, but to a lower (risky) return at the final date. This determines bank available

resources and, together with the bank capital structure, affects the likelihood of a bank failure.

In our model, a bank default can be driven by both solvency and liquidity considerations and the prob-

ability of each type of crisis is determined endogenously using the global-game methodology. At the interim

date, each debt holder receives an imperfect signal regarding bank portfolio return at the final date and,

based on this signal, decides whether to roll over or withdraw his debt claim. His decision depends on which

of the two actions gives him the highest payoff, which, in turn, depends on the fundamentals of the economy

as well as on the expectations about the proportion of debt holders rolling over.

As standard in the global game literature (see e.g., Morris and Shin, 1998, 2003; Goldstein and Pauzner,

2005), the equilibrium outcome is that bank failures take the form of a massive withdrawals of funds by

debt holders at the interim date and occur when fundamentals of the economy are below a unique threshold.

Within the range of fundamentals where they occur, crises can be classified into either solvency or liquidity

crises. The former happen at the lower part of the crisis region where the signal on the fundamentals is so

low that not rolling over the debt claim at the interim date is a dominant strategy for debt holders. The

latter hinges on the existence of strategic complementarity among debt holders, in that each of them does

not roll over out the self-fulfilling belief that others will do the same.

The probability of both a solvency and a liquidity crisis depends on the level of bank capitalization and

its portfolio liquidity. Thus, our model delivers a first set of results about the differential effects that a

change in the level of bank capitalization and portfolio liquidity has on these probabilities. In particular, we

show that an increase in the level of bank capitalization always reduces the likelihood of a solvency crisis,

while an increase in the level of liquidity of bank portfolio always increases it.

The effects on the likelihood of a liquidity crisis are more involved, as they depend on whether banks

have low, intermediate or high initial levels of bank capitalization and portfolio liquidity. For banks with

very little capital and/or very illiquid portfolios, an increase in capital or liquidity worsens the probability of
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liquidity crises. As these banks are already facing a high risk of failure at the interim date, higher levels of

capitalization or portfolio liquidity raise debt holders’repayment at the interim date, thus increasing further

their incentives to run on the bank. By contrast, for banks with intermediate levels of capital or liquidity,

higher capitalization or increased portfolio liquidity reduce the occurrence of liquidity crises. As the risk

of failing at the interim date is limited for those banks, a capital or liquidity injection increases further

their ability to withstand debt holders’withdrawals and, in turn, debt holders’repayment from rolling over

the debt claim till the final date. Finally, for banks with high initial levels of capital or liquidity, higher

capitalization is beneficial for stability, while more portfolio liquidity is detrimental. The reason is that these

banks are very little exposed to strategic complementarities among debt holders and mainly face the risk of

solvency crises, for which higher capital is beneficial while liquidity is detrimental.

The comparative statics exercise delivers some initial implications for the design of regulation. First,

a one-size-fits-all approach, where all banks are subject to the same requirements, may have undesirable

consequences for some banks, especially for those who would need to strengthen their stability the most.

Second, capital and liquidity requirements should be designed considering both sides of banks’balance sheets.

In this respect, our analysis supports regulatory instruments like the risk-weighted capital ratio, the liquidity

coverage ratio and the net stable funding ratio that essentially specify a ratio between banks’assets and

liabilities (see, Cecchetti and Kashyap, 2018).

Building on the comparative statics exercise, we then analyze bank’s choice of capital structure, portfolio

liquidity and debt holders’repayment in the market equilibrium and show that the allocation entails two

ineffi ciencies. First, banks choose intermediate levels of capitalization and portfolio liquidity that expose

them to ineffi cient solvency and liquidity crises. Second, while banks consider market funding conditions at

the intermediate date as exogenous to their individual choices, in equilibrium these depend on the aggregate

quantity of bank assets on sale and thus on banks’exposure to crises. When market conditions are tight,

that is when the assets on sale are excessive relative to the wealth of investors acquiring them, asset early

liquidation entails a loss of value due to limited asset redeployment. We refer to this ineffi ciency as fire sales

and show that market tightness depends on banks’initial balance sheet choices through their effect on the

amount of portfolios in need of liquidation.

We then turn to analyze whether imposing capital and liquidity requirements allows to restore full

effi ciency. We show that this depends on the tightness of the market for banks’assets, as well as on how

costly capital and liquidity are for individual banks. When market conditions are good and the cost of capital
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and liquidity for banks is small, the regulator can enforce the effi cient liquidation of banks’portfolios and

prevent fire sales with capital or liquidity requirements. By contrast, when the market conditions are tight

or raising capital and holding liquidity is costly for banks, it may not be feasible for the regulator to correct

both ineffi ciencies. It follows that the allocation will either feature only effi cient liquidation of banks’assets

but more severe fire sales or too little liquidation with reduced fire sales.

Our analysis of the impact of capital and liquidity on bank stability is conducted in a framework where

the ineffi ciencies of the unregulated market equilibrium are all associated with the premature liquidation

of bank portfolio. In doing this, we disregard other possible sources of ineffi ciencies that may motivate the

use of capital and liquidity regulation, such as, for example, a moral hazard problem on the side of bank

managers. Despite this, to the best of our knowledge our framework is the first to allow disentangling the

effects of capital and liquidity on solvency and liquidity crises.

A number of recent papers have looked at the role and implications of the newly introduced liquidity

regulation, also in connection with capital requirements (see e.g., Walther, 2015; Calomiris, Heider and

Hoerova, 2015; and Diamond and Kashyap, 2016). Among those papers, Vives (2014) and König (2015) use

global game models to study the implications of capital and liquidity on the probability of banking crises.

Both papers build on the bank run model developed by Rochet and Vives (2004) and perform a comparative

statics exercise on the run threshold. Vives (2014) finds that both capital and liquidity are beneficial for

stability, while, as in our paper, König (2015) shows that the effect of liquidity is more mixed since liquid

assets are less profitable than illiquid ones in the long run. Although sharing the global game approach,

our framework features a richer structure for debt holders’payoff similar to Goldstein and Pauzner (2005).

This introduces additional effects of capital and liquidity on bank stability. Furthermore, we endogenize

bank capital structure and portfolio liquidity, as well as the remuneration to debt holders. This allows us to

highlight several ineffi ciencies of the market equilibrium and derive implications for optimal regulation.

In this sense, our paper is related to the recent contribution by Kashyap, Tsomocos and Vardoulakis

(2017), who also use global game techniques to pin down bank default probabilities in a framework where

banks are subject to moral hazard but there are no fire sales. It follows that, in contrast to our analysis,

in Kashap et al. (2017) both capital and liquidity regulation reduce the probability that a run occurs and

improves welfare.

The key aspect of our study is the ability to derive an endogenous probability of (solvency and liquidity)

crises and study how it is affected by changes in bank capitalization and portfolio liquidity. To do this, we
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rely on the global game techniques as developed in the literature originating with Carlsson and van Damme

(1993) (see Morris and Shin, 2003 for a survey on the theory and applications of global games). Our paper

is close to two contributions in this literature. First, it shares the idea of rollover game with Eisenbach

(2017), although in a framework where banks also raise equity and choose the liquidity-return trade-off of

their portfolio. Second, it faces the same technical challenge of characterizing the existence of a unique

equilibrium in the absence of global strategic complementarities as in Goldstein and Pauzner (2005).

The paper proceeds as follows. Section 2 presents the baseline model. Section 3 shows the effect that

changes in capital and liquidity have on the probability of solvency- and liquidity-driven crises. Section 4

characterized the unregulated equilibrium. Section 5 identifies the ineffi ciencies of the unregulated equilib-

rium and analyzes the effectiveness of regulation in addressing them. Section 6 contains concluding remarks.

All proofs are contained in the appendix.

2 The model

There are three dates (t = 0, 1, 2), a continuum [0, 1] of banks and a continuum [0, 1] of investors in each

bank. Investors are risk-neutral and are endowed with one unit of resources at date 0 each and nothing

thereafter.

At date 0, each bank raises a fraction k of equity at a total cost ρ > 1 per unit and a fraction 1 − k of

short term debt at a total per unit (normalized) opportunity cost of 1.1 In exchange for their funds, debt

holders are promised a (gross) interest rate r1 if they withdraw their investment at date 1 and r2 > r1 if

they leave their funds until date 2. The (net) interest rates on debt is assumed to be non-negative, so that

r1 ≥ 1. If the bank cannot repay the promised interest rates {r1, r2} at either date, the bank fails and

debt holders receive a share of the bank’s available resources. The deposit market is perfectly competitive

so that the bank will always set r1 and r2 at the level required for depositors to recover their opportunity

cost of funds of 1 and be willing to participate. The assumption that ρ > 1 captures the idea that bank

capital is a more expensive form of financing than deposits, as is typically assumed in the literature (see

e.g., Hellmann, Murdock and Stiglitz, 2000; Repullo, 2004; Allen, Carletti and Marquez, 2011) and has been

recently endogenized on the basis of market segmentation (see e.g., Allen, Carletti and Marquez, 2015) or

the existence of costs associated with the issuance of outside equity (see Harris, Opp and Opp, 2017) and
1Banks’reliance on short-term debt has been justified in the literature based on its beneficial effect on asymmetric information

problems in credit markets (see e.g., Flannery, 1986 and Diamond, 1991) or its disciplining role for banks’ managers and
shareholders (see e.g., Calomiris and Kahn, 1991; Diamond and Rajan, 2001 and Eisenbach, 2017).
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empirically validated based on a different tax treatment between equity and debt (see e.g., Schepens, 2016).2

Banks invest the funds raised by investors in a risky portfolio consisting of both liquid and illiquid

assets. The portfolio returns `χ per unit if liquidated at date 1 and R (θ) (1− α`) at date 2, where ` ∈ [0, 1]

represents the level of portfolio liquidity the bank chooses at date 0, while the variable θ describes the state

of the economy and is uniformly distributed over [0, 1] with R′ (θ) > 0. Finally, χ ∈ (0, 1) and α ∈ (0, α)

with α < 1 are constants capturing, respectively, market funding conditions at date 1 (on which we will

return below in Section 5) and the cost of liquidity. Our specification entails a liquidity-return trade-off in

the choice of the bank portfolio: The more liquid a bank portfolio, the higher its date 1 return, but the lower

its expected return at date 2. Yet, we assume Eθ[R(θ) (1− α`)] > 1 so that the bank finds it optimal to

invest in a portfolio rather than storing.

The state of the economy θ is realized at the beginning of date 1, but is not publicly observed until date

2. After θ is realized, at date 1 each debt holder receives a private signal si of the form

si = θ + εi, (1)

where εi are small error terms that are independently and uniformly distributed over [−ε,+ε]. Based on

this signal, debt holders decide whether to withdraw their investment at date 1 or roll it over until date 2.

The timing of the model is as follows. Each bank chooses the terms of the debt contract {r1, r2}, the

capital structure {k, 1− k} and the level of portfolio liquidity ` at date 0 so as to maximize its expected

profit. At date 1, after receiving the private signal about the state of the fundamentals θ, each debt holder

decides whether to withdraw at date 1 or roll over the debt. At date 2, the bank portfolio return realizes

and all claims are paid, if the bank is solvent. The model is solved backwards.

3 Market equilibrium: bank fragility

In this section, we analyze debt holders’rollover decision, for given levels of capital and portfolio liquidity.

This allows us to pin down the probability of a bank failure at date 1, as well as to distinguish between

solvency- and liquidity-driven crises. As we will explain in details below, in equilibrium both types of crisis

are triggered by a massive withdrawal of funds by debt holders (i.e., a run). However, a solvency crisis is

2 In most jurisdictions, the cost of debt is tax-deductible, while dividends are not. Schepens (2016) shows that a reduction
in the tax discrimination between debt and equity financing leads to a significant increase in bank capital ratios.
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due to debt holders’expectations of low realizations of θ, while a liquidity crisis is triggered by debt holders’

fear that other investors will not roll over their debt claim, thus forcing the bank to liquidate its portfolio

at date 1. Below we characterize the probability of each type of crisis and its properties.

A solvency crisis occurs in the range of fundamental θ in which not rolling over the debt at date 1 is

a dominant strategy for every debt holder. This is the case when, upon receiving his signal, a debt holder

expects the bank to fail at date 2 and obtain a pro-rata share R(θ)(1−α`)
(1−k) lower than the return r1 he would

obtain by withdrawing at date 1, even if all other debt holders wait until date 2. We then denote as θ (k, `, r1)

the value of θ that solves

R (θ) (1− α`)− (1− k) r1 = 0 (2)

so that the interval [0, θ (k, `, r1)) identifies the range of values of θ where a banking crisis is driven by

solvency considerations.3 In what follows, we simply refer to θ (k, `, r1) as the probability of a solvency

crisis, which, as shown (2), depends on the level of bank capitalization k and the liquidity of its portfolio `,

as well as on the interest rate r1. We have the following result.

Proposition 1 The threshold θ (k, `, r1) is decreasing in k and increasing both in ` and r1, i.e.,
∂θ(k,`,r1)

∂k < 0,

∂θ(k,`,r1)
∂` > 0 and ∂θ(k,`,r1)

∂r1
> 0.

The proposition highlights the key role that capital and liquidity play for the emergence of solvency crises.

Capital has a beneficial effect because higher capital reduces leverage, thus leaving more resources to repay

debt holders. By contrast, liquidity has a detrimental effect on bank solvency. This is due to the negative

impact that liquidity has on bank profitability, that is on the date 2 (per unit) portfolio return R (θ) (1− α`).

The interest rate offered to debt holders at date 1 also has a detrimental effect on the occurrence of solvency

crises, as an increase in r1 makes it more likely for a debt holder to withdraw at date 1.

Besides insolvency, a banking crisis can be also driven by liquidity considerations. Even when the state

of the economy θ is higher than θ(k, `, r1), debt holders may have the incentive not to rollover their debt

claims at the interim date as they fear that others would do the same. Their concern is that a large number

of withdrawals at date 1 would force a massive liquidation of the bank portfolio, thus depleting the bank’s

available resources at date 2 and, in turn, their expected payoff.

The signal si plays a key role for debt holders’withdrawal decision and thus for the occurrence of liquidity-

3For the region of solvency crises to exist, it must be the case that there are feasible values of θ for which all debt holders
receive a signal below θ (k, `, r1). Since the noise contained in the signal is at most ε, when si < θ (k, `, r1)− ε all debt holders
receive a signal below θ (k, `, r1). This holds when θ < θ (k, `, r1)− 2ε.
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driven crises. The reason is that the signal provides information on both θ and other debt holders’actions.

When the signal is high, a debt holder attributes a high posterior probability to the event that the bank

portfolio yields a high return and, at the same time, he infers that the other debt holders have also received

a high signal. This overall lowers his belief about the likelihood of a bank failure and, as a result, also his

own incentive to withdraw at date 1. Conversely, when the signal is low, a debt holder has a high incentive

not to roll over the debt, as he attributes a high likelihood to the possibility that the return of the bank

portfolio is low and that the other investors withdraw their debt claim at date 1. As a result, in the region

for θ ≥ θ(k, `, r1) a debt holder’s decision about whether to roll over its debt claim at date 1 depends on the

realization of θ as well as on his beliefs regarding the other debt holders’actions. To see this, we specify a

debt holder’s payoff from withdrawing at date 1 and that from rolling the claim over until date 2.

A debt holder’s payoff at date 1 is given by

π1 =


r1 ≥ 1 if 0 ≤ n < n̄

`χ
(1−k)n if n̄ ≤ n ≤ 1

, (3)

where n̄ = `χ
(1−k)r1

corresponds to the solution to `χ = (1 − k)nr1. At date 1, a debt holder obtains r1 ≥ 1

as long as the value of bank portfolio at date 1 `χ is enough to repay r1 to all (1 − k)n withdrawing debt

holders, i.e., for any n < n̄. Otherwise, when n ≥ n̄, the bank is forced to liquidate the entire portfolio at

date 1 and each debt holder receives a pro-rata share of the bank portfolio equal to `χ
(1−k)n .

Consider now a debt holder’s payoff at date 2. It is given by

π2 =



r2 > r1 if 0 ≤ n < n̂ (θ)

R(θ)(1−α`)
[
1− (1−k)nr1

`χ

]
(1−k)(1−n) if n̂ (θ) ≤ n ≤ n

0 n ≤ n ≤ 1

, (4)

where n̂ (θ) corresponds to the solution to R (θ) (1− α`)
[
1− (1−k)nr1

`χ

]
= (1− k)(1− n)r2 and denotes the

proportion of investors not rolling over the debt at date 1 pushing the bank at the brick of default at date
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2. The threshold n̂ (θ) is then equal to

n̂ (θ) =
R (θ) (1− α`)− (1− k) r2

(1− k)
[
R(θ)(1−α`)r1

`χ − r2

] . (5)

At date 2, a debt holder obtains r2 as long as the bank is solvent, otherwise he obtains a pro-rata share of

bank available resources. Whether the bank is solvent or not, it depends on the realization of θ, as well as on

the proportion n of debt holders not rolling over at date 1, as they determine both the value of bank portfolio

as well as that of the bank liabilities. As the proportion n of debt holders withdrawing at the interim date

1 increases, a debt holder’s incentive to withdraw at date 1 also increases, even if not monotonically. In the

range [0, n], a debt holder’s payoff at date 2 is weakly decreasing in n as long as

`χ < (1− k) r1 (6)

The condition (6) guarantees that n̂ (θ) < 1 and is obtained by differentiating
R(θ)(1−α`)

[
1− (1−k)nr1

`χ

]
(1−k)(1−n) with

respect to n. In words, it states that the value of a bank’s portfolio `χ is not enough to repay r1 if all

debt holders were to withdraw at date 1. The condition implies that debt holders’withdrawal decisions are

strategic complements and justifies the use of global games techniques to eliminate the associated multiplicity

of equilibria and pin down a unique equilibrium (see, e.g., Morris and Shin, 1998, 2003).

As in Goldstein and Pauzner (2005), our model only exhibits the property of one-sided strategic comple-

mentarity since in the range (n, 1], a debt holder’s incentive to roll over his debt claim until date 2 increases

with n. This occurs because, when n is very large (i.e., n > n̄ ), the more debt holders do not roll over at date

1, the lower a debt holder’s payoff from withdrawing at date 1, while the payoff at date 2 is zero. Despite

this, as in their framework, there exists a unique threshold equilibrium in which a debt holder withdraws if

and only if his signal is below the threshold s∗(k, `, r1, r2). At this signal value, the debt holder is indifferent

between withdrawing at date 1 and rolling over his debt claim until date 2. The following result holds.

Proposition 2 The model has a unique threshold equilibrium in which debt holders withdraw their debt

claim at date 1 if they observe a signal below the threshold s∗ (k, `, r1, r2) and roll it over above. At the limit,

when ε→ 0, s∗ (k, `, r1, r2)→ θ∗ (k, `, r1, r2) and corresponds to the solution to

∫ n̂(θ)

0

r2dn+

∫ n̄

n̂(θ)

R (θ) (1− α`)
[
1− (1−k)nr1

`χ

]
(1− k) (1− n)

dn−
∫ n̄

0

r1dn−
∫ 1

n̄

`χ

(1− k)n
dn = 0. (7)
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Thus, the bank is solvent at date 2 for any θ > θ∗ (k, `, r1, r2).

The proposition states that in the interval for θ ≥ θ(k, `, r1), a debt holder’s rollover decision is driven by

the fear that others will not roll over, thus reducing a bank’s available resources at date 2 and, in turn, his

expected repayment. When (1− k) r1 > `χ, a debt holder has the incentive to withdraw when he expects a

large proportion of investors to do the same, as otherwise he faces the risk of not receiving anything at date

2. In other words, in the range θ ∈ [θ(k, `, r1), θ∗(k, `, r1, r2)) a bank fails at date 1 as result of a coordination

failure among debt holders spurred by the fear that the bank would not have enough liquidity to repay the

debt claims. For any θ > θ∗ (k, `, r1, r2), all debt holders choose to roll over their debt claims and the bank is

solvent. To keep the notation simple, in what follows, we denote the thresholds θ(k, `, r1) and θ∗(k, `, r1, r2)

as θ and θ∗, respectively.

As illustrated in Figure 1, we can then distinguish three regions of fundamental θ: For θ ∈ [0, θ) a banking

crisis occurs and it is solvency-driven; for θ ∈ [θ, θ∗) a bank failure is liquidity-driven; finally, for θ > θ∗ no

banking crisis occurs.

Insert Figure 1

Similarly to the threshold for solvency crises θ, also θ∗ depends on the level of bank capitalization k and

its portfolio liquidity `, as well as on r1 and r2. While the effects of the interest rates r1 and r2 on θ
∗ are

straightforward, with the former increasing the crisis threshold and the latter decreasing it, the effects of

bank capital and liquidity are more involved. The following lemma illustrates the channels through which

changes in the level of bank capitalization and its portfolio liquidity affect the threshold of a liquidity crisis,

respectively, for given r1 and r2.

Lemma 1 The sign of the effect of capital k on θ∗
(
i.e., ∂θ

∗

∂k

)
is equal to the sign of

1

(1− k)
2

[
−
∫ n

n̂(θ∗)

R (θ∗) (1− α`)
(1− n)

dn+ `χ

∫ 1

n

1

n
dn

]
, (8)

while that of portfolio liquidity `
(
i.e., ∂θ

∗

∂`

)
corresponds to the sign of

1

(1− k) `

[∫ n

n̂(θ∗)

α`
R (θ∗)

1− n dn+ `χ

∫ 1

n

1

n
dn−

∫ n

n̂(θ∗)

R (θ∗) (1− k)nr1

(1− n) `χ
dn

]
. (9)

The lemma shows that changes in the level of bank capitalization and portfolio liquidity affect the
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likelihood of a liquidity crisis through different channels. The effect of capital on the threshold θ∗ is twofold.

On the one hand, an increase in capital reduces θ∗ since, by increasing the pro-rata share received by debt

holders at date 2 in the range [n̂ (θ) , n), greater capital increases debt holders’incentives to roll over. This

effect, as captured by the first term in (8), leads to a lower threshold θ∗. On the other hand, an increase

in capital also increases the pro-rata share received by debt holders at date 1 when the bank is facing a

run. This effect, which is captured by the second term in (8), increases the threshold θ∗. Despite being at

odd with common wisdom, this latter effect captures the crowding out associated with strengthening bank

capitalization: Increasing capital is a way for the bank to increase the proceeds for debt holders at date 1 at

the expenses of equity holders who are wiped out in the case of bank failure.

The effect of liquidity on the threshold θ∗ is threefold. First, as captured by the first term in (9), an

increase in bank portfolio liquidity translates into a lower (per unit) portfolio return at date 2 and, in turn,

into a lower pro-rata share if the bank fails at date 2 for the debt holders in the range [n̂ (θ) , n). This

increases debt holders’incentives to withdraw at date 1, thus increasing the threshold θ∗. In addition, the

threshold θ∗ increases further with liquidity since, similarly to the case of greater capital, banks with more

liquid portfolios can pay a higher pro-rata share to debt holders when the bank defaults at date 1, as captured

by the second term in (9). Finally, the third term in (9) represents the beneficial effect that an increase in

liquidity has on the pro-rata shares received by debt holders at date 2 in the range [n̂ (θ) , n) and, in turn,

on their incentives to roll over. A more liquid portfolio implies that the bank needs to liquidate fewer units

of its portfolio at date 1 to meet debt holders’withdrawals, thus leaving more resources for those who roll

their debt claim over to date 2. This is the commonly recognized beneficial effect of liquidity and the main

rationale behind the newly introduced liquidity regulation.

The overall effect of capital and liquidity on the threshold θ∗ depends on which of the various effects

illustrated above dominates. The following proposition shows that this crucially depends on the initial level

of bank capitalization and portfolio liquidity. We have the following result.

Proposition 3 The threshold θ∗ decreases with the level of capital k for any k ∈
[
k̃ (`) , 1

]
, and increases oth-

erwise
(
i.e., ∂θ

∗

∂k < 0 if k ≥ k̃ (`) and ∂θ∗

∂k > 0 otherwise
)
. The threshold θ∗ decreases with portfolio liquidity

` for any k ∈ (k (`) , k (`)), and increases otherwise
(
i.e., ∂θ

∗

∂` < 0 if k (`) < k < k (`) and ∂θ∗

∂` > 0 otherwise
)
.

The boundaries k̃ (`), k (`) and k (`) are defined in the appendix and lie below the curve kmax (`), which cor-

responds to the solution to (1− k) r1 = `χ.
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The proposition, which is also illustrated in Figure 2a and 2b, shows that bank capitalization and portfolio

liquidity jointly determine the effect that an increase in capital or liquidity has on bank stability.

Insert Figure 2a and 2b

We start from capital. The proposition shows that a marginal increase in the level of capital increases

the threshold θ∗ for banks positioned in the region below the curve k̃ (`), while it is beneficial otherwise. The

region bounded by the curve k̃ (`) identifies banks that are poorly capitalized and/or hold illiquid portfolios.

For those banks, a marginal increase in capital has a detrimental effect on stability because they are very

exposed to a failure at date 1, having a large amount of short term debt and/or little liquidity to face

withdrawal demands. Thus, debt holders of these banks attach a higher weight to the effect of capital on

their date 1 payoff than on that at date 2. The opposite is true for banks falling in the region above the

curve k̃ (`), which are characterized by higher levels of capital and/or portfolio liquidity.

Regarding liquidity, the proposition shows that a marginal increase in liquidity is beneficial only for banks

falling in the region between the curves k (`) and k (`) , that is for banks characterized by an intermediate

level of capitalization and/or portfolio liquidity. The reason is that those banks are not as exposed to the

same risk of failure at date 1 as banks in the region below k (`), but are still confronted with significant

strategic complementarities among debt holders’actions and, in turn, with liquidity problems. Thus, for

those banks holding a more liquid portfolio allows to liquidate fewer units at date 1 to repay withdrawing

debt holders and so increases the expected payoff for those who decided to roll over.

For banks in the region below k (`), liquidity has a detrimental effect on the threshold θ∗ for same reason

why capital is detrimental in the region below k̃ (`). By contrast, the negative effect of portfolio liquidity on

θ∗ in the region above k (`) hinges on the negative effect that liquidity has on the (per unit) return of bank’s

portfolio at date 2. Banks in this region are indeed characterized by high levels of capital and/or portfolio

liquidity and so are unlikely to fail because of liquidity considerations.

There are a number of interesting implications resulting from Proposition 3. First, increasing capital or

liquidity helps the banks that need this the least. An increase in the level of bank capitalization or portfolio

liquidity improves stability precisely for banks facing a lower threshold of liquidity crises thanks to their

better capitalization and liquidity positions, while it has a destabilizing effect for poorly capitalized banks

and those holding very illiquid portfolios.
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Second, the result that a marginal increase in liquidity undermines debt holders’incentives to roll over

and so increases θ∗ would also hold in the case of injection of emergency liquidity by a LOLR, which does

not affect bank’s portfolio returns and so does not give rise to a negative impact on profitability. In other

words, the detrimental effect of liquidity for poorly capitalized banks with illiquid portfolio does not depend

on the fact that more liquid portfolios tend to be less profitable.

Third, the results in the proposition suggest that the timing of a regulatory/supervisory intervention is

key: If banks are asked to recapitalize and/or hold more liquidity when a crisis is already underway (or is

likely), this may precipitate rather than contain bank distress.

To sum up, the analysis of the properties of the threshold θ∗shows that the same increase in capital or

liquidity may have very different effects on stability for weakly, moderately or strongly capitalized banks, as

well as for banks with low, moderate or high portfolio liquidity. In other words, it highlights the importance

of the interaction between capital and liquidity to assess their effects on stability. As we will show in details

below, this is crucial for the bank choice of capital and liquidity as well as for designing and evaluating

capital and liquidity regulation.

4 Market equilibrium: Bank choice

In this section, we characterize bank date 0 decisions about capital k, portfolio liquidity ` and interest rates

on debt {r1, r2}. A bank chooses these variables simultaneously to maximize its expected profits as given by

max
k,`,r1,r2

ΠB =

∫ 1

θ∗
[R (θ) (1− α`)− (1− k) r2] dθ − kρ (10)

st

IRD:
∫ θ∗

0

`χ

1− kdθ +

∫ 1

θ∗
r2dθ ≥ 1, (11)

ΠB ≥ 0, (12)

0 ≤ k ≤ 1, 0 ≤ ` ≤ 1. (13)

The bank chooses k, `, r1 and r2 to maximize its expected profits ΠB subject to a number of constraints.

The condition in (11) represents debt holders’participation constraint, which must hold with equality given

that banks have all bargaining power. For any θ < θ∗, all debt holders choose not to roll over their debt at
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date 1, the bank is forced to liquidate the entire portfolio and each debt holder receives the pro-rata share

of bank’s available resources `χ
1−k . For θ ≥ θ

∗, all debt holders choose to roll over the debt claim until date 2

and they receive the promised repayment r2. The condition in (11) states that debt holders’expected payoff

from providing funds to the bank must be at least equal to what they can get by storing their funds (i.e.,

1). The second constraint (12) is a non-negativity constraint on bank profit, while the last two conditions in

(13) are simply physical constraints on the level of capital and portfolio liquidity. The expression for ΠB in

(10) reflects bank’s limited liability in that the bank only repays debt holders when the return of the project

is suffi ciently high.

The solution to the bank’s maximization problem yields the following result.

Proposition 4 The market equilibrium features rB1 = 1, rB2 > 1 and the pair
{
kB , `B

}
as the solution to

−
[
∂θ∗

∂k
+
∂θ∗

∂r2

dr2

dk

]
[R (θ∗) (1− α`)− `χ] + ρ− 1 = 0, (14)

and

−
[
∂θ∗

∂`
+
∂θ∗

∂r2

dr2

d`

]
[R (θ∗) (1− α`)− `χ] +

∫ θ∗

0

χdθ −
∫ 1

θ∗
αR (θ) dθ = 0. (15)

The equilibrium pair
{
kB , `B

}
identifies a point in the region bounded by the curves k (`) and k (`) and

satisfies (1− k) rB1 > `χ so that liquidity crises occur in equilibrium.

In choosing its capital structure, a bank trades off the marginal benefit of capital with its marginal cost.

The former, as represented by the first term in (14), is the gain in expected profits [R (θ∗) (1− α`)− `χ]

induced by a lower probability of a liquidity-driven crisis, as measured by ∂θ∗

∂k . The latter, as captured by

the last two terms in (14), is the increase in funding cost ρ−1 associated with an increased reliance on equity

financing.

The choice of portfolio liquidity ` also trades off marginal benefit and cost. Similarly to the choice

of capital, the former is captured by the first term in (15) and represents the gain in expected profits

[R (θ∗) (1− α`)− `χ] due to the reduced probability of a liquidity-driven crisis, as measured by ∂θ∗

∂` . The

latter, instead, corresponds to the last two terms in (15) and captures the effect that an increase in liquidity

has on bank portfolio return at date 1 and 2.

At the optimum, banks always choose kB and `B in the range where both ∂θ∗

∂k < 0 and ∂θ∗

∂` < 0 as this

allows them to reduce exposure to crises and, in turn, financing cost, with an overall positive effect on their
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profits. Furthermore, they choose kB and `B so that the inequality (1 − k) > `χ holds even if this entails

liquidity-driven crises. The reason is that when kB and `B are such that (1 − k) = `χ, the cost of a bank

default in terms of reduced expected profits approaches zero.4 This implies that the marginal benefit of

increasing either k or ` in terms of lower crisis probability also approaches zero, while the marginal cost in

terms of higher funding costs and reduced portfolio return are still positive. Thus, banks have no incentives

to increase kB and `B up to the point where (1− k) = `χ holds and find it optimal, instead, to choose lower

levels for kB and `B , even though these foster strategic complementarity in debt holders’action and so are

consistent with the occurrence of liquidity crises.

5 Regulatory intervention

The market equilibrium characterized above entails two ineffi ciencies. First, banks’choice of k and ` spurs

the occurrence of liquidity crises and so entails an output loss. To see this, denote as TO the total output

generated in the market equilibrium. This corresponds to the sum of bank’s profit, debt holders’and equity

holders’payoffs and is, thus, equal to:

TO =

∫ 1

θ∗
[R (θ) (1− α`)− (1− k) r2] dθ − kρ+ (1− k)

∫ θ∗

0

`χ

1− kdθ + (1− k)

∫ 1

θ∗
r2dθ + kρ =

=

∫ θ∗

0

`χdθ +

∫ 1

θ∗
R (θ) (1− α`) dθ. (16)

When the bank is forced to liquidate its portfolio at date 1 in response to a massive withdrawal of funds by

debt holders, the resources produced in the economy correspond to the portfolio liquidation value `χ. Such

liquidation is ineffi cient for any θ > θE , where θE is the solution to

R (θ) (1− α`) = `χ, (17)

since, in the absence of liquidation, the bank would generate a higher portfolio return R (θ) (1− α`) at date

2. Importantly, from comparing (2), (7) and (17) it holds θE < θ < θ∗. This implies that in the market

equilibrium liquidity crises are always ineffi cient, while solvency crises are ineffi cient for θE < θ < θ. Note

that only when `χ = (1− k) r1, θ
E = θ and solvency crises are always effi cient. The total output loss TL

4When (1 − k) = `χ, θ∗ → θ and r∗2 = 1. Thus, R (θ) (1− α`) = (1− k) = `χ, banks make zero profits as all resources are
used to repay debt holders.
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spurred by ineffi cient crises at date 1 is then equal to

TL =

∫ θ∗

θE
[R (θ) (1− α`)− `χ] dθ. (18)

From (18), it is easy to see that the higher θ∗, the larger the loss TL in total output.

The second ineffi ciency of the market equilibrium derives from the fact that individual banks may not

internalize the consequences of their portfolio choices on market funding conditions. So far, we have considered

that banks choose the liquidity ` of their portfolios, thus obtaining a date 1 return `χ, where χ ≤ 1 is an

exogenous parameter independent of banks’choices. We now extend the baseline framework and consider

that banks’ level of indebtedness and portfolio liquidity affect market conditions as they determine the

quantity and type of assets sold in the market by banks at date 1. The idea is that banks access a secondary

market where they sell shares of their portfolios to obtain the funds needed to repay withdrawing debt holders

at date 1. Bank portfolios are acquired by outside investors endowed with a (finite) amount of wealth w > 0.

As common in the literature (see e.g., Acharya and Yorulmazer, 2008; Acharya, Shin and Yorulmazer, 2010;

Eisenbach, 2017), these investors may be less able than banks in managing the portfolios they acquire so that

transferring assets outside the banking sector may entail a loss of resources. Such a loss depends positively

on the amount of assets on sale relative to investors’overall wealth, as the more assets investors need to

manage the lower is their ability to do so.5

Assuming that the realization of θ is i.i.d. across banks, the quantity of bank portfolios sold in the

market, which we denote as Q, is equal to the fraction of banks failing at date 1 as a consequence of debt

holders’withdrawal decisions. Thus, similarly to Eisenbach (2017), we obtain that Q is a fixed point equal

to

Q = Pr (θ < θ∗) = θ∗ (k (χ (Q)) , ` (χ (Q)) , r2 (χ (Q)) , χ (Q)) . (19)

The expression in (19) shows that Q is a function of banks’choices of k, ` and r2 as well as of χ.

To capture the idea of fire sales due to asset redeployment, we thus assume that the market funding

5This is the case, for example, when banks’assets are used by investors as inputs for production and they have a decreasing
return to scale production technology or when assets managing costs increases with the amount of assets to be managed. In
both cases, the investors are willing to pay less for banks’portfolios, as the amount of asset on sale increases.
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conditions χ depend on investors’overall wealth w and the quantity of bank assets on sale as follows:

 χ = 1 if θ̂
∗

(w) > θ∗

χ (Q) < 1 if θ̂
∗

(w) < θ∗
, (20)

where θ̂
∗

(w) represents the maximum amount of assets that outside investors can handle without loss of

resources, with ∂θ̂
∗

∂w > 0 and ∂χ(Q)
∂Q < 0.

Similarly to the ineffi cient liquidation of banks’assets, we can specify the output loss associated with fire

sales in the case when θ̂
∗

(w) < θ∗ as given by

FS =

∫ θ∗

θ̂
∗
(w)

[χ (θ∗)− 1] dθ. (21)

From (21), it is easy to see that the loss associated with fire sales increases with θ∗, while it decreases

with investors’wealth since ∂θ̂
∗

∂w > 0.

Putting together the two ineffi ciencies described above, we can distinguish two cases. When θE < θ∗ <

θ̂
∗

(w) the market solution entails no fire sales and is only characterized by the ineffi cient liquidation of

banks’portfolio for θ in the interval (θE , θ∗]. When, instead, θ̂
∗

(w) < θE < θ∗, the market solution entails

both the ineffi cient liquidation of banks’portfolios, since θ∗ > θE , and fire sales, as θ̂
∗

(w) < θ∗. Which of

the two cases emerges depends on investors’wealth w, as well as on the banks’capitalization and portfolio

liquidity decisions.

It follows that the analysis of joint capital and liquidity regulation is meaningful only in the case when

θ̂
∗

(w) < θE < θ∗, since in such a case the market solution entails both the ineffi ciency related to fire sales

and to ineffi cient portfolio liquidation. Otherwise, that is for θE < θ∗ < θ̂
∗

(w), the market solution entails

no fire sales and the ineffi cient portfolio liquidation could be addressed by requiring banks to choose capital

and liquidity so that 1 − k = `χ
(
θE
)
holds. In fact, for any pair {k, `} on this curve, there is no longer

strategic complementarity among debt holders’actions so that θ∗ → θ and, as shown above, solvency crises

are effi cient, i.e., θ = θE .

In the next section, we analyze the joint effect of capital and liquidity regulation and study whether a

regulator can enforce both the effi cient liquidation of banks’assets (i.e., θ∗ → θE) and eliminate fire sales

(i.e., χ = 1). The introduction of a regulator modifies the timing as follows. At date 0, the regulator sets

the requirement(s) and then banks choose the unregulated variables. At date 1, debt holders receive their
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signal si and choose whether or not to roll over their debt claim. The model must be solved backward.

5.1 Capital and liquidity regulation

In this section, we analyze the case of a regulator that chooses capital and liquidity requirements to maximize

total output as specified in (16), while taking as given debt holders’withdrawal decisions as characterized

in Proposition 2, the debt contract {r1, r2} chosen by the bank and the non-negative profit constraint of

banks. Thus, formally, the regulator chooses the level of bank capital kR and portfolio liquidity `R at date

0 to solve the following problem:

max
kR,`R

∫ θ∗

0

`χ (Q) dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ

subject to

rB1 , r
B
2 = arg max ΠB ,

ΠB ≥ 0, 0 ≤ kR ≤ 1, 0 ≤ `R ≤ 1.

As discussed in Section 4, the bank promises debt holders a repament rB1 = 1 at date 1 and a repayment

rB2 ≥ 1 at date 2 that solves the debt holders’participation constraint in (11) with equality. Thus, the banks’

profits can be rearranged as

ΠB =

∫ θ∗

0

`χ (Q) dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ − (1− k)− kρ, (22)

and the regulator’s problem can be re-written as follows:

max
kR,`R

∫ θ∗

0

`χ (Q) dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ

subject to ∫ θ∗

0

`χ (Q) dθ +

∫ 1

θ∗
R (θ) (1− α`) dθ ≥ (1− k) + kρ. (23)

Essentially, the regulator’s problem boils down to choose `R and kR so to eliminate the two ineffi ciencies

plaguing the market solution whenever this is feasible vis-à-vis the constraint of bank’s non-negative profits.

Formally, this is the case when θE ≤ θ̂
∗
is consistent with ΠB ≥ 0. In this case, there are pairs {k, `} lying
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on the curve 1−k = `χ
(
θE
)
for which the liquidation of banks’assets entails no fire sales and banks accrue

non-negative profits. By contrast, eliminating both types of ineffi ciencies is not feasible when the pairs {k, `}

corresponding to a threshold θE = θ̂
∗
would entail negative profits for the banks. It follows that which case

emerges depends on the exogenous parameter of the model α, ρ and w through their effect on the thresholds

θ̂
∗
, θE and the financing cost for the bank. Clearly, higher values of α or ρ make the bank profit condition

in (23) more binding. Furthermore, from (17), it is easy to see that a higher α is associated, ceteris paribus,

with a higher θE , while a higher w is associated to a lower θ̂
∗
. In other words, θE ≤ θ̂

∗
is more likely to

emerge in economies in which liquidity and equity are not too costly for banks and where investors hold

abundant funds to buy banks’assets. The opposite is true in economies where both capital and liquidity

are very costly for banks and there are only limited resources to acquire banks’assets. The effectiveness of

regulation in eliminating the ineffi ciencies of the market solution depends then on whether the economy is

in the first or second case. We have the following result.

Proposition 5 Capital and liquidity requirements allow to restore full effi ciency, i.e., θ∗ → θE and

χ
(
θE
)

= 1 only in economies characterized by low α and ρ and high w. In economies characterized by

high α, ρ and low w, the regulator can either enforce effi cient liquidation of banks’assets but having fire sales

(i.e., θ∗ → θE and χ
(
θE
)
< 1) or reduce the fire sales χ (θ) < χ

(
θE
)
, but induce too little liquidation of

banks’assets (i.e., θ∗ → θ < θE).

The proposition shows that the effectiveness of capital and liquidity regulation in correcting the ineffi -

ciencies of the market equilibrium depends on the underlying features of the economy: the tightness of the

market for banks’assets, as captured by w, the cost of bank equity ρ and that of portfolio liquidity α. By

affecting the threshold θ̂
∗
, market tightness determines the severity of fire sales, that is whether or not fire

sales occur in an economy where the liquidation of banks’portfolio is effi cient. By contrast, the cost of

bank equity and portfolio liquidity affect bank profit and thus determine the feasibility of given capital and

liquidity requirements. When market conditions are good and bank equity and liquidity are not too costly,

the regulator can eliminate both ineffi cient portfolio liquidation and fire sales by selecting a pair {k, `} such

that θ∗ → θ = θE ≤ θ̂
∗
. When this is not feasible, as it is the case when market conditions are tight and/or

the cost of bank equity and portfolio liquidity is high, the regulator needs to choose between enforcing the

effi cient liquidation of the banks’asset and reducing the severity of fire sales. This means, in other words,

that he must choose between a pair {k, `} on the curve 1 − k = `χ
(
θE
)
, which would be associated with
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χ
(
θE
)
< 1, and a pair {k, `} for which 1 − k < `χ (θ) holds and χ (θ) < χ

(
θE
)
. The regulator will select

the option that is associated with the highest level of total output or, in other words, that minimizes the

associated output losses. When

∫ θE

θ

` [χ (θ)− 1] dθ >

∫ θE

θ

[`χ (θ)−R (θ) (1− α`)] dθ, (24)

it means that the gains from reducing the fire sales, as captured by the LHS in (24), is larger than the loss

associated with the ineffi cient liquidation of the banks’assets, as given by the RHS in (24). The inequality

above can be further rearranged as follows

∫ θE

θ

[R (θ) (1− α`)− `] dθ < 0.

Thus, the regulator would choose
{
kR, `R

}
such that 1−k < `χ (θ) holds when

∫ θE
θ

[R (θ) (1− α`)− `] dθ < 0.

The opposite is true if
∫ θE
θ

[R (θ) (1− α`)− `] dθ > 0. In this case, the regulator would choose
{
kR, `R

}
such

that 1− k = `χ
(
θE
)
holds, despite this entails a larger fire sale loss.

6 Concluding remarks

In this paper we develop a model where banks are exposed to both solvency and liquidity crises and both

banks’and debt holders’decisions are endogenously determined. The paper offers a convenient framework to

evaluate the implications of bank capital and liquidity on the likelihood of crises, as it allows to endogenize

the probability of crises, distinguish their different type, and account for the different effects that changes in

bank capital structure and portfolio liquidity have on each of them.

One of the main implications of the analysis is that, in order to be beneficial for stability, regulation

should be designed considering both sides of banks’balance sheet. The same (marginal) increase in capital

and liquidity may be beneficial for some banks, while detrimental for others. Real world regulatory tools

like risk-weighted capital ratio (RWC), liquidity coverage ratio (LCR) or net stable funding ratio (NSFR)

seem to fulfil this criterion, as they specify a ratio between banks’assets and liabilities (see Cecchetti and

Kashyap, 2018).

The analysis of the impact of capital and liquidity on bank stability is also the starting point to character-

ize optimal regulation. In our framework, public intervention in the form of capital and liquidity requirements
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is desirable as the market equilibrium is plagued by two ineffi ciencies. First, banks choose levels of capital-

ization and portfolio liquidity that are consistent with the occurrence of liquidity crises and, as such, lead to

ineffi cient portfolio liquidation. Second, in choosing their capital structure and portfolio liquidity banks do

not internalize the effect that such choices have on market funding conditions that is on the existence and

severity of fire sales.

We show that when market funding conditions for the banks are tight, the cost of capital and liquidity

for banks are high, the regulator is not able to fully restore effi ciency so that the regulator’s solution entails

either too little liquidation of banks’assets but reduced fire sales or the effi cient liquidation of the banks’

assets with fire sale.
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8 Appendix

Proof of Proposition 1: Denote as f(θ, k, `, r1) = 0 the condition pinning down the threshold θ(k, `, r1)

as given in (2). By using the implicit function theorem, we have that

∂θ(k, `, r1)

∂k
= −

∂f(θ,k,`,r1)
∂k

∂f(θ,k,`,r1)
∂θ

,
∂θ(k, `, r1)

∂`
= −

∂f(θ,k,`,r1)
∂`

∂f(θ,k,`,r1)
∂θ

, and
∂θ(k, `, r1)

∂r1
= −

∂f(θ,k,`,r1)
∂r1

∂f(θ,k,`,r1)
∂θ

.

The denominator ∂f(θ,k,`,r1)
∂θ = R′ (θ) (1 − α`) > 0 as R′ (θ) > 0. Thus, the sign of ∂θ(k,`,r1)

∂k , ∂θ(k,`,r1)
∂` , and

∂θ(k,`,r1)
∂r1

are equal to the opposite sign of the respective numerators. Deriving (2) with respect to k, ` and

r1, we obtain

∂f(θ, k, `, r1)

∂k
= r1 > 0,

∂f(θ, k, `, r1)

∂`
= −R (θ)α < 0

and
∂f(θ, k, `, r1)

∂r1
= − (1− k) < 0,

which imply ∂θ(k,`,r1)
∂k < 0, ∂θ(k,`,r1)

∂` > 0 and ∂θ(k,`,r1)
∂r1

> 0. Thus, the proposition follows. �

Proof of Proposition 2: The proof follows closely that in Goldstein and Pauzner (2005) since the model

also exhibits the property of one-sided strategic complementarity. We start by characterizing a region where

the state of the economy θ takes extremely high values and we refer to this region as the upper dominance

region. The upper dominance region of θ corresponds to the range
[
θ̄, 1
]
in which fundamentals are so good

that all debt holders roll over at date 1. As in Goldstein and Pauzner (2005), we construct this region by

assuming that, in this range, the investment is safe and returns R (1) (1− α`) both at date 1 and 2. Given

that r1 < r2 < R (1) (1− α`), this ensures that repaying r1 to the (1− k)n withdrawing debt holders does

not affect bank’s ability to repay r2 to the debt holders rolling over the debt until date 2. Then, when an

investor receives a signal such that he believes that the fundamental θ are in the upper dominance region,

he is certain to receive the promised payment r2, irrespective of his beliefs on other debt holders’action and

so he does not have any incentive to withdraw early. In what follows, we assume that θ → 1.

The upper dominance region is the mirror image of the range [0, θ (k, `, r1)) characterized in the text

in that when both θ < θ (k, `, r1) and θ ≥ θ, debt holders have a dominant strategy and their actions are

independent of what others do. Besides these extreme ranges of values of the state of the economy θ, a debt

holder’s rollover decision depends on what he expects the other investors do and so on the signal he receives.

Assume that debt holders behave accordingly to a threshold strategy, that is each debt holder withdraw

at date 1 if he receive a signal below s∗ and rolls over otherwise. Then, the fraction of debt holders not rolling

over the debt claim n is equal to the probability of receiving a signal below s∗. Given that debt holders’

signal are independent and uniformly distributed in the range [θ − ε, θ + ε], n (s∗, θ) is equal to

n (s∗, θ) =


1 if θ ≤ s∗ − ε

s∗−θ+ε
2ε if s∗ (k, `)− ε ≤ θ ≤ s∗ (k, `) + ε

0 if θ ≥ s∗ + ε

. (25)
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When θ is lower than s∗− ε, all (1− k) debt holders receive a signal below s∗ and they withdraw at date

1. On the contrary, when θ is higher than s∗ + ε, all (1− k) debt holders receive a signal above s∗ and, as a

result, decide to roll over their debt claim. In the intermediate range of fundamental, when s∗−ε ≤ θ ≤ s∗+ε,
there is a partial runs, in that only some debt holders withdraw at date 1. The proportion of those not

rolling over their debt claim decreases linearly with θ, as fewer investors observe a signal below the threshold

s∗.

Denote as ∆ (si, n (s∗, θ)), a debt holder’s expected utility differential between rolling over the debt claim

until date 2 and withdrawing it at date 1 when all agents are assumed to behave accordingly to the same

threshold strategy s∗. We have

∆ (si, n (s∗, θ)) =
1

2ε

∫ si+ε

si−ε
(π2 − π1) dθ,

with π2 and π1 as given by (4) and (3), respectively. The following lemma states a few properties of the

function ∆ (si, n (s∗, θ)).

Lemma 2 i) The function ∆ (si, n (s∗, θ)) is continuos in si; ii) for any a > 0, ∆ (si + a, n (s∗, θ) + a) is

non-decreasing in a; iii) ∆ (si, n (s∗, θ)) is strictly increasing in a if there is a positive probability that n < n

and θ < θ.

Proof of Lemma 2: The proof follows Goldstein and Pauzner (2005). The function ∆ (.) is continuous

in si, as si only changes the limits of integration in the formula for ∆ (si, n (s∗, θ)). To show that the

function ∆ (si, n (s∗, θ)) is non-decreasing in a, we need first to show that (π2 − π1) is non-decreasing in θ.

As θ increases, we have two effects. First, a higher θ implies that R (θ) is higher, thus increasing the date 2

payoff in the range n̂ (θ) < n ≤ n. Second, a change in θ affects the threshold n̂ (θ) as follows.

∂n̂ (θ)

∂θ
= R′ (θ) (1− α`)

[
R(θ)(1−α`)r1

`χ − r2

]
− [R (θ) (1− α`)− (1− k) r2] r1`χ

(1− k)
[
R(θ)(1−α`)r1

`χ − r2

]2 =

=
R′ (θ) (1− α`)

(1− k)
[
R(θ)(1−α`)r1

`χ − r2

]2 r2

[
r1

`χ
(1− k)− 1

]
> 0,

since R′ (θ) > 0 and (1− k) r1 > `χ. Thus, since the interval [0, n̂ (θ)] where the utility differential π2 − π1

is the highest becomes larger, while the range (n, 1] is unaffected by a change in θ, the date 2 payoff also

increases so that the utility differential π2 − π1 is non-decreasing in θ. This also implies that ∆ (si, n (s∗, θ))

is non-decreasing in a, as when a increases, debt holders see the same distribution of n but expects θ to be

larger. The function ∆ (si, n (s∗, θ)) is strictly increasing in a since when n < n and θ < θ, π2−π1 is strictly

increasing in θ. �
Since the rest of the proof follows closely that in Goldstein and Pauzner (2005) we omit it here and only

specify the condition pinning down the threshold s∗. A debt holder who receives the signal s∗ is indifferent

between rolling over the debt claim until date 2 and withdrawing it at date 1. The threshold s∗ can be
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computed as the solution to

f (θ, k, `) =

∫ n̂(s∗)

0

r2dn+

∫ n̄

n̂(s∗)

R (θ (n)) (1− α`)
[
1− (1−k)nr1

`

]
(1− k) (1− n)

dn−
∫ n̄

0

r1dn−
∫ 1

n̄

`χ

(1− k)n
dn = 0, (26)

where from (25), we obtain θ (n) = s∗ + ε− 2ε n
1−k and n̂ (s∗) solves R (θ (n)) (1− α`)

[
1− (1−k)nr1

`χ

]
− (1−

k) (1− n) r2 = 0. At the limit, when ε→ 0, θ (n)→ s∗ and we denote it as θ∗.

To complete the proof, we need to show that the bank is solvent for any θ > θ∗. To do that we need to

exclude the possibility that the bank fails despite debt holders rolling over the debt until date 2. Denote as

θ̂ the level of fundamental at which, even when all debt holders roll over the debt claim the bank fails at

date 2. The threshold θ̂ solves

R (θ) (1− α`)− (1− k) r2 = 0.

Then, to show that the bank is always solvent for any θ > θ∗, we need to show that the threshold θ∗

characterized in (26) larger than θ̂. To see this, denote as θ̃ the level of θ at which the bank is at the margin

between failing and being solvent at date 2. Then, θ̃ is the solution to

R (θ) (1− α`)
[
1− (1− k)n (s∗, θ) r1

`χ

]
− (1− k) (1− n (s∗, θ)) r2 = 0, (27)

where n
(
s∗, θ̃

)
is given in (25). Rearranging (25) as

R (θ) (1− α`)− (1− k) r2 − n (s∗, θ)

[
R (θ) (1− α`) (1− k) r1

`χ
− (1− k) r2

]
= 0,

it is easy to see that (25) is negative when evaluated at θ = θ̂ when (1− k) r1 > `χ holds. Thus, since (25)

is increasing in θ, it follows that θ̃ > θ̂.

The equilibrium in debt holders’withdrawal decision characterized in the proposition corresponds to the

pair {s∗, θ∗} solving (27) and the indifference condition as given by π2 − π1 = 0 after the change of variable

using θ (n) = s∗ + ε − 2ε n
1−k . Thus, it is the case that, when ε → 0, s∗ → θ∗ = θ̃ > θ̂ and the proposition

follows. �

Proof of Lemma 1: We compute the effect of capital and liquidity on θ∗
(
i.e., ∂θ

∗

∂k and ∂θ∗

∂`

)
by using

the implicit function theorem as follows:

∂θ∗

∂k
= −

∂f(θ∗,k,`)
∂k

∂f(θ∗,k,`)
∂θ

and
∂θ∗

∂`
= −

∂f(θ∗,k,`)
∂`

∂f(θ∗,k,`)
∂θ

,
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with f (θ∗, k, `) is the equation pinning down θ∗, as defined in (26). The denominator ∂f(θ∗,k,`)
∂θ is given by

∂f (θ∗, k, `)

∂θ
=

∫ n̄

n̂(θ)

R′ (θ∗) (1− α`)
[
1− (1−k)nr1

`χ

]
(1− k) (1− n)

dn > 0

since the derivatives of the extremes of the integrals cancel out. Thus, the sign of ∂θ
∗

∂k and ∂θ∗

∂` are equal to

the opposite sign of ∂f(θ∗,k,`)
∂k and ∂f(θ∗,k,`)

∂` , respectively.

We start from ∂f(θ∗,k,`)
∂k . Deriving (26) with respect to k and multiplying it by −1, we obtain the

expression in (8) since the derivatives of the extremes of integrals cancel out.

Similarly, differentiating (26) with respect to `, after a few manipulation and multiplying it by −1, we

obtain the expression in (9), as the derivatives of the extremes of integrals cancel out. Thus, the lemma

follows. �

Proof of Proposition 3: The proof proceeds in steps and builds on the results derived in the Lemma

1.

First, denote as kmax (`) the solution to (1− k) r1 = `χ. It is easy to see that kmax (`) decreases with `,

kmax (0) = 1 and kmax (1) = 1− χ
r1
. When k → kmax (`), the threshold θ∗ → θ. To see this, we can rearrange

the expression in (26) as follows:

∫ ñ(θ)

0

min

r2,
R (θ) (1− α`)

[
1− (1−k)nr1

`χ

]
(1− k) (1− n)

− r1

 dn+ (28)

+

∫ n̄

ñ(θ)

R (θ) (1− α`)
[
1− (1−k)nr1

`χ

]
(1− k) (1− n)

− r1

 dn− ∫ 1

n̄

`χ

(1− k)n
dn,

with n = `χ
(1−k)r1

and ñ (θ) = R(θ)(1−α`)−(1−k)r1

(1−k)[R(θ)(1−α`)`χ −1]r1
denoting the proportion of debt holders withdrawing at

date 1 at which the bank’s resources at date 2 are exactly enough to pay r1 to the debt holders rolling over

the debt claim until date 2. When k → kmax (`), n→ ñ (θ)→ 1 and the expression above simplifies to

∫ 1

0

min

r2,
R (θ) (1− α`)

[
1− (1−k)nr1

`χ

]
(1− k) (1− n)

− r1

 = 0.

Since r1 ≥ 1 and r2 > r1, θ
∗ solves R(θ)(1−α`)

(1−k) − r1 = 0, which is equivalent to the equation pinning down θ,

as given in (2).

Second, we rearrange the expression in (8) as follows:

R (θ∗) (1− α`)Log
[

1− n
1− n̂ (θ∗)

]
− `χLog[n]. (29)

The first term is negative since n > n̂ (θ∗) and so 1−n
1−n̂(θ∗) < 1, while the second one is positive since n < 1.

Using n = `χ
(1−k)r1

and n̂ (θ∗) = R(θ∗)(1−α`)−(1−k)r2

(1−k)
[
R(θ∗)(1−α`)r1

`χ −r2
] , after a few manipulations, the expression above can
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be rewritten as follows:

Log

(1− `χr2

R (θ∗) (1− α`) r1

)R(θ∗)(1−α`)
`χ

− Log [( `χ

(1− k) r1

)]
. (30)

Denote as k̃ (`) the solution to Log

(1− `χr2
R(θ∗)(1−α`)r1

)R(θ∗)(1−α`)
`χ

− Log [( `χ
(1−k)r1

)]
= 0. The expression

in (30) can be rearranged as

k̃ (`) = 1− `χ

r1
(Λ)
−
R(θ∗)(1−α`)

`χ , (31)

where Λ =
(

1− `χr2
R(θ∗)(1−α`)r1

)
. Since for any pair {k, `}, θ∗ varies between θ and θ → 1, it holds that

k̃ (`) < kmax (`) for any ` ∈ (0, 1), since kmax (`) = 1− `χ
r1
and (Λ)

−
R(θ∗)(1−α`)

`χ > 1. Furthermore, from (31),

it follows that k̃ (`)→ 1, when `→ 0 and that k̃ (`) = 0 requires ` > 0.

Consider a pair {k, `} in the region above kmax (`). Since in this region, ∂θ
∗

∂k < 0 and it is zero on the

curve k̃ (`), it must be the case that ∂θ∗

∂k < 0 in the region between k̃ (`) and kmax (`). Consider now a pair

{k, `} below the curve k̃ (`) and close to the axes origin. For k << 1 and ` → 0, the expression in (30) is

positive since the second term approaches to −∞, while the is equal to

Lim`→0
R (θ∗) (1− α`)

`χ
Log [Λ] = Lim`→0

Log [Λ]
`χ

R(θ∗)(1−α`)
,

and using l’Hopital’s rule, after a few manipulations, we obtain

Lim`→0
R (θ∗) (1− α`)

`χ
Log [Λ] = −

r2
r1

χ
Lim`→0[R(θ∗)(1−α`)]

χ
Lim`→0[R(θ∗)(1−α`)]

= −r2

r1
< 0,

where Lim`→0 [R (θ∗) (1− α`)] is equal to a finite number. This implies that ∂θ∗∂k > 0 for k << 1 and `→ 0.

Since the derivative ∂θ∗

∂k is zero on the curve k̃ (`), by continuity it stays positive below k̃ (`).

Consider now the effect of liquidity ` on θ∗. The expression (9) determining the sign of ∂θ
∗

∂`

(
i.e., − ∂f(θ,k,`)

∂`

)
can be rearranged as follows, after adding and subtracting 1

(1−k)`

∫ n̄
n̂(θ∗)

R(θ∗)
1−n dn:

∂f (θ∗, k, `)

∂`
=

1

(1− k) `

[∫ n̄

n̂(θ∗)

R (θ∗) (1− α`)
1− n dn− `χ

∫ 1

n̄

1

n
dn−

∫ n̄

n̂(θ∗)

R (θ∗)

(1− n)

(
1− (1− k)nr1

`χ

)
dn

]
.

Since, from (8), we have that ∂f(θ,k,`)
∂k = 1

(1−k)2

[∫ n̄
n̂(θ∗)

R(θ∗)(1−α`)
1−n dn− `χ

∫ 1

n̄
1
ndn

]
, we can write

∂f (θ∗, k, `)

∂`
=

(1− k)

`

∂f (θ, k, `)

∂k
− 1

(1− k) `

∫ n̄

n̂(θ∗)

R (θ∗)

(1− n)

(
1− (1− k)nr1

`χ

)
dn =

=
1

`

[
(1− k)

∂f (θ, k, `)

∂k
− 1

(1− k)

∫ n̄

n̂(θ∗)

R (θ∗)

(1− n)

(
1− (1− k)nr1

`χ

)
dn

]
. (32)
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From (32), then, it is easy to see that when k ≤ k̃ (`) ∂f(θ,k,`)
∂` < 0, as ∂f(θ∗,k,`)

∂k ≤ 0. This implies that
∂θ∗

∂` > 0. Furthermore, since for any k ≥ kmax (`), the relevant threshold is θ and, from (2), it holds ∂θ∂` > 0,

we have that an increase in liquidity has a detrimental effect on stability for k ≤ k̃ (`) and k ≥ kmax (`).

Consider now the range
(
k̃ (`) , kmax (`)

)
. We want to show that in this range there are levels of

bank capitalization k for which increasing liquidity leads to a lower probability of panic-driven runs, i.e.,
∂f(θ∗,k,`)

∂` < 0 for some k ∈
(
k̃ (`) , kmax (`)

)
. To do this, we need to show that there exist a region of k and

`, where the expression in the bracket in (9) is negative. After a few manipulation, we can rearrange it as

follows:

R (θ∗) (1− α`)Log (Λ)n−R (θ∗)Log (Λ) (1− n) +R (θ∗)n−R (θ∗) n̂ (θ∗)− `χLog (n)n,

where Log (Λ) = −
∫ n
n̂(θ∗)

1
1−ndn and n = `χ

(1−k)r1
. Adding and subtracting R (θ∗)α`Log (Λ) to the expression

above, it can be further rearranged as follows:

−R (θ∗) (1− α`)Log (Λ)n−R (θ∗)Log (Λ) +R (θ∗)n−R (θ∗) n̂ (θ∗) +R (θ∗)Log (Λ)n (33)

+[R (θ∗)Log (Λ)− `χLog (n)]n.

The term in the square bracket in (33) is negative for k ≥ k̃ (`) becauseR (θ∗) |Log (Λ)| > R (θ∗) (1− α`) |Log (Λ)|
and R (θ∗) (1− α`) |Log (Λ)| = `χ |Log (n)| at k = k̃ (`). Denote as kT (`) the level of capital and liquidity

at which the terms in the first four terms sum up to zero. The curve kT (`) lies below kmax (`) and above

k̃ (`). Too see this, we can rearranged the first four terms in (33) as follows:

∫ n

n̂(θ∗)

R (θ∗)

1− n

[
−(1− α`) `χ

(1− k) r1
+ 1− n (1− k) r1

`χ

]
dn

It is easy to see that the expression in the square bracket is increasing in k. When k = k̃ (`), the terms in

the bracket sum up to − (1− α`) (Λ)
R(θ∗)(1−α`)

`χ + 1 − n (Λ)
−
R(θ∗)(1−α`)

`χ . Evaluating this at n = n̂ (θ∗), we

obtain − (1− α`) (Λ)
R(θ∗)(1−α`)

`χ + 1 − r1, which is smaller than 0 since r1 ≥ 1 . Then, when k = kT (`), it

follows that ∂θ
∗

∂` < 0 because [R (θ∗) (1− α`)Log (Λ)− `χLog (n)] < 0 for any k > k̃ (`).

Given that k̃ (`) < kT (`) < kmax (`) and ∂θ∗

∂` > 0 for k ≤ k̃ (`) and k ≥ kmax (`), by continuity, there

must exist two thresholds k (`) ∈
(
k̃ (`) , kT (`)

)
and k (`) ∈

(
kT (`) , kmax (`)

)
, such that ∂θ∗

∂` > 0 for

k̃ (`) < k < k (`) and ∂θ∗

∂` < 0 for k (`) < k < k (`). Thus, the proposition follows. �

Proof of Proposition 4: The choice of r1 is straightforward as r1 does not enter in (11) and negatively

affects bank profit ΠB since ∂θ∗

∂r1
> 0. Thus, the bank optimally sets rB1 = 1. The rest of the proof proceeds

in steps. First, we characterize the equilibrium choice of k, ` and r2. Second, we show that in equilibrium

banks choose k and ` in such a way that (1− k) r1 > `χ holds in equilibrium so that liquidity crises occur.

Finally, we show that the equilibrium k and ` are consistent with ∂θ∗

∂k < 0 and ∂θ∗

∂` < 0.

Before starting solving the bank’s problem, it is important to notice that the interest rate r2 affects the

threshold θ∗ and it is chosen at date 0 from the debt holder’s participation constraint, thus anticipating the
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withdrawal threshold θ∗. Differentiating the LHS of (11) with respect to θ∗, we obtain

−
[
r2 −

`χ

1− k

]
+

∫ 1

θ∗

dr2

dθ∗
dθ, (34)

where dr2
dθ∗ can be computed using the implicit function theorem from (26) and it is then equal to

−
∫ n̄
n̂(θ)

R′(θ∗)(1−α`)
[
1− (1−k)nr1

`χ

]
(1−k)(1−n) dn∫ n̂(θ)

0
dn

< 0.

This implies that the expression in (34) is negative and so each pair {k, `} implements only one θ∗.
Now we move on to solve bank’s optimal choice. The conditions (14) and (15) in the proposition are

obtained by substituting r2 from (11) into (10) and differentiating it with respect to k and `.

To prove that the bank’s choice is always consistent with ∂θ∗

∂k < 0 and ∂θ∗

∂` < 0, we show that the effect

of a change in k and ` on the threshold θ∗, even accounting for the indirect effect of k and ` on θ∗ via r2, is

positive when ∂θ∗

∂k > 0 and ∂θ∗

∂` > 0. Since bank’s profits in (10) are strictly decreasing in both θ∗ and r2, it

follows that in equilibrium k and ` are chosen such that ∂θ
∗

∂k < 0 and ∂θ∗

∂` < 0 hold.

We can compute the total effect of k on θ∗ dθ
∗

dk as follows. Implicitly differentiating (11) with respect to

k, we obtain

dθ∗

dk
= −

∫ θ∗
0

`χ
(1−k)2

dθ +
∫ 1

θ∗
dr2
dk dθ

−
[
r2 − `x

(1−k)

]
+
∫ 1

θ∗
dr2
dθ∗ dθ

,

where ∂r2
∂θ∗ < 0 and ∂r2

∂k is obtained by implicitly differentiating (26) and is equal to

dr2

dk
= −

∂f(θ∗,k,`)
∂k

∂f(θ∗,k,`)
∂r2

.

Given that ∂f(θ∗,k,`)
∂r2

> 0, as long as ∂f(θ∗,k,`)
∂k < 0, dr2dk > 0 and dθ∗

dk > 0 since −
[
r2 − `x

(1−k)

]
+
∫ 1

θ∗
∂r2
∂θ∗ dθ < 0.

As shown in the proof of Proposition 3, ∂f(θ∗,k,`)
∂k < 0 when k < k̃ (`). Following the same steps to compute

dθ∗

d` , we have that

dθ∗

d`
= −

∫ θ∗
0

`
(1−k)dθ +

∫ 1

θ∗
dr2
d` dθ

−
[
r2 − `x

(1−k)

]
+
∫ 1

θ∗
dr2
dθ∗ dθ

,

with
∂r2

∂`
= −

∂f(θ∗,k,`)
∂`

∂f(θ∗,k,`)
∂r2

.

The derivative dr2d` and, in turn,
dθ∗

d` are positive when
∂f(θ∗,k,`)

∂` < 0. As shown in the proof of Proposition

3, this is the case for any k < k (`) and k > k (`). Thus, the bank would only choose a pair {k, `} in the
region bounded by the curves k (`) and k (`).

To complete the proof, we need to show that the equilibrium k and ` satisfy (1− k) r1 > `χ. To see this,
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we rearrange the first order conditions for k and `:

−∂θ∗∂k [R (θ∗) (1− α`)− (1− k) r2] +
∫ 1

θ∗
r2dθ − ρ

+dr2
dk

{∫ 1

θ∗
(1− k) dθ − ∂θ∗

∂r2
[R (θ∗) (1− α`)− (1− k) r2]

}
= 0

, (35)

and

−∂θ∗∂` [R (θ∗) (1− α`)− (1− k) r2]−
∫ 1

θ∗
αR (θ) dθ

+dr2
d`

{∫ 1

θ∗
(1− k) dθ − ∂θ∗

∂r2
[R (θ∗) (1− α`)− (1− k) r2]

}
= 0

. (36)

Assume that a bank sets `χ = (1− k) r∗1 = (1− k). From (11), it follows immediately that r∗2 = 1. Then,

the expression (35) simplifies to

∫ 1

θ∗
r2dθ − ρ+

dr2

dk

∣∣∣∣
(1−k)=`χ

∫ 1

θ∗
(1− k) dθ < 0,

since ρ > 1 and dr2
dk can be computed using the implicit function theorem on (11) and is, then equal to

dr2

dk

∣∣∣∣
(1−k)=`χ

= −

∫ θ∗
0

`χ
(1−k)2

dθ∫ 1

θ∗
dθ

< 0.

Similarly, the expression (36) simplifies to

−
∫ 1

θ∗
αR (θ) dθ +

dr2

d`

∣∣∣∣
(1−k)=`χ

∫ 1

θ∗
(1− k) dθ < 0,

with
dr2

d`

∣∣∣∣
(1−k)=`χ

= −
∫ θ∗

0
χ

(1−k)dθ∫ 1

θ∗
dθ

< 0.

The fact that both (35) and (36) are negative when evaluated at (1− k) = `χ implies that the bank will

always choose a lower level of k and `, so that the inequality (1− k) > `χ holds in equilibrium. This, in turn,

implies that r∗2 > 1 for the (11) to be satisfied. Thus, the proposition follows. �

Proof of Proposition 5: Evaluating the expression for banks’profits as given in (22) when 1 − k =

`χ
(
θE
)
, we obtain ∫ θE

0

`χ
(
θE
)
dθ +

∫ 1

θE
R (θ) (1− α`) dθ − (1− k)− kρ, (37)

where θE is given by (17). It easy to see that banks’profits in (37) decreases with ρ. Simlarly, differentiating

(37) with respect to α gives

−∂θ
E

∂α

[
R
(
θE
)

(1− α`)− `χ
(
θE
)]

+

∫ θE

0

`χ′α

(
θE
)
dθ −

∫ 1

θE
`R (θ) dθ < 0,
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since the first term is zero and χ′α
(
θE
)

= ∂χ(.)
∂Q

dθE

dα = ∂χ(.)
∂Q

`

R′(θE)(1−α`) < 0 since ∂χ(.)
∂Q < 0. This implies

that, for given {k, `}, the non-negative profit condition becomes more binding when α and ρ increase.

Furthermore, θE increases with α and θ̂
∗
decreases with w. Thus, for given ρ and w, the larger α, the higher

θE and the lower ΠB . Similarly, for given α and w, the larger ρ, the lower ΠB . It follows that for large α

and ρ, there are fewer pairs {k, `} consistent with ΠB ≥ 0 for which θE ≤ θ̂
∗
holds. For given α and ρ, since

∂θ̂
∗

∂w > 0, as w increases, the set of pairs {k, `} consistent with ΠB ≥ 0 for which θE ≤ θ̂
∗
widens. Thus, the

proposition follows. �
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Figure 1: Debt holders’ withdrawal decisions and banking crises. The figure illustrates debt holders’ withdrawal decisions as a function of the fundamentals 

of the economy 𝜃. In the range for  𝜃 < 𝜃∗(𝑘, ℓ), debt holders choose not to roll over their debt claim, thus forcing the bank to default at date 1. In the 

region in which a bank default occurs, crises can be distinguished into solvency-driven ones for 0 < 𝜃 < 𝜃(𝑘, ℓ)) and liquidity-driven ones for 𝜃(𝑘, ℓ) < 𝜃 <

𝜃∗(𝑘, ℓ). The former are driven by debt holders’ expectation of a low realization of the fundamentals of the economy 𝜃, while the latter are due to debt 

holders’ fear that others will not roll over their debt claim.  



 

Figure 2a: Effect of capital on financial stability Figure 2b: The figure shows that the effect of capital on financial stability depends on the initial level of bank 

capitalization 𝑘 and portfolio liquidity ℓ. Capital has a detrimental effect on stability (i.e., 
𝜕𝜃∗(𝑘,ℓ)

𝜕𝑘
> 0) when the level of bank capitalization or portfolio 

liquidity are low, as it is the case in the region below 𝑘̃(ℓ). For high values of bank capitalization and/or portfolio liquidity, as it is the case in the region 

above the curve 𝑘 > 𝑘̃(ℓ), an increase in capital reduces bank failure probability. Thus, 
𝜕𝜃∗(𝑘,ℓ)

𝜕𝑘
< 0 in the region between  𝑘̃(ℓ) and 𝑘𝑚𝑎𝑥(ℓ) and  

𝜕𝜃(𝑘,ℓ)

𝜕𝑘
< 0 in the region above 𝑘𝑚𝑎𝑥(ℓ), as in this region only solvency crises occur. 



 

Figure 2b: Effect of liquidity on financial stability. The figure shows that the effect of liquidity on financial stability depends on the initial level of capital 𝑘 

and on the liquidity of bank portfolio ℓ. Liquidity has a detrimental effect on stability (i.e., 
𝜕𝜃∗(𝑘,ℓ)

𝜕ℓ
> 0) when the level of bank capitalization and/or 

portfolio liquidity are either low or high, as it is the case in the regions above the curve 𝑘(ℓ) and below the curve 𝑘(ℓ). For intermediate values of bank 

capitalization and/or portfolio liquidity, as it is the case in the region between the curves 𝑘(ℓ) and 𝑘(ℓ), higher portfolio liquidity reduces the probability of 

a liquidity crisis (i.e., 
𝜕𝜃∗(𝑘,ℓ)

𝜕ℓ
< 0).  


