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1 Introduction

A central problem in public finance is to design a tax and transfer system to pay

for public goods and provide insurance to unfortunate individuals while minimally

distorting labor supply and investments in physical and human capital. One potentially

important tool for mitigating tax distortions is “tagging”: letting tax rates depend on

observable, hard-to-modify personal characteristics. This idea was proposed first by

Akerlof (1978) and has recently gained new attention in the policy debate (see, for

example, Banks and Diamond, 2010). Recent contributions in this literature have

demonstrated that indexing tax rates by age can capture most of the potential welfare

gains from fully optimal, history-dependent policies (e.g., Farhi and Werning 2013;

Golosov, Troshkin, and Tsyvinski 2016; Stantcheva forthcoming; and Weinzierl, 2011).

The purpose of this paper is to study optimal taxation in a setting in which the

tax system can vary with age. We do not study fully optimal tax system design, in the

Mirrleesian tradition, but instead restrict attention to the parametric class of income

tax and transfer systems given by T (y) = y−λy1−τ , where y is pre-tax income and T (y)

is taxes net of transfers. The parameter τ controls the progressivity of the tax system,

with τ = 0 corresponding to a flat tax rate and τ > 0 (τ < 0) implying a progressive

(regressive) tax and transfer system. Conditional on τ, the parameter λ controls the

level of taxation. This class of tax systems has a long tradition in public finance (see,

for example, Musgrave 1959; Kakwani 1977; and Bénabou 2000, 2002). Moreover, in

Heathcote, Storesletten, and Violante (2017), we document that this parametric class

provides a remarkably good approximation to the current U.S. system.

The key innovation in the present paper is to let the parameters τ and λ be condi-

tioned on age, subject to an economy-wide government budget constraint. By allowing

for age variation in λ and τ , both the level and the slope of the tax schedule can be

made age-dependent.

The environment, which closely follows Heathcote et al. (2017), is an overlapping-

generations model in which individuals care about consumption, leisure, and a public

good. They make an irreversible skill investment when young, and make a labor-leisure

choice in each period of working life. Individuals differ ex ante in their learning ability

and in their willingness to work. Those with higher learning ability invest in higher

skills, and those with a lower utility cost of effort work more hours. During working life,

individuals face permanent shocks to wages that cannot be insured privately. Thus,

these wage shocks pass through to consumption, increasing inequality ex post.

Tax progressivity compresses ex post dispersion in consumption. Thus, the social

1



insurance embedded in the tax and transfer system stands in for some of the demand for

insurance that markets fail to deliver because of the assumed market incompleteness. In

addition, net tax revenue allows the government to provide the public good. However,

tax progressivity discourages labor supply and skill investments. Skills are imperfect

substitutes, and the price of skills is an equilibrium outcome. Since the tax system

determines the skill distribution, it influences pre-tax skill prices as well as after-tax

returns.

In this environment, we provide a closed-form solution for an equally weighted social

welfare function. We then use this function to derive a number of analytical results on

optimal taxation over the life cycle. The shape of the optimal age profile for the tax

progressivity parameter τ trades off two key forces.

First, the model incorporates the standard argument in favor of tagging, namely

that age is informative about average productivity since wage rates are increasing during

the first decades of working life, peaking at around age 50. Because tax progressivity

discourages work effort, a rising life-cycle profile of wages is a force for tax progressivity

to fall with age.

The second motive for age variation in taxes is that age is informative about the

dispersion of productivity. Dispersion in productivity is increasing with age because in-

dividuals face permanent idiosyncratic shocks that cumulate over the life cycle. There-

fore, the planner has an incentive to target redistribution to where inequality is con-

centrated, namely among the old. This is a force for progressivity to increase with

age.

In addition, we show that, when the planner maximizes welfare in the final steady

state, progressive taxation later in the life cycle is less distortionary for skill invest-

ment because individuals discount future taxes when choosing their optimal amount

of human capital at young ages. This discounting channel, however, is much weakened

when the full transitional dynamics are taken into account.

Given the age profile for τ that optimally balances these forces, the optimal age

profile for the tax level parameter λ (which controls the average level of taxation)

equates average consumption by age. This convenient separation between the roles

of τ and λ arises because our utility specification, consistent with balanced growth,

implies that λ has no impact on either skill investment or labor supply.

We parameterize the model to the U.S. economy in order to calculate the optimal

age-dependent tax system and the welfare gains of switching from the optimal age-

invariant progressivity level to optimal age-dependent progressivity. On their own,
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life-cycle variation in productivity, uninsurable risk, and discounting call for significant

variation in tax progressivity over the life cycle, with correspondingly sizable welfare

gains. However, when all factors are combined and the transitional dynamics are taken

into account, the effects largely neutralize each other, so that the optimal tax system is

mildly U-shaped in age. The welfare gain from allowing tax progressivity to vary with

age – relative to the optimal age-invariant system – amounts to only 0.08% of lifetime

consumption.

We are not the first to study motives for age dependence in the optimal design of

tax schedules. Two antecedents of ours follow the Ramsey tradition. Erosa and Ger-

vais (2002) analyze optimal taxation in a setting without any source of within-cohort

heterogeneity (i.e., all inequality is between age groups). They focus on models in

which the age dependence in average tax rates is driven by the fact that the Frisch

elasticity of labor supply varies over the life cycle. This channel depends on preference

specifications. We have abstracted from this channel by choosing a specification in

which the Frisch elasticity is constant. Conesa, Kitao, and Krueger (2009) study opti-

mal taxation within a Gouveia-Strauss class of non-linear tax functions. While richer

than ours, this class of functions is less analytically tractable. They do not explicitly

model age dependence, but they point out that a positive tax on capital income can

stand in for age-dependent taxes because the age profile of wealth is correlated with

that of productivity.

A more recent literature studies the role of age variation in the Mirrlees optimal

taxation framework. Two papers are especially related to our work. The first paper is

by Weinzierl (2011), who focuses on our first channel, the rising age profile of wages

and on how these profiles differ across skill groups. His key findings, namely that the

average and marginal tax rate are both rising with age, are qualitatively similar to

ours when the only operational channel is life-cycle productivity. The second related

paper is from Farhi and Werning (2013), who analyze taxation in a dynamic life-cycle

economy. They focus on the role of persistent productivity shocks and abstract from

human capital investments and age variation in the life-cycle profile of efficiency units.

In their model, the fully optimal history-dependent tax schedule displays the same

qualitative features as our model does when our second channel (uninsurable risk) is

the only one operative: average wedges increase with age, average labor earnings are

falling with age, and average consumption is constant. These findings are mirrored

in the work of Golosov, Troshkin, and Tsyvinski (2016), who focus on the additional

effect of skewness of wage shocks.
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With respect to this existing set of results, our contribution is threefold. First,

our closed-form expression for social welfare as a function of τ and the structural

parameters of the model describing preferences, technology, ex ante heterogeneity, and

income uncertainty leads to a transparent characterization. Each term in our welfare

expression has an economic interpretation and embodies one of the channels shaping

the optimal progressivity trade-off discussed above. Second, we find that the life-

cycle productivity channel is quantitatively most important in the first half of the

working life, while the uninsurable risk channel matters more later in life as permanent

shocks cumulate. This distinction explains our novel result that optimal progressivity

is U-shaped in age. Third, we identify a new motive for age variation in taxation

that hinges on the presence of endogenous and irreversible skill investment. This new

channel induces age dependence in progressivity even with a flat age-wage profile and

no uninsurable risk.

Very recently, the Mirrleesian strand of the optimal tax literature has begun incor-

porating endogenous human capital accumulation into the optimal design problem.1

Most closely related to ours is the paper by Stantcheva (forthcoming), who studies

optimal Mirrleesian taxation over the life cycle in a model with endogenous human

capital formation. Her analysis has a different focus from ours because she studies

the role of human capital in increasing or reducing wage risk, depending on whether

or not human capital is a complement to exogenous –and risky– labor productivity.

Her study has novel predictions about how observable education expenses should be

deducted from tax liabilities over the life cycle, a dimension of policy we abstract from,

since in our model the skill investment cost is entirely in utility terms.

The paper proceeds as follows. Sections 2 and 3 lay out the economic environment

and solve for the competitive equilibrium given a tax policy. Section 4 derives analytical

properties of optimal taxes in steady state and during the transition. Section 5 studies

the quantitative implications of allowing for age variation in taxes and quantifies the

welfare gain of introducing such fiscal tools. Section 6 concludes.

2 Economic Environment

Demographics: We adopt the Yaari “perpetual youth” structure. At every age a,

an agent survives into the next period with constant probability δ < 1. Each period a

cohort of newborn agents of size (1− δ) enters the economy. There are no intergener-

1See, for example, Kapička (2015), and Findeisen and Sachs (2016).
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ational links. We index agents by i ∈ [0, 1].

Life cycle: Upon birth, individuals have a chance to invest in skills. Once the indi-

vidual has chosen si, he or she enters the labor market. The individual provides hi ≥ 0

hours of labor supply, consumes a private good ci, and enjoys a publicly provided good

G.2 Each period he or she faces stochastic fluctuations in labor productivity zi.

Preferences: Expected lifetime utility over private consumption, hours worked, pub-

licly provided goods, and skill investment effort for individual i is given by

Ui = −vi(si) + (1− βδ)E0

∞∑
a=0

(βδ)aui(cia, hia, G), (1)

where β ≤ 1 is the discount factor, common to all individuals, and the expectation

is taken over future histories of idiosyncratic productivity shocks, whose process is

described below. The disutility of the initial skill investment si ≥ 0 takes the form

vi(si) =
(κi)

−1/ψ

1 + 1/ψ
(si)

1+1/ψ , (2)

where the parameter ψ ≥ 0 determines the elasticity of skill investment with respect to

the return to skill, and κi ≥ 0 is an individual-specific parameter that determines the

utility cost of acquiring skills. The larger is κi, the smaller is the cost, so one can think

of κi as indexing innate learning ability. We assume that κi ∼ Exp (η), an exponential

distribution with parameter η. As we demonstrate below, exponentially distributed

ability yields Pareto right tails in the equilibrium wage and earnings distributions.

Skill investment decisions are irreversible, and thus skills are fixed through the life

cycle.3

The period utility function ui is specified as

ui (cia, hia, G) = log cia −
exp [(1 + σ)ϕi]

1 + σ
(hia)

1+σ + χ logG, (3)

where exp [(1 + σ)ϕi] measures the disutility of work effort. The individual-specific

parameter ϕi is normally distributed: ϕi ∼ N
(vϕ

2
, vϕ
)
, where vϕ denotes the cross-

2G has two possible interpretations. The first is that it is a pure public good, such as national
defense or the judicial system. The second is that it is an excludable good produced by the government
and distributed uniformly across households, such as public education.

3The baseline model in Heathcote et al. (2017) assumes reversible skill investment. Given reversible
investment, the skill investment decision is essentially static, whereas in the present model it will be
a dynamic decision.
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sectional variance.4 We assume that κi and ϕi are uncorrelated. The parameter σ > 0

determines aversion to hours fluctuations. Finally, χ ≥ 0 measures the taste for the

publicly provided good G relative to private consumption.

Technology: Output Y is a constant elasticity of substitution aggregate of effective

hours supplied by the continuum of skill types s ∈ [0,∞),

Y =

(∫ ∞
0

[N (s) ·m (s)]
θ−1
θ ds

) θ
θ−1

, (4)

where θ > 1 is the elasticity of substitution across skill types, N(s) denotes average ef-

fective hours worked by individuals of skill type s, and m(s) is the density of individuals

with skill type s. Note that all skill levels enter symmetrically in the production tech-

nology, and thus any equilibrium differences in skill prices will reflect relative scarcity

in the context of imperfect substitutability across different skill types.

Labor productivity and earnings: Log individual labor efficiency zia is the sum of

two orthogonal components, xa and αia :

log zia = xa + αia. (5)

The first component xa captures the deterministic age profile of labor productivity.

The second component αia follows the unit root process αia = αi,a−1 + ωia, with i.i.d.

innovation ωia ∼ N
(
−vω

2
, vω
)

and with initial condition αi0 = 0.5 A standard law of

large numbers ensures that individual-level shocks induce no aggregate uncertainty in

the economy. In previous work, we also included transitory insurable shocks to labor

efficiency. We abstract from those here because they do not play an important role in

shaping the optimal age profile of tax progressivity.

Individual earnings yia are, therefore, the product of four components:

yia = p(si)︸︷︷︸
skill price

× exp(xa)︸ ︷︷ ︸
age-productivity profile

× exp(αia)︸ ︷︷ ︸
labor market shocks

× hia︸︷︷︸
hours

. (6)

The first component p (si) is the equilibrium price for the type of labor supplied by

an individual with skills si; the second component is the life-cycle profile of labor ef-

4Introducing additional weighting parameters (common across all households) on the utility terms
defining the costs of skill investment and labor supply would have no impact on the shape of the
welfare-maximizing policy.

5There is still earnings inequality among newborn agents, reflecting heterogeneous skill levels.

6



ficiency; the third component is individual stochastic labor efficiency; and the fourth

component is the number of hours worked by the individual. Thus, individual earnings

are determined by (i) skills accumulated before labor market entry, in turn reflecting

innate learning ability κi; (ii) productivity that grow exogenously with experience; (iii)

fortune in labor market outcomes determined by the realization of idiosyncratic effi-

ciency shocks; and (iv) work effort, reflecting, in part, innate taste for leisure, measured

by ϕi.

Because idiosyncratic productivity shocks are exogenous, the two channels via which

taxation will affect the equilibrium pre-tax earnings distribution are by changing skill

investment choices, and thus skill prices, and by changing labor supply decisions.

Financial assets: No financial assets are traded. In Heathcote et al. (2014), we

allowed agents to trade a single non-contingent bond and showed that there is an

equilibrium in which this bond is not traded, given that idiosyncratic wage shocks

follow a unit root process. In the present model, age variation in efficiency xa and

in the tax parameters τa and λa introduces motives for intertemporal borrowing and

lending. Exploring such an extension numerically is an interesting avenue for future

research.

Markets: The final consumption good and all types of labor services are traded in

competitive markets. The public good G can only be provided by the government.

The final good is the numeraire of the economy.

Government: The government runs the tax and transfer scheme and provides each

household with an amount of goods or services equal to G. Let g denote government

expenditures as a fraction of aggregate output (i.e., G = gY ).

Let Ta(y) be net tax revenues at income level y for age group a. We study optimal

policies within the class of tax and transfer schemes defined by the function

Ta (y) = y − λay1−τa , (7)

where the parameters τa and λa are specific to age group a. This specification, with

age-invariant parameters, has a tradition in public finance (Feldstein 1969; Persson

1983; Bénabou 2000 and 2002; Heathcote et al. 2014 and 2017).

The parameter τa determines the degree of progressivity of the tax system and

is the key object of interest in our analysis. We can see why τa is a natural index

of progressivity in two ways. First, eq. (7) implies the following mapping between
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disposable (post-government) earnings ỹi and pre-government earnings yi :

ỹi = λay
1−τa
i . (8)

Thus, (1− τa) measures the elasticity of post-tax to pre-tax income. Second, a tax

scheme is commonly labeled progressive (regressive) if the ratio of marginal to average

tax rates is larger (smaller) than one for every level of income yi. Within our class, we

have
1− T ′a (yi)

1− Ta (yi) /yi
= 1− τa. (9)

When τa > 0, marginal rates always exceed average rates, and the tax system is

therefore progressive. Conversely, when τa < 0, the tax system is regressive. The case

τa = 0 implies that marginal and average tax rates are equal: the system is a flat tax

with rate 1− λa.
Given τ , the second parameter, λa, shifts the tax function and determines the av-

erage level of taxation in the economy. At the break-even income level y0
a = (λa)

1
τ > 0,

the average tax rate is zero and the marginal tax rate is τa. If the system is progressive

(regressive), then at every income level below (above) y0
a, the average tax rate is neg-

ative and households obtain a net transfer from the government. Thus, this function

is best seen as a tax and transfer schedule, a property that has implications for the

empirical measurement of τa.

In Heathcote et al. (2017) we document that this functional form provides a remark-

ably good representation of the actual tax and transfer scheme in the United States.6

In particular, eq. (8) implies that after-tax earnings should be a log-linear function of

pre-tax earnings. Using data from the Panel Study of Income Dynamics (PSID) Heath-

cote et al. (2017) show that a linear regression of the logarithm of post-government

earnings on the logarithm of pre-government average earnings yields a very good fit

with an R2 of 0.93: when plotting average pre-government against post-government

earnings for each percentile of the sample, the relationship is virtually linear.7

6Heathcote and Tsujiyama (2016) show that this functional form closely approximates the fully
optimal Mirrleesian policy.

7For this exercise, Heathcote et al. (2017) use data from the PSID for survey years 2000-2006,
in combination with the NBER’s TAXSIM program. They restrict attention to households aged 25-
60 with positive labor income. When measuring pre-government gross household income, Heathcote
et al. (2017) include labor earnings, private transfers (alimony, child support, help from relatives,
miscellaneous transfers, private retirement income, annuities, and other retirement income), plus
income from interest, dividends, and rents. To construct taxable income, for each household in the
data they compute the four major categories of itemized deductions in the U.S. tax code – medical
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We abstract from the possibility that the government can issue debt or save. More-

over, all individuals receive the same amount of publicly provided goods. The govern-

ment budget constraint therefore holds period by period and reads as

g (1− δ)
∞∑
a=0

δa
∫
yiadi = (1− δ)

∞∑
a=0

δa
∫ [

yia − λa (yia)
1−τa] di. (10)

The government chooses the sequence {τa, λa}∞a=0 and g, with one instrument being

determined residually by eq. (10). For notational convenience, we denote the vectors

of τa and λa by boldface notation, τ ≡ {τa}∞a=0 and λ ≡ {λa}∞a=0.

The rate of transformation between private and public consumption is one, so the

aggregate resource constraint for the economy is

Y = G+ (1− δ)
∞∑
a=0

δa
∫ 1

0

cia di. (11)

2.1 Agent’s problem

At age a = 0, the agent chooses a skill level, given her idiosyncratic draw (κi, ϕi).

Combining eqs. (1) and (2), the first-order necessary and sufficient condition for the

skill choice is

∂vi (si)

∂si
=

(
si
κi

) 1
ψ

= (1− βδ)E0

∞∑
a=0

(βδ)a
∂ui (cia, hia, G)

∂si
. (12)

Thus, the marginal disutility of skill investment for an individual with learning ability

κi must equal the discounted present value of the corresponding expected benefits in

the form of higher lifetime wages. Recall that initial skill investments are irreversible,

and thus agents cannot supplement or unwind past skill investments over the rest of

their life cycle.

At the beginning of every period of working life a, the innovation ωia to the random

walk shock αia is realized. Then, each individual chooses hours hia, receives wage

payments, pays taxes, and devotes after-tax income to consumption expenditures cia.

expenses, mortgage interest, state taxes paid, and charitable contributions – and subtract them from
gross income.

Post-government income ỹ equals pre-government income plus public cash transfers (AFDC/TANF,
SSI and other welfare receipts, Social Security benefits, unemployment benefits, workers’ compensa-
tion, and veterans’ pensions), minus federal, payroll, and state income taxes. Transfers are measured
directly from the PSID, while taxes are computed using TAXSIM.
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The period budget constraint is

cia = λa [p (si) exp (xa + αia)hia]
1−τa . (13)

Given an initial skill choice (si), the problem for an agent is to choose sequences

of consumption and hours worked in order to maximize lifetime utility (1) subject to

sequences of budget constraints (13), taking as given the process for efficiency units

described in eq. (5). In addition, agents face non-negativity constraints on consumption

and hours worked.

3 Equilibrium

We now adopt a recursive formulation to define a stationary competitive equilibrium

for our economy. The state vector for the skill accumulation decision at age a = 0

is just the pair of fixed individual effects (κ, ϕ). At subsequent ages, the state vector

is (ϕ, α, s, a). Note that age is a state variable for two reasons: labor productivity

potentially varies with age, and the parameters of the tax system potentially vary with

age.

We now define a stationary recursive competitive equilibrium for our economy.

Stationarity requires that equilibrium skill prices are constant over time, which in

turn requires an invariant skill distribution m(s). A stationary skill distribution is

consistent with a constant tax schedule {τa, λa}, which is the focus of our steady-state

welfare analysis. However, when we later consider optimal once-and-for-all tax reform

incorporating transition from the current system, the economy-wide skill distribution

will not be constant. In this case, equilibrium objects will be time varying, and an

additional assumption is required to preserve tractability. We return to the transition

case in Section 4.1.

Given a government policy (τ ,λ), a stationary recursive competitive equilibrium for

our economy is a public good provision parameter g, skill prices p (s), decision rules

s (κ, ϕ), c (ϕ, α, s, a), and h (ϕ, α, s, a), effective hours by skill N (s), and a skill density

m(s) such that:

1. Households solve the problem described in Section 2.1, and s (κ, ϕ), c (ϕ, α, s, a),

and h (ϕ, α, s, a) are the associated decision rules.

2. Labor markets for each skill type clear, and p (s) is the value of the marginal
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product from an additional unit of effective hours of skill type s:

p(s) =

(
Y

N(s) ·m(s)

) 1
θ

.

3. The government budget is balanced: g satisfies eq. (10).

Propositions 1 and 2 describe the equilibrium allocations and skill prices in closed

form. The payoff from analytical tractability is evident in Proposition 3, where we

derive a set of analytical results for optimal taxation, based on a closed-form expression

for social welfare. In what follows, we make explicit the dependence of equilibrium

allocations and prices on (τ, λ) in preparation for our analysis of the optimal taxation

problem. Moreover, from now on we express – with some abuse of notation – the

arguments in the decision rules using the minimum set of relevant state variables and

policies.

Proposition 1 [hours and consumption]. The equilibrium hours-worked allocation

is given by

log h (ϕ; τa) = −ϕ+
log(1− τa)

(1 + σ̂a) (1− τa)
, (14)

where 1/σ̂a denotes the tax-modified Frisch elasticity,

1

σ̂a
=

1− τa
σ + τa

. (15)

The consumption allocation is given by

log c (ϕ, α, s, a; τ,λa) = (1− τa) [log p (s; τ ) + α− ϕ+ xa] +
log(1− τa)

1 + σ̂a
+ log λa. (16)

With logarithmic utility and zero individual wealth, the income and substitution

effects on labor supply from differences in uninsurable shocks α, skill levels s, and

experience xa exactly offset, and hours worked are independent of (s, α) and depend

on age only through τa. The hours allocation is composed of two terms. The first

captures the fact that a higher idiosyncratic disutility of work leads an agent to choose

lower hours. The second term captures the effect of taxes on labor supply in the

absence of within-age heterogeneity, that is, “hours of the representative agent of age

a.” This term falls with progressivity.

The consumption allocation is additive in six separate components. Consumption is

increasing in the skill level s (because the skill price p (s; τ ) is increasing in s), in the age
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profile of efficiency units xa, and in the uninsurable component of wages α. Since hours

worked are decreasing in the disutility of work ϕ, so are earnings and consumption.

The redistributive role of progressive taxation is evident from the fact that a larger τa

shrinks the pass-through to consumption from heterogeneity in initial conditions s and

ϕ and from realizations of uninsurable wage shocks α and efficiency units xa. The fifth

and sixth components are what consumption would be in the absence of within-age

heterogeneity.

Proposition 2 [skill price and skill choice]. In a stationary recursive equilibrium,

skill prices are given by

log p (s; τ̄) = π0 (τ̄) + π1 (τ̄) · s (κ; τ̄) , (17)

where τ̄ is discounted average progressivity, τ̄ = (1− βδ)
∑∞

a=0 (βδ)a τa, and the func-

tions π0 and π1 are given by

π1 (τ̄) =
(η
θ

) 1
1+ψ

(1− τ̄)−
ψ

1+ψ (18)

π0(τ̄) =
1

θ − 1

{
1

1 + ψ

[
ψ log

(
1− τ̄
θ

)
− log (η)

]
+ log

(
θ

θ − 1

)}
. (19)

Moreover, the skill investment allocation is given by

s (κ; τ̄) = [(1− τ̄) π1 (τ̄)]ψ · κ =
[η
θ

(1− τ̄)
] ψ

1+ψ · κ, (20)

and the equilibrium skill density m(s) is exponential with parameter (η)
1

1+ψ [θ/ (1− τ̄)]
ψ

1+ψ .

Note, first, that the log of the equilibrium skill price takes a ”Mincerian” form (i.e.,

it is an affine function of s). The constant π0(τ̄) is the base log-price of the lowest skill

level (s = 0), and π1(τ̄) is the pre-tax marginal return to skill.

Eq. (18) indicates that higher progressivity increases the equilibrium pre-tax marginal

return π1(τ̄). The logic is that increasing progressivity compresses the skill distribution

toward zero, and as high skill types become more scarce, imperfect substitutability in

production drives up the pre-tax return to skill. Thus, our model features a “Stiglitz

effect” (Stiglitz 1985). The larger is ψ, the more sensitive is skill investment to a given

increase in τ̄ , and thus the larger is the increase in the pre-tax skill premium.

Note that the only aspect of the policy sequence (τ, λ) that matters for the skill

investment decision and the skill price function is discounted average progressivity, τ̄ .
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Moreover, skill investment is also independent of ϕ and α0. The logic is that, with

log utility, the welfare gain from additional skill investment is proportional to the log

change in wages the investment would induce, which is independent of the level of

wages or hours.

Corollary 2.1 [distribution of skill prices]. In a stationary equilibrium, the

distribution of log skill premia π1(τ̄) · s(κ; τ̄) is exponential with parameter θ. Thus,

the variance of log skill prices is

var (log p (s; τ̄)) =
1

θ2
.

The distribution of skill prices p(s; τ̄) in levels is Pareto with scale (lower bound) pa-

rameter exp(π0(τ̄)) and Pareto parameter θ.

Log skill premia are exponentially distributed because the log skill price is affine in

skill s (eq. 17) and skills retain the exponential shape of the distribution of learning

ability κ (eq. 20). It is interesting that inequality in skill prices is independent of the

policy sequence {λa, τa}. The reason is that progressivity sets in motion two offset-

ting forces. On the one hand, as discussed earlier, higher progressivity increases the

equilibrium skill premium π1 (τ̄), which tends to raise inequality (the Stiglitz effect on

prices). On the other hand, higher progressivity compresses the distribution of skills

(the quantity effect). These two forces exactly cancel out under our baseline utility

specification.

Since the exponent of an exponentially distributed random variable is Pareto, the

distribution of skill prices in levels is Pareto with parameter θ. The other stochastic

components of wages (and hours worked) are lognormal. Because the Pareto component

dominates at the top, the equilibrium distributions of wages and earnings have Pareto

right tails, a robust feature of their empirical counterparts (see, e.g., Atkinson, Piketty,

and Saez 2011). We now briefly discuss how taxation affects aggregate quantities in

our model.

Corollary 2.2 [aggregate quantities]. Average hours worked and average effec-

tive hours are independent of skill type s and given by H (τ ) = (1− δ)
∑∞

a=0 δ
aH (τa)

and N (τ ) = (1− δ)
∑∞

a=0 δ
aNa (τa), where

H (τa) = E [h (ϕ; τa)] = (1− τa)
1

1+σ , (21)

Na (τa) = E [exp(xa + α)h (ϕ; τa)] = (1− τa)
1

1+σ · exp (xa) . (22)

13



Output is given by

Y (τ ) = E

[
p (s; τ̄) (1− δ)

∞∑
a=0

δaNa (τa)

]
= N (τ ) · E [p (s; τ̄)] , (23)

where E [p (s; τ̄)] = exp (π0 (τ̄)) · θ/ (θ − 1).

4 Optimal Age-Dependent Taxes: Characterization

We start by analyzing the optimal policy in steady state. This approach allows us to

derive a number of analytical results for optimal taxation. Moreover, it also allows us to

abstract, for the time being, from a standard issue inherent in models with sunk human

capital investments: since past investment decisions are irreversible, the government

would, in the short run, be tempted to heavily tax high skill individuals because such

taxation is not distortionary ex post. This result is analogous to the temptation to

tax initial physical capital in the growth model. In Section 4.1 we analyze the full

transition and solve numerically for the optimal progressivity profile τ , assuming an

initial once-and-for-all tax reform.8

The baseline utilitarian social welfare function we use to evaluate alternative policies

puts equal weight on all agents within a cohort. In our context, where agents have

different disutilities of work effort, we define equal weights to mean that the planner

cares equally about the utility from consumption of all agents. Thus, the contribution

to social welfare from any given cohort is the within-cohort average value for remaining

expected lifetime utility, where eq. (1) defines expected lifetime utility at age zero.

The overlapping-generations structure of the model also requires us to take a stand

on how the government weighs cohorts that enter the economy at different dates. We

assume that the planner discounts lifetime utility of future generations at the same

rate as individuals discount utility over the life cycle, β. Social welfare evaluated as of

date 0 in a steady state associated with a policy (τ ,λ) —recall that, given this policy,

g is determined residually by the government budget constraint (10)— is

W (τ ,λ) ≡ (1− β)Γ
∞∑

j=−∞

βjUj,0 (τ ,λ) , (24)

8We have also studied an alternative approach, which is to assume that the choice of skills is fully
reversible at any point. This alternative assumption implies that transition following a tax reform is
instantaneous: given a choice for the new policy, the economy immediately converges to the steady-
state distribution of skills associated with this policy. However, irreversible skill investment seems to
be the more realistic case.
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where Uj,0 (τ ,λ) is remaining expected lifetime utility (discounted back to date of

birth) as of date 0 for the cohort that entered the economy at date j.9 The constant

Γ = (1− δ)/(1− βδ) pre-multiplying the summation is a convenient normalization.

It is straightforward to show that steady-state welfare W (τ, λ) is equal (up to an

additive constant) to

W (τ, λ) = (1− δ)
∞∑
a=0

δaE [u (c (ϕ, α, s, a; τ,λa) , h (ϕ; τa) , G (τ, λ))]

−
(

1− δ
1− βδ

)
E [v (s(κ; τ̄), κ)] , (25)

where the first expectation is taken with respect to the equilibrium cross-sectional

distribution of (ϕ, α, s, a) conditional on a, the second expectation is with respect to the

cross-sectional distribution of (s, κ), and G (τ, λ) denotes the budget-balancing value

for G. The weight on the average skill investment cost differs from that on the other

terms because the steady-state welfare expression does not attribute any investment

costs to cohorts who made irreversible skill investments in the past. Thus, the steady-

state welfare calculation factors in the benefits of past skill investments but not their

cost. The policy that attains the highest steady-state welfare (τ ∗, λ∗) is simply the

policy that maximizes eq. (25).

The proof of Proposition 3 establishes that the social welfare functionW is differen-

tiable and globally concave in τa. It follows that the first-order condition ∂W/∂τa = 0

is necessary and sufficient. This optimality condition can be stated analytically as

0 =
1

θ − 1 + τa
− 1

θ
+ (1− τa) (vϕ + avω) +

1

1 + σ
+ (26)

−
(

1 + χ

θ − 1

1− βδ
1− δ

1

1− τ̄
− 1

θ

)
ψ

1 + ψ
(β)a

−1 + χ

1 + σ

1

1− τa
Na (τa)

N (τ )
,

where the expressions for effective age a labor supply and aggregate labor supply,

Na (τa) and N (τ ), are given in Corollary 2.2. Using this optimality condition, we can

prove a number of analytical results about the optimal age-dependent taxation, which

we summarize in the following proposition.

9This weighting scheme implies that all agents alive at the time of the reform receive equal weight
(one) on their residual expected utility from that date onward.
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Proposition 3 [optimal age-dependent taxation in steady state].

(i) The optimal output share of government expenditures g∗ is given by

g∗ =
χ

1 + χ
.

(ii) If (i) there is no uninsurable risk ( vω = 0), (ii) the age profile of efficiency units

{xa} is constant, and (iii) β → 1, then the optimal sequences {τ ∗a} and {λ∗a} are

age-invariant.

(iii) Relative to the parameterization described in (ii), introducing uninsurable risk

( vω > 0) translates into optimal profiles {τ ∗a} and {λ∗a} that are increasing in age.

(iv) Relative to the parameterization described in (ii), introducing an age profile for

efficiency units {xa} that is increasing with age translates into optimal profiles {τ ∗a}
and {λ∗a} that are decreasing in age.

(v) Relative to the parameterization described in (ii), setting β < 1 translates into

optimal profiles {τ ∗a} and {λ∗a} that are increasing in age.

(vi) The optimal sequence {λ∗a} equalizes average consumption across age groups.

We now explain the results of Proposition 3, one by one.

(i) In our economy, the optimal fraction of output to devote to public expenditure

is independent of how much inequality there is in the economy and independent of how

progressive the tax system is. It depends only on households’ relative taste for the

public good χ. In particular, the planner chooses public spending so as to equate the

marginal rate of substitution between private and public consumption to the marginal

rate of transformation between the two goods.

(ii) Consider now the forces shaping the optimal age profiles for λa and τa. First,

absent age variation in both productivity and inequality, the only possible motive for

age variation in progressivity is the discounting logic described previously: if β < 1,

skill investment is more sensitive to higher progressivity earlier in life and less sensitive

later. As β → 1, this motive for having progressivity rise with age vanishes.

(iii) Now consider the role of uninsurable risk. To isolate this force, we focus on

the case with a constant age-wage profile (xa = 0) and no human capital investment

(θ →∞), thereby shutting down alternative motives for age variation in progressivity.

The social welfare first-order condition (26) then simplifies to

0 = (1− τa) (vϕ + avω) +
1

1 + σ

(
1− (1 + χ) (1− τa)−

σ
1+σ

(1− δ)
∑∞

t=0 δ
t (1− τt)

1
1+σ

)
.
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When vω > 0, the first term is increasing in age a, and to satisfy the first-order condi-

tion, the optimal τ ∗a must therefore be rising in age. The intuition is that permanent

uninsurable risk cumulates with age and the planner wants to provide more within-

group risk sharing when uninsurable risk is larger. Therefore, when vω > 0, optimal

progressivity increases with age, ceteris paribus. We label this the uninsurable risk

channel.

Another way to interpret the uninsurable risk channel relates to the roles of exoge-

nous risk and endogenous skill accumulation in the determination of wage inequality.

Most of the cross-sectional model variation in wages at younger ages reflects skill invest-

ment choices, with respect to which tax progressivity is distortionary. As individuals

age, a larger share of wage inequality reflects uninsurable labor market luck, which is

exogenous and unaffected by tax progressivity.

(iv) Now consider the role of the age profile of efficiency units {xa}. To isolate the

impact of this model ingredient, we strip out risk (vω = 0), preference heterogeneity

(vϕ = 0), and human capital investment (θ → ∞). The optimal value for τ at age a,

τ ∗a , is then the solution to the following simplified version of the first-order condition

(26):

1− τ ∗a =
1

1 + χ

Na (τa)

N (τ )

=

(
exp (xa)

(1 + χ) (1− δ)
∑∞

t=0 δ
t (1− τt)

1
1+σ · exp (xt)

) 1+σ
σ

.

This illustrates that ceteris paribus the optimal τ ∗a is lower the larger is xa.
10 More-

over, this effect is stronger the higher is the Frisch elasticity (i.e., the lower is σ). The

intuition is that absent age variation in τ, hours worked will be independent of produc-

tivity given our utility function and tax system. The planner can increase aggregate

labor productivity and thus welfare by having more productive agents work relatively

longer hours. When the labor productivity profile is upward sloping, this introduces a

force for having progressivity decline with age. We label this the life-cycle productivity

channel.

Note that the life-cycle productivity channel would be weaker if we introduced

opportunities for intertemporal borrowing and lending. In particular, if households

10This follows from the fact that an increase in xa increases the effective labor supply of cohort a,
Na, more than it increases aggregate labor supply N , since the labor supply of cohort a accounts for
less than 100% of aggregate effective labor supply. Formally, the elasticity of Na/N is always positive
with respect to xa; ∂ {logNa (τa)− logN (τ )} /∂xa = 1− (1− δ) δaNa (τ∗a ) /N (τ ∗) > 0.
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could borrow and lend freely, then hours would tend to naturally covary positively

with productivity over the life cycle, shutting down this motive for age variation in tax

progressivity.11 In practice, it is hard to borrow against future income, especially for

young workers for whom life-cycle productivity is rising fast and for whom this channel

is therefore strongest.

(v) When maximizing steady-state welfare, the presence of discounting (β < 1)

is another force toward making the optimal τ ∗a increase with age. The reason is that

raising τa at younger ages reduces skill investment by more than raising it at older

ages – because agents discount future returns to skill.12 To illustrate this, consider the

planner problem in the special case when there is no uninsurable risk and no labor

supply distortion – thereby eliminating the uninsurable risk and life-cycle productivity

channels (i.e., vω = 0 and σ →∞). In this case, the first-order condition of the social

welfare function with respect to τa, (26), simplifies to

0 =
1

θ − 1 + τa
− 1

θ︸ ︷︷ ︸
>0

−
[(

1 + χ

θ − 1

)(
1− βδ
1− δ

)(
1

1− τ̄

)
− 1

θ

]
︸ ︷︷ ︸

>0

(
ψ

1 + ψ

)
βa. (27)

The first two additive terms capture the welfare gain of increasing τa because of the

marginal reduction in after-tax skill price inequality. The last term in eq. (27) cap-

tures the distortion to skill investment from a marginal increase in τa and is equal to

∂/∂τa {log(E(p(s))}. It is proportional to βa since skill investments are forward looking.

Thus, when β < 1 the distortion to skill investment is declining in age, implying that

the optimal τ ∗a must increase with age. We label this the discounting channel. The

discounting channel vanishes if β = 1, since tax progressivity then becomes equally

distortive at all ages, so there is no motive for back-loading progressivity.13 The dis-

counting channel would also vanish if skill investments were fully reversible because

in that case, introducing an upward tilt in the progressivity profile would increase

disinvestment by the old, offsetting additional investment by the young.

(vi) Finally, since higher progressivity reduces labor supply, an age-varying profile

11This effect would also not necessarily be operative if the age-wage profile were endogenous. Exam-
ples of endogenous age-wage profiles are models with learning by doing, as in Imai and Keane (2004)
and models in which skill investments take time away from work, as in Ben-Porath (1967).

12Note, however, that for the future newborn individuals, who will invest in skills, this motive for
back-loading progressivity is not present because the planner and the individuals agree on how to
discount. We return to this point when we study the transition in Section 4.1.

13The survival probability δ is irrelevant for the age profile of τa because this parameter has the
same effect on individual discounting as it has on future cohort size. Therefore, the term δa multiplies
all terms in eq. (27) and cancels out.

18



{τ ∗a} will generate an age-varying profile for average earnings. So will an age-varying

productivity profile. If between age-group earnings inequality translated into consump-

tion inequality, it would be welfare reducing for our utilitarian planner. But by having

{λ∗a} vary with age, the planner can perfectly smooth average consumption across age

groups. This result indicates that the government, through the tax system, can ef-

fectively replicate the role of life-cycle borrowing and saving in smoothing predictable

life-cycle income variation.

4.1 Transition

Thus far we have focused on steady-state welfare because the tractability of the social

welfare expression in steady state allows us to cleanly isolate several key forces that

determine optimal age variation in tax progressivity. We now turn to consider optimal

taxation when taking explicit account of the transition from an initial state.

For simplicity, we assume that at the time of the reform, the economy is in a

steady state associated with a particular age-invariant tax system characterized by tax

progressivity τ−1 and government spending g−1.

We then consider an unanticipated policy change at date t = 0 to a new policy

regime ({τa} , {λat} , {Gt}) with new age-dependent tax rates. We impose that the

reform is a once-and-for-all reform for progressivity, in the sense that the new age

profile of progressivity {τa} is constant over time.14 However, we do allow the profile

of the proportional factors {λat} and the public good consumption Gt to vary over

time, maintaining the assumption that the government budget must be balanced each

period.

To preserve tractability, we make one minor new assumption relative to the baseline

model described previously, namely that production is segregated on two islands: one

island for all the cohorts born before the tax reform at date zero (who cannot adjust skill

investments in response to the new tax system) and one for all cohorts who enter the

economy from date zero onward while the new tax system is in place. As time passes

post tax reform, the share of the total population on the first island declines, and

eventually the entire population resides on the second island. Each island is otherwise

similar to the economy laid out in Section 2, including the island-specific production

function in eq. (4). This segregation assumption ensures that the distribution of skills

on each island is always exponential.15

14This choice is made to simplify the problem. An interesting extension of our analysis would be to
also allow the age profile of progressivity to vary with time.

15Note that the key to tractability when analyzing the market for skills is that the distribution
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The equilibrium hours worked and consumption allocations in this version of the

economy are the same as in the model above, that is, given by eqs. (14)-(16), with

one exception: the price of skills now differs between the cohorts who invested in skills

before the reform (“the old”) and the cohorts who invest after the reform (“the young”).

The skill choices for the old are sunk and were determined by the tax progressivity

before the reform, τ−1. Thus, their skill prices p (s; τ−1) are exactly as in eq. (17)

of Proposition 2. In contrast, the skill investment and skill prices for the young,

s (κ; τ̄) and p(s; τ̄), depend on τ̄ , which is the discounted progressivity of the new tax

progressivity profile {τ ∗a}.
How does incorporating transition change the optimal policy prescriptions? First,

in two special cases the expression for social welfare and thus optimal policies are

identical to the steady-state case considered above. The first of these is the case in

which β → 1. In this case, there is a transition to the new steady state, but because

the planner is perfectly patient, existing cohorts receive zero weight in social welfare

relative to the planner’s concern for future cohorts. Thus, the planner effectively seeks

to maximize steady-state welfare.

The second special case in which incorporating transition makes no difference is

the case in which θ → ∞, so that skills are perfect substitutes and there is no skill

investment. In this case, transition in response to a change in the tax system is in-

stantaneous, and social welfare incorporating transition is therefore equal to average

period utility in the cross section – that is, equal to steady-state welfare.

In both of these special cases, the steady state prescriptions in Proposition 3 all

carry through unchanged to the transition experiment. In particular, the uninsurable

risk channel and the life-cycle productivity channel both remain intact, pushing respec-

tively for upward- and downward-sloping age profiles for tax progressivity. However,

both special cases kill the discounting channel by shutting down discounting and skill

investment, respectively.

We now consider the general case in which β < 1 and θ < ∞. In this case, incor-

porating transition adds a new driver shaping the optimal age profile of progressivity,

which we label the sunk skill investment channel.

of skills is exponential (see Proposition 2). The problem with having young and old working in
the same market would be that the new cohorts potentially might make human capital investments
that are different from those of the cohorts born before the reform, in which case the old and new
skill distributions would differ and the combined overall distribution of skills would no longer be
exponential. The assumption that individuals born before the reform work in a different market
ensures that the distribution of skills remains exponential at each location.
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Corollary 4 [taxation with transition]. When taking the initial transition into

account, the optimal tax system has the following properties:

(i) The optimal output share of government expenditures g∗t is constant and given by

g∗t =
χ

1 + χ
.

(ii) At every date t, the optimal sequence {λ∗at} equalizes average consumption across

age groups.

(iii) If (i) there is no uninsurable risk (vω = 0), (ii) the age profile of efficiency units

{xa} is constant, and (iii) β < 1 , then the optimal sequence {τ ∗a} is increasing in

age. This optimal profile implies a higher value for τ̄ than the profile than maximizes

steady-state welfare.

Part (i) of Corollary 4 establishes that optimal public good expenditures during

transition are the same as in steady state – a constant fraction g∗ of output Yt. This

result stems from the fact that g remains additively separable from the other policy in-

struments in the social welfare function. Part (ii) of Corollary 4 shows that the optimal

time-varying sequence {λ∗at} simply ensures that average consumption is equated across

age groups at each point in time. Thus, this property of the policy that maximizes

steady-state welfare again extends to the case that incorporates transition.

How does incorporating transition change the optimal age profile for progressivity?

First, incorporating transition does not fundamentally change how the uninsurable

risk and life-cycle productivity channels affect age dependence in progressivity. To

most sharply illustrate the impact of including transition, we therefore assume no

uninsurable risk and no life-cycle variation in average productivity when comparing

the progressivity profiles that maximize the two alternative welfare objectives (steady-

state welfare and welfare including transition). Figure 1 illustrates the result stated in

part (iii) of Corollary 4.

The policies that maximize these two different objectives exhibit two differences.

First, relative to the policy that maximizes steady-state welfare, incorporating transi-

tion implies higher progressivity on average, and in particular a higher value for τ̄ . The

logic is that the planner who gets to reset taxes in an environment with irreversible

skill investment recognizes that he can impose high progressivity on existing cohorts

without affecting their sunk skill investments, thereby reducing consumption inequality

without distorting investment for existing cohorts. This temptation is declining in β

and is not present in the limit β → 1. This force is familiar from the literature that
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Figure 1: Optimal age dependence of taxes with no uninsurable risk (vω = 0), a flat
age profile of wages (xa = 0), and discounting (β < 1) given a steady-state welfare
objective (solid line) and a welfare objective that incorporates transition (dashed line).
The exact parameterization for this example is the one displayed in Table 1.

studies the optimal taxation of capital (see, e.g., Chari and Kehoe 1999 for a survey;

and Hassler, Krusell, Storesletten, and Zilibotti 2008 for optimal Ramsey taxation in

a human capital setting with overlapping generations).

What about the slope of the progressivity age profile? Absent age variation in pro-

ductivity or uninsurable risk, the optimal age profile for tax progressivity is upward

sloping given β < 1, mirroring the result in part (vi) of Proposition 3. However, the

optimal age profile incorporating transition is not as steep as the one that maximizes

steady-state welfare. This result arises because the optimal age profile here balances

two considerations. On the one hand, an upward-sloping age profile delivers short-run

benefits, in that high progressivity at older ages delivers valuable consumption com-

pression to the existing old, at a relatively small cost in terms of disincentivizing skill

investment by new entrants, because of the discounting channel described previously.

This short-run consideration suggests an upward-sloping progressivity profile. On the

other hand, in the long run, the planner cannot use this trick of twisting the progres-

sivity profile to expropriate the fruits of past investment without greatly affecting new

investment. To see this, consider what the optimal policy would be for an economy

with a single cohort. Here, there would be no reason to deviate from a flat progressiv-

ity profile, because while higher old age values for τa would be less costly in terms of

reduced investment – the discounting channel – they would be equally less valuable –
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β δ χ σ vϕ θ vω ψ τUS
0.950 0.971 0.233 2.00 0.036 3.124 0.003 0.65 0.181

Table 1: Parameterization derived from Heathcote et al. (2017).

again because of discounting – in terms of future consumption compression. Thus, the

optimal once-and-for-all profile for τa is a compromise between the impulse to make

τ increase with age in the short run and the impulse to make it flat in the long run.

Quantitatively, how these effects balance out depends on β. As β → 1, the discounting

channel vanishes, and the optimal progressivity profile becomes flat at the value that

maximizes steady-state welfare.

5 Quantitative Application

In this section, we describe the model parameterization and explore the quantitative

implications of the theory. We begin with the problem of the planner that maximizes

steady-state welfare, as in Section 4. Next, we solve for the optimal age-dependent tax

system that takes into account the full transitional dynamics.

5.1 Parameterization

The parameterization strategy closely follows Heathcote et al. (2017).

The model period is one year. Some of the parameters are set outside the model.

The discount factor β is set to 0.95 and the survival rate δ to 0.971, corresponding

to an expected working life of 35 years. The weight on public good χ in preferences

is identified from the size of the U.S. government, assuming that the choice of public

good provision in the data is optimal.16 We set σ = 2, a value broadly consistent with

the microeconomic evidence on the Frisch elasticity (see, e.g., Keane 2011).

Other parameters are, instead, structurally estimated from the model. Namely,

we identify and estimate preference heterogeneity (vϕ), the elasticity of substitution

between skills (θ), and the variance of uninsurable wage risk (vω) using cross-sectional

variances and covariances of consumption, hours, and wages (measured from the Con-

sumer Expenditure Survey (CEX) and the Panel Study of Income Dynamics (PSID)).

The identification follows from the closed-form expressions for consumption, hours,

and earnings derived in eqs. (6), (14), and (16). Our estimation procedure allows

16Heathcote et al. (2017) show that the fraction of output devoted to public goods is also χ
1+χ when

it is chosen by the median voter in the economy.
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for classical measurement error in all variables and is based on a minimum distance

approach.

We identify the elasticity of human capital investments ψ from a combination of

changes over time in the skill premium, in the tax progressivity, and in the upper tail

of labor earnings, exploiting the expression for the skill premium in eq. (18).

Finally, the initial tax progressivity τUS is 0.181, as estimated by Heathcote et al.

(2017) based on TAXSIM applied to PSID income data, and data on tax deductions

and on Social Security contribution and benefits. This parameter value is only relevant

when we analyze transitional dynamics.

The only addition relative to the parameterization in Heathcote et al. (2017) is

the age profile of wage rates. The life-cycle profile of individual efficiency is estimated

on data from the PSID for the years 2000, 2002, 2004, and 2006. This is the same

sample as that used for the rest of the calibration. We regress individual log wages on

year dummies, years of education, and a quartic in age. This quartic identifies the age

profile {xa}35
a=1 for men aged 25 to 59.

Figure 2 plots the wage-experience profile: note that it is not monotonically in-

creasing with age, a feature that is quantitatively important. Table 1 summarizes the

parameter values. We refer the reader to Heathcote et al. (2017) for further details.

We set a maximum model age A = 35, corresponding to a real age of 59. One

motivation for this choice is that our focus is on the design of a tax and transfer

system for working-age people.17 One could imagine our model individuals living past

60 under a non-modeled post-retirement tax and benefit system.

5.2 Results

In line with the analytical results in Section 4, we start by analyzing optimal taxa-

tion from a steady-state welfare point of view, and then we consider the transitional

dynamics.

Recall that we identified four different forces that shape the optimal age profile of

tax progressivity: uninsurable risk, life-cycle productivity, discounting, and the sunk

skill investment channel that is operational only during the transition. To understand

the quantitative role of each of these, we start by studying the effect of uninsurable

risk and then add the other factors cumulatively, one by one.

For all of our welfare calculations, we report the additional welfare gains of switching

17A practical motivation is that it is computationally infeasible to solve for an arbitrarily long
sequence τ∗a .
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Figure 2: Estimated life-cycle profile of individual productivity.

from the optimal tax system when the progressivity parameter τ is restricted to be

constant over the life cycle, as in Heathcote et al. (2017), to the optimal age-dependent

tax system. Note, however, that even our age-independent tax system allows for age

variation in λa. If we were to take as a baseline the case in which λ is also restricted

to be age-invariant, the welfare gains from tagging by age would be larger.18

5.2.1 Uninsurable risk channel

Part (ii) of Proposition 3 states that, since uninsurable risk in the form of perma-

nent shocks cumulates over the life cycle, the planner has an incentive to increase tax

progressivity over the life cycle. To isolate this effect, we consider the case with the cal-

ibrated amount of uninsurable risk (vω = 0.007), but shut down the other channels by

assuming a flat age profile for efficiency units (xa = 1 for all a). We initially set β = 1

so that there is no difference between the policies that maximize welfare including or

excluding transition.

The top left panel of Figure 3 plots the optimal sequence {τ ∗a}. The increasing

magnitude of uninsurable risk over the life cycle induces substantial variation in optimal

tax progressivity: for the youngest cohorts, the optimal taxes are regressive (τ < 0),

whereas for the oldest cohorts, taxes are even more progressive than the current U.S.

system (recall that τUS = 0.181). Moreover, the implied income-weighted average

marginal tax rate increases by roughly 14 percentage points over the life cycle. The

top right panel illustrates that, even though average pre-government income falls with

18The optimal age-invariant value for progressivity varies in the different cases we analyze, but it
is always below the existing value estimated from the U.S. data (τUS = 0.181) and sometimes much
below.
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Figure 3: Optimal age dependence of taxes in the presence of uninsurable risk (vω > 0),
a flat age profile of efficiency units (xa = 1), and no discounting (β = 1). Top left
panel: {τa} and income-weighted average marginal tax rate. Top right panel: average
income and consumption by age group. Bottom panels: marginal and average tax rate
schedules at ages 25 and 50.

age because of the distortions implied by higher progressivity, the optimal tax scheme

redistributes across groups so as to equalize average consumption. In fact, it is because

of the rising sequence {λ∗a} that the average marginal tax rate rises less steeply than

τa in the top left panel.

Finally, the lower two panels of Figure 3 plot the marginal and average tax rates im-

plied by the age-dependent schedule at ages 25 and 50: the rise in optimal progressivity

is stark.

These results are reminiscent of findings in recent quantitative applications of dy-

namic Mirrleesian optimal taxation, according to which, when income shocks are per-

sistent, the average labor wedge has a positive drift over the life cycle. Farhi and

Werning (2013) analyze Mirrlees taxation in a dynamic life-cycle economy. Their en-

vironment is a special case of ours, with a flat age profile of efficiency units and no

endogenous skill accumulation.19 Thus, the relevant comparison to our model is pre-

cisely this case in which uninsurable risk is the only force influencing the age profile of

19They also assume no preference heterogeneity and no valued government expenditures.
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taxation. They find that the optimal history-dependent tax scheme has all the same

qualitative features as in our model (see Farhi and Werning 2013, Figure 2). Namely,

average output is decreasing in age, consumption is invariant to age, and the labor

wedge is increasing in age.20

In terms of welfare, we find that moving from the optimal age-invariant tax system,

which implies a value of τ ∗ = 0.099, to the optimal age-dependent tax schedule would

induce gains on the order of 0.28% of lifetime consumption.

5.2.2 Life-cycle productivity channel

We now add the second channel for age-varying taxes identified in Section 4. We retain

the assumption β = 1. Tax progressivity should now be lower for the older cohorts

because their average wages are higher, so it is more costly for the planner to distort

their labor supply.

As suggested by Proposition 3, introducing a rising age profile of efficiency units is a

strong force for lowering tax progressivity with age. Now the optimal tax progressivity

is U-shaped (see the top left panel of Figure 4). The age profile of τa is decreasing until

the mid-40s, a phase of the life cycle when productivity is rising steeply. Once the

productivity profile flattens out —leaving only the uninsurable risk channel active—

progressivity starts increasing with age.

The average marginal tax rate is sharply increasing over the life cycle, from roughly

zero for the youngest cohorts to average marginal taxes near 40% for the oldest cohorts

(top left panel of Figure 4). The system involves substantial intergenerational redistri-

bution, since earnings are rising over the life cycle while consumption is constant.21

The welfare gains of moving from the optimal age-invariant tax system to the

optimal age-dependent tax schedule are 0.15% of lifetime consumption, that is, about

half as large as the previous case with a flat age-wage profile. The logic is that a

constant τ now approximates quite well the mild U shape of optimal age-dependent

progressivity.

20Golosov, Troshkin, and Tsyvinski (2016) show that with negatively skewed income shocks, the
positive drift in the labor wedge is stronger in the left tail of the income distribution.

21The implied intergenerational redistribution is influenced by our assumption that there are no
possibilities to save over the life cycle. It would be interesting to extend the analysis to allow for life-
cycle savings. In this case, one could solve the model numerically and evaluate how the implications
for the optimal tax system would change relative to our no-savings benchmark. We leave this for
future work.
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Figure 4: Optimal age dependence of taxes with uninsurable risk (vω > 0), the empirical
age profile of wages in Figure 2, and no discounting (β = 1). Top left panel: {τa} and
income-weighted average marginal tax rate. Top right panel: average income and
consumption by age group. Bottom panels: marginal and average tax rate schedules
at ages 25 and 50.

5.2.3 Discounting channel

We now turn to the third channel for age-varying taxes identified in Section 4, namely

that progressive taxation later in the life cycle is less distortive for skill investment be-

cause individuals discount future taxes when choosing their optimal amount of human

capital. To understand this effect, we change value of the discount factor from β = 1

to β = 0.95. All channels are now operative, so this case should be viewed as our

benchmark when focusing on steady-state welfare.

The main change relative to the previous case is that the rise in tax progressivity

over the life cycle again becomes monotonically increasing in age. The effect is substan-

tial: the optimal tax schedule is now regressive for the youngest cohorts and becomes

progressive for older cohorts (see the top left and the lower two panels of Figure 5).

The potential welfare gains from age-dependent taxes, relative to optimal age-

invariant taxes, are now 0.25% of lifetime consumption and thus similar to the case

with only the uninsurable risk channel.
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Figure 5: Optimal age dependence of taxes with uninsurable risk (vω > 0), the empirical
age profile of wages in Figure 2, and discounting (β = 0.95). Top left panel: {τa} and
income-weighted average marginal tax rate. Top right panel: average income and
consumption by age group. Bottom panels: marginal and average tax rate schedules
at ages 25 and 50.

5.2.4 Transitional dynamics and the sunk skill investment channel

We now compute the age-dependent tax system that maximizes welfare taking into

account transitional dynamics. All channels are now operative: uninsurable risk, life-

cycle productivity, discounting, and sunk investment. The importance of the last

depends on the tax system in place in the initial steady state. We assume that this

system features the age-invariant value for progressivity τUS = 0.181, the estimated

value for the U.S. economy, and g = g∗.

The optimal age-dependent tax system is plotted in Figure 6. The plots for the

consumption and earnings profiles (upper right panel of Figure 6) refer to the profiles

associated with cohorts living in the corresponding post-transition steady state.

A comparison of the top left panel in this figure with that of Figure 5 illustrates

two key differences that arise when we incorporate transition in the analysis. First,

the transition case involves a higher average level of tax progressivity. Second, the

age profile of progressivity is flatter when maximizing welfare along the transition. As

discussed previously, this is because the discounting channel is weaker once transition
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Figure 6: Optimal tax progressivity incorporating transition. This case features unin-
surable risk (vω > 0), the empirical age profile for wages, and β = 0.95. The initial
steady state features τUS = 0.181. Top left panel: {τa} and income-weighted average
marginal tax rate. Top right panel: average income and consumption by age in the
final steady state. Bottom panels: marginal and average tax rate schedules at ages 25
and 50 in the final steady state.

is incorporated. The net result is that the optimal age profile of taxes is U-shaped, as

in the case with β = 1.

The welfare gain of implementing optimally age-varying progressivity, relative to the

best age-invariant value for progressivity, is now only 0.07% of consumption. Thus, the

various channels for varying progressivity over the life cycle turn out to approximately

cancel each other out. This is the main finding of our quantitative analysis.

6 Conclusions

This paper develops an equilibrium framework to study the optimal degree of progres-

sivity in the tax and transfer system over the life cycle. The framework, which builds

on Heathcote et al. (2017), restricts the policy space to a particular functional form

for the tax and transfer schedule which provides a good representation of the U.S.

tax and transfer system and which has the important advantage of making the model

fully tractable. The main innovation in this paper is to allow for age-dependent tax
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progressivity.

We show that the optimal degree of age dependence in progressivity is driven by

several forces. First, the fact that uninsurable wage dispersion is rising with age is

a force toward making the tax system increasingly progressive with age. Second, the

fact that average labor productivity is generally increasing over the life cycle is a force

toward making optimal tax progressivity decline with age, since it is more expensive

to distort labor supply for high earners. The third motive driving progressivity is that

the planner can increase steady-state human capital by back-loading tax progressivity

to later in the life cycle. This is a force for increasing tax progressivity with age.

However, this motive is weakened when evaluating welfare incorporating transition

from an initial state. Incorporating transition also pushes up average progressivity over

the life cycle, reflecting the temptation to expropriate returns to existing irreversible

skill investments.

When calibrating the economy to the United States we find that when all of these

channels are operative, they approximately cancel each other out. In particular, the

optimal age profile for tax progressivity is mildly U-shaped when the transition is taken

into account. Our main quantitative finding is that the potential welfare gains from

introducing age-dependent progressivity are quantitatively small, at around one-tenth

of a percent of lifetime consumption.
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Appendix

This appendix proves all of the results in the main body of the paper. For a proof of

Proposition 1, see Heathcote et al. (2017).

A.1 Proof of Proposition 2 [skill price and skill choice]

The education cost is given by v (s) = κ−1/ψ

1+1/ψ
(s)1+1/ψ, where κ is exponentially dis-

tributed, κ ∼ η exp (−ηκ). Recall from eq. (12) in the main text that the optimality

condition for skill investment is

v′ (s) =
( s
κ

) 1
ψ

= (1− βδ)E0

∞∑
a=0

(βδ)a
∂u (c (ϕ, α, s;λa, τa, τ̄) , h (ϕ; τa) , g)

∂s
. (A1)

The skill level s affects only the consumption allocation (not the hours allocation) and

only through the price p (s; τ ), where we recall that the boldface notation τ indicates

the vector of progressivity rates τ ≡ {τa}∞a=0 , assumed to be fixed over time. Hence,

using (16), (A1) can be simplified as

( s
κ

) 1
ψ

= (1− βδ)
∞∑
a=0

(βδ)a (1− τa)
∂ log p (s; τ )

∂s
.

We now guess that the skill price function is log-linear in the skill choice,

log p (s; τ ) = π0(τ ) + π1(τ ) · s, (A2)

which implies that the skill allocation has the form22

s(κ; τ ) = [π1(τ ) · (1− τ̄)]ψ · κ, (A3)

22To see this, note that per assumption ∂ log p (s; τ ) /∂s = π1(τ ), so (A1) can be written as

( s
κ

) 1
ψ

= (1− βδ)
∞∑
a=0

(βδ)
a

(1− τa)π1(τ )

= π1(τ )

(
1− (1− βδ)

∞∑
a=0

(βδ)
a
τa

)
.
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where τ̄ can be interpreted as a discounted expected progressivity rate,

τ̄ ≡ (1− βδ)
∞∑
a=0

(βδ)a τa

Since the exponential distribution is closed under scaling, skills inherit the expo-

nential density shape from κ, with parameter ζ ≡ η [(1− τ̄) π1 (τ )]−ψ, and its density

is m (s) = ζ exp (−ζs). We now turn to the production side of the economy. Effective

hours worked N are independent of skill type s (see Proposition 1). Aggregate output

is therefore

Y =

{∫ ∞
0

[N ·m (s)]
θ−1
θ ds

} θ
θ−1

.

The (log of the) hourly skill price p (s) is the (log of the) marginal product of an extra

effective hour supplied by a worker with skill s, or

log p (s) = log

[
∂Y

∂ [N ·m(s)]

]
=

1

θ
log Y − 1

θ
log [N ·m (s)] (A4)

=
1

θ
log

(
Y

N

)
− 1

θ
log ζ +

ζ

θ
s.

Equating coefficients across equations (A2) and ( A4) implies π1(τ ) = ζ
θ

= η
θ

[(1− τ̄) π1(τ )]−ψ,

which yields

π1(τ ) =
(η
θ

) 1
1+ψ

(1− τ̄)−
ψ

1+ψ (A5)

and thus the equilibrium density of s is

m (s) = (η)
1

1+ψ

(
θ

1− τ̄

) ψ
1+ψ

exp

(
− (η)

1
1+ψ

(
θ

1− τ̄

) ψ
1+ψ

s

)
. (A6)

Similarly, the base skill price is

π0(τ ) =
1

θ
log

(
Y

N

)
−

log
(
η
θ

)
θ (1 + ψ)

+
ψ

θ (1 + ψ)
log (1− τ̄) . (A7)

We derive a fully structural expression for π0(τ ) below in the proof of Corollary 2.2

when we solve for Y and N explicitly. From now on, we drop the boldface notation

and simply express the equilibrium functions as functions of τ̄ , i.e., s (κ, τ̄), π1 (τ̄), and

π0 (τ̄).
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A.2 Proof of Corollary 2.1 [distribution of skill prices]

The log of the skill premium for an agent with ability κ is

π1 (τ̄) · s(κ; τ̄) = π1(τ̄) · [(1− τ̄)π1(τ̄)]ψ · κ =
η

θ
· κ,

where the first equality uses (A3), and the second equality follows from (A5). Thus,

log skill premia are exponentially distributed with parameter θ. The variance of log

skill prices is

var (log p(s; τ̄)) = var (π0(τ̄) + π1(τ̄) · s(κ; τ)) =
(η
θ

)2

var(κ) =
1

θ2
.

Since log skill premia are exponentially distributed, the distribution of skill prices in

levels is Pareto. The scale (lower bound) parameter is exp(π0(τ)) and the Pareto

parameter is θ.

A.3 Proof of Corollary 2.2 [aggregate quantities]

From equation (14) aggregate hours worked by individuals of age a are

H (τa) =

∫
h (ϕ; τa) dF (ϕ) = exp

(
log(1− τa)

(1 + σ̂a) (1− τa)

)∫
exp (−ϕ) dF (ϕ)

= (1− τa)
1

1+σ .

Since α and ϕ are independent, it follows thatNa (τa) = exp(xa)·E [exp(α)]·E [h (ϕ; τa)] =

(1− τa)
1

1+σ · exp (xa). Finally, aggregate earnings are given by the sum of individual

earnings,

Y = (1− δ)
∞∑
a=0

δaE (ya (α, ϕ; τa, τ̄)) = (1− δ)
∞∑
a=0

δaE {p (s; τ̄) exp (xa + α)h (ϕ; τa)}

= E {p (s; τ̄)} (1− δ)
∞∑
a=0

δaNa (τa) ,

where

E {p (s; τ̄)} = E {exp (π0 (τ̄) + π1 (τ̄) s)}

= exp (π0 (τ̄)) · E
{

exp
((η

θ

)
· κ
)}

= exp (π0 (τ̄))
θ

θ − 1
.
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A.4 Proof of Proposition 3 [optimal age-dependent taxation
in steady state]

From equation (25) the planner’s problem can be written as:

max
{g,λa,τa}

W(g, {λa, τa}) = (1− δ)
∞∑
a=0

δaū (a, λa, τ )− 1− δ
1− βδ

v̄ (τ ) + χ log

(
g

∞∑
a=0

δaY (a, τ )

)
,(A8)

subject to
∞∑
a=0

δaλaỸ (a, λa, τ ) = (1− g)
∞∑
a=0

δaY (a, τ ) ,∫
(yi,a)

1−τa di = Ỹ (a, λa, τ ) = K (a, τa, τ̄) exp
(
−τa (1− τa) a

vω
2

)
Y (a, τ ) = (1− τa)

1
1+σ exp (xa)

(
θ

θ − 1

) θ
θ−1
(

1− τ̄
θ

) ψ
(1+ψ)(θ−1)

(
1

η

) 1
(1+ψ)(θ−1)

where the first additive component of equation (A8) is the utility from consumption

net of the disutility of work effort, the second component is the indirect disutility of

skill investment, and the third is the utility from the public good. After some tedious

algebra, one obtains:

K (a, τa, τ̄) = (1− τa)
1−τa
1+σ exp

(
(1− τa)xa − τa (1− τa)

vϕ
2

)
· (1− τ̄)ψ

1−τa
(1+ψ)(θ−1)

(
1

θ − 1

) 1−τa
θ−1

·
(
θ

η

) 1−τa
(1+ψ)(θ−1)

· θ

θ + τa − 1

Letting ϑ denote the multiplier on the government budget constraint, and recog-

nizing that ∂ū (a, λa, τa, τ̄) /∂λa = λ−1
a from (16), the first-order condition with respect

to λa gives:
1

λa
= ϑ · K (τa, τ̄) exp

(
−τa (1− τa) a

vω
2

)
. (A9)

Since λaỸ (a, λa, τ ) = C (a, λa, τ ), average consumption of age group a, the first-order

eq. (A9) implies that the planner wants to equate average consumption across ages.

This proves statement (ii) of the proposition. Therefore, average consumption in the

economy is C (τ ) = (1− g) (1− δ)
∑∞

a=0 δ
aY (a, τ ) .

To make further progress on the exact expression for the social welfare function in

(A8), we analyze each of its components. The first term can be written as:

ū (a, λa, τ ) =

∫ ∫ ∫
log c (a, ϕ, α, s;λa, τa, τ̄) dFsdF

a
αdFϕ−

∫
exp ((1 + σ)ϕ)h (ϕ; τa)

1+σ

1 + σ
dFϕ.
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Note that average log consumption for age group a is:

E [log c (a, ϕ, αa, s;λa, τ ) |a]

= {E [log c (a, ϕ, αa, s;λa, τ ) |a]− logC (a, λa, τ )}+ logC (a, λa, τ )

where the term in brackets is:

E [log c (a, ϕ, αa, s;λa, τ ) |a]− logC (a, λa, τ )

= log

(
1−

(
1− τa
θ

))
+

(
1− τa
θ

)
− (1− τa)2

(
vϕ + avω

2

)
,

and the last term, from the optimality condition with respect to λa, is: logC (τ ) =

log [(1− g) (1− δ)
∑∞

a=0 δ
aY (a, τ )].

Average disutility of hours worked in age group a is:∫
exp ((1 + σ)ϕ)h (ϕ; τa)

1+σ

1 + σ
dFϕ =

1− τa
1 + σ

.

The average cost of skill investment in age group a is:

v̄ (τ ) =

∫
v (κ; τ̄) dFκ =

ψ

1 + ψ

(
1− τ̄
θ

)
.

Combining these components and exploiting the fact that Y (a, τ ) = Na (τa)·E [p (s; τ̄)],
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we can rewrite the social welfare function (up to a constant) as:

W(g, τ ) = log (1− g) + χ log g − (1− δ)
∞∑
a=0

δa
1− τa
1 + σ︸ ︷︷ ︸

disutility of labor

(A10)

+ (1 + χ) log{(1− δ)
∞∑
a=0

δa (1− τa)
1

1+σ · exp (xa)︸ ︷︷ ︸
Effective hours N

}

+(1 + χ)
1

(1 + ψ)(θ − 1)

[
ψ log (1− τ̄) + log

(
1

ηθψ

(
θ

θ − 1

)θ(1+ψ)
)]

︸ ︷︷ ︸
Productivity: log(average skill price) = log(E(p(s))

− 1− δ
1− βδ

ψ

1 + ψ

1

θ
(1− τ̄)︸ ︷︷ ︸

avg. education cost

− (1− δ)
∞∑
a=0

δa
[
log

(
1−

(
1− τa
θ

))
+

(
1− τa
θ

)]
︸ ︷︷ ︸

cost of consumption dispersion across skills

− (1− δ)
∞∑
a=0

δa · 1

2
(1− τa)2 (vϕ + avω)︸ ︷︷ ︸

cons. dispersion due to unins. shocks and pref.

The optimal choice of public good yields g∗ = χ/ (1 + χ), which proves statement

(i) of the proposition. Substituting this optimal choice back into (A10), yields an

expression for welfare that is only a function of the sequence {τa}. Taking the first-

order condition of this social welfare function with respect to τa (i.e., setting ∂W
∂τa

= 0),

we arrive at equation (26) in the text. Standard algebra establishes that the second-

order condition is satisfied,

∂2W
∂2τa

= − 1

(θ − 1 + τa)
2 − (vϕ + avω)

−1 + χ

θ − 1

(1− βδ)2

1− δ
ψ

1 + ψ

(δβ2)
a

(1− τ̄)2

−(1 + χ) (1− δ)
(1 + σ)2 · (1− τa)−

2σ+1
σ+1 exp (xa) ·

·δ
a (1− τa)

1
1+σ exp (xa) + σ

∑∞
t=0 δ

t (1− τt)
1

1+σ · exp (xt)[
(1− δ)

∑∞
t=0 δ

t (1− τt)
1

1+σ · exp (xt)
]2

< 0

This establishes that the social welfare function is globally concave in {τa}, so the

first-order condition (26) is necessary and sufficient for an optimum.

39



By inspecting (26), it is immediate to see that age a does not enter as an argument

in the first-order condition provided that vω = 0, the sequence {xa} is constant, and

one of the following conditions is satisfied: either β → 1 or θ → ∞. Therefore, the

sequence of τa must be independent of age in this case.

When vω > 0, the optimal τ ∗a is increasing with age since a larger value for avω

must be balanced by a lower value for (1− τa). Similarly, the optimal τ ∗a is increasing

with age also when β < 1 and θ < ∞. To see this, note that the term on the second

line, −
(

1+χ
θ−1

1−βδ
1−δ

1
1−τ̄ −

1
θ

)
ψ

1+ψ
(β)a, is negative and increasing in a when β < 1 and

τ̄ ≥ 0. Thus, when a increases, the other terms must fall. Note that the terms 1
θ−1+τa

,

(1− τa) (vϕ + avω), and the term in the third line are all falling in τa. It follows that

τa must increase with age.

It remains to be proven that, if the optimal sequence {τ ∗a} is increasing, so is {λ∗a},
provided that the sequence {xa} is growing sufficiently slowly. This result simply

derives from the fact that with slow growth in {xa}, the average consumption of age

a is decreasing in τa and increasing in λa (see the allocation in eq. (16)). Since the

optimality condition (A9) requires average consumption to be equalized across ages,

then λa must be increasing provided that the sequence {xa} is not rising too fast.
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