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Abstract

Developing country cities are characterized by informal housing—slums—but growing urban

populations and incomes will lead governments to pursue a host of policies that promote the con-

struction of modern, formal sector housing. This has the potential to affect entire neighborhoods

since the effects are likely to spillover beyond directly targeted locations. In this paper, we ask

how large are the spillovers from formal development, and what do these imply for the welfare

consequences of pro-formalization policies in developing country cities? We address this question

in three steps. First, we exploit a unique natural experiment in Mumbai that led 15% of central

city land occupied by the city’s defunct textile mills to come onto the market for redevelopment in

the 2000s. Second, we use a “deep learning” approach to measure slums from satellite images, and

combine this with administrative sources to construct a uniquely spatially disaggregated dataset

spanning the period. Third, we develop a quantitative general equilibrium model of a city featuring

formal and informal housing supply to guide our empirical analysis. We find evidence of substan-

tial housing and agglomeration externalities, and provide reduced-form evidence suggestive of both

efficiency gains (through increased employment density in central areas) and potential equity losses

(through the conversion of slums and gentrification near redeveloped mill sites).
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1 Introduction

Developing country cities are characterized by informal housing—slums—built from temporary or low-

quality materials.1 As urban populations and incomes grow in the coming decades, governments will

pursue a host of policies that promote the construction of formal housing built using more modern

technologies instead.2 A common rationale is that formal housing can increase the amount of floorspace

available for residents and businesses in taller buildings, and improve the living amenities enjoyed by

inhabitants through higher built-quality. However, given the evidence supporting the presence of

externalities in cities, it is challenging to think about the welfare consequences of these policies since

their effects are likely to spillover beyond directly targeted locations.

In this paper, we ask the question: how large are the spillovers from formal development, and what

are the welfare consequences of pro-formalization policies in developing country cities? We focus on

two primary spillovers from new formal development. First, we consider housing externalities under

which house prices in a location depends on the quality of buildings that surrounds it. This provides

a channel through which formalizing housing impacts residents in adjacent neighborhoods through

house price appreciation. Second, we estimate agglomeration externalities in which the productivity

of a location depends on the density of employment that surrounds it. This provides a channel

through which formalization impacts firms in adjacent neighborhoods as the concentration of nearby

employment changes (if part of the new construction is used by formal businesses).

Understanding the size of these externalities is crucial to think about the welfare consequences of

promoting formal floorspace, which entails an inherent equity-efficiency trade-off. On the one hand,

pro-formalization policies may promote efficient city structure with tall buildings allowing for greater

residential and employment density at their center. On the other hand, they may have sizeable

equity implications if rising house prices lead to slum conversions and gentrification in surrounding

neighborhoods. These forces have the potential to hurt poor residents, previously afforded access

to employment opportunities through centrally located slums. However, making progress towards

answering our question is challenged by the endogeneity inherent to the location of formal development,

a lack of high-resolution spatial data in developing country cities, as well as the complex general

equilibrium interactions across land and labor markets that will ultimately determine the welfare

consequences of pro-formalization policies.

This paper makes three central contributions to overcome these challenges. First, to our knowledge

1Throughout, we use a built-quality definition of formality: informal housing refers to short buildings using low-
quality materials, while formal housing refers to buildings using more advanced construction technologies that can be
taller and made with higher-quality materials. We use the terms housing, development, and construction interchangeably
to refer to buildings.

2Examples of policies that have been and will be used include slum clearance and relocations (India: Barnhardt,
Field and Pande 2017, Bangladesh: “Thousands evicted in slum clearance” 1999, Nigeria: “200,000 ’could be homeless’
after Nigeria slum clearance” 2010), slum upgrading (Harari and Wong 2017), relaxation of land use regulations (Ellis
and Roberts 2016), building height regulations (Bertaud & Brueckner 2005, Bertaud 2011) and rent control (Johari,
2016).
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we provide the first use of a “Deep Learning” approach to measure slums from satellite images. We

combine this with new sources of detailed administrative data we collect covering housing markets,

residential populations and employment spanning the city of Mumbai, India during the 2000s. Second,

we exploit a uniquely large-scale policy change in Mumbai that enabled owners of the city’s defunct

and vacant textile mills (occupying 15% of central city land) to redevelop into formal skyscrapers.

Third, we develop a quantitative general equilibrium model of a city featuring formal and informal

housing. We log-linearize the equilibrium conditions to obtain regression specifications that guide

our empirical analysis, and use the structurally-estimated model to quantify the welfare effects of the

policy and potential counterfactuals.

We have two main results. First, we find evidence in support of substantial housing and agglomera-

tion spillovers. In locations close to redeveloped mill sites, both formal sector house prices and formal

employment density rise. These relationships are directly informative about the presence of both

spillovers when interpretted through the regression specifications that come directly from the model.

Second, we provide reduced-form evidence suggestive of the welfare implications of pro-formalization

policies. Regarding efficiency, the increase in formal employment density in central areas—not only

on old mill sites, but also in locations nearby—is suggestive of productivity gains channeled through

increased agglomeration under the spatial spillovers we estimate. Regarding equity, we show the in-

crease in house prices caused slums to convert to formal housing near mill sites. Consistent with this

gentrification process, we find that population density actually falls in these neighborhoods reflecting

their changing composition and the larger housing units consumed by the rich who move in.3 While

these reduced-form moments cannot be directly equated to the distributional consequence of the pol-

icy, we interpret this as supporting the notion that pro-formalization efforts might hurt poor residents

by reducing the stock of informal housing that provides access to jobs in central locations. Our forth-

coming structural results will allow us to quantify the size of the aggregate and distributional effects

more formally.

We exploit a unique change in land policy in the center of one of the world’s largest megacities.

Mumbai’s 58 textile mills, covering 15% of land in the central city (602 acres), hark back to a time

of industrial prominence during the late 18th and early 19th centuries. However, as the industry

declined after World War II and the city turned increasingly to employment in services, the city’s land

use regulations effectively prohibited redevelopment of the mills. As we describe in detail in Section

3, this changed in the 2000s when these laws were amended to greatly improve the ability of owners

to sell and develop these sites.

Evaluating the effects of policies on outcomes such as land use, property prices, residential popu-

3We report additional results that directly look at the changing share of scheduled caste and scheduled tribe residents
in these locations (which we interpret as a proxy for skill). While the results are noisy, we find evidence that the share
decreases near mill sites. In ongoing work, we are processing additional datasets to have a more precise measure of how
the shares of residents by education level changed in these neighborhoods.
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lations and employment within developing country cities is typically complicated by a lack of data at

small-scale geographies. We confront this by constructing a number of new datasets. To our knowl-

edge, we provide the first application of deep learning via a convolutional neural network (CNN) to

identify slums using satellite images from 2001 and 2016. We provide the CNN with a training dataset

consisting of a satellite image of suburban Mumbai and a shapefile of identified slums.4 The network

learns the features of the image that best predict the status (slum or non-slum) of pixels; we use the

trained network to predict the locations of slums in Mumbai city in 2016 and 2001. The predicted

slums line up extremely well with identified slums in our validation sample (R2 of 0.94), about 2.5

times better performance than frontier methods used in the literature (R2 of 0.36).

We supplement this with a number of additional administrative data sources. First, we digitized

records from the Maharashtra Department of Registrations of Stamps that provides values of formal

residential and commercial floorspace across more than 900 subzones in the city between 1994 and 2012.

Second, we geolocate all formal establishments with more than 10 workers using addresses provided

in the 2005 and 2013 Economic Census. In ongoing work, we obtain employment by the universe of

all establishments in these years across approximately 8,000 enumeration blocks by digitizing hand

drawn maps for each block obtained from the Census Office and the Ministry of Statistics. Third,

we obtain population totals in 2001 and 2011 across 220 election wards obtained from the Bombay

Municipal Corporation Election Office.5 Taken together, these datasets allow us to track changes in

slums, formal property prices, employment and residence across the city over time.

To organize our analysis, we develop a quantitative general equilibrium model of a city. Low- and

high-skill workers decide where to live and work. Formal and informal firms produce across the city

using labor and commercial floorspace. The key new feature of our model is that it features both

formal and informal buildings. Land owners in each location choose across these two construction

technologies according to their relative price: an increase in the relative price of formal housing in a

location should lead to a decrease in the share of slums, with an elasticity determined by the size of

conversion costs across uses. Locations differ in their productivities and amenities, which we allow

to depend on the density of nearby employment and formal housing respectively.6 These spillovers

introduce spatial linkages that determine the effects of increasing formal development in one location

on those nearby.

4Slums are identified in 2016 based on built structure quality by the Slum Rehabilitation Authority of Mumbai in
2016. For 2001, we do not have data on the location of slums which is why we use the CNN approach to measure their
location from satellite images.

5These also report totals by scheduled caste and scheduled tribe (SCST) and non-SCST (which we interpret as
proxies for low- and high-skilled workers), but we are in process of preparing additional datasets with a more granular
measure of residents’ education.

6At present, productivity depends on the density of total employment nearby, but an update to the paper will
extend these spillovers to differ by formal and informal employment. This will allow us to speak to the total effect on
productivity if slum conversions replace informal establishments with formal ones. We also specify amenities that depend
on the density of formal housing nearby, but the model looks similar if these depend on the share of high-skilled residents
in a neighborhood instead.
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We model the law change in Mumbai as the lifting of prohibitively high barriers to redeveloping mill

sites. Due to their central location, the model predicts that owners will develop tall, formal buildings.

In the presence of spillovers in amenities, this increases the relative value of formal floorspace nearby,

causing redevelopment of slums. Some of the new floorspace on mill sites is used for commercial

purposes, increasing the employment density in nearby locations. In the presence of spillovers in

productivity, employment rises nearby as a result of increased productivity. Log-linearizing the model’s

equilibrium conditions, we derive regression equations that decompose these effects into a portion due

to the direct effects of mill sites within a location as well as an indirect effect due to spillovers from

mill sites nearby. These specifications resemble others used in the literature not derived from general

equilibrium theory (e.g. Autor, Palmer and Patak 2013). We take them to the data to provide evidence

of the policy’s effects along these channels as well as to identify the presence of spillovers.

Our identifying assumption is that trends in unobservable amenities and productivities were uncor-

related with a location’s proximity to mill sites, within administrative wards (24 large neighborhoods

of the city) and conditional on characteristics such as distance to the CBD. While we believe this is

reasonable given the uncertainty around the legality of the regulatory change, we provide evidence in

support of this hypothesis by examining the impact of proximity to mill sites on the price of formal

properties between 1994 and 2012.7 We find no differential trends in prices in the years leading up to

the law change, supporting our assumption.

We have five main empirical findings. First, we find that the law change caused almost all of the

mill sites to develop into tall, formal buildings by 2016. Second, we show that the price of formal

property increased in surrounding locations. Through the lens of the model, this is rationalized by the

presence of spillovers. Third, the share of land occupied by slums falls in nearby locations, consistent

with the increased return to formal development in these locations. Fourth, we find that population

density falls in these locations, consistent with their changing composition and the larger housing

units consumed by the rich who move in. Fifth, we find that employment rises near mill sites which

the model rationalizes through the presence of spillovers in productivity. Results from our structural

model are forthcoming.8

The rest of the paper proceeds as follows. Section 2 discusses the paper’s contribution to the

literature. Second 3 presents the context of Mumbai and its textile mills. Section 4 describes the data

and the methodology we use to measure slums from satellite images. Section 5 develops the model and

Section 6 outlines the reduced form framework it delivers and presents our results. Section 7 outlines

the structural estimation and quantitative results, while Section 8 concludes.

7This is the only variable available to us in years preceding the policy change.
8We plan to use the structurally-estimated model to conduct a number of policy simulations. First, we simulate the

effect of returning the mill sites to vacant use in order to quanity the policy’s impact on city productivity and welfare,
as well as the distributional effects across worker groups. Second, we evaluate how the construction of public housing
on previous slum sites can impact the equity implications of pro-formalization policies. Lastly, we simulate the effect of
redeveloping all slums into formal housing to assess the overall equity-efficiency trade-offs of slums in general.
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2 Related Literature

Our paper makes several contributions to the literatures on urban and development economics.

Within a large body of work examining the size and nature of spillovers, a smaller strand has sought

sources of exogenous variation to estimate these forces.9 Regarding housing externalities, Owens,

Sarte and Rossi-Hansberg (2010) examine spillovers from urban revitalization policies on house prices

in Richmond, Virginia. Keniston and Hornbeck (2017) study the impact of new housing construction

induced by Boston’s Great Fire on land values nearby. Regarding agglomeration externalities, Ahlfeldt

et. al. (2015) estimate the size of these spillovers leveraging the shock to density delivered by the

division and reunification of Berlin. We contribute to these strands of literature by estimating the size

of these spillovers using a unique natural experiment within a developing country city, and provide

new evidence on their implications in the presence of slums.

In development, we contribute to the literature on slums in developing countries (see Bruecker and

Lall 2015 and Marx, Stoker and Suri 2013 for reviews). Most have focused on titling (Field 2007),

slum upgrading (Field and Kremer 2008, Harari and Wong 2017) and relocation from slums to public

housing (Barnhardt, Field and Pande 2017). More closely related is Henderson, Venables and Regan

(2017) who study the development of Nairobi as slums transition to formal construction with the

growth of city over time. Our paper differs along three key dimensions. First, we estimate the size of

slum conversion costs by estimating the response of slums to formal house price shock induced by our

policy change rather than inferring them from model-based residuals. Second, we measure slums using

CNNs which provides a general methodology to predict slums from satellite images alone compared

to tracing the perimeters of each informal building. Third, we develop a quantitative model of city

featuring informal and formal development that can be fit to any arbitrary two-dimensional geography,

and use the regression equations implied by the model to guide our analysis of the change in policy.

In order to measure changes in the locations of slums, we turn to the use of satellite images.

While a relatively large literature within economics has used nighttime satellite imagery to address

missing data on economic activity at the region or city level,10 a much smaller but growing strand has

turned to daytime satellite images that provide high enough resolution to measure outcomes within

cities. The downside to working with these images is that the volume of data they contain mean that

they are less interpretable. Often, authors extract single features from these data (e.g. green space,

luminosity) that are readily interpretable within the specific context.11 However, such methods are

not amenable to the measurement of land use since a single index is unlikely to capture sufficient

9Our paper also relates to work using historical natural experiments to examine spatial spillovers in a dynamic setting
through path dependence (e.g. Davis and Weinstein 2002, Bleakley and Lin 2012 and Kline and Moretti 2014).

10See Donaldson and Storeygard (2016) for a review.
11For example, Marx, Stoker, and Suri (2014) measure the luminosity of roofs in slums in Nairobi, Burgess et. al.

(2012) use the color bands to measure deforestation in Indonesia, and Henderson, Regan, and Venables (2016) use LiDAR
images to measure building height in addition to manually tracing building footprints.
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information. Recently, papers in geography and economics have begun to incorporate potentially

large sets of spatial features extracted from satellite images to identify land use, often using machine

learning methods such as random forests to combine the features into a single predictive model (see

Goldblatt, You, Hanson, and Khandelwal (2016) for an example at the intersection of the two fields,

classifying land use as built or non-built). Kuffer, Pfeffer, and Sliuzas (2016) provides a review papers

in geography using this approach to identify slum cover. However, we find these methods insufficiently

accurate to conduct analysis at the city block level. Instead, we provide the first application of a

convolutional neural network (CNN) (also known as “deep learning”) for slum identification, making

use of insights from Yuan (2017) to our problem.12 The CNN can be thought of as generating spatial

features tailored to the identification of slums (Goodfellow, Bengio, and Courville (2016)), and we see

a large increase in predictive performance from its use.

We also relate to the work on the impact of land regulations, most of which focuses on developed

countries (e.g. Ihlanfeldt 2007; Zhou, McMillen, and McDonald 2008; Saiz 2010; Turner, Haughwout,

and Van Der Klaauw 2014). Observers have consistently criticized urban land policy in India as

inefficient, failing to capture the potential benefits of agglomeration and promoting low-density cities

characterized by slums, unused land, congestion and sprawl (Bertaud, 2011; Bertaud & Brueckner,

2005; Brueckner & Lall, 2015; Harari, 2016). Examples of restrictive land policy and similar city

structure can be found in cities across Asia and Sub-Saharan Africa (Ellis & Roberts, 2016; Henderson

et. al. 2016). We combine a natural experiment with new sources of data to identify the contribution

of distortionary land use regulations on city structure.

Lastly, we contribute to the growing literature using quantitative models to study the internal

structure of cities (Ahlfeldt et. al. 2015; Allen et. al. 2015; Owens et. al. 2017; Tsivanidis 2017). Our

approach is most closely related to Redding and Sturm (2016) who combine a model with multiple

worker groups with the wartime bombing of London to evaluate spillovers from the destruction of

neighboring houses. We differ from the authors’ approach by developing a model featuring both

informal and formal housing supply to fit our developing country context, and by log-linearizing the

model’s equilibrium equations to provide regression equations that we take to the data to shed light

on the channels predicted by the model and inform us about the presence of spillovers.

3 Background: The Redevelopment of Mumbai’s Textile Mills

Mumbai’s Textile Mills and DCR 58 Mumbai’s 58 textile mills, covering 15% of land in the

central city (602 acres), hark back to a time of industrial prominence during the late 18th and early

19th centuries.13 However, as the industry declined after World War II and Mumbaikers turned

12There are relatively few applications of CNNs in economics to date. Jean, Burke, Xie, Davis, Lobell, and Ermon
(2016) and Engstrom, Hersh, and Newhouse (2016) are two exceptions.

13We draw heavily on D’Monte (2006) for the historical background described in this section.
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increasingly to employment in services. The coup de grace for most of the mills came during an

18-month strike spanning 1982 and 1983. Many closed. The government of the state of Maharashtra

did not allow sale of the mill lands, however, considering them an asset securing payment of workers’

wages lost during the strike.

During the 1991 economic reforms, the state government was pushed to allow development on un-

used mill lands subject to government approval. In response, the state government drafted Regulation

58 of the city’s Development Control Rules (DCR 58). DCR 58 stipulated that any mill requesting

permission for redevelopment turn over one-third of the land in question to the Maharashtra Housing

and Development Authority (MHADA) for construction of public housing and one-third to the Bom-

bay Municipal Corporation (BMC) for development of public open space. Mumbai’s low level of open

space per capita relative to cities like Delhi and Madras explains some of the enthusiasm for using mill

land for this purpose. There was also hope that some of the space could be used to widen roads and

alleviate congestion.

What amounted to a 66% tax on land did not prove attractive to mill owners and relatively little

redevelopment took place during the 1990s. In 2001 the state government ammended DCR 58 so that

mill owners could deduct the floorspace represented by existing structures from the area subject to the

66% tax. In many cases this had the effect of reducing the amount of land to be given up to almost

zero. The various authors articles in D’Monte (2006) offer different stories for the origins of the DCR

58, with different roles played by mill owners. It would be naive to believe that mill owners played no

role in pushing for the change, but we show in Section 6.1 that there is no evidence from differential

land prices that either the mill owners or the government made anticipatory investments in mill areas.

Given the ammendment’s subsequent tortured legal history, it may be that owners or potential buyers

believed the ammendment had little chance of becoming law and being implemented.

Despite passing in 2001, the ammendment was not implemented until 2003 when a specific for-

mula to compute the amount of land to be surrendered was issued, meaning that no development was

allowed to take place from 2001 to 2003. Even once the formula was available, a group of NGOs was

able to obtain a stay on the implemention from the Bombay High Court starting in 2005. The mill

owners appealed the decision to the Indian Supreme Court, which finally ruled in their favor in 2006

and allowed large-scale redevelopment to proceed.

Impact of the DCR 58 Amendment Analysis of satellite images over the decade suggests that

this was the key decision that drove very large-scale redevelopment. Appendix Table A.1 provides

details on redevelopments we have obtained so far (remainder in progress). Many of the former mills

are now the sites of some of the tallest buildings in Mumbai, representing dramatic increases in the

amount of floorspace available in the center of the city.

As a motivating example, Figure 1 shows satellite images for the centrally located Apollo, Simplex
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and Hindoostan Mills in 2000 and 2016. Panel (a) shows these sites, outlined in blue, within the

broader neighborhood. The mills themselves are long industrial buildings with tiled, corrugated roofs.

We also see a large number of informal structures (with small, clustered roofs) near Apollo Mills in

the top left. Panel (b) shows how these sites transformed by the 2016. There are three key takeaways

from comparing these images. First, all undergo transformative development with very tall, formal

buildings constructed in each site.14 Second, new formal construction has taken place near mill sites.

This can be seen at the bottom of Apollo Mills (top left), as well as above Simplex Mills (top right).

Third, part of this new construction came from converting slums into formal housing (below Apollo

Mills). A large section of slums have also been cleared at the center. However, not all nearby slums

have been cleared. This suggests that a “stickiness” in the adjustment of land use, which could be

due (in part) to conversion costs.

Laws Governing Slum Redevelopment The redevelopment of slums is governed by the 1995

Slum Rehabilitation Act. This regulation covers all census or notified slums, but non-notified slums

are also eligible if they fullfil the conditions laid out in the Act and are approved by the Slum Rehabil-

itation Authority. If redevelopment occurs, then residents who can prove occupancy prior to January

1 1995 will be compensated with a residential tenement with area of 225 square feet.15 These new

tenements are located in the same location as much as possible, constructed on the original site by

the developer in exchange for transferable development rights (TDR) to increased building heights

on other parts of the site. However, in cases where this in situ redevelopment is not possible these

new units can be placed elsewhere and are often located towards the outskirts of the city. Residents

who cannot establish occupancy prior to this date are not eligible for compensation. Moreover, there

are reports that the law was not perfectly enforced, for example with developers forging residents

signatures in order to pass the 70% threshold. [Notes: Citiations forthcoming. Updates to the paper

will incorporate this context more formally into the assumptions of the model.]

14Not every part of each mill site is developed. In parts of our analysis, we measure the new floorspace by combining
satellite images with additional sources on the number of floors of skyscrapers in Mumbai.

15Residence is established through documents issued by the Maharashtra government (“photo passes”), or additional
documentation such as ration cards, tax and utility bills, and birth certificates.
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Figure 1: Apollo, Simplex and Hindoostan Mills

(a) 2000

(b) 2016
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4 Data

We construct a number of new datasets measuring the evolution of slum cover, floorspace prices,

scheduled caste and tribe population, and formal establishment location within an India megacity. A

number of these administrative datasets are at a level of spatial granularity previously unavailable

to researchers as we describe in detail below. One key methodological contribution of this paper is

that we bring new methods to bear on the problem of slum identification from satellite images, with

substantial improvements in performance compared to previous efforts.

4.1 Measuring Slums from Satellite Images

Data on land use in developing countries is often incomplete or misreported in official statistics. This

is particularly true for slum areas. In Mumbai, maps of informal settlements were completely non-

existent before 2016. This represents a challenge for us, since formalization is a key developing-country

specific response to spatial spillovers that we wish to measure.

To address the lack of historical land use data we turn to satellite images, which are available as

far back as 2001. Identifying slum areas from a satellite image is a classification or regression problem

where an observation is a spatial unit (such as a pixel representing 50 x 50 cm on the ground or a city

block) and the outcome variable can either be an indicator for slum status or a continuous variable

measuring, for example, the slum area of the spatial unit. The explanatory variables are the red, green,

and blue values of pixels within the spatial unit and the pixels surrounding it.16 The researcher fits a

model of the outcome as a function of the explanatory variables in a “training” area outside the area

of interest. Slum identification involves plugging the explanatory variables of spatial units in the area

of interest into the estimated model to generate the predicted slum status for each spatial unit in the

area of interest. The problem is extremely high-dimensional. For instance, a vector of the red, green,

and blue values forming a 128 x 128-pixel square around a pixel of interest has 3 × 1282 = 49, 152

elements.

To date, the literature in geography on using satellite images to identify slums17 recommends

reducing the dimension of the problem by performing specific, known calculations to extract a set of

“spatial features”18 from the image in a first stage, then regressing the slum measure of a spatial unit

on the spatial features. Slum identification involves plugging the spatial features of the area of interest

into the fitted second stage model to generate predicted slum status of each spatial unit in the area

of interest.

16Other values associated with surrounding pixels, such as near-infrared, may also be used.
17See Kuffer et al. (2016) for a review.
18These include standard features such as the Normalized Difference Vegetation Index (NDVI), which measures the

difference between the amount of near-infrared and red light emitted, as well as “textural features” such as the Histrogram
of Oriented Gradients (HoG), which measures the average change in image brightness vertically and horizontally at each
pixel yielding higher values in more complex settled areas such as slums (Engstrom et al. (2016)). The dimension of the
spatial features is usually in the double or low triple digits.
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In this paper, we take a different approach based on deep learning. Rather than use pre-specified

procedures to generate spatial features, the deep learning approach fits a model made up of a series

of parameterized linear and non-linear transformations called a Convolutional Neural Network (CNN)

directly to the high-dimensional explanatory variable vector and the outcome variable. The “deep”

in deep learning refers to the potentially substantial number of linear and non-linear transformations

employed. By directly using the explanatory variables, the CNN avoids the information loss resulting

from aggregation to pre-specified spatial features.

We proceed as follows. First, we describe the inputs into our classification procedure. Second, we

evaluate the “spatial features” methods and show their performance is insufficient for our purposes.

Third, we describe our deep learning approach and show it performs remarkably well in measuring the

location of slums in our verification sample.

Defining and measuring slum status in the training area To construct our outcome vari-

able, we first need to define what constitutes a slum before mapping their location in the city. We

adopt a building structure-based definition, which is most natural given our use of satellite imagery

for measurement.19 Our data come from two sources. First, the Slum Rehabilitation Authority of

Mumbai conducted a survey of all slums in the city in 2016 and provide a map of the results which

we digitized. The SRA designated slum status based on the type of built structures and available

amenities, and thus their slum map captures both “notified” (i.e. recognized by the government) and

“non-notified” slums.20 Second, we augment this with enumeration block maps from the 2011 census

we were able to purchase from the census office. These contain the location of individual buildings

across the city, which are classified as “pucca” or “kutcha” structures, which group the materials of

the wall and roof into two categories. Roughly speaking, these categories correspond to what one

might think of as slum and non-slum.21 While we find the SRA map to have the best coverage of

slum-like buildings, perhaps unsurprisingly since the survey was conducted for this sole purpose, we

cross-check the two sources with our satellite images to resolve any inclusion/exclusion errors using

the census maps.

Results using existing approaches We first implement the spatial characteristics approach de-

scribed above by following one of the frontier papers in the geography literature, Engstrom, Sandborn,

19We recognize there are other ways to define slums, for example based on whether residents have tenure.
20SRA uses a topographical survey based on satellite images and LiDAR to first map out the location of slums across

the city before visiting the clusters with enumerators. Their built-structure based approaches corresponds well with what
we seek to measure in this paper. See Dhikle et. al. (2017) for a description.

21From the census enumerator guide: “A Pucca building may be treated as one which has its walls and roof made of
the following materials. Wall materials: Stones (duly packed with lime or cement mortar), G.I/metal/asbestos sheets,
Burnt bricks, Cement bricks, Concrete. Roof Material: Machine-made tiles, Cement tiles, Burnt bricks, Cement bricks,
Stones, Slate, G.I./Metal/Asbestos sheets, Concrete. Buildings, the walls and/or roof of which are predominantly made
of materials other than those mentioned above such as unburnt bricks, bamboos, mud, grass, reeds, thatch, plastic/
polythene, loosely packed stone, etc., may be treated as Kutcha buildings.”
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Yu, Burgdorfer, Stow, Weeks, and Graesser (2015). We use 32 spatial features, comprising all outputs

from the Fourier Transform, HoG, Lacunarity, Local Binary Patterns, NDVI, and PanTex extraction

procedures22 implemented using Jordan Graesser’s spfeas Python package on 8 x 8 and 16 x 16-pixel

grids around each image pixel. Engstrom et al. (2015) define the spatial unit of interest as a 50 x 50

cm pixel, but we acheived better performance by taking the average of each spatial feature within city

blocks defined as the complement of the intersection of the city footprint and the space taken up by

primary, secondary, tertiary, and unclassified roads on OpenStreetMap. Like Engstrom et al. (2015),

we use Breiman (2001)’s Random Forest algorithm for the second-stage model. We use the area of

each block that is covered by slums according to the SRA map as our dependent variable.

The Mumbai metropolitan area is split up into two districts: Mumbai District and Mumbai Sub-

urban. Almost all of the mill sites were in Mumbai District so this is our main area of interest. We

use Mumbai Suburban as our training area. In 2016, we can assess the performance of a given image-

based slum identification method by comparing the slum cover of Mumbai District blocks predicted

by the method to the actual slum cover according to the SRA map. Figure B.2 plots the results of

this exercise, with the points representing blocks and the fitted line the result of regressing the blocks’

SRA slum area on the predicted slum area of the spatial features procedure (spfeas). The R2 of the

fit, a common evaluation metric in the literature, is given at the bottom of the graph.

The R2 is comparable to the 0.45 value reported in Engstrom et al. (2015).23 This level of mea-

surement error, however, is inadequate for our purposes since we are interested in the relatively subtle

task of determining how the change in slum cover between 2001 and 2016 was affected by proximity

to former mill sites within neighborhoods.

Our Approach using Deep Learning To improve performance, we apply new methodology to the

problem of identifying slums from satellite imagery. The approach is based on a CNN architecture.

As described above, a CNN transforms potentially high-dimensional inputs into predictive outputs

through a parametrized sequence of linear and nonlinear transformations. A standard logit model,

which is linear in parameters after a nonlinear transformation, is analogous to the final two steps in the

sequence when the dependent variable is binary. The difference is that the input to the logit model

in a CNN would already be a transformation of the vector of red, green, and blue values of pixels

surrounding the pixel of interest. The fact that many of the transformations in a CNN are linear

provides computational tractability despite the thousands of parameters involved24, and can easily

be parallelized. Due to these advantages and the growing availability of multi-processor computing

environments, CNNs took the world of image processing by storm in 2012 and have enabled many of

22See Engstrom et al. (2015) and Kuffer et al. (2016) for descriptions of each procedure.
23The difference in performance is perhaps unsurprising given that Engstrom et al. (2015) run their analysis only on

built-up areas of Accra, while we consider all areas of Mumbai district. We note that predicting the share of a given
block covered by slums results in much worse performance, acheiving an R2 of only 0.02.

24Our own CNN includes about 600,000 parameters.
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the technologies associated with artificial intelligence such as self-driving cars (see Goodfellow et al.

(2016) and Gershgorn (2017) for relatively non-technical histories).

We depart further from existing approaches by adapting Yuan (2017)’s building footprint detection

method to define the dependent variable at the pixel level to be a signed distance from the boundary

of a slum area. That is, Yi for pixel i is an integer representing the number of pixels between i and

the boundary of the nearest slum, with the integer being negative if i is on the interior of a slum.

Figure B.3 demonstrates the approach. Panel a shows a part of the training area containing large slum

(small, low structures) and non-slum (taller buildings) areas. Panel b shows signed distance from the

boundary of an SRA slum. The lightest areas are deepest in the interior of a slum. Following Yuan

(2017), we implement our CNN using the Theano framework in Python.

The results are remarkably good. Qualitatively, Figure 2 compares how the algorithm’s predicted

slum locations compare with the data. Panel (a) overlays the slum shapefile data over a satellite

image of an area near the center of the city. The large red area is the well-known Dharavi slum

(featured in Slumdog Millionaire). Panel (b) overlays the predicted slum areas according to our CNN

over the same section of the city, slums are denoted in red (with blue outlines representing predicted

boundaries). Notably, the CNN picks up small pockets of structures and is also able to distinguish

the formal structures within Dharavi that are not slums. Quantitatively, our CNN offers a dramatic

improvement over existing methods. Figure 3 reproduces Figure B.2, with CNN predictions in place of

spfeas predictions. A linear regression of the SRA slum cover area per block on our CNN predictions

explains 94% of the variation in block-level slum cover. We note that we overpredict for blocks with

large slum areas, but see this as a virtue of our approach we believe the SRA may be biased against

including non-notified slums in their maps.
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Figure 2: Out-of-Sample Prediction vs Actual Slums

(a) SRA Slums

(b) Predicted Slums

For earlier years, we lack primary data sources on the location of slums. In ongoing work, we use

the model trained on 2016 data to predict slums in 2001. At present, we instead adjust our 2016 SRA
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Figure 3: Validation Sample: SRA vs CNN Slums

map by overlaying it on top of images from 2001 and 2005 to identify structures in our training sample

that have remained unchanged. We then extend the map to slum structures existing in early years

but not 2016 by identifying structures in the images which looked identical to those present in both

years. We produce validation data for 2001 in the same way. We do not yet acheive quite the same

performance in the 2001 validation data (R2 of 0.74), but still do far better than existing approaches.25

4.2 Additional Adminstrative Data Sources

In addition to the satellite images, we have collected a number of new data administrative sources at

a high level of spatial granularity within Mumbai.

Our employment data comes from the Fifth and (newly available) Sixth Economic Census (EC)

of India. This covers the universe of establishments in 2005 and 2013 respectively. While the raw

data provides the block in which each establishment is located (out of around 8,000), the Ministry of

Statistics does not make their spatial location available to researchers. However, our team has been able

to access enumeration block maps for both rounds covering Mumbai district. These are hand-drawn

by the enumerator assigned to each block during the survey. Each map contains a sketch of the roads

(labelled), landmarks and buildings within the block. Our research assistants are finishing geocoding

25In supplementary results available upon request, we address whether measurement error could be driving our results.
For each year, we construct the prediction error as the difference between the predicted slums and actual slums (per the
2016 SRA map, or RA-adjusted 2001 map) and regress this on our mill measure. We find no significant effect, suggesting
any measurement error introduced by differing image specifications across years is not confounding our results.
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each of these maps. Therefore, the results we present in this draft geolocate firms using the addresses

of formal establishments with more than 10 workers provided in the EC. We clean and geolocate these

addresses using the Google Maps API.26 We experimented with different combinations of address

components and benchmarked each against a random sample of addresses we located manually. This

gives us a distribution of error for coordinates found using each method, which our final longitude-

latitude combinations minimize.

We construct data on residential population using the 2001 and 2011 censuses. As before, ge-

ographic coverage is typically only available by town. However, our team was able to access the

block-level datasets which report the total number of residents as well as residents in scheduled castes

and scheduled tribes (SCST). We use the latter as a proxy for skill. We obtained the enumerator maps

for each block in 2011. Unfortunately, the maps for 2001 have been destroyed. Instead, we accessed

population in both years from the Bombay Municipal Corporation Election Office for 221 election

wards across the city. These report both total and SCST population and are created by the Election

Office (EO) using the block-level data from the population census.27

Data on floorspace values come from annual official assessments produced by the city. These

are published each year in the city’s Ready Reckoner for around 900 “subzones” across Mumbai

and Mumbai suburban districts. We digitized paper copies of the assessments going back to 1994.28

While these official assessments are partially based on transaction records, we are currently collecting

plot-level transaction records available from the government of Maharashtra between 2002 and 2015.

We acknowledge the problematic nature of working with formal sector property price data in the

Indian context, where transaction prices may be underreported for tax avoidance, but believe that

city assessments should be less prone to this issue.29 Moreover, this force would tend to exert a

downward bias on house price appreciation near mill sites, implying our estimates should be more

conservative than otherwise.

We recover the locations of mill sites primarily by georeferencing a map from the Correa Report,

a 1996 government-commissioned plan for the mill lands. Finally, we use commuting microdata from

the 2005 Mumbai Municipal Corporation transportation survey.

26The address formats are irregular. Therefore, we parse the addresses and extract their components (ie, street, build-
ing, postal code) using the natural language processing C library libpostal, which has been trained on OpenStreetMap
data.

27The EO ombine the block-level maps and data to district the city into electoral zones. Unfortunately, while the
EO does keep a record of historical population totals they construct by election ward, they did not retain the 2001
enumeration blocks maps.

28Unfortunately, while the present day Ready Reckoner prices are available online, historical records had to be obtained
in paper copy in Mumbai and only certain years were made available to our research team. We therefore have data covering
1990-2000, 2003 and 2013. We drop the three initial years due to data reliability issues.

29We are in process of validating Ready Reckoner valuations for 2016 with property price data collected online.
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5 Model

To guide our analysis, this section presents a general equilibrium model of a city. The key difference

with existing quantitative urban models (e.g. Ahlfeldt, Sturm, Redding, and Wolf (2015)) is that we

incorporate informal housing and informal employment. The model serves two purposes. First, it

disciplines our empirical analysis by providing regression specifications we take to the data. Second,

it provides a framework to undertake quantitative analysis once we estimate its structural parameters

in section 7.

The city consists of a discrete set of locations i ∈ {1, . . . , I}. Individuals are mobile and choose

where to live and work. In each location, there can be both formal and informal housing whose supply

is decided by landowners. Firms in each location produce using commercial floorspace and labor.

Locations differ in their attractiveness for individuals and firms, which is determined in equilibrium

by productivity, amenities, land supply and commute costs. We consider the DCR 58 law change as

a shock to the supply of land available for development.

5.1 Workers

There is a fixed number of high- and low-skilled residents in the city denoted by L̄g for g ∈ G =

{H,L}.30 Each individual chooses a location to live i and a location to work j. In each location,

workers can live in either informal or formal residential housing denoted by k ∈ {I, F}. Each individual

ω has Cobb-Douglas preferences over a freely-traded numeraire good and housing. Indirect utility for

a choice (i, j, k) of where to live, where to work and which type of housing to reside in is given by

Uijkω =
ukigwjg(r

k
Ri)

β−1

dij
εijkω.

Here ukig are the amenities enjoyed by type-g workers living in i in type k housing, wjg is the wage

earned by group g workers in location j, rkRi is the price of residential housing of type k in location

i, and dij = exp(−ρtij) is the iceberg disutility cost of commuting. We allow amenities to differ

by the type of housing (to reflect differences in quality between formal and informal units) and by

group (to reflect differences in preferences across skill groups for neighborhoods and housing types).

We take these amenities to be exogenous for now, later we allow them to depend on neighborhood

characteristics.

Individuals have an idiosyncratic preference for each (i, j, k) tuple εijkω which is drawn iid from a

Frechet distribution with unit scale and shape θ.31 Standard results imply that the mass of workers

30This is the closed city assumption with infinite mobility costs between the city and the rest of the country. In
quantitative exercises we consider the alternative extreme assumption of zero mobility costs so that population can move
freely in and out of Mumbai (the open city assumption).

31For simplicity we assume this is constant across groups, but we relax this later.
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living and working in different locations is given by

LkRig = λUg (ukig(r
k
Ri)

β−1)θΦRig (1)

LFjg = λUg w
θ
jgΦFig (2)

where ΦRig =
∑

j(wjg/dij)
θ reflects the access to jobs from location i and ΦFjg =

∑
i,k(u

k
ig(r

k
Ri)

β−1/dij)
θ

reflects the access to workers from location j. The constant λUg is determined in equilibrium and is

invariant across locations.32 Overall worker welfare Ūg is given by

Ūg = γ

∑
i,j,k

(
ukigwjg(r

k
Ri)

β−1/dij

)θ1/θ

. (3)

Average income of residents of i is determined by the probability of commuting to different em-

ployment destinations conditional on living in i

w̄ig =
∑
j

(wjg/dij)
θ∑

g(wjg/dij)
θ
wjg.

Housing market clearing then requires that the supply of housing is equal to the demand. Given

supplies of formal and residential floorspace HF
Ri and HI

Ri and Cobb-Douglas preferences, this requires

that

rkRi = (1− β)

∑
g w̄igL

k
Rig

Hk
Ri

(4)

5.2 Firms

In each location, firms produce the freely traded good under perfect competition. Some of these firms

produce in formal buildings, while others produce in informal sites using a Cobb-Douglas technology

over commercial floorspace and labor

Yjk = AjkL
α
Fjk(H

k
Fj)

1−α

where Ajk is productivity in location j and housing type k, LFjk is the total labor used in production

and HFj is the amount of commercial floorspace. We assume that worker skill-groups are perfect

substitutes in production, but allow for differences in the units of effective labor provided by each

worker type. In particular, we normalize the effective units provided by low-skill workers to one and

assume that each high skill worker provides ZH > 1 units of effective labor. Thus, wjH/wjL = ZH in

all locations.

32In particular, λUg ≡ L̄g(γ/Ūg)θ where γ = Γ
(
1− 1

θ

)
.
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Taking wages as given, demand for labor from firms is given by

LFjk =

(
αAjk
wj

) 1
1−α

Hk
Fj (5)

Zero profits for firms pin down the price of commercial floorspace from

rkFj = (1− α)A
1

1−α
jk

(
α

wj

) α
1−α

(6)

5.3 Floorspace Use

For each type of floorspace use, a share ϑki is allocated to residential purposes while the remainder is

allocated to commercial use. Floorspace use decisions are made by land owners which pin down these

shares through a no arbitrage condition. A tax equivalent of zoning restriction lowers the return to

commercial use relative to residential use by a factor 1− ξi. No arbitrage therefore requires that

ϑki = 1 rkRi > (1− ξi)rkF i
ϑki ∈ (0, 1) rkRi = (1− ξi)rkF i
ϑki = 0 rkRi < (1− ξi)rkF i

(7)

On informal plots we assume there is minimal government enforcement so that (with an abuse of

notation) ξi = 0 on those plots.

Let rki denote the price of floorspace in housing of type k. No arbitrage ensures this is equalized

acorss uses. In locations completely specialized in residential use, this is simply rkRi. The same

applies for those specialized in commercial use. For mixed use locations, we denote rki = rkRi and let

rkF i = 1
1−τki

rki . The return earned by land owners is simply rki .

5.4 Housing Supply

Setup In each location i, there are Ti total units of land available. Land on these plots can be

allocated between formal, informal and vacant use. There are a continuum of plots. Each plot is owned

by an atomistic land owner who decides how to develop their land, taking prices and neighborhood

characteristics as given. Since each land owner is small, they themselves have no affect on aggregate

outcomes and there is no coordination between them.

Plot owners choose between the three types of development (formal, informal and vacant). Under

the formal technology, the land owner combines land and capital according to the Cobb-Douglas

technology HF
i = T 1−η

i Kη
i , so that hFi = kηi units of housing is constructed per unit of land if ki

units of capital are used per unit of land. Capital is available at the same price across the city, at

a price normalized to one. When the formal technology is used, therefore, the land owner solves

maxk r
F
i k

η
i − ki. This implies that ki = (ηrFi )

1
1−η . Using that hFi = kηi , we see that the resultant
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density of formal development is given by hFi = (ηrFi )
η

1−η . Land owners face a tax on profits at rate τi.

Profits per unit of land from formal development are therefore πFi = η̃(1− τi)(rFi )
1

1−η where η̃ ≡ η
η

1−η .

Under the informal technology, single-story structures can be built using land as the sole input so

that one unit of housing that can be produced per unit of land. Profits per unit of land from informal

development are therefore πIi = rIi .

Plot owners have the outside option of leaving their plots vacant in which case they get a constant

profit which we normalize to πVi = 1.

Land Use Decisions We assume each plot owner has an idiosyncratic profitability from each

use represented by the vector ε = (εF , εI , εV ). In particular, this means that the land use allocation

problem for an owner with profit shock vector ε is given by

max
{
πFi ε

F , πIi ε
I , εV

}
.

We assume each ε vector is drawn iid from a Frechet distribution with shape parameter κ > 1. This

implies the land use shares in i are given by

λFi =
τ̃i(r

F
i )

κ
1−η

1 + τ̃i(rFi )
κ

1−η + (rIi )
κ

(8)

λIi =
rκIi

1 + τ̃i(rFi )
κ

1−η + (rIi )
κ

(9)

λV i = 1− λFi − λIi. (10)

where we have defined τ̃i ≡ (η̃(1− τi))κ.

Given the results over construction density above, the total supply of formal and residential

floorspace are given by

HF
i = λFiTiη̃(rFi )

1
1−η (11)

HI
i = λIiTi (12)

5.5 Equilibrium

We now define general equilibrium in the city.

Definition. Given vectors of exogenous location characteristics {Ti, ukig, Ajk, tij , ξi, τi}, city group-

wise populations {L̄g} and model parameters {β, α, ρ, θ, κ, η}, an equilibrium is defined as a vector of

endogenous objects {LRig, LFjg, wj , rki , ϑki, λki, Ūg} such that

1. Labor Market Clearing The supply of labor by individuals (2) is consistent with demand for

labor by firms (5),
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2. Floorspace Market Clearing The market for residential floorspace for each housing type

clears (4) and its price is consistent with residential populations (1), firms earn zero profits (6)

and floorspace shares are consistent with landowner optimality (7),

3. Land Use and Floorspace Supply The share of land allocation to formal and informal use

in each location (8-9) and the supply of floorspace on each type of land use (11-12) is consistent

with landowner optimality.

4. Closed City Populations add up to the city total, i.e. L̄g =
∑

i,a LRiag ∀g.

5.6 Introducing Spillovers in Amenities and Productivity

A long literature points to the importance of spillovers in cities.33 We therefore relax the assumption

that amenities and productivities of locations are exogenous. Equilibrium in this extension is defined

analagously to the previous section, which we omit for brevity.

Amenities We allow amenities to depend on an exogenous component, as well as an endogenous

component that depends on the surrounding density of formal housing

ukig = ūkig

∑
j

d−δUij (HFi/Ti)

µU.g (13)

where dij = exp(−tij), ūkig is the exogenous component of amenities, δU controls the rate at which

amenities decay with commute times and µU.g reflects the overall preferences of type-g indvidiuals to

live near formal housing.

When µU.g is large, group-g’s preferences for residential neighborhoods depend a lot on the com-

position of housing nearby. We think of this as a reduced form way of capturing the different features

of neighborhoods with lots of formal vs informal housing (e.g. cleaner streets, wider roads, larger

retail space). These spillovers create linkages between residential locations across space, and will drive

the model’s predictions from the response in neighborhoods when locations nearby experience large

increases in formal housing supply due to the DCR 58 change.34

Productivities Similarly, we allow productivity to depend on the density of surrounding em-

ployment. To keep things simple, we assume the common component depends on overall surrounding

33This idea dates back at least to Adam Smith (1776), and was articulated more fully in Marshal (1890). Two
prominent examples establishing this relationship are Ciccone and Hall (1996) using regional data and Ahlfeldt et. al.
(2016) using intra-city data. See Rosenthal and Strange (2004) for a review.

34We could also model these amenities as depending on neighborhood composition (e.g. the high-skill ratio) rather
than the density of formal housing. Then, if the high-skill prefer to live in formal housing DCR 58 will (indirectly) lead
to similar changes in endogenous amenities by increasing the number of high-skilled residents on mill sites. Since our
current method is simpler and more direct, this is what we pursue in this paper.
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employment density and is common to formal and informal establishments

Ajk = Ājk

[∑
s

d−δAjs (LFs/Ts)

]µA
(14)

Here µA controls the strength of productivity spillovers and δA controls the rate at which they decay

with commute times. These spillovers create similar linkages between employment locations across

space.

6 Using the Model to Guide Our Empirical Approach

In this section, we use our model to derive reduced form regression specifications to take to the data.

Since we model the DCR 58 change as a shock to the supply of land across the city, our aim is to

derive log-linear relationships between changes in the data we observe and land supply.

This serves two purposes. First, the results are directly informative about the sign and magnitude

of key structural parameters including the strength of spillovers.35 Second, we believe the reduced form

relationships between exposure to mill sites and outcomes such as formal property prices, slum share,

employment and residential demographics are of independent interest in understanding the effects of

land policy on city structure.

We proceed by considering each outcome seperately, first deriving a specification from the model

then by evaluating its predictions in the data. We make a number of simplifying assumptions and derive

partial equilibrium relationships holding employment outcomes constant when considering residential

outcomes and vice versa. This greatly simplifies the algebra without losing much intuition. We

postpone a full general equilibrium analysis when all outcomes are interlinked to the quantitative

exercises.

6.1 Formal Residential Floorspace Prices

Deriving Our Specification In this section, we (i) hold outcomes in the labor market fixed (i.e. wj

and Ajk are constant), (ii) assume that all housing is used for residential purposes only (i.e. α = 1) and

(iii) suppose that there is only one group of workers. Our aim is to link the change in floorspace prices

to changes in land supply. Under these simplifying assumptions, equilibrium in residential floorspace

markets is determined by the floorspace market clearing condition (4), resident supply (1), housing

supply (11) and amenities (13).

Letting x̂ = x′/x denote the gross change in variable x across equilibria, and recalling that we hold

35While we will not be able to interpret results as structural parameters due to the log-linear approximations used in
deriving these relationships, identification will be more transparent than in the structural estimation of the next section.

22



wages fixed (so that ˆ̄wi = Φ̂Ri = 1), we can write these equations in relative changes as

L̂FRi = ûθF ir̂
−θ(1−β)
Fi

r̂Fi =
L̂Ri

ĤFi

ĤFi = λ̂FiT̂ir̂Fi
η

1−η

ûFi = ˆ̄uFi

∑
j

γijĤFj

µU

where the shares γij =
d−δij (HF

j /Tj)∑
s d
−δ
is (HF

s /Ts)
reflect the share of location j in the overall endogenous portion

of amenity in location i. This share will be high if j is either very close to i (i.e. large d−δij ) or contains

a lot of formal housing density (i.e. large HFj/Tj).

To reduce this to a log-linear system, we log-linearize the change in amenities ûFi ≈ ˆ̄uFi

[∏
j Ĥ

γij
Fj

]µU
.

Intuitively, this looks very similar to the arithmetic weighted mean above, but now the change is ap-

proximated by a weighted geometric mean. Substituting this into the expression for floorspace prices

and rearranging, we get a single relationship between floorspace prices and floorspace supply

(1 + θ(1− β))∆ ln rFi = θµU
∑
j

γij∆ lnHFj −∆ lnHFi + θ∆ ln ūFi

Stacking this system of equations and defining the matrix Γ ≡ [γij ], we have that

(1 + θ(1− β))∆ ln rF = (θµUΓ− I)∆ lnHF + θ∆ ln ūF

There are two effects of the change in formal floorspace supply on formal sector house prices. First,

the increases in supply causes prices to fall (captured by −I). Second, the increased stock of formal

housing causes formal sector prices to increase around the city through spillovers reflected through

the term µUΓ. µU controls the overall size of this externality, while Γ captures the spatial diffusion of

the externality which is determined by the spatial decay δ contained in the weights γij .

The last step is to link the change in formal housing supply to changes in land available for

development. The change in formal floorspace supply is given by ĤFi = λ̂FiT̂Fir̂Fi
η

1−η . Stacking

these conditions and substituting out for formal housing supply, we find that

∆ ln rF = (1− η) ((1 + θ(1− β)(1− η)) I − µUθηΓ)−1 (θµUΓ− I) (∆ lnλF lnTF ) + εF

where εF is a structural error term.36 Define B ≡ (1−η) ((1 + θ(1− β)(1− η)) I − µUθηΓ)−1 (θµΓ−I)

36In particular, εFi ≡ (1− η) ((1 + θ(1− β)(1− η)) I − µθηΓ)−1 (θµΓ− I)θ∆ ln ūF
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to be the matrix of reduced form coefficients. To simplify this relationship further, we consider the

partial relationship holding land use shares constant (i.e. ∆ lnλF = 0). Then we can write the change

in formal sector residential floorspace prices across the city as

∆ ln rFi = Bii∆ lnTFi +
∑
j

Bij∆ lnTFj + εFi (15)

Intuition This regression equation captures two forces. The first term captures the direct effect of

the policy change, i.e. whether location i had its formal land supply increased through the DCR 58

change. The second term captures the indirect of the policy change: by increasing the supply of formal

housing in surrounding neighborhoods, the amenities in location i rise in turn increasing the price of

formal housing. Note that both of these effects are heterogeneous: the entries of B can differ across

locations due the spatial heterogeneity contained in the Γ weight matrix. For example, locations which

contain a lot of formal housing relative to nearby will put more weight on the change in own location

changes so that Bii will be large.

To build intuition for how the regression coefficients will be informative about our structural

parameters, it is informative to consider two special cases. First, imagine µU = 0 so that there are no

spillovers. Then (15) reduces to

∆ ln rFi = − 1− η
1 + θ(1− β)(1− η)

∆ lnTFi + εFi

In this case, there are no spatial linkages across locations and the only change in land supply that

matters is the change within the location under consideration. This only has a negative effect on

property prices, by increasing the supply of floorspace.

In contrast, in the model with spillovers there are two supply shocks: one the supply of floorspace

and another to the supply of amenities. To see this, consider the case where µU > 0, δ → ∞ so that

the only location that matters for spillovers in amenities in location i is the location itself. Then Γ = I

and equation (15) becomes

∆ ln rFi =
(1− η)(θµU − 1)

1 + θ ((1− β)(1− η)− µUη)
∆ lnTFi + εFi

The net effect is now ambiguous. Floorspace prices fall due to the positive supply shock and rise due

to the increase in amenities.

If we assume the change in land supply due to the policy is uncorrelated with unobserved factors

affected property price appreciation (more on this below), this dicussion highlights how a regression

similar to (15) will be informative about the presence of spillovers. First, if we observe that locations

containing mill sites experience increases in floorspace prices, this suggests spillovers are strong since

the price appreciation due to the increase in amenities outweighed the price depreciation due to the
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increase in the stock of formal housing. Second, if we observe that the presence of mill sites in nearby

locations drive increases in property prices (conditional on mill area within the area itself) then the

model predicts that this should only be driven by spatial spillovers.37

Empirical Specification In its exact form, estimating (15) would be non-trivial since the co-

efficient matrix B is a non-linear function of the underlying structural parameters. The fact that

it was derived by log-linear approximation would make it hard to interpret the resulting estimates.

Instead, we run an empirical analogue of the form

∆ ln rFi = β1 ×Mill Site Owni + β2 ×Mill Site Exci + γw + γ′Xi + εFi (16)

where we control for factors other than mill sites which may be affecting price appreciation through

ward fixed effects γw and a set of initial characteristicsXi (such as distance to the CBD). Mill Site Owni

is the share of land occupied by mills within a location (in this case, subzones) while Mill Site Exci

corresponds to the share of mills in a 750m disk around the location centroid excluding the location

itself. We typically run this in long-differences between 2012 and 1993.

Our identification assumption is that conditional on observable characteristics, a location’s relation

to mill sites within wards is uncorrelated with unobserved factors driving house price growth. This

might be violated if, for example, the mill development had been anticipated in years preceding the

law change. Alternatively, the amendment itself might have been driven by lobbying from mill owners

who wanted to take advantage of growing prices in the area, in which case appreciation near mills

would be a cause rather than a consequence of the law change. The discussion in section 3 suggests

that neither was the case. In order to provide evidence in support of this assumption, we exploit the

annual data on formal floorspace prices we have back to 1993 and run an event study version of (16)

where all coefficients and fixed effects are allowed to vary by year. We focus on the β1t coefficients to

examine how the house price appreciation associated with the share of mill sites in a subzone evolved

over time relative to the base year of 1993.

Figure 4 plots the results. The first dashed line indicates the announcement of the DCR 58

change in 2001, while the second denotes the supreme court decision in 2006 which ultimately spurred

development. There is no change in house price appreciation in subzones more or less exposed to mill

sites in the years leading up to the law change. After the initial accouncement, we see that prices start

to grow near mill sites: the differences in prices between a subzone completely covered by mills and

one containing no mills is about double (101% = exp(0.7)−1)∗100) its value in 1993. By 2012, 6 years

after the policy uncertainty was resolved by the supreme court, this semi-elasticity had risen from 0.7

37We note that the specification (15) resembles those seen elsewhere in the literature. For example, Autor, Palmer
and Patak (2013) examine the impact of changes in rent control regulation in Boston and break down the impact of the
policy into an own-property effect as well as a spillover effect from surrouding lots.

25



to 2. If the amendment had either been anticipated before 2001 or caused by growth in surrounding

areas, we would expect this price differential to have been growing in the years leading up to the DCR

58 change. We therefore interpret these results as supporting our identification assumption.

Figure 4: Impact of Mill Share on Residential Floorspace Prices by Year
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Plot show coefficients from regression of log residential floorspace price on the mill share measure (750m) interacted with year
dummies, and plots the coefficient on the mill measure in each year. Additional controls include region fixed effects and polynomial
in log distance to the CBD, both interacted with year dummies,and subzone fixed effects. Omitted category is coefficient in 1990.
Solid line is 2001 when DCR 58 change occured, dashed line in 2006 when uphelp by the Supreme Court. Only subzones within
3km of mill site included. Standard errors clustered at subzone level.

In light of this evidence, column 1 of Table 1 turns to the estimation of (16) in which we interpret

the coefficients as causal estimates of the impact of exposure to mill sites on formal floorspace price

growth over the period. A one standard deviation increase in the mill share within a subzone leads to

a 2.6% (= (exp(.036 ∗ 724)− 1) ∗ 100) rise in house prices, an economically large effect. In addition, a

one standard deviation increase in the share of mills in a 750m disc around the subzone (excluding the

subzone itself) leads to a 3.35% (= (exp(.029∗1.135)−1)∗100) increase in house prices. We interpret

this as evidence of housing externalities due to the mill redevelopment.
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Table 1: The effect of mill share on log floorspace prices

P Resid Slum Share Population Employment P Comm

Mill share own 0.724** -2.993*** 0.907** 0.269 0.546**
(0.337) (0.798) (0.350) (0.764) (0.263)

Mill share of 750m disc, excluding i 1.135** -2.292 -1.826** 3.918** 0.690
(0.543) (2.348) (0.881) (1.839) (0.466)

N 556 339 113 836 553
R2 0.28 . 0.16 0.10 0.34

Geography Subzone City block Election ward City block Subzone
Estimation OLS PPMLE OLS OLS OLS

Note: All regressions measure change in the log of the dependent variable from the Pre period to the Post period and
include log distance and ward fixed effects as controls. P Resid and P Comm measure the assessed Ready Reckoner

price of residential and commercial floorspace, respectively. Employment measures employment in formal firms. Slum
share measures the share of a geographic unit taken up by slums. Mill share own represents the share of a geographic

unit taken up by mill sites. Mill share of 750m disc excluding i takes a 750m-radius disc around the centroid of a
geographic unit, removes the geographic unit itself, and computes the share of the resulting area taken up by mill sites.

PPMLE refers to Poisson pseudo maximum likelihood (Santos Silva and Tenreyo 2006). Robust standard errors
reported in parentheses. * p < 0.1; ** p < 0.05; *** p < 0.01.

6.2 Slum Share

We now turn to measuring the reduced form effect of mill sites on the share of slums in a location.

Totally differentiating the expression for the share of slums in a location in (9), and considering only

the partial change holding informal prices constant we find that38

∆ lnλIi = − κ

1− η
λFi∆ ln rFi

= − κ

1− η
λFiBii∆ lnTFi −

κ

1− η
λFi

∑
j

Bij∆ lnTFj + εIi

Intuitively, the increase in formal house prices leads land owners to redevelop slums into formal hous-

ing. The rate at which they do so is determined by the formal housing supply elasticity κ
1−η . We

think of this as a measure of redevelopment frictions. The second line uses (15) to relate the change

in formal house prices to exposure to mill sites. Once again, the model predicts that both the amount

of mills in and around a location should determine slum redevelopment.

Empirical Specification and Results Our deep learning procedure generates a set of polygons

representing the locations of slums inferred from the 2001 and 2016 satellite images. Therefore, we

can run our regression analysis at a fine geographic level: city blocks as defined in Section 4. Many

city blocks have no slums in one of the two years, so there can be intensive (i.e. reduction in slum

share) and extensive responses (i.e. elimination of slums) of the share of a block covered by slums to

38While this is an unrealistic assumption since prices of informal housing will likely rise, so long as the rise in formal
prices exceeds that of informal prices the model’s predictions for the reduced form coefficient sign is unchanged.
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the mill redevelopment.

We therefore estimate the analog of (15) by Poisson pseudo maximum likelihood, following Santos

Silva and Tenreyro (2006). We note, however, that in this case both β1 and β2 should be interpreted

as measuring spillovers. No mill sites actually contained slums, so any change in slum share on blocks

containing mills must be due to the price effects of mill redevelopment on nearby plots.

Column 2 of Table 1 shows the results. A one standard deviation increase in the mill share within

a subzone leads to a 19% (= (exp(.072 ∗ −2.993) − 1) ∗ 100) decrease in the share of the block taken

up by slums. The magnitude of the spillover effect from mills closeby the in second row is mildly

smaller yet imprecisely estimated. We interpret these results as the response of developers to the

increased incentives to redevelop slums following the increase in formal sector house prices due to the

mill development.

6.3 Population

While the regression model abstracts from multiple skill groups of workers, we now use the same

specification to explore the changes in residential populations and demographic composition resulting

from the DCR 58 change.

We expect two forces to determine the change in residential population. First, the mills increase

the amount of residential floorspace mechanically through their redevelopment. Second, the changing

demographic composition may lead richer, high-skilled individuals to move into these neighborhoods

as poorer, low-skilled individuals previously residing in slums move out. Due to the higher floorspace

consumption by rich households, this may reduce population density in affected areas.

In column 3 of Table 1 we report the effect on residential populations. The first row shows

that having more mills within an election ward increases the population density there. The second

row, however, shows that conditional on this first effect being exposed to more mills surrounding

a location actually decreases population density there. We intrepret these results as reflecting the

relative strength of the forces described above: the increased supply of floorspace dominates within

a location to increase residential population density, while the gentrification effect dominates when a

location is exposed to more formal redevelopment nearby (since there is no new floorspace created due

to this effect).

While we believe these results reflect the changing sorting of residents into treated neighborhoods

by skill, in the appendix [to add ] we report results from regressions when we explicitly examine the

impact of mill exposure on the share of SCST residents. While some specifications report the expected

negative sign, the results are very noisy. This may be because SCST are an imprecise proxy for skill

in urban India, so we are currently processing a new dataset to look at the effect on the education

level of residents directly.

28



6.4 Employment

To derive regression specifications linking employment outcomes to changes in land supply, we (i)

hold outcomes in the residential market fixed (i.e. uik and LRik are constant), (ii) assume that all

floorspace is used for commercial purposes only (i.e. β = 1) and (iii) suppose there is only one group of

workers and firms (who produce using only formal floorspace). Under these assumptions, equilibrium

in the labor market is determined by the zero profits condition (6), labor demand (5), labor supply

(2), housing supply (11) and productivities (14).39

As before, we write these equations in relative changes as

L̂Fj = ŵθj

L̂Fj =

(
Âj
ŵj

) 1
1−α

ĤFj

r̂Fj = Â
1

1−α
j ŵ

− α
1−α

j

ĤFi = λ̂FiT̂Fir̂Fi
η

1−η

where Âi ≈ ˆ̄Ai

[∏
j L̂

ξij
Fj

]µA
is the log-linearized change in productivity and ξij =

d
−δA
ij (LFj/Tj)∑
s d
−δA
is (LFs/Ts)

is

the share of location j in i’s overall endogenous productivity in the initial equilibrium. This share will

high if j is either very close to i (large d−δAij ) or contains a high employment density (large LFj/Tj).

As shown in the appendix, this system can be reduced to express the change in commercial

floorspace prices and employment in a location as a function of its relation to the change in land

supply across the whole of the city

∆ lnLFj = Cjj∆ lnTj +
∑
s

Cjs∆ lnTj + νj (17)

where the coefficient matrix is given by C ≡
(

1
θ(1−α)

(
1 + θ(1− α) + ηα

1−η

)
I + µA

1−α
1−2η
1−η Ξ

)−1
where

Ξ ≡ [ξij ] and ν is structural residuals containing changes in model unobservables. Once again, we

have considered the partial response holding land use share constant (i.e. ∆ lnλFi = 0)

39We note that we are more agnostic in this section about how informative the reduced form results can be about
the structural parameters. In deriving our labor market regression equations, we are holding outcomes in the residential
market fixed. The model predicts that employment near mill sites should increase as a result from the rise in commercial
floorspace, yet it is also possible that labor supply increases in these neighborhoods from an increase in residential
densities, which would also increase employment. The reduced form employment specifications are similar in this case
when we allow for both margins of adjustment (with the same expected sign). We highlight this caveat and leave the
task of seperating these forces to the quantitative section.
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Intuition Consider the case without spillovers µA = 0. Then C = θ(1−α)
1+θ(1−α)+ η

1−ηα
I and

∆ lnLFj =
θ(1− α)

1 + θ(1− α) + η
1−ηα

∆ lnTj + νj

In this case, employment growth only depends on the change in land supply within a location and we

should expect to see no dependency of employment on changes in land supply nearby.40 It is only when

both µA > 0, δA 6= ∞ that the second term in (17) is non-zero. Thus, the presence of productivity

spillovers will be identified by the dependence of employment growth in a location on the change in

land supply in nearby locations, conditional on the change within the location itself. The reason is

that the increase in land supply increases employment within a location, which in turn increases the

productivity of surrounding locations in the presence of spillovers.

Results As described in Section 4, our employment data are indicators for categories of employment

(i.e., 15-49 workers) associated with the addresses of formal establishments listed in the 2005 and 2013

Economic Censuses. We assign employment to establishments based on the average observed in the

microdata for plants in each industry-size bin, and use the change in total employment in a block as

the outcome variable. The regression specification is analogous to (16) so we omit it in the interest of

space.

Column 4 of Table 1 shows the results. We find a positive but very noisy effect of the share of

mill land within a location on employment growth, and a large and significant effect of exposure to

mills nearby. The noise may be driven by the measurement error introduced by the Google Maps

geolocation and the imprecision to assign firms to small individual blocks, which may be washed out

when we expand to the larger disk areas in the second row. The block-level totals we are currently

working on (discussed below) should help address this. Nevertheless, our findings are thus generally

supportive of the idea that the mill redevelopment generated productivity spillovers for nearby formal

firms.

We note, however, that an increase in the number of formal establishments may be associated with a

decrease in the number of informal establishments, leaving the overall effect on employment ambiguous

(in addition to the possibility of employment reductions by incumbents accompanying entry). We are

therefore preparing data on block-level totals (including formal and informal employment) from the

2005 Economic Census to accompany the block-level totals we already have from the 2013 Economic

Census. To further corroborate the finding of positive productivity spillers, in the following subsection

we detail a positive the effect of mill share on commercial floorspace prices.

40The specification is similar when only own-location spillovers are present, i.e. µA 6= 0, δA → ∞, in which case
C = θ(1−α)

1+θ(1−α)+ η
1−ηα+

µA
θ

1−2η
1−η

I and only the coefficient on the change in own-location land supply changes.
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6.5 Commercial Floorspace Prices

Intuitively, the response of commercial floorspaces to changes in land supply is similar to employment

growth and is given by the following equation (see appendix for derivation).

∆ ln rFj = C̃jj∆ lnTFj +
∑
s

C̃js∆ lnTFj + ν̃j (18)

where C̃ ≡ C 1
1−α

(
µAΞ− α

θ I
)

and ν̃ is a structural residual. This specification is informative about the

presence of spillovers in the same way that we saw for residential floorspace prices. When µA = 0, then

C̃ = − α
1+θ(1−α)+ η

1−ηα
I so that the change in land supply reduces floorspace prices within a location

(through increasing supply) and has no effect on surrounding locations. By contrast, when µA > 0 the

change in land supply can increase prices within a location (if the increase in productivity is strong

enough to offset the positive supply shock). In addition, when δA 6= 0 then the second term in (18) will

be non-zero. Thus, both a positive coefficient on the change in land supply within a location as well

as an effect from changes in nearby locations will be informative about the presence of productivity

spillovers.

Results Column 5 Table 1 shows the results. We see a significantly positive effect from the share of

mill land within a location on commercial floorspace prices, as well as a positive effect from exposure

to nearby mills that narrowly escapes significance at the 10% level.

6.6 Robustness

[To update, covering: alternative geographic fixed effects, inclusion of controls for changing popula-

tion (employment) density in employment (population) regressions, alternative distance bands/spatial

decays.]

7 Structural Estimation and Quantification

7.1 Solving for the Model’s Unobservables

In our data we observe residential populations by skill and housing type LkRig, formal sector residential

and commercial prices rFRi and rFFi, land use shares λki, total land area Ti, commute times (which

determine dij), and employment by formal and informal establishments LFFj and LIFj . The following

proposition shows that, for any vector of model parameters, this data is sufficient to invert the model

in order to recovers its unobservables.

Proposition 1. (Model Inversion) Given data on residence LkRig, employment LkFj, formal sector

floorspace prices rFRi, r
F
Fi, land use shares λki, total land are Ti and commute costs dija, there is a
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unique vector of unobservables {ukig, Aik, wjg, Hk
F i, H

k
Ri, ϑi, τi, ξi, rIi} that rationalize the observed data

as an equilibrium of the model.

7.2 Structural Estimation

The results from this section are forthcoming.

7.3 Quantitative Exercises

The results from this section are forthcoming.

8 Conclusion
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Table A.1: Selected Mill Redevelopments

Name of the Mill Current Status Name of the New Development # of Floors

Apollo Mills (South) Development completed Lodha Bellissimo 50

Gokuldas Morarjee Mills no.1 Development completed Ashok Towers 49

Hindoostan Spinning & Weaving Mills no.2 Development completed Kalpataru Heights 39*

Mafatlal Mills no.3 Development completed Marathon Futurex 38*

Modern Mills Development completed Belvedere Court 40*

Morarjee Textile Mills Development completed Ashok Towers 49*

Ruby Mills Development completed The Ruby 40*

Simplex Mills Development completed Planet Godrej 51*

Standard Mills no.1 Development completed Sheth Beaumonde, Chaitanya Towers 26*

Ambika Mills Development in progress Namaste Tower 66

Bharat Mills Development in progress Indiabulls Blu 56

Bombay Dyeing (Spring Mills) Development in progress Island City Center, Spring MillsTower 61

Elphinstone Mills (South) Development in progress Indiabulls Sky Suites, Finance Center 75*

Hindoostan Spinning & Weaving Mills no.3 (Crown Mills) Development in progress DB Orchid Crown 68

Jupiter Mills (South) Development in progress Indiabulls Sky Forest 80*

Khatau Makanji Spinning & Weaving Mills Development in progress Monte South 60

Kohinoor Mills no.3 (North) Development in progress Kohinoor Square 48

Mumbai Textile Mills (Sakseria Mills) Development in progress Lodha The Park 78

New Islam Mills Development in progress One Avighna Park 64*

Poddar Processors (Edward Mills) Development in progress Indiabulls Blu 50

Prakash Cotton Mills Development in progress Raheja Imperia 60

Raghuvanshi Mills Development in progress Namaste Tower 66

Shree Ram Mills Development in progress Palais Royale 88*

Shriniwas Mills Development in progress World One 119

Mafatlal Mills no.1 Mill demolished with development planned Piramal Aranya, Byculla Zoo 70

Mafatlal Mills no.2 Mill demolished with development planned Piramal Aranya, Byculla Zoo 70

*Only includes # of floors above ground
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B Additional Figures

Figure B.1: Location of Mills

Textile Mills
Mumbai City

Figure B.2: Validation Sample: SRA vs SPFEAS Slums
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Figure B.3: Generating signed distance to a slum boundary

(a) Raw image containing slum and non-slum areas (b) Signed distance from a slum boundary

C Proofs

Proof of Proposition 1. Wages From the commuting market clearing condition LkFj =
∑

i,g πj|igLRig

we have

LFj =
∑
i

(wj/dij)
θ∑

s(ws/dis)
θ
LRi

where LFj =
∑
k

LkFj

LRi =
∑
k,g

LkRig

since workers are perfect subsitutes in production and the differences in effective units of labor supplied

(captured by ZH) are constant over space. That this has a unique solution comes from Ahfelft et. al.

(2016).

Floorspace Use Wedges These rationalize the different prices of residential and commercial

floorspace we observe in the data, and are retrieved from 1− ξi =
rFRi
rFFi

.

Informal Sector Floorspace Prices and Distortions on Formal Development The land

use equations are

λFi =
τ̃i(r

F
i )

κ
1−η

1 + τ̃i(rFi )
κ

1−η + (rIi )
κ
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λIi =
rκIi

1 + τ̃i(rFi )
κ

1−η + (rIi )
κ

λV i = 1− λFi − λIi.

The LHS of each is observed. On the RHS, only rFi is observed. From the vacant share we can obtain

the denominator. We can then rewrite the first two equations as

λFi = λV iτ̃
T
i (rFi )

κ
1−η

λIi = λV i(r
I
i )
κ

Since λki, r
F
i is observed, this allows us to recover τ̃Ti and rIi .

Amenities We now have all residential house prices, as well as wages, so amenities are retrieved

(to scale) from LkRig = λUg (ukig(r
k
Ri)

β−1)θΦRig.

Productivities These are obtained from rkFj = (1− α)A
1

1−α
jk

(
α
wj

) α
1−α

.

Floorspace Quantities and Use Shares Total residential floorspace is given by Hk
Ri =

(1−β)
rkRi

∑
g w̄igL

k
Rig which can now be computed. Similarly, total commercial floorspace is given by

Hk
Fj =

(
(1−α)Ajk

rkFj

) 1
α

LkFj . Finally, use shares are simply ϑki =
Hk
Ri

Hk
Ri+H

k
Fj

. �

D Additional Derivations

Regression Specifications

Employment and Commercial Floorspace Prices Using the equations in the main text, we

begin by equating labor supply and demand to get(
1 + θ(1− α)

θ(1− α)
I +

µA
1− α

Ξ

)
∆ lnLF = ∆ ln(λF lnT ) +

η

1− η
∆ ln rF +

1

1− α
∆ ln Ā

From the zero profit condition for commercial floorspace, we get a second equation linking employment,

floorspace prices and land:

∆ ln rF =
1

1− α

(
µAΞ− α

θ
I
)

∆ lnLF +
1

1− α
∆ ln Ā

Substituing this inot the labor market clearing condition, we find that(
1

θ(1− α)

(
1 + θ(1− α) +

ηα

1− η

)
I +

µA
1− α

1− 2η

1− η
Ξ

)
∆ lnLF = ∆ ln(λF lnT )+

1

(1− α)(1− η)
∆ ln Ā

Defining C ≡
(

1
θ(1−α)

(
1 + θ(1− α) + ηα

1−η

)
I + µA

1−α
1−2η
1−η Ξ

)−1
and considering a partial change hold-

ing land use share fixed (∆ lnλFi = 0) yields (17) in the text. Substituting this back into the expression
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for commercial floorspace prices above delivers (18).
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