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Abstract

The surge in the number of initial coin offerings (ICOs) in recent years has

led to both excitement about cryptocurrencies as a new funding model for inno-

vations in the digital age, and to anxiety about a potential bubble. This paper

develops a model to address several basic questions: What determines the funda-

mental value of a cryptocurrency? How would market trading interact with its

fundamentals in an uncertain and opaque environment? In our model, a cryp-

tocurrency constitutes membership in a platform developed to facilitate trans-

actions of certain goods or services. The complementarity in the households’

participation in the platform acts as an endogenous, yet fragile, fundamental of

the cryptocurrency. There exist either two or no equilibria, and the two equilib-

ria, when they exist, have disparate properties. When the transaction demand for

the platform is unobservable, the trading price and volume of the cryptocurrency

serve as important channels for not only aggregating private information about

its fundamental, but also facilitating coordination on a certain equilibrium.
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Between 2015 to 2017, over 2000 initial coin offerings (ICOs) emerged to raise more than

$4 billion from the public, and to exceed venture capital investments in funding innovative

projects related to blockchain technology, according to a report issued by EY Research.

Among these ICOs, 1,031 were in the U.S., followed by 310 in Russia, 260 in Singapore,

256 in mainland China, and 196 in Hong Kong. In 2017, the top three ICOs by Tezos,

EOS.IO, and BANCOR raised $208 million, 200 million, and 153 million, respectively. These

initial successes led to tremendous excitement about cryptocurrencies as a new funding

model for innovation in the upcoming digital age. Rampant speculation and volatility in the

trading of many cryptocurrencies, however, have also raised concern that they, both coins

and tokens, represent potential bubbles. The failure of the DAO only a few months after its

ICO raised $150 million in 2016, together with a number of other similar episodes, highlights

the risks and potential abuses involved in investing in cryptocurrencies. In response to these

concerns, China banned cryptocurrencies at the end of 2017 and South Korea has pursued

stern regulatory policies, even though other countries, such as Switzerland and Singapore,

remain amenable to them.

Cryptocurrency platforms launched by ICOs represent a unique business model in which

initial investors are both future shareholders are potential customers. Often these platforms

provide intrinsic benefit to their participants. These benefits can range from the provision

of secure and verifiable peer-to-peer transaction services to protection against censorship,

taxation, and expropriation by a sovereign, to the maintenance of smart contracts whose

execution is governed by blockchain technology, to the support of crowdfunding activities

and media content whose sales are brokered in the currency. In the case of cryptocurrency

coins, the supporting blockchain architecture can be used to launch other ICO ventures

through smart contracts, which provides additional benefit to holders of the coins accepted

as payment in the ICOs. These benefits can be viewed as the dividends of investment in

the cryptocurrency. In addition, a key innovation of these platforms, along with the adop-

tion of blockchain technology for record-keeping, is that they are "trustless" decentralized

networks that lack a sovereign or central intermediaries to steward the platform and the

currency. Instead of intermediaries, a population of miners are compensated for processing

activity on the blockchain with currency created through inflation according to a Proof of

Work (PoW) protocol. Critics of PoW platforms often cite issues of scalability, in that the

computing power required of miners grows with the size of the network, when championing
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such alternatives as the Proof of Stake (PoS) protocol, in which a subset of currency owners

with large "stakes" in the currency compete for fees from processing blockchain activity.

In order to properly assess the potential benefits and risks brought about by cryptocurren-

cies, and to establish a suitable regulatory framework for ICOs, it is important to understand

how the dual role of ICO investors in decentralized digital platforms, as both shareholders

and customers, and the "trustless" nature of cryptocurrency platforms impact participation

in the platform, its performance, the price of the currency, and ultimately the success of

the ICO.1 These dual roles place ICOs for these platforms in sharp contrast with traditional

project financing mechanisms, such as IPOs and VC financing, which usually separate in-

vestors from business customers. As they possess features of both a security and a medium

of exchange, the decentralized networks underpinning cryptocurrencies may be more suscep-

tible to fragility in their performance and feedback effects from prices to the real decisions

of customers and shareholders than more conventional financial assets. Furthermore, the

ample uncertainty and opacity associated with many of the ICOs, together with the typi-

cally observed frenzied trading of cryptocurrencies after their ICOs, raise questions regarding

whether such trading serves any socially meaningful role, and whether the trading price and

volume may affect the underlying behavior of cryptocurrencies.

To investigate these issues, we develop a model in which a cryptocurrency serves as mem-

bership to a platform, created by its developer to facilitate decentralized bilateral transac-

tions of certain goods or services among a pool of households by using a blockchain technol-

ogy. Households face diffi culty in making such transactions outside the platform as a result

of severe search frictions. The value of the platform, consequently, lies within its design in

filling the households’transaction needs, and in its capability in pooling together a large

number of households with the need to trade with each other. We model a household’s

transaction need by its endowment in a consumption good, and its preference of consuming

its own good together with the goods of other households. As a result of this preference,

households need to trade goods with each other, and the platform serves to facilitate such

trading. Specifically, we assume that, when two households are randomly matched, they

can trade their goods with each other only if they both belong to the platform. Conse-

quently, each household’s desire to join the platform grows with the chance of meeting other

1In addition to ICOs, cryptocurrency coins can be created from forks from existing currencies through
airdrops by developers, while ICOs can create tokens that fund projects unrelated to the token platform.
Our focus is on ICOs applies more generally to any ICO in which usage of the created currency is part of
the project’s platform. In what follows, we do not make the distinction between coins and tokens.
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households in the platform, and in the size of their endowments.

The cryptocurrency in our framework serves dual roles, one as the membership to transact

goods with other members, and the other as the initial financing for the platform, covering

both compensation to the developer for creating the platform and the fee to coin miners

for providing clearing services for the decentralized goods transactions on the platform. To

highlight these dual roles, our model features two periods. In the first period, a pool of

households with random endowment shocks decide whether to join the platform by purchas-

ing one unit of the cryptocurrency from a centralized market with coin miners supplying the

cryptocurrency at a cost. During the second period, households that joined the platform

are randomly matched to transact their goods for consumption. Each household’s decision

to participate trades off the cost of paying for the cryptocurrency with the benefit from

transacting goods on the platform. This benefit increases with both the household’s own en-

dowment, which determines its own need to transact goods on the platform, and the average

endowments of other households, which determine their transaction needs. We show that

each household optimally adopts a cutoff strategy to purchase the cryptocurrency only if its

endowment is higher than an equilibrium threshold, while the equilibrium cryptocurrency

price is jointly determined by the common endowment of all households, and a supply shock

reflecting the average computing cost for miners in providing accounting services to complete

the transactions of households at the second date.

We analyze two settings, differing in whether the households’aggregate goods endowment

is observable, which captures the demand fundamental for the platform. In the first setting,

where the demand fundamental is publicly observable, there exist either two or no cutoff

equilibria. When there are two equilibria, they exhibit opposing behavior. One has a higher

cryptocurrency price and a lower equilibrium cutoff for each household’s cryptocurrency pur-

chase decision, and the other has a lower price and a higher equilibrium cutoff. These two

equilibria are self-enforcing as a result of the complementarity among households’trading

needs– if more (less) households join the platform by choosing a lower (higher) cutoff strat-

egy, they all benefit more (less) from trading goods in the platform, and are therefore willing

to pay a high (low) cryptocurrency price. The presence of these two opposing equilibria

suggests that one may observe entirely different dynamics of cryptocurrencies in practice,

simply as a result of the endogenous and fragile nature of their business model, without

necessarily involving any reckless speculation, abuse, or manipulation. In the absence of
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a sovereign or central intermediaries to provide guidance and support the platform, large

investors may act as cryptocurrency whales to help coordinate participant expectations.

In our second setting, we introduce realistic informational frictions by assuming that the

platform fundamentals are not publicly observable to market participants.2 In this setting,

each household uses its own endowment and the publicly observed cryptocurrency trading

price and volume, which we interpret as activity on the blockchain ledger, as noisy signals

to infer the value of the aggregate household demand for the platform. Despite the inherent

non-linearity of the equilibrium cryptocurrency price and each household’s demand for the

currency, we construct a tractable log-linear noisy rational expectations equilibrium for the

cryptocurrency market. In the equilibrium, each household again follows a cutoff strategy, as

in the perfect-information setting, except that its equilibrium cutoff is determined by linear

summary statistics of the publicly observed cryptocurrency price and volume, rather than

the households’aggregate endowment and the miners’common mining cost, which are not

observable. Interestingly, there again exist two or no cutoff equilibria. The trading price

and volume of the cryptocurrency both serve as important channels for not only aggregating

private information about its fundamental value, but also facilitating coordination on the

high or low price equilibrium. As the two equilibria have very disparate behavior, the

currency price and equilibrium cutoff also have opposing reactions to news in these two

sources of public information, which makes it diffi cult for outsiders to diagnose the health of

the currency based on the price alone.

Our analysis demonstrates that cryptocurrencies are vulnerable to large price swings and

significant feedback from prices to the real decisions of platform participants. As a result, an

ICOs with strong fundamentals may fail because the PoW protocol supporting the platform

can lead to coordination failure among initial investors. To illustrate this fragility, we consider

a Proof of Stake (PoS) extension of our model where, instead of a population of miners, there

is a population of forgers who compete for fees from completing household transactions by

purchasing stakes in the currency alongside households. In contrast to our PoW setting, there

is a unique cutoffequilibrium in which the developer, acting as a monopolist, chooses the level

of household participation through the transaction fee schedule it sets for the currency. While

the PoS protocol resolves the issues of fragility from coordination and scalability of computing

resources, the currency price is now subject to fluctuations in forgers’cost of capital, as with

2Lee, Li, and Shin (2018) provide extensive empirical evidence of asymmetric information among ICO
investors, and of the role of ICOs as aggregators of dispersed information.
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fiat currencies and traditional intermediaries, and there is a wedge between maximizing

revenue for the developer and maximizing household participation in the platform.

To highlight the additional instability informational frictions introduce, we then discuss a

dynamic extension of our model in which a second generation of households, who trade with

each other on a third date, purchases the currency from the first generation afer the first

finishes trading. When the demand fundamental is publicly observable, more households

participate in the platform at the initial date than in the static model because of the addi-

tional benefit of reselling the currency at date two. When the fundamental is not observable,

however, a cutoff equilibrium can fail to exist if the probability of a low price equilibrium

on the second date is suffi ciently high. This occurs because each household’s belief about

the resell price for the currency at date two is negatively correlated with its belief about

the fundamental at date one. As such, households with high endowments at the initial date

enter the platform to benefit from trading with each other, while households with very low

endowments expect to resell the currency at a high price tomorrow even if they do not ben-

efit from trading. This causes the cutoff equilibrium to break down and, consequently, for

feedback effects stemming informational frictions to be even more destabilizing in a dynamic

setting.

Our work contributes to the emerging literature on cryptocurrencies. Easley, O’Hara, and

Basu (2017) analyze the rise of transactions fees in Bitcoin through the strategic interaction

of users and miners. Chiu and Koeppl (2017) consider the optimal design of a cryptocurrency,

and emphasize the importance of scale in deterring double-spending by buyers. Athey et

al (2016) models Bitcoin as a medium of exchange of unknown (binary) quality that allows

users to avoid bank fees when sending remittances, and uses the model to guide empirical

analysis of Bitcoin users. Cong and He (2017) investigate the tradeoff of smart contracts in

overcoming adverse selection while also facilitating oligopolistic collusion, while Biais et al

(2017) considers the strategic interaction among miners and Abadi and Brunnermeier (2018)

of disciplining writers to a blockchain technology with static incentives. Schilling and Uhlig

(2018) study the role of monetary policy in the presence of a cryptocurrency that acts as a

private fiat currency. Cong, Li, andWang (2018) construct a dynamic model of crypto tokens

to study the dynamic feedback between user adoption and the responsiveness of the token

price to expectations about the future growth in the platform. Pagnotta and Buraschi (2018)

also model the cryptocurrency market in an equilibrium framework that admits multiple
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equilibria, yet their focus is on a quantitative analysis of Bitcoin. Our analysis microfounds

the intrinsic value of cryptocurrencies as facilitating household transactions in a general

equilibrium framework, and explores the role of the cryptocurrency price as an aggregator

of users’dispersed information about the platform’s fundamentals.

Our paper also contributes to the growing literature on ICOs. Catalini and Gans (2018)

investigate how ICOs differ from traditional equity financing, emphasizing how ICOs can aid

entrepreneurs in discovering consumers’valuation of the platform but are subject to issues

of commitment when entrepreneurs control token inflation. Li and Mann (2018) also explore

network effects in ICOs, yet their focus is on how dynamic dissemination can help overcome

coordination failure when the platform requires a critical mass, and how ICOs aggregate

useful information for the developer about its product. Chod and Lyandres (2018) study

the extent to which ICOs can facilitate risk-sharing between entrepreneurs and investors,

without transferring control rights, in the presence of agency issues. In contrast, our analysis

attempts to understand what fundamentals determine the price and success of a crypto token

and its ICO based on the platform’s subsequent performance, and emphasizes the role of

participation as an endogenous, yet fragile fundamental. In addition, we characterize the

disparate properties of the two equilibria that naturally arise in our setting, and embed

informational frictions to study the informational role of prices and volumes.

Our work is also related to the literature on the role of currency. Samuelson (1958), in his

pioneering work, studied the role of money as a bubble asset that acts as a store of value in

dynamically ineffi cient economies. Search models, such as Kiyotaki and Wright (1993) and

Lagos and Wright (2005), frame money as a medium of exchange that facilitates bilateral

trade when search frictions hinder the double coincidence of wants among trading parties.

Cochrane (2005) frames money as a stock claim to the future surpluses of the issuing sov-

ereign, while Kocherlakota (1998) views the history dependence of monetary balances as a

primitive form of memory. In our framework, a cryptocurrency represents membership to

a decentralized trading platform, and the price of this membership is pinned down by the

endogenous expected benefit from participation of the marginal household. While search

models such as Kiyotaki and Wright (1993) and Lagos and Wright (2005) can have multiple

equilibria because of self-fulfilling expectations that the currency will be accepted in the

future, multiple equilibria arise in our setting because the market-clearing price of the cryp-

tocurrency reflects the marginal household’s expected surplus from future trade, and there
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can be either two or zero marginal households that clear the market given the fundamentals.

That cryptocurrencies also represents a security in our setting, in which the shareholders are

also the customers, is conducive to the study of infantile currencies and ICOs.

Our work also adds to the literature on cutoff equilibrium with dispersed information.

With risk-neutral investors and normally distributed payoffs, Morris and Shin (1998) and

Dasgupta (2007) analyze coordination and delay in global games, Goldstein, Ozdenoren, and

Yuan (2013) investigate the feedback effects of learning by a manager to firm investment de-

cisions, while Albagli, Hellwig, and Tsyvinski (2014, 2015) focus on the role of asymmetry

in security payoffs in distorting asset prices and firm investment incentives. Similar to our

framework, Gao, Sockin, and Xiong (2018) employ a Cobb-Douglas utility with lognormal

payoffs to deliver tractable equilibria, yet their focus is on the dynamic distortion of infor-

mational frictions to housing and production decisions. In contrast, our setting features an

interaction of search with centralized trading to explain ICOs. While Goldstein, Ozdenoren,

and Yuan (2013) also features multiple equilibria, it arises in their setting from the self-

fulfilling nature of trading on investment decisions, while in our setting it occurs because the

benefits of participating in the cryptocurrency are endogenous to the size of its membership.

1 The Model

Consider a cryptocurrency, which serves as the membership to a decentralized digital plat-

form with a pool of households who share a certain need to transact goods with each other.

The developer of the cryptocurrency designs the platform to reduce the otherwise severe

search frictions among the households, and develops the infrastructure that supports the

platform. The success of the cryptocurrency is ultimately determined by whether the plat-

form can gather these households together. Households purchase the cryptocurrency as the

membership to transact in the platform, with the payment for the currency purchase shared

by the developer and platform miners, who provide settlement and accounting services for

transactions in the platform.

We analyze this cryptocurrency with the model of two periods t ∈ {1, 2} and three types
of agents: households, miners, and the developer. At t = 1, households purchase the currency

through a centralized exchange to join the platform. In practice, the coin prices during the

Initial Coin Offers (ICOs) are often pre-fixed at given levels in order to secure some initial

interests in the offerings, while more sales continue after the ICOs at market prices. For

7



simplicity, we include only one trading round in the model, which serves to capture not only

the ICO but also trading that follows the ICO. By pooling these extended trading rounds

into one trading period in the model,3 we focus on analyzing how the currency price serves to

aggregate the trading needs of the households and affects their participation in the platform.

Nevertheless, we call the trading round in the model the ICO.

At t = 2, the households in the platform are randomly matched to trade endowments.

This trade is supported by miners who act as the servicers of the decentralized platform, and

whose servers compete to clear the transaction on a blockchain for the buyer and seller. We

assume that there need to be as many miners as households to support the platform, and that

their computing power is perfectly divisible to compete to clear transactions. Households

then consume both their own good and their trading partner’s consumption good.

1.1 Households

We consider a pool of households, indexed by i ∈ [0, 1]. These households are potential

users of the cryptocurrency as a result of their trading needs. Each of them may choose to

purchase a unit of the cryptocurrency. We can divide the unit interval into the partition

{N ,O} , with N ∩ O = ∅ and N ∪ O = [0, 1] . Let Xi = 1 if household i purchases the

cryptocurrency, i.e., i ∈ N , and Xi = 0 if it does not. An indivisible unit of currency is

commonly employed in search models of currency, such as Kiyotaki and Wright (1993). If

household i at t = 1 chooses to purchase the cryptocurrency, it purchases one unit at the

equilibrium price P during the ICO.

Household i has a Cobb-Douglas utility function over consumption of its own good and

that of a trading partner, household j, that it randomly meets at t = 2 in the platform,

according to:

U (Ci, Cj;N ) =

(
Ci

1− ηc

)1−ηc (Cj
ηc

)ηc
, (1)

where ηc ∈ (0, 1) represents the weight in the Cobb-Douglas production function on its

consumption of its trading partner’s good Cj , and 1− ηc is the weight on its own consump-
tion good Ci. A higher ηc means a stronger complementarity between the consumption of

household i and its consumption of the good endowed to the other household with which it

trades at t = 2. We assume that both goods are needed for the household to derive utility

from consumption, and if it receives its endowment without trading then it receives zero

3See Li and Mann (2018) for a model of the trading rounds during ICOs.
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utility from it. This utility specification implies that each household cares about the aggre-

gate endowment of all other households in the platform, and this will ultimately define the

currency’s fundamental.

The endowment of household i is eAi , where Ai is comprised of a component A common

to all households and an idiosyncratic component εi:

Ai = A+ εi,

where A ∼ N
(
Ā, τ−1

A

)
and εi ∼ N (0, τ−1

ε ) are both normally distributed and independent

of each other. Furthermore, we assume that
∫
εidΦ (εi) = 0 by the Strong Law of Large

Numbers. The aggregate endowment A is a key characteristic of the platform. A cleverly

designed cryptocurrency serves to attract a platform of households with a high value of A

so that the households in the platform have strong needs to trade with each other. One

can thus view A as the demand fundamental for the cryptocurrency or the strength of the

platform, and τ ε as a measure of dispersion between households in the platform.

In practice, A is usually not directly observed by the potential users as a result of re-

alistic informational frictions. The ICO and the trading of the cryptocurrency serves to

not only provide funding to support the platform but also to aggregate information directly

from the households about the potential demands for transaction services provided by the

cryptocurrency and the platform. To highlight this role, we will proceed with first ana-

lyzing a benchmark case when A is publicly observable, and then an extended case when

informational frictions prevent A from being directly observed by all agents.

We start with describing each household’s problem at t = 2 and then go backward to

describe its problem at t = 1. A realistic feature of decentralized digital platforms is that

many transactions clear on decentralized servers that record the transaction on blockchains.

At t = 2, household i is randomly matched with another household j and, if both households

own the cryptocurrency, then they can trade their goods with each other. Mutual ownership

of the cryptocurrency (i.e., membership to the platform) is necessary to transact because of

realistic issues of fraud, asymmetric information, or transaction costs that make direct trade

prohibitively costly. For instance, while goods inventories are harder to observe, payment

through the cryptocurrency is diffi cult to falsify and can be verified on the blockchain. As

only owners of the cryptocurrency can trade with each other, the probability of a currency

owner to trade with another household increases with the ownership of the cryptocurrency.

We quote both the price of the cryptocurrency at t = 1 and the price of the goods at t = 2
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in terms of the numeraire good. As we only allow one round of trading of the cryptocurrency

at t = 1, this avoids the complication of re-trading the cryptocurrency at t = 2 together

with the goods trading.

A household who owns the currency N maximizes its utility at t = 2 by choosing its

consumption demand {Ci, Cj} conditional on a successful match:

Ui = max
{Ci,Cj}

U (Ci, Cj;N ) (2)

such that piCi + pjCj = pie
Ai ,

where pi is the price of its good. We assume that at t = 2, the platform strength A is

publicly observed by all agents even in the case where A is not initially observable at t = 1.

Households behave competitively and take the prices of their goods as given. We assume

that households do not discount their final consumption at t = 1.

At t = 1, each household needs to decide whether to join the platform by buying the

currency. In addition to the utility flow Ui at t = 2 from final consumption, we assume

that households have quasi-linear expected utility at t = 1, and incur a linear utility penalty

equal to the price of the cryptocurrency P if they choose to buy it and join the platform.

Given that households have Cobb-Douglas preferences over their consumption, they are

effectively risk-neutral at t = 1, and their utility flow is then the expected value of their final

consumption bundle less the cost of the currency. Households choose whether to buy the

currency subject to a participation constraint that their expected utility from the purchase

E [Ui|Ii] − P must (weakly) exceed a reservation utility, which we normalize to 0. One can

interpret the reservation utility as the expected value of finding another currency in which

to exchange less the cost of search for that currency.

In summary, household i makes its purchase decision at t = 1:

max
Xi
{E [Ui|Ii]− P, 0} . (3)

subject to its information set Ii. In the perfect-information benchmark, each household
observes not only its own Ai but also the platform fundamental A. In the case with infor-

mational frictions, each household observes only its own Ai but not A.

1.2 Miners

The cryptocurrency is supported by a Proof of Work (PoW) protocol for recording transac-

tions on blockchains. There is a population of potential coin miners, indexed on a continuous
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interval [0, 1] , who maintain the platform at t = 2. These miners mine the cryptocurrency

by providing accounting and custodial services using its underlying blockchain technology,

and facilitating the decentralized trades between households in the platform at t = 2. Sev-

eral miners who participate are randomly drawn from a queue to compete to complete each

household transactions to mine the currency. As in practice, we assume they pool their

revenue to insure each other against the risk of not being selected.

Miners also face uncertainty about the aggregate strength of the cryptocurrency platform,

and the ability of the supply side to respond to the demand for the transaction services.

Specifically, miner i provides the computing power to facilitate a trade between households

subject to a cost to setting up the required hardware and software to mine the cryptocur-

rency: e−ωiSi, where Si ∈ {0, 1} is the miner’s decision to mine and

ωi = ξ + ei,

is the miner’s productivity, which is correlated across builders in the currency through the

common component ξ. It is realistic to assume heterogeneity in the technologies to which

miners have access for mining the cryptocurrency, with less effi cient miners employing more

costly technologies. We assume that ξ represents an unobserved, common supply shock to

the mining costs of the cryptocurrency and, from the perspective of households and miners,

ξ ∼ N
(
ξ̄, τ−1

ξ

)
. Furthermore, ei ∼ N (0, τ−1

e ) such that
∫
eidΦ (ei) = 0 by the Strong Law

of Large Numbers.

Miners receive a fraction 1−ρ ∈ (0, 1) of the proceeds from selling the cryptocurrency at

t = 1 to households at price P, which serves as the fee for clearing transactions at t = 2.45

Miners in the currency at t = 1 maximize their revenue:

Πs (Si) = max
Si

(
(1− ρ)P − e−ωi

)
Si. (4)

Since miners are risk-neutral, it is easy to determine each miner’s optimal supply curve:

Si =

{
1 if (1− ρ)P ≥ e−ξ+ei

0 if (1− ρ)P < e−ξ+ei
. (5)

4To focus on the broader implications of the cryptocurrency for households, we abstract from the strategic
considerations that miners face in adding blocks to the blockchain to collect fees, such as consensus protocols
and on which chain to add a block. See, for instance, Easley, O’Hara, and Basu (2017) and Biais et al (2017)
for game theoretic investigations into these issues.

5In practice, many ICOs execute their platforms through smart contracts written on existing blockchain
architecture, such as Ethereum. We consider payment to miners in the native currency to study a closed
digital ecosystem.
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In the cryptocurrency market equilibrium, the common mining cost ξ represents the supply

shock. Also note that when the platform strength A is unobservable, ξ may also affect the

demand side by interfering the households’learning about A.

We see that the Proof of Work protocol intimately links the price of the currency to

the marginal cost of mining, since miner optimization imposes that P = 1
1−ρe

−ω∗ for the

marginal miner ω∗. This feature highlights the issue of limited scalability of Proof of Work

cryptocurrencies often emphasized among academics and practitioners, as both the price of

the cryptocurrency and the computational resources devoted to supporting it must escalate

with the size of the household population that participates. As the currency network grows,

the price of the currency must rise to entice more miners to support it. This feature also

distinguishes cryptocurrencies from fiat currencies, where the marginal social cost of printing

money is zero. As a result, the conventional Friedman Rule does not apply: the nominal

interest rate for Proof of Work cryptocurrencies should not be zero.6

Each miner, in return for receiving payment for the cryptocurrency that it sells to house-

holds, provides computing power to facilitate potential transactions between households in

the platform that are added to the chain at t = 2. To ensure there are enough servers to

clear all household transactions, we assume the platform requires at least as many miners as

households to prevent a failed transaction. We assume miners have commitment so that if

they accept payment at t = 1, they agree to clear a transaction at t = 2 if needed.

1.3 Developer

The developer of the cryptocurrency creates the platform at t = 1. It establishes the code

that specifies the protocol of how transactions in the platform of owners of the cryptocurrency

are cleared and recorded on the blockchain, how more currency is created, such as through

mining, and how it can be stored in virtual wallets. It receives a fraction ρ of the revenue P

from the Initial Coin Offering (ICO), with ρ fixed as part of the technology. The remaining

revenue is paid to miners as part of the Proof of Work (PoW) protocol in exchange for their

accounting services at t = 2. A lower ρ can be viewed as a higher profitability of mining that

entices more miners to support the platform.

6This observation is also discussed in Schilling and Uhlig (2018), though their focus is on price stability
rather than optimal monetary policy.
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The developer receives the revenue from the ICO:

ΠD = E

[
ρP

∫ ∞
−∞

XidΦ (εi)

]
.

1.4 Rational Expectations Cutoff Equilibrium

Our model features a rational expectations cutoff equilibrium, which requires clearing of

the cryptocurrency market that is consistent with the optimal behaviors of households and

miners, as well as clearing of each traded good between two matched households:

• Household optimization: each household chooses Xi at t = 1 to solve its maximization

problem in (3) for whether to purchase the cryptocurrency, and then chooses {Ci, Cj}
at t = 2 to solve its maximization problem in (2) for trading and consumption of the

two goods with its matched trading partner.

• Miner optimization: each miner chooses Si at t = 1 to solve his maximization problem

in (4).

• At t = 1, the cryptocurrency market clears:∫ ∞
−∞

Xi (Ai, P ) dΦ (εi) =

∫ ∞
−∞

Si (ωi, P ) dΦ (ei) ,

where each household’s demand Xi (Ai, P ) depends on its productivity Ai and the cur-

rency price P ,7 and each builder’s housing supply Si (ωi, P ) depends on its productivity

ωi and the currency price P. The demand from households and supply from miners are

integrated over the idiosyncratic components of their endowments {εi}i∈[0,1] and costs

{ei}i∈[0,1] , respectively.

• At t = 2, the market for household i′s good between two matched trading partners

clears:

Ci (i) + Cj (i) = eAi .

2 The Perfect-Information Setting

In this section, we focus on the setting with the platform strength A and the miners’mining

cost ξ being publicly observable at t = 1.
7Note that each household’s demand for the cryptocurrency may also directly depend on the network

strength A if it is publicly observed, as in the perfect-information benchmark.
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2.1 Choices of Households

At t = 2, households that have chosen to purchase the cryptocurrency need to make their

consumption decisions. Household i has eAi units of good i for consumption and for trad-

ing with another household. It maximizes its utility function given in (2). The following

proposition describes each household’s consumption choice. Its marginal utility of goods

consumption also gives the equilibrium goods price.

Proposition 1 Households i’s optimal goods consumption at t = 2 are

Ci (i) = (1− ηc) eAi , Cj (i) = ηce
Aj ,

and the price of its produced good is

pi = eηc(Aj−Ai).

Furthermore, the expected utility benefit of household i at t = 1 is given by

E [U (Ci, Cj;N )| Ii] = e(1−ηc)Ai+ 1
2
η2cτ

−1
ε E

[
eηcAΦ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)∣∣∣∣ Ii] ,
and the ex ante utility of all households before observing their endowment is

U0 = eA+ 1
2((1−ηc)2+η2c)τ−1ε Φ

(
(1− ηc) τ−1/2

ε +
A− A∗

τ
−1/2
ε

)
Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
−Φ

(
A− A∗

τ
−1/2
ε

)
P.

Proposition 1 shows that each household spends a fraction 1 − ηc of its endowment

(excluding housing wealth) on consuming its own good Ci (i) and a fraction ηc on goods

produced by its trading partner Cj (i) if they match. When ηc = 1/2, the household consumes

its own good and the goods of its neighbors equally. The price of each good is determined by

its output relative to that of its partner to the extent that there is complementarity in their

consumption. One household’s good is more valuable when the other household has a greater

endowment, and consequently each household needs to take into account the endowment of

its trading partner when making its own decision. The proposition demonstrates that the

expected utility of a household in the platform is determined by not only its own endowment

eAi but also the endowments of other households. This latter component arises from the

complementarity in the household’s utility function.

We now discuss each household’s decision on whether to purchase the cryptocurrency at

t = 1. As a result of its Cobb-Douglas utility, the household is effectively risk-neutral over
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its aggregate consumption, and its optimal choice reflects the difference between its expected

output if it buys the currency and is matched with a trading partner, and the cost of the

cryptocurrency, which is the price P to buy a unit of the currency. It then follows that

household i’s purchase decision is given by

Xi =

{
1 if E [U (Ci, Cj;N )| Ii] ≥ P

0 if E [U (Ci, Cj;N )| Ii] < P
.

This decision rule for its purchase supports our conjecture to search for a cutoff strategy for

each household, in which only households with endowments above a critical level A∗ buy the

currency. This cutoff is eventually solved as a fixed point in the equilibrium, and equates the

currency price the expected dividend from joining the platform for the marginal household.

2.2 The Equilibrium

We now proceed to discuss the equilibrium at t = 1. We characterize each household’s

cryptocurrency purchase decision and the currency price at t = 1, taking the choice of the

developer as given. Households will sort into the cryptocurrency platform according to a

cutoff equilibrium determined by the net benefit of owning the currency, which trades off

the opportunity of trading with other households in the trading platform with the price

of the decentralized digital platform membership (i.e., the cryptocurrency price). Despite

the inherent nonlinearity of our framework, we derive a tractable cutoff equilibrium that

is characterized by the solution to a fixed-point problem over the endogenous cutoff of the

marginal household that purchases the cryptocurrency, A∗, as summarized in the following

proposition.

Proposition 2 In the perfect-information setting, there are generically two cutoff equilibria,

with cutoffs A∗ (A, ξ) < Ā∗ (A, ξ) , respectively, in which the following hold:

1. Household i follows a cutoff strategy in its cryptocurrency purchase decision:

Xi =

{
1 if Ai ≥ A∗

0 if Ai < A∗
,

where A∗ ∈
{
A∗, Ā∗

}
solves:

e

(
1−ηc+

√
τε/τe

)
(A∗−A)

Φ

(
ηcτ
−1/2
ε − A∗ − A

τ
−1/2
ε

)
= e−A−ξ−

1
2
η2cτ

−1
ε −log(1−ρ) (6)

where Φ (·) is the CDF function of normal distribution.
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2. The cryptocurrency price takes a log-linear form:

logP =

√
τ ε
τ e

(A− A∗)− ξ − log (1− ρ) .

3. In the high (low) price equilibrium A∗ (Ā∗), the cryptocurrency price P, the developer’s

revenue ΠD = ρΦ
(
A−A∗
τ
−1/2
ε

)
P, and the ex ante utility of households U0 are increasing (de-

creasing) in A, and the number of households that purchases the currency is increasing

(decreasing) in A and ξ.

4. No household buys the cryptocurrency if A or ξ are suffi ciently small.

Proposition 2 characterizes the cutoff equilibrium in the platform when A is publicly

observed at t = 1, and confirms the optimality of a cutoff strategy for households in their

choice to purchase the cryptocurrency. Households sort based on their endowments into

the platform, with those with higher endowments, who expect more gains from trade with

other households in the platform, entering and participating in decentralized trading at

t = 2. In this cutoff equilibrium, the cryptocurrency price is a correspondence of both the

demand and supply fundamentals but, despite its log-linear representation, it is actually a

generalized linear correspondence of
√

τε
τe
A− ξ− log (1− ρ) , since A∗ is an implicit function

of A and ξ.

As a result of the complementarity in the households’decision to buy the cryptocurrency,

there are generically two equilibria in the cryptocurrency market: one with a high price and

a lower cutoffA∗, in which a larger population enter the platform, and one with a low price

and a higher cutoff Ā∗, in which few households enter the platform. This occurs because

households have backward-bending demand curves and, consequently, a high or a low price

equilibrium can be self-confirming.8 The household with the highest endowments enter first

but, if too few others enter, then the marginal benefit of trading in the platform is low,

since the probability of meeting another household in the platform is low. This leads to a

low price. That the low price is not zero distinguishes it from a fiat currency, and reflects

our stance that the currency has intrinsic value to households. If instead many households

enter, then the marginal benefit of entering the platform is high, sustaining a high price. It

8Backward-bending demand curves can also arise from portfolio insurance motives, as in Gennotte and
Leland (1990), learning by less informed investors, as in Barlevy and Veronesi (2000,2003), and Yuan (2005),
and from endogenous collateral margins for arbitrageurs, as in Brunnermeier and Pedersen (2009).

16



is also possible that no household buys the cryptocurrency if A or ξ are suffi ciently small.9

We illustrate the intuition for this multiplicity with a numerical example, in which we

choose the following parameters:

τA = τ ξ = 1, τ ε = τ e = .5, Ā = ξ̄ = 0, ηc = .3, and ρ = .5.

The left-hand side (LHS) of equation (6), which determines the cutoff, is bell-shaped in

A∗ (A, ξ)−A, and corresponds to the backward-bending demand curve of households, while
the right-hand side (RHS) is the straight line exp (−A− ξ − log (1− ρ)) . The dotted line

is the RHS when A = ξ = 0, while the lower, dashed line sets A = τ
−1/2
ε at one standard

deviation away from 0. The y-intercept of the flat line is decreasing in both A and ξ. As

one can see, the flat lines intersect the bell-shaped curve generically at two points, with the

intersection on the left side of the bell corresponding to the high price equilibrium with the

lower cutoff, while the intersection on the right side is the low price equilibrium with the

higher cutoff. As A increases, then intersections shift down the y-axis, and correspond to a

lower cutoffA∗ (A, ξ)−A in the high price equilibrium, and a higher cutoff Ā∗ (A, ξ)−A in the
low price equilibrium. Whenever, the flat line is above the bell-shaped curve, corresponding

to very low realizations of the demand and supply fundamentals, no cutoffequilibrium exists,

and no households purchase the cryptocurrency.
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9It is important to note that the discreteness of the household entry decision is not suffi cient for multi-
plicity of equilibria. The models of Albagli, Hellwig, and Tsyvinski (2014, 2015) and Gao, Sockin, and Xiong
(2018) also have economic agents face a discrete choice problem, yet in their settings the cutoff equilibrium
is unique.
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Figure 1: Plot of Left-hand Side and Right-Hand Side of Equation (6)

The existence of the two equilibria is directly related to the ICO funding model. In

this model, buyers of the cryptocurrency are also the customers that the funded business

(i.e., the platform) aims to serve, in sharp contrast to the typical models of funding new

business projects by venture capitalists or by IPOs, in which investors and customers are

usually different. As a result of this direct overlap between investors and customers of

cryptocurrencies, there is a strong interaction between the funding cost and the business

operation, which ultimately underlies the multiple equilibria.10

Proposition 2 also provides several comparative statics of the two equilibria. Due to the

nature of the two equilibria, they behave exactly opposite in many ways. As the demand

and supply fundamentals increase, the cryptocurrency price increases and more households

join the platform by buying the cryptocurrency in the high price equilibrium, while the

opposite happen in the low price equilibrium with the cryptocurrency price dropping and

less household joining the platform.

The multiplicity of equilibria can cause a viable cryptocurrency platform, and its associ-

ated ICO, to fail. Even a decentralized digital platform with a strong demand fundamental

A may attract little interest from investors, and this is self-sustaining, even though it could

support a much larger subscriber base. Since the revenue from developing the platform in the

high price equilibrium, ρ
1−ρΦ

(
A−A∗

τ
−1/2
ε

)
e
√

τε
τe

(A−A∗)−ξ, is strictly higher than in the low price

equilibrium, ρ
1−ρΦ

(
A−Ā∗
τ
−1/2
ε

)
e
√

τε
τe

(A−Ā∗)−ξ, the developer also prefers the high price equilib-

rium, since the currency would then be both viable and more profitable. The existence of

multiple equilibria also motivates large traders, such as the so-called coin whales in practice,

to take on strategic positions to push the price of a cryptocurrency to its high price equi-

librium. To the extent that all agents involved in the platform, including the developer, the

households, and the miners, benefit from the high price equilibrium, such strategic trading

may be socially beneficial.

While much of the current media and policy debate about cryptocurrencies emphasizes

that they do not fall within the purview of any government regulatory agency, such as the

SEC, that could protect consumers, our analysis suggests that less attention is given to

another important feature that distinguishes cryptocurrencies from national currencies and

10Treating equation (6) as a functional fixed-point equation that iterates over the cutoffA∗, one can show
that the high price equilibrium is stable while the low price is unstable, in the sense that the market returns
to the equilibrium following small perturbations to the cutoff.
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other financial instruments: the lack of a central authority, such as a sovereign in currencies

or intermediaries in financial markets, that provides policy interventions to stabilize markets

and promote economic activity. The government, as a large player that internalizes how

economic actors make decisions and how prices are determined, for instance, plays a pivotal

role in setting agent expectations on the future path of the economy, and helps stabilize

prices and exchange rates by committing to act to ensure this path. In the absence of such

guidance and policy interventions, however, it is not so surprising that cryptocurrencies are

often associated with large price swings, confusion, and potentially self-fulfilling traps that

lead to their failure. The absence of a stabilizing hand also explains why large investors have

an incentive to act like cryptocurrency whales.11

The multiplicity of equilibria also underscores and exacerbates the challenges in evaluat-

ing the fundamental value of a cryptocurrency in practice, and helps to rationalize a wide

spectrum of observed dynamics of different cryptocurrencies. When the price of a cryptocur-

rency rises, it may have opposite implications about the underlying platform depending on

whether the market is in the high price or low price equilibrium. This problem becomes

particularly relevant when realistic informational frictions about the platform makes its fun-

damental not directly observable to the public, which we analyze in the next section.

3 The Setting with Unobservable Fundamentals

Motivated by realistic informational frictions, we now assume that both the households’

common endowment A and the miners’ming cost ξ are not observable to households at

t = 1 when they need to make the decision of whether to purchase the cryptocurrency and

join the platform. Instead, each household observes its own endowment Ai. Intuitively, Ai

combines the aggregate endowment of the relevant households A and the household’s own

attribute εi. Thus, Ai also serves as a noisy private signal about A at t = 1. The parameter

τ ε governs both the dispersion in endowments and the precision of this private signal. As

τ ε → ∞, the households’signals become infinitely precise and the informational frictions
about A vanish. Households care about the aggregate endowment because of complemen-

tarity in their demand for consumption. Consequently, while a household may know its

own endowment, complementarity in consumption demand motivates it to pay attention to

11Consistent with this, Figure 4 of Lee, Li, and Shin (2018) shows that large investors purchase a sizable
percentage of tokens during the initial days of successful ICOs.
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the price of the cryptocurrency to learn about the level of aggregate endowment A, which

eventually determines the chance of trading with another household in the platform.

In addition to their private signals and the market-clearing price of the cryptocurrency,

households also observe a noisy signal V about the number of other households that have

joined the platform at t = 1.An advantage of the blockchain technology that cryptocurrencies

employ is that it acts as an indelible and verifiable ledger that records the decentralized

transactions that take place in the cryptocurrency. As such, it provides a history of public

information about the volume of trade in the cryptocurrency. Since households buy the

currency for decentralized trading with each other at t = 2, this volume is akin to the

demand fundamental in our setting. Anticipating a cutoff equilibrium in which households

with endowment signals above A∗ buy the cryptocurrency, we construct a volume signal:

V = Φ (
√
τ ε (A− A∗) + εV ) ,

where Φ (·) is the CDF of normal distribution and εV ∼ N (0, τ−1
v ) independent of all other

shocks in the economy. This specification has the appeal that the volume signal is always be-

tween 0 and 1 for plausibility, and is highly correlated with the number of decentralized trans-

actions that are added to the ledger at t = 2, which, by the weak LLN, is Φ
(√

τ ε (A− A∗)
)2
.

This volume signal can also be viewed as the number of coins in active circulation.

The noise in the signal reflects that, in practice, blockchains from the ledger are an

imperfect signal about the demand for trade in the cryptocurrency. Only a fraction of trans-

actions, for instance, hit the blockchain, where they are recorded, because of how costly it is

to pay transaction fees to miners in Proof of Work (PoW) coins. As such, many transactions,

such as the purchase and sale of coins with another currency, take place on exchanges and

never hit the blockchain. In addition, the anonymous nature of the transactions makes it

diffi cult to assess the effective supply of cryptocurrencies in circulation, since transferring

cryptocurrencies across wallets, in which no actual currency is traded between two parties,

is a transaction that hits the blockchain.12 Furthermore, while the underlying code of cryp-

tocurrencies records the total supply of coins, even as new coins are mined, the effective

supply of coins in circulation is estimated in a manner similar to asset float for stocks. Some

currency developers, for instance, retain ownership of a fraction of the total supply of coins in

escrow accounts, and some coins sit in accounts that are no longer active. We parameterize

12Some cryptocurrencies are now adopting “no knowledge proof”encryption to be able to verify transac-
tions without having to disclose any of the underlying details of the transaction recorded on the chain.
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the residual uncertainty arising from these issues as measurement error.

Since the CDF of the normal distribution is a monotonically increasing function, we can

invert V to construct an additive summary statistic v:

v = τ−1/2
ε Φ−1 (V ) + A∗ = A+ τ−1/2

ε εV ,

which, in the sequel, serve as the volume signal about the cryptocurrency. Interestingly,

the precision of the volume signal is τ ετ v, so that the less dispersed the endowments of

households, the more informative is the history of transactions recorded in the ledger. In

contrast to Kocherlakota (1998), in which memory implicitly encoded in monetary balances

is used for individual monitoring, memory encoded in the ledger is explicit and serves as an

aggregate signal about the currency’s fundamentals.

To forecast the platform fundamental A, each household’s information set Ii now includes
its own endowment Ai, the volume signal V , and the equilibrium cryptocurrency price P .

As in the perfect-information setting, each household would still use a cutoff strategy, and

the equilibrium cryptocurrency price would still be a nonlinear correspondence of A, which

poses a challenge to our derivation of households’learning about A. It turns out that the

information content of P can be summarized by a summary statistic z that is linear in A

and the supply shock ξ:

z = A−
√
τ e
τ ε
ξ.

In our analysis, we shall first conjecture this linear summary statistic for the equilibrium price

and then verify that it indeed holds in the equilibrium. This conjectured linear statistic helps

to ensure tractability of the equilibrium despite that the equilibrium cryptocurrency price is

highly nonlinear.

By solving for the learning of households based on the conjectured summary statistic

from the housing price and the volume statistic, and clearing the aggregate cryptocurrency

demand of the households with the supply from miners, we derive the cryptocurrency market

equilibrium. The following proposition summarizes the price and each household’s cryptocur-

rency demand in this equilibrium.

Proposition 3 If the platform fundamental A is not publicly observable at t = 1, there are

generically two cutoff equilibria, in which the following hold:

1. The cryptocurrency price takes a log-linear form:

logP =

√
τ ε
τ e

(A− A∗)− ξ − log (1− ρ) . (7)
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2. The posterior of household i conditional on the summary statistic of the cryptocurrency

price z, the volume signal summary statistic v, and its own endowment Ai is Gaussian

with the conditional mean Âi and variance τ̂A given by

Âi = τ̂−1
A

(
τAĀ+ τ vv +

τ ε
τ e
τ ξz + τ εAi

)
,

τ̂A = τA + τ v +
τ ε
τ e
τ ξ + τ ε.

3. Household i follows a cutoff strategy in its cryptocurrency choice:

Xi =

{
1 if Ai ≥ A∗

0 if Ai < A∗
,

where A∗ (z, v) solves equation (17) in the Appendix.

4. There are either two or no equilibria. When the two equilibria exist, in response to a

positive shock εv to the volume signal, the equilibrium cutoff A∗ decreases, and both the

cryptocurrency price and the number of households that purchase the cryptocurrency

increase in the high price equilibrium, while shock has the opposite impact in the low

price equilibrium.

Proposition 3 confirms even when the platform fundamental A is not publicly observ-

able, the equilibrium cryptocurrency price in (7) takes exactly the same log-linear form as

in the perfect-information setting, as shown by Proposition 2. The only difference is the

equilibrium cutoff A∗ used by the households. With the fundamental variables A and ξ

being unobservable, each household has to make its decision based on its own endowment

Ai, together with the publicly observed price and volume signals, as captured by the two

summary statistics z and v. While each household continues to use the cutoff strategy, the

equilibrium cutoffA∗ now becomes a correspondence of z and v. Being the only difference in

the equilibrium price correspondence from the perfect-information setting, A∗ (z, v) is also

the only channel through which the households’learning of A through the price and volume

signals affects the market.

As in the perfect-information setting, there are again either two equilibria or no equilibria.

This situation arises from solving A∗ (z, v) from its fixed-point condition given in equation

(17), which is similar to equation (6) and may have either two or no real solution. When two

equilibria exist, one has a lower equilibrium cutoff for households’cryptocurrency purchase

decision and a higher cryptocurrency price, while the other has a higher equilibrium cutoff
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and a lower price. These two equilibria again behave in opposite ways. Proposition 3

formally shows that in response to a shock to the volume signal, the equilibrium cutoff A∗

and cryptocurrency price P have opposite reactions across the two equilibria.
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Figure 2: Responses of A∗ (z, v) to v and z in the high-price and low-price equilibria across

different values of τ ξ.

To further illustrate the key properties of these two equilibria, Figure 3 depicts the

responses of the equilibrium cutoff A∗ (z, v) to shocks to both v and z, as measured by ∂A∗

∂v

and ∂A∗

∂z
, across the high-price and low-price equilibria. The left panel shows that in the

high-price equilibrium, the equilibrium cutoff A∗ moves down in response to an increase

in v, a positive signal about the platform fundamental, indicating that more households

join the platform. In contrast, A∗ reacts positively to v, causing a smaller population to

enter the platform. Interestingly, the reactions in both equilibria diminish as τ ξ increases.

This is because the reactions in A∗ are driven by the households’learning about the platform

fundamental A from the volume signal v. As τ ξ rises, the price of the cryptocurrency becomes

more informative about A and, as a result, crowds out the learning effect of v.

The right panel illustrates how the cutoffA∗ responds to a unit impulse to the suffi cient

statistic in the price z. For τ ξ close to 0, the currency price contains little information

about the demand fundamental, and consequently the cost effect dominates the impact of an

increase in z. As a result, less households enter the platform in the high price equilibrium, in
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response to the higher price of entry, while more households enter in the low price equilibrium,

as the low price equilibrium features an opposite reaction to prices. As τ ξ increases, however,

the role of a higher z in reflecting a higher demand fundamental becomes more pronounced,

and the learning effect begins to offset the cost effect of a higher price. As a result, less

households are crowded out by a higher price in the high price equilibrium, as they believe

the higher price also reflects a higher benefit from joining the platform. Interestingly, the

learning effect dominates in the low price equilibrium for suffi ciently high τ ξ: less households

enter the platform because of the increased optimism about the demand fundamental, as a

higher A raises the cutoff in the low price equilibrium.

In traditional asset market models with dispersed information, in the Grossman and

Stiglitz (1980) and Hellwig (1980) paradigms, trading volume plays no role in learning,13

and is often studied only for its empirical predictions, as in, for instance, Wang (1994) and

He and Wang (1995).14 In our setting, households learn from both the cryptocurrency price

and volume when deciding whether to purchase the cryptocurrency. As such, volume provides

a complementary source of information to the cryptocurrency price and, as can be seen in

the left panel of Figure 2, any noise in the volume signal distorts households’participation

decisions. Since the precision of the volume signal is increasing in the precision of each

household’s private information τ ε, it mitigates the information asymmetry more than an

exogenous public signal: when households know more (high τ ε), the volume signal is more

informative, and similarly when households know less (low τ ε). In addition, households

substitute toward (away) from this source of information the less (more) informative is

the price. Consequently, our model suggests that market participants should pay more

attention to the records of the decentralized ledgers the more homogeneous are the users of

the currency.

An important implicit assumption underlying our analysis with informational frictions is

that market participants can coordinate on a high or low price equilibrium. This separates

the inference and coordination problems, enabling market participants to glean successfully

13This is, in part, an artifact of the CARA-Normal paradigm, in which trading volume is the expectation
of a folded normal random variable. This makes learning intractable if a noisy version of trading volume
were observed. An advantage of our focus on a cutoff equilibrium is that we are able to incorporate a noisy
measure of volume while still maintaining tractability.
14Notable exceptions are Blume, Easley, and O’Hara (1994) and Schneider (2009). In the former, past

prices and volumes trivially reveal the suffi cient statistics of all past trader private information (which still
contain residual uncertainty because of correlated signal error). In the latter, trading volume provides a
signal about how informative prices are about an asset’s fundamentals.
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the suffi cient statistics from the price and volume signals. Once they correctly recover the

linear summary statistics z and v, they can reconstruct the trading price P and volume V

according to:

P =
1

1− ρ exp

(
z −

√
τ ε
τ e
A∗
)
,

V = Φ (v −√τ εA∗) ,

since A∗ (z, v) ∈
{
A∗ (z, v) , Ā∗ (z, v)

}
, which are what is actually observed by market par-

ticipants.15 From the proof of Proposition 3, each (z, v) pair maps to two (P, V ) pairs, one

corresponding to a high price equilibrium, A∗ (z, v) , and the other to a low price equilibrium,

Ā∗ (z, v) . By similar logic, each (P, V ) pair maps to two (z′, v′) pairs, one rationalizing (P, V )

as a high price equilibrium a∗ (P, V ) , and the other as a low price equilibrium ā∗ (P, V ) , with

the lower case a∗ denoting a different cutoffmapping than A∗. While there is only one fixed

point, i.e. either A∗ (z, v) = a∗ (P, V ) or Ā∗ (z, v) = ā∗ (P, V ) , it is not clear to an outsider

from just observing the price on which equilibrium market participants are coordinating.

Consequently, the nature of the market makes it is diffi cult for outsiders and regulators

to interpret market conditions, which is particularly problematic since the response of the

market to changes in fundamentals is very different across the high and low price equilibria.

This potential confusion introduces a secondary role for volume as a signal about coordi-

nation in conjunction with prices. While any given cryptocurrency price could be rationalized

as corresponding to a high or low price equilibrium, the volume signal provides a second piece

of information. A high price with a high volume signal is indicative of a high price equi-

librium, while a low price with low volume suggests the market has coordinated on a low

price equilibrium. In practice, we view this volume signal as being analogous to the volume

of transactions recorded on the ledgers of the cryptocurrency, and our analysis emphasizes

the importance of examining both prices and quantities in cryptocurrency markets. Conse-

quently, any fundamental analysis of the cryptocurrency should look beyond prices and to

volumes as an anchor.

Our analysis also suggests that, in the presence of informational frictions, the dual in-

ference problem makes it particularly diffi cult for outsiders to infer both the fundamental

and the nature of the equilibrium from prices. This may lead to erratic trading behavior

by outside investors based on technical analysis. In particular, a rising price is positively

15In technical terms, we implicitly assumed the equivalence of σ ({v, z}) and σ ({P, V }) without modeling
the coordination device, i.e. sunspot. We did this for parsimony of exposition.

25



correlated with higher fundamental in the high price equilibrium, while indicative of lower

fundamental in the low price equilibrium. As a consequence, depending on an investor’s as-

sessment of which equilibrium the market is currently in, it may adopt either a trend-chasing

or the opposite contrarian strategy. Furthermore, the investor may choose to dramatically

reverse its strategy if it speculates that the market is switching regimes.

4 Extensions

In this section, we consider two extensions of our model. In the first, we investigate an ICO

on a blockchain supported by a Proof of Stake (PoS) protocol to explore how an alternative

protocol for clearing transactions impacts the performance of the ICO and the platform.

In the second, we discuss how adding dynamics to our model impacts the stability of the

platform in the presence of informational frictions.

4.1 Proof of Stake Protocol

Much of the recent debate about cryptocurrencies is about the potential transition from

the Proof of Work (PoW) protocol, which underlies most cryptocurrency coins and tokens

that exist, to a Proof of Stake (PoS) consensus protocol. Many platforms with ICOs, for

instance, are designed as smart contracts written onto existing blockchain architecture, such

as Ethereum, which employ a PoW protocol. In a PoS protocol, owners of the currency

act as intermediaries, and clear transactions for fees with a likelihood proportional to their

latent stake in the currency. This stake is often measured as coins or tokens in a wallet that

have been inactive for a certain period of time. While PoS networks do not suffer from the

scalability issue of PoW, in that more intensive computing power of miners is required as

the network grows, it is unclear if they suffer from the same coordination fragility.

In this subsection, we consider a slightly modified setting to explore the tradeoffs of PoS.

Instead of having miners supply accounting services in exchange for currency, or payment

by inflation, we have a unit continuum of intermediaries called "forgers" that purchase a

fraction of the currency, which we normalize to be in unit supply, as their stakes. A stake of

size pi in the currency will entitle an intermediary to a fraction
(∫ 1

0
pjdj

)−1

pi of the total

fees from providing accounting services to clear household transactions at t = 2. The fee, set

by the developer, is a fraction θ of the endowment of each household that trades at t = 2,

while completing each transaction costs a forger a fraction λ ∈ (0, 1) of this value. Since
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households intend to trade on the platform, their currency account is considered active and,

as such, they are not entitled to participate in clearing transactions.

We assume intermediaries of each type are atomistic and identical. Each buys a fraction

pi of the currency subject to a common noisy cost of capital ψ where ψ ∼ N
(
ψ̄, τ−1

ψ

)
. is

normally distributed. Forger i solves the optimization program:

Πi
0 = sup

pi

[
θ − λ∫ 1

0
pjdj

eA+ 1
2((1−ηc)2+η2c)τ−1ε Φ

(
(1− ηc) τ−1/2

ε +
A− A∗

τ
−1/2
ε

)
Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
− eψP

]
pi,

subject to the market-clearing condition for the currency:∫ ∞
−∞

Xi (Ai, P ) dΦ (εi) +

∫ 1

0

pidi = 1.

Assuming a cutoff strategy for households, we can solve the market-clearing condition to

relate the total stake of forgers to the marginal household with type A∗ :∫ 1

0

pidi = Φ

(
A− A∗
√
τ ε

)
.

Define A∗ = A+ τ
−1/2
ε s. Furthermore, since the program for forgers is linear in pi, it follows

that the expression in parentheses must be zero, and therefore that s solves:

e−(1−ηc)τ
−1/2
ε s+ 1

2
(1−ηc)2τ

−1
ε

Φ
(

(1− ηc) τ
−1/2
ε − s

)
Φ (−s) =

1− θ
θ − λe

ψ.

for them to be indifferent to the size of their stake.16 Consequently, s = h
(

1−θ
θ−λe

ψ
)
. Since

the LHS satisfies:

d logLHS

ds
= − (1− ηc) τ−1/2

ε +
φ (−s)
Φ (−s) −

φ
(

(1− ηc) τ
−1/2
ε − s

)
Φ
(

(1− ηc) τ
−1/2
ε − s

) ,
which attains its maximum as s → ∞, d logLHS

ds
→ 0, and therefore the LHS is (weakly)

monotonically decreasing in s from ∞ to 1. It then follows that s exists and is unique,

provided that 1−θ
θ−λe

ψ ≥ 1, and that h′
(

1−θ
θ−λe

ψ
)
, h′′

(
1−θ
θ−λe

ψ
)
≥ 0.

16A corner solution in which all households buy the curreny (pi = 0 ∀ i) can be ruled out a.s. since
the currency price would have to collapse to zero to ensure all households, even those with extremely low
endowments, participate. Then, however, the cost of acquiring a stake is zero, while transaction fees are
positive, violating the choice of forgers not to buy a stake.
If forgers bought all the currency (

∫ 1
0
pjdj = 1), then the currency price would also collapse to zero. We

can rule out this outcome by considering a sequence of platforms that provide an εn > 0 (arbitrarily small)
benefit to each household for participating, and taking the limit as this small benefit approaches zero. Such
a refinement would not, in contrast, resolve the multiplicity in the PoW setting.
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Substituting the marginal household cutoff A∗ into the price of the currency, given by

the utility of the marginal household, we arrive at:

P = (1− θ) e(1−ηc)τ
−1/2
ε h( 1−θθ−λ e

ψ)+A+ 1
2
η2cτ

−1
ε Φ

(
ηcτ
−1/2
ε − h

(
1− θ
θ − λe

ψ

))
,

which is unique given a choice of fees θ. As A∗ is increasing in ψ, it follows that the currency

price is decreasing in ψ for a fixed choice of fees θ.

Suppose that the developer chooses θ to maximize its expected revenue, internalizing its

impact on household and forger participation:

ΠD
0 = sup

θ
(1− θ) e(1−ηc)τ

−1/2
ε h( 1−θθ−λ e

ψ)+A+ 1
2
η2cτ

−1
ε Φ

(
ηcτ
−1/2
ε − h

(
1− θ
θ − λe

ψ

))
.

It then follows from the FONC that at an interior solution that the optimal θ = 1+λx
1+x

satisfies:17

φ
(
ηcτ
−1/2
ε − h

(
xeψ
))

Φ
(
ηcτ
−1/2
ε − h (xeψ)

) − (1− ηc) τ−1/2
ε =

1

h′ (xeψ) eψx (1 + x)
.

Since the LHS is monotonically increasing from − (1− ηc) τ
−1/2
ε to ∞, while the RHS is

monotonically decreasing from ∞ to 0, it follows an interior optimal choice of x, and con-

sequently θ, exists and is unique. Consequently, their is an optimal fee that the developer

can set to maximize its revenue from the ICO. Interestingly, the optimal choice of θ is inde-

pendent of the platform’s demand fundamental A, and only a function of the cost of capital

of forgers ψ. As A∗ tends to ∞ when 1−θ
θ−λe

ψ → 1, earning zero revenue for the developer, it

follows that at the optimum θ will be such that 1−θ
θ−λe

ψ > 1.

In the PoS network, there is no issue of fragility in the cryptocurrency, despite the dual

nature of ICO investors. Since the price of the cryptocurrency scales with the expected

transaction fees paid to forgers, it is the inverse relationship between the aggregate stake of

forgers, p, and the population of households that participates in the platform that leads to

a unique cutoff for households A∗. As a result, the currency price is also no longer linked

to the marginal cost of mining, as in the PoW protocol; instead, it depends on the forger’s

cost of capital ψ, similar to the role of financial frictions in fiat currencies intermediated

by traditional intermediaries, as in Gabaix and Maggiori (2015). When the opportunity

cost to providing accounting services increases, a higher ψ, forgers requires a higher return

17Notice that θ − λ = 1−λ
1+x > 0, and therefore forgers will always earn a positive revenue from transaction

fees at an interior optimal choice of x.
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to participate, and this reduces the entry of households to lower the currency price and,

consequently, the cost of acquiring their stake.

In addition, the currency developer can maximize its profits from the ICO through the

appropriate choice of fees θ, which trades off participation by households in the platform

with participation by forgers. With the PoS protocol, the developer also does not have

to be concerned about the potential for coordination failure by households, as it did with

PoW. While the platform no longer suffers from fragility, however, PoS does introduce a

different distortion: maximizing developer revenue is not necessarily equivalent to maximizing

household participation in the platform, as the currency is sold to both households and

forgers, while it is with PoW because price and quantity are both increasing in the number

of participating households. Such a wedge may not be desirable from a social perspective

because the expected social surplus from the platform is equal to the total endowment of

participating households less the fraction λ burned to complete the transactions. As such,

the fees given to forgers represent zero-sum transfers for which forgers compete by acquiring

stakes in the currency that can potentially crowd out households.

4.2 Dynamics

In this subsection, we discuss the implications of introducing dynamics into our setting that

incorporates a retrade motive for households. While our static model highlights the potential

for intratemporal fragility arising from coordination failure among households participating

in the ICO, dynamics introduces an intratemporal layer to this instability in the presence

of informational frictions. Since the currency price and the platform fundamentals have

the opposite relation across the high and low price equilibria, expectations of a low price

equilibrium in the future can unravel the existence of a cutoff equilibrium today. As a

consequence, a small shift in beliefs about participation in the platform tomorrow can cause

dramatic swings in currency prices.

To illustrate this additional instability, suppose that there is an additional date and an

additional round of trading on the platform among a new generation of households whose

aggregate endowment is correlated with that of the first. These new households purchase

the cryptocurrency at date 2 from the initial participants in the ICO. As a result, the first

generation at date 1 must now forecast not only the expected benefits from trading on the

platform at date 2, the dividend yield from buying the currency, but also the price at which it
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sells the currency to future platform participants, which represents the capital gains. Since

the second round of trading among new households is similar to the currency market in

our static model, there can either be a high price or a low price equilibrium for the same

fundamentals at date 2 when both exist. As such, households must form rational beliefs

about the probability that a high or low equilibrium occurs, which, to facilitate discussion,

is the outcome of a random coordination device or sunspot.

With perfect information, as beliefs about the future price of the currency are symmetric

among households, this source of intertemporal uncertainty from coordination at date 2 only

impacts the fraction of additional households, with marginally worse endowments, who par-

ticipate in the platform at date 1 because of the added benefit of the resale of the currency.

The perfect-information setting highlights the feedback from intratemporal coordination, as

in our static model, to intertemporal incentives through retrading. Coordination tomorrow

better facilitates coordination today by raising the expected profit of initial households from

selling the currency at t = 2, even though the households across generations do not directly

trade with each other, as in Kiyotaki and Wright (1993) and Lagos and Wright (2005).

Since the currency price scales with the size of the network to compensate miners for com-

mitting more computing power, speculation on future currency prices is intimately linked to

speculating on the future subscription to the platform.18

Informational frictions, however, complicate the analysis. Initial households at date 1

may be unable to follow a cutoff strategy the probability of a low price equilibrium at date

2 is suffi ciently high. This can occur because the currency price is decreasing in the demand

fundamental in the low price equilibrium. Since a household’s type cannot be separated

from its private signal about the demand fundamental, households most optimistic about

the dividend yield from trading in the platform are not those most optimistic about the

capital gains from reselling the currency to future households at date 2. As such, a cutoff

equilibrium at date 1 can cease to exist. This tension highlights the inherent intertemporal

fragility of coordination that arises with informational frictions. As a result, a small shift in

the probability of a low price equilibrium tomorrow can cause massive fluctuations in market

outcomes as cutoff equilibria in the cryptocurrency break down.

18With the Proof of Work protocol, there is also scope to speculate on the energy costs to miners of future
computational power if one wants to profit from higher currency prices.
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5 Conclusion

Since the shareholders who participate in ICOs are also the customers that use the currency

to trade goods and services, cryptocurrencies and their underlying platforms are subject to

more pronounced feedback from financial market outcomes to real decisions than traditional

financial assets. As a result, there is an intimate link between the success of the ICO

and the viability of the currency as membership to a network. This link gives rise to the

possibility of coordination failure, whereby the currency price and the volume of coins in

active circulation reflect whether the market is in an equilibrium in which the currency price

is high (low) and many (few) households participate. As these two equilibria have very

disparate properties, observing the same price and volume fluctuations have very different

implications for diagnosing the health of the currency depending on the equilibrium.

Since cryptocurrencies are not supported by a sovereign or central intermediaries that

can help coordinate participants along an equilibrium path, multiplicity of equilibria has a

destabilizing impact on the currency. Furthermore, it can invite manipulation from large

investors. While having stake holders in the currency act as intermediaries with the Proof

of Stake protocol helps resolve the issues of multiplicity and scalability of the platform, it

makes the currency susceptible to fluctuations in their cost of capital, and introduces a wedge

for the developer between maximizing revenue from the ICO and maximizing household

participation.

In the presence of realistic informational frictions, the currency price and volume take

on an additional dimension as useful signals about the demand fundamental underlying the

cryptocurrency. Coordination issues also extend to this incomplete information setting, and

the market reacts very differently to news stemming from these signals depending on whether

the market is in the high or low price equilibrium. One cannot, therefore, easily disentangle

inference about the fundamental from that about coordination, and there are many ways to

rationalize any price fluctuations from the perspective of an outsider. Analyzing measures

of quantities, such as the volume of transactions recorded on its ledgers, can provide helpful

insight when trying to tether valuations of these cryptocurrencies, while technical analysis

can worsen price fluctuations. In addition, the market becomes even more susceptible to

instability once dynamics are introduced.

Our work, consequently, cautions any attempt at valuation or regulation of cryptocur-

rencies that fails to account for their dual role as securities and mediums of exchange.
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Appendix Proofs of Propositions

A.1 Proof of Proposition 1

The first order conditions of household i’s optimization problem in (2) respect to Ci (i) and

Cj (i) at an interior point are:

Ci (i) :
1− ηc
Ci (i)

U (Ci (i) , Cj (i) ;N ) = θipi, (8)

Cj (i) :
ηc

Cj (i)
U (Ci (i) , Cj (i) ;N ) = θipj, (9)

where θi is the Lagrange multiplier for the budget constraint. Rewriting (9) as

ηcU (Ci (i) , Cj (i) ;N ) = θipjCj (i) .

Dividing equations (8) by this expression leads to ηc
1−ηc

=
pjCj(i)

piCi(i)
, which in a symmetric equi-

librium implies pjCj (i) = ηc
1−ηc

piCi (i) . By substituting this equation back to the household’s

budget constraint in (2), we obtain:

Ci (i) = (1− ηc) eAi .

The market-clearing for the household’s good requires that Ci (i)+Ci (j) = eAi , which implies

that Ci (j) = ηce
Ai .

The first order condition in equation (8) also gives the price of the good produced by

household i. Since the household’s budget constraint in (2) is entirely in nominal terms, the

price system is only identified up to θi, the Lagrange multiplier. We therefore normalize θi
to 1. It follows that:

pi =
1− ηc
Ci (i)

U (Ci (i) , Cj (i) ;N ) = eηc(Aj−Ai). (10)

Furthermore, given equation (1), it follows since Ci (i) = (1− ηc) eAi and Cj (i) = ηce
Aj that:

U (Ci (i) , Cj (i) ;N ) = e(1−ηc)AieηcAj = pie
Ai ,

from substituting with the household’s budget constraint at t = 2.

It then follows that, conditional on meeting another holder of the crypto currency, then

the expected utility of investor i conditional on Ii and a successful match (given by the
dummy M) is:

E [U (Ci (i) , Cj (i) ;N )| Ii,M ] = e(1−ηc)Ai+ηcA+ 1
2
η2cτ

−1
ε

Φ
(
ηcτ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(
A−A∗
τ
−1/2
ε

) ,
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and, since the probability of meeting another holder of the crypto currency is Φ
(
A−A∗
τ
−1/2
ε

)
,

the expected utility of investor i is:

E [U (Ci (i) , Cj (i) ;N )| Ii] = e(1−ηc)Ai+ 1
2
η2cτ

−1
ε E

[
eηcAΦ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)∣∣∣∣ Ii] .
Finally, the ex ante expected utility of a household before it learns its endowment Ai :

U0 = E

[
max
Xi
{E [Ui|Ii]− P, 0}

]
= E

[
e(1−ηc)Ai+ηcA+ 1

2
η2cτ

−1
ε Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
− P | A, ξ

]
= eA+ 1

2((1−ηc)2+η2c)τ−1ε Φ

(
(1− ηc) τ−1/2

ε +
A− A∗

τ
−1/2
ε

)
Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
− PΦ

(
A− A∗

τ
−1/2
ε

)
= u0 − PΦ

(
A− A∗

τ
−1/2
ε

)
,

where u0 is the utility benefit of entering the currency platform.

A.2 Proof of Proposition 2

When all households and builders observe A directly, there are no longer information frictions

in the economy. From Proposition 1, the expected utility of household i at t = 1 who chooses

to buy the currency is:

E [Ui|Ii] = e(1−ηc)Ai+ηcA+ 1
2
η2cτ

−1
ε Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
,

Since the household with the critical productivity A∗ must be indifferent to its neighborhood

choice at the cutoff, it follows that E [Ui|I∗i ]− P = 0, which implies:

e(1−ηc)AiΦ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
= e−

1
2
η2cτ

−1
ε −ηcAP, with Ai = A∗ (11)

which implies the benefit of living with more productive households is offset by the higher

cost of living in the neighborhood.

Fixing the critical value A∗ and price P, we see that the LHS of equation (11) is increasing

in monotonically in Ai, since 1− ηc > 0. This confirms the optimality of the cutoff strategy

that households with Ai ≥ A∗ enter the neighborhood, and households with Ai < A∗ choose

to live somewhere else. Since Ai = A+ εi, it then follows that a fraction Φ
(
−√τ ε (A∗ − A)

)
enter the neighborhood, and a fraction Φ

(√
τ ε (A∗ − A)

)
choose to live somewhere else. As

one can see, it is the integral over the idiosyncratic productivity shocks of households εi that

determines the fraction of households in the neighborhood.
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From the optimal supply of housing by builder i in the neighborhood (5), there exists a

critical value ω∗ :

ω∗ = − logP − log (1− ρ) , (12)

such that builders with productivity ωi ≥ ω∗ build houses. Thus, a fractionΦ
(
−√τ e (ω∗ − ξ)

)
build houses in the neighborhood. Imposing market-clearing, it must be the case that

Φ (−√τ ε (A∗ − A)) = Φ (−√τ e (ω∗ − ξ)) .

Since the CDF of the normal distribution is montonically increasing, we can invert the above

market-clearing conditions, and impose equation (12) to arrive at

logP =

√
τ ε
τ e

(A− A∗)− ξ − log (1− ρ) . (13)

By substituting for P in equation (11), we obtain an equation to determine the equilibrium

cutoff A∗ = A∗ (A, ξ):

e

(
1−ηc+

√
τε/τe

)
A∗

Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)
= e(
√

τε
τe
−ηc)A−ξ− 1

2
η2cτ

−1
ε −log(1−ρ). (14)

Let the log of the LHS of equation (14) be f (A∗) as a function of A∗. Taking the derivative

of f (A∗) with respect to A∗ gives

df

dA∗
= 1− ηc +

√
τ ε
τ e
− 1

τ
−1/2
ε

φ
(
ηcτ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(
ηcτ
−1/2
ε + A−A∗

τ
−1/2
ε

) .
Notice as A∗ → −∞, df(A∗)

dA∗ → 1− ηc +
√

τε
τe
> 0, while as A∗ →∞, then:

df

dA∗

∣∣∣∣
A∗→∞

→ 1 +

√
τ ε
τ e

+ lim
A∗→∞

A− A∗
τ−1
ε

→ −∞.

Furthermore, we recognize that:

d2f

dA∗2
= − 1

τ
−1/2
ε

ηc +
A− A∗
τ−1
ε

+
1

τ
−1/2
ε

φ
(
ηcτ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(
ηcτ
−1/2
ε + A−A∗

τ
−1/2
ε

)
 φ

(
ηcτ
−1/2
ε + A−A∗

τ
−1/2
ε

)
Φ
(
ηcτ
−1/2
ε + A−A∗

τ
−1/2
ε

) ,
which achieves its maximum at A → ∞, where d2f

dA∗2 = 0. Consequently, d2f
dA∗2 ≤ 0, and

therefore f (A∗) is concave and therefore hump-shaped in A∗. Furthermore, the LHS of (14)

tends to 0 as A∗ → −∞ and A∗ →∞. Therefore, the LHS of (14) is quasiconcave in A∗.
Notice that we can rewrite equation (14) as:

e

(
1−ηc+

√
τε/τe

)
s
Φ

(
ηcτ
−1/2
ε − s

τ
−1/2
ε

)
= e−A−ξ−

1
2
η2cτ

−1
ε −log(1−ρ), (15)
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where s = A∗−A determines the population that buys the currency. Notice that the LHS of
equation (15) is log concave, since the pdf and CDF of the normal distribution is log concave

and the exponential function is log-linear. Consequently, d
2 logLHS
ds2

< 0.

Notice that the properties of the LHS of equation (15) are the same as for A∗ in equation

(14), and, importantly, the LHS is now independent of A. The LHS is then a quasiconcave

bell curve as a function of s, while the RHS is a horizontal line. Given that the LHS is

quasiconcave in s, it achieves a maximum at ŝ such that d logLHS
ds

∣∣
s=ŝ

= 0. Since the RHS of

(15) is fixed, it follows that the LHS and RHS of equation (15) intersect generically twice,

with once being a knife-edge case when the equilibrium s is ŝ. Therefore, there are generically

two cutoff equilibrium. It can occur, however, that the RHS of equation (15) is above the

LHS evaluated at ŝ, and then the cost of buying the currency always exceeds its value for

the marginal household. From the RHS, this can occur if A or ξ are suffi ciently small, and

then no household buys the currency.

In what follows, let the high price equilibrium, corresponding to a lower cutoff threshold,

for s be s and the low price equilibrium for s be s̄, which correspond to cutoffs A∗ and Ā∗. If

we increase A or ξ, then the RHS of equation (15) decreases, and this implies for the high

price equilibrium that s decreases, while for the low price equilibrium s̄ increases. Since the

population that purchases currency, Φ
(
−√τ εs

)
, is strictly increasing in s, our comparative

statistics for −s consequently also apply to the population.
In addition, since P = exp

(
−
√

τε
τe
s− ξ − log (1− ρ)

)
, it further follows that the cur-

rency price is increasing in A for the high price equilibrium s, and is decreasing in A and ξ for

the low price equilibrium s̄. Since the developer’s revenue from the ICO ΠD is ρΦ
(
−√τ εs

)
P,

it follows that:

d

dA
ΠD = −ρ

√
τ ε
τ e

ds

dA
Φ (−√τ εs)P

(
1 +
√
τ e
φ
(
−√τ εs

)
Φ
(
−√τ εs

)) > 0,

In the high price equilibrium, ds
dA

< 0, and therefore the developer’s revenue is increasing

in A, while in the low price equilibrium, ds
dA

> 0, and the developer’s revenue is instead

decreasing in A.

Finally, expressing the ex ante expected utility of a household before it learns its endow-

ment Ai, U0, as:

U0 = u0 − PΦ

(
− s

τ
−1/2
ε

)
.

Then, given that:
ds

dA
= − 1

d logLHS
ds

,
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where:

d logLHS

ds
= 1− ηc +

√
τ ε
τ e
− 1

τ
−1/2
ε

φ
(
ηcτ
−1/2
ε − s

τ
−1/2
ε

)
Φ
(
ηcτ
−1/2
ε − s

τ
−1/2
ε

) ,
it follows, with some manipulation, that:

dU0

dA
= − ds

dA

((
1− ηc +

√
τ ε
τ e

)
u0 −

√
τ ε
τ e
PΦ

(
− s

τ
−1/2
ε

))
= − ds

dA

(
(1− ηc)u0 +

√
τ ε
τ e
U0

)
.

Since U0 = E [maxXi {E [Ui|Ii]− P, 0}] , it follows that E [Ui|Ii] − P ≥ 0, and therefore

u0 ≥ PΦ
(
− s

τ
−1/2
ε

)
. Consequently, since ds

dA
< 0 in the high price equilibrium:

dU0

dA
> 0,

while, since ds
dA
> 0 in the low price equilibrium:

dU0

dA
> 0.

A.3 Proof of Proposition 3

Given our assumption about the suffi cient statistic in housing price, each household’s pos-

terior about A is Gaussian A |Ii ∼ N
(
Âi, τ̂

−1
A

)
with conditional mean and variance:

Âi = Ā+ τ−1
A

[
1 1 1

]  τ−1
A + τ−1

v τ−1
A τ−1

A

τ−1
A τ−1

A + z−2
ξ τ−1

ξ τ−1
A

τ−1
A τ−1

A τ−1
A + τ−1

ε

−1  v − Ā
z − Ā
Ai − Ā


= τ̂−1

A

(
τAĀ+ τ vv + z2

ξ τ ξz + τ εAi
)
,

τ̂A = τA + τ v + z2
ξ τ ξ + τ ε.

Note that the conditional estimate of Âi of household i is increasing in its own productivity

Ai. This completes our characterization of learning by households and the currency developer.

By substituting the expressions for Ki and li into the utility of household i given in

Proposition 1, we obtain:

E [Ui|Ii] = e(1−ηc)Ai+ηcA∗+ 1
2
η2cτ

−1
ε E

[
eηc(A−A

∗)Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)∣∣∣∣ Ii] .
Since the posterior for A − A∗ of household i is conditionally Gaussian, it follows that the
expectations in the expressions above are functions of the first two conditional moments
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Âi − A∗ and τ̂A. Let

G
(
Âi − A∗, τ̂A

)
= E

[
eηc(A−A

∗)Φ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)∣∣∣∣ Ii] = eηc(Âi−A
∗)+ 1

2
η2c τ̂

−1
A Φ

ηcτ−1/2
ε +

Âi+ηcτ̂
−1
A −A∗

τ
−1/2
ε√

1 + τε
τ̂A


Define x = A−A∗

τ
−1/2
ε

, and the function g (x) :

g (x) = eηcτ
−1/2
ε xΦ

(
ηcτ
−1/2
ε + x

)
,

as the term inside the bracket. Then, it follows that:

d log g (x)

dx
= ητ−1/2

ε +
φ
(
ηcτ
−1/2
ε + x

)
Φ
(
ηcτ
−1/2
ε + x

) > 0,

and therefore dg(x)
dx

> 0, since g (x) ≥ 0. Consequently, it follows that dG
dx

(x, τ̂A) > 0, since

this holds for all realizations of A−A∗. That the inequality is strict comes from recognizing,
as x→ −∞, by L’Hospital’s Rule:

lim
x→−∞

d log g (x)

dx
= − lim

z→−∞
x =∞.

Since the household with the critical productivity A∗ must be indifferent to its currency

choice at the cutoff, it follows that Ui − P = 0, which implies:

e
1
2
η2cτ

−1
ε +(1−ηc)Ai+ηcA∗G

(
Âi − A∗, τ̂A

)
= P, Ai = A∗ (16)

which does not depend on the unobserved A or the supply shock ξ, and we have substi-

tuted for u0. As such, A∗ = A∗ (logP, v) . Furthermore, since Â∗i is increasing in Ai and

G
(
Â∗i − A∗, τA

)
is (weakly) increasing in Âi, it follows that the LHS of equation (16) is

(weakly) monotonically increasing in Ai, confirming the cutoff strategy assumed for house-

holds is optimal. Those with the RHS being nonnegative purchase the currency, and those

with it being negative choose to refrain.

It then follows from market-clearing that:

Φ (−√τ ε (A∗ − A)) = Φ (−√τ e (ω∗ − ξ)) .

Since the CDF of the normal distribution is montonically increasing, we can invert the above

market-clearing condition, and impose equation (12) to arrive at:

logP =

√
τ ε
τ e

(A− A∗)− ξ − log (1− ρ) ,
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from which follows that:

z =

√
τ e
τ ε

(
logP + log (1− ρ) +

√
τ e
τ ε
ξ̄

)
+ A∗ = A−

√
τ e
τ ε

(
ξ − ξ̄

)
,

and therefore zξ =
√

τε
τe
. This confirms our conjecture for the suffi cient statistic of the

currency price and that learning by households is indeed a linear updating rule.

As a consequence, the conditional estimate of household i is:

Âi = τ̂−1
A

(
τAĀ+ τ vv +

τ ε
τ e
τ ξz + τ εAi

)
,

τ̂A = τA +
τ ε
τ e
τ ξ + τ ε.

Substituting for prices, and simplifying A∗ terms, we can express equation (16) as:

e

(
1+
√
τε/τe

)
A∗
G
(
Â∗i − A∗, τ̂A

)
= ez−

√
τe
τε
ξ̄− 1

2
η2cτ

−1
ε −log(1−ρ), (17)

where

Â∗i = τ̂−1
A

(
τAĀ+ τ vv +

τ ε
τ e
τ ξz + τ εA

∗
)
,

is the posterior belief when Ai = A∗. Notice that the LHS of equation (17) is continuous in

A∗.

Now let us rewrite equation (16) as:

exp (h (A∗)) = e
√

τε
τe
z−ξ̄− 1

2
η2cτ

−1
ε −log(1−ρ),

where:

h (A∗) =
(

1 +
√
τ ε/τ e

)
A∗ + logG

(
Â∗i − A∗, τ̂A

)
,

and it follows that:

dh

dA∗
= 1 +

√
τ ε/τ e +

1

G
(
Â∗i − A∗, τ̂A

) dG (x, τ̂A)

dz

∣∣∣∣
x=Â∗i−A∗

d
(
Â∗i − A∗

)
dA∗

.

Since dG(x,τ̂A)
dx

≥ 0, by the above arguments, and:

d
(
Â∗i − A∗

)
dA∗

= τ̂−1
A

d

dA∗

(
τA
(
Ā− A∗

)
+ τ v (v − A∗) +

τ ε
τ e
τ ξ (z − A∗)

)
= −τ̂−1

A

(
τA +

τ ε
τ e
τ ξ

)
< 0,

since z is independent of A∗, it follows that the second term in dh
dA∗ is negative.
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As A∗ → −∞, since Φ
(
ηcτ
−1/2
ε + A−A∗

τ
−1/2
ε

)
→ 1, we see, by rewriting h (A∗) as:

h (A∗) =
(

1− ηc +
√
τ ε/τ e

)
A∗ + logE

[
eηcAΦ

(
ηcτ
−1/2
ε +

A− A∗

τ
−1/2
ε

)∣∣∣∣ I∗i ]
→

(
1− ηc +

√
τ ε/τ e

)
A∗ + ηcÂ

∗
i +

1

2
η2
c τ̂
−1
A

that:

lim
A∗→−∞

dh

dA∗
= 1− ηc +

√
τ ε/τ e + τ̂−1

A τ ε > 0,

while as A∗ →∞, one has that:

lim
A∗→∞

dh

dA∗
= 1 +

√
τ ε/τ e − τ̂−1

A

(
τA +

τ ε
τ e
τ ξ

)
lim

A∗→∞

d

dx
logG (x, τ̂A)

∣∣∣∣
x=A−A∗

= −∞,

since limx→−∞
d log g(x)

dx
=∞, and G (E [x] , τ̂A) is an expectation over g (x) .

As A∗ → −∞, we also notice that:

lim
A∗→−∞

exp (h (A∗)) = 0.

and, by the Continuous Mapping Theorem, one also has that:

lim
A∗→∞

exp (h (A∗)) = 0.

In addition, similar arguments to those in Proposition 2, suitably modified, reveal that
d2h
dA∗2 ≤ 0. As such, exp (h (A∗)) is quasiconcave in A∗. Since the RHS of equation (16) is fixed

as a horizontal line, while the LHS is bell-shaped, it follows that generically there are two

cutoffequilibria in the economy, when a cutoffequilibrium in the economy with informational

frictions exists.

Notice now that, since G
(
Â∗i − A∗, τ̂A

)
is monotonically increasing in its first argument,

and Â∗i is increasing in v, it follows that the bell-shaped curve of the LHS of equation (16)

shifts up for each value of A∗ from an increase in the noise shock εv to v. Given that the

RHS of equation (16) is fixed with respect to the noise in the volume signal εv, it follows

that A∗ shifts down in the high price equilibrium after a positive shock to εv, and shifts up

in the low price equilibrium. Since this noise impacts A∗ and not A or ξ, it follows that the

currency price and population that buy the currency increases in the high price equilibrium,

and decreases in the low price equilibrium.
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