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Abstract

This paper bridges the gap between the teacher effectiveness and peer effects literatures, by
studying how the effectiveness of different teaching practices vary by classroom composition. We
combine random assignment of teachers to classrooms with rich measures of teaching practice
to overcome key endogeneity concerns related to measurement and matching. We find that
good classroom management skills create an environment where students benefit more from
peer average initial achievement. We also show that challenge/student-centered practices are
most effective when there is less heterogeneity in initial achievement of classmates. Our findings
have important implications for guiding teaching practices in different classroom contexts as
well as highlighting new challenges for measuring teacher effectiveness and peer effects.
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1 Introduction

The Coleman Report of 1966 highlighted the importance of both teachers and peers in improv-
ing academic achievement and spawned a large literature and policy debate regarding teacher and
peer influence. The subsequent literature largely confirms the importance of teachers and peers
(Gamoran et al.| [2000; Rivkin et al., 2005} Sacerdote, [2011; Epple and Romano, [2010), but impor-
tant puzzles remain about what makes a teacher effective and how peer effects can be exploited
to improve achievement. We explore how moving beyond the norm in the literature of treating
teachers and peers in isolation can change the nature of the policy debate in important ways that
inform teacher effectiveness in different classroom settings.

Treating teachers and peers as separable influences on learning has (at least) two important lim-
itations. First, it fails to acknowledge that the effectiveness of different teachers/teaching practices
could depend on the characteristics of the classroomH For example, the benefits of challenging,
student-centered teaching practices may vary depending on the heterogeneity in initial achievement
of a student’s classmates. Second, it fails to acknowledge the fundamental role teachers can play in
determining the nature of classroom peer interactions. For instance, peer effects could be amplified
by teaching practices that create a positive learning environment and promote a learning dialogue
among students. We seek to fill this gap in the literature by exploring complementarities between
teachers and classroom composition in achievement production and demonstrate the importance
for understanding both teacher and peer effects.

Two important barriers have hindered a unified analysis of teacher effectiveness and peer effects.
First, detailed longitudinal data on teaching practices on a large scale are relatively rare. Second,
endogeneity concerns related to nonrandom allocation of teachers to classrooms and endogenous
responses of teachers to the classroom have posed significant challenges to identification. We
overcome these challenges by exploiting a unique data set—the Measures of Effective Teaching

(MET) Longitudinal Database. The key features of the data are rich information on teaching

1Teabching practices do not only involve the principles and methods used for instruction (e.g. class discussions vs.
recitation), but also those actions that affect the social dynamics of a given classroom (e.g. classroom management).
Taylor| (2018]) shows that different type of instructional methods play an important role on student achievement
beyond just teaching skills.



practices in a context where teachers are randomly assigned to classrooms. Teachers are evaluated
by trained raters using a research-based protocol that is increasingly used to measure teaching
effectiveness in schools nationwide, the Framework for Teaching Evaluation Instrument (Danielson,
2011)E| For classroom composition, we focus on classroom peer initial achievement, the most-
studied type of peer spillover in the literature (Sacerdotel, 2011]).

The random assignment of teachers eliminates one of the most important confounding factors
for measuring teacher effectiveness, the systematic matching of students to classrooms that would
lead us to confound teachers or peer effects with unobservable teacher or peer quality. However,
even with random assignment, our identification strategy needs to address a number of remaining
endogeneity concerns. The first is that there is considerable non-compliance in the data. We
address this by relying on the variation generated by the randomly-assigned teacher rather than the
actual teacher. Second, the experimental design did not mandate random assignment of students
to classrooms. That said, the random assignment of teachers to classrooms is enough to obtain
consistent estimates of the complementarities between teaching practice and classroom composition
under reasonable conditions which we testE| Third, if teachers choose practices to maximize student
achievement, the observed teaching practice could be endogenous to the classroom composition. We
address this primarily by exploiting the availability of prior year teaching practices, thus capturing
teachers’ proclivity toward certain practices. Fourth, teaching practice is measured with error. We
exploit multiple measures of teaching practice and use factor models to identify what aspects are
separable in the data. We rely primarily on averages of multiple measures of teaching practices to
address measurement error, but show robustness to a number of other approaches. These include
instrumenting contemporaneous teaching practices with prior practice and adapting the estimation
approach developed by [Hausman et al.| (1991) for nonlinear error in variables models to apply to
our setting, a panel model where the nonlinearity takes the form of complementarities.

Finally, even with random assignment of teachers and rich measures of practice, one may still

question whether it is our measured teaching practice or something unobservable about the teacher

ZKane ct al. (2011)) shows the importance of this teacher evaluation protocol in an observational context.

3To show this, we apply results developed in [Bun and Harrison (2014)) and |[Nizalova and Murtazashvili| (2014).
Balancing tests support that classroom composition is indeed random within randomization blocks. That said, to
the extent that it is not random, we show that it limits our ability to infer the overall effect of peers.



that is correlated with this practice that drives our findings. This is an issue that all the literature
that seeks to evaluate characteristics of effective teaching Sharesﬁ While our results provide impor-
tant insight into how teacher effectiveness varies by classroom composition regardless, we try also
to unpack whether our findings are driven by our measured practice rather than some other corre-
lated teacher unobservable. First, we show that after including all available teaching practices in
a single specification our results become stronger than specifications that include them separately,
suggesting that (if any) omitted variable bias is attenuating our main results. Second, we show
that our results are robust to controlling for an unusually rich set of teacher quality measuresﬂ
including principal and student surveys along with a teaching knowledge assessmentﬂ

We ground our empirical strategy in a simple theoretical model of student behavior, which helps
inform the structure of the estimating equations and illustrates the potential pervasiveness of the
complementarities in teaching practice and classroom composition. We show that even when the
learning production function does not directly depend on the interaction between teaching practice
and peer initial achievement, a complementarity between teachers and peers could emerge indirectly
through students’ endogenous responses to teaching practices. One such example is when teachers
with better classroom management practices make misbehavior more costly, and students benefit
more from their peers if they behave well.

Our main findings show that challenge/student-centered practices are more effective when class-
rooms have less heterogeneity in initial achievement. This result suggests that, for example, pro-
moting discussion among students may not constitute a good learning tool when all students cannot
share a somewhat similar level of understanding on key concepts. We also show that classroom
management practices are most effective when classrooms have higher average initial achievement.
This highlights the intuition that students cannot benefit from higher-achieving peers if they are

not engaged constructively in the classroom learning environment. Notice that this finding is

“For instance, see |Araujo et al|(2016) and [Taylor (2018)) for discussions of this challenge.

5Although educational researchers make an important distinction between teacher quality and teaching quality
(Hamiltonl 2012} [Kennedyl, 2010]), we use the term “teacher” here, assuming the teacher knowledge measures reflect
relatively stable traits.

SEven in the worst case scenario where the reader still believes that the teaching practices used in this paper are in
fact proxying some underlying correlated teacher factor, our findings will at the very least make the important point
that effective teaching varies by classroom composition, and that different measures of teaching practices complement
classroom composition in different ways.



consistent with the understanding that classroom management is even an important challenge in
higher-achieving classrooms, though the sources of disengagement and poor behavior may be dif-
ferent from in lower-achieving classrooms (Shernoff et al. 2003). In addition, we show robustness
of these findings to the variety of concerns discussed above, and that more traditional measures of
teacher “quality” neither complement classroom characteristics nor explain the estimated comple-
mentarities with teaching practice.

We make several important contributions to the literature. First, we demonstrate how failing
to capture the heterogeneity in the effectiveness of teaching practice by classroom composition
leads us to understate the importance of measured teaching practices and even, in some cases, to
infer that the practice does not matter when in fact the effects are sizable in certain classrooms.
This provides insight into why observable teacher measures generally do a poor job of capturing
teacher quality (e.g. Rivkin et al., 2005). From a policy perspective then, understanding this type
of heterogeneity is crucial for identifying what teaching practices matter and in what classroom
contexts.

Second, our research connects closely to a number of recent studies that consider heterogeneity
in teacher effectiveness by student background characteristics (Lavyl 2015; Fox, [2016; [Konstan-
topoulos), 2009)E| However, by focusing on heterogeneity by classroom composition, our work is
substantively different in focus. Furthermore, we show that heterogeneity by classroom composition
seems to be of significantly larger magnitudes than heterogeneity by a student’s initial achievement.

Third, our study also provides useful complementary evidence to the value-added literature
which argues fairly persuasively that teachers matter (Rivkin et al., 2005 |Chetty et al., [2014;
Rothstein) [2010). Consistent with our central hypothesis that teacher effectiveness varies with who
the teacher teaches, interesting recent work by Stacy et al.| (2013) shows that value-added estimates
are significantly more stable year-to-year for teachers of students with higher-initial achievement.
The most closely related work is an innovative paper by [Jackson (2013), which demonstrates a

significant role for match quality between teachers and schools. A well-known limitation of value-

"For instance, [Lavy (2015) finds larger effects of challenge/student-centered teaching for girls and low-SES students.
Connor et al.| (2004)) show larger effects of some types of challenge/student-centered practices for children with higher
initial achievement. Finally, [Konstantopoulos| (2009) finds somewhat larger effects of teacher effectiveness for high-
SES students.



added measures of teacher effectiveness is that they do not identify the teaching characteristics that
matter for effectiveness, and it is therefore more difficult to use the findings in prescriptive ways to
improve practice. This is the key reason that we choose to focus on measurable aspects of teaching
practice from a popular teacher evaluation protocol.

A number of other studies have used the MET data to identify effective teachers. Already
studies from the MET project have generated important insights (Cantrell and Kane, 2013). For
instance, Kane et al. (2013) verify that value-added metrics can be effective ways of evaluating
teacher effectiveness in observational data and that multiple metrics of teacher effectiveness, includ-
ing observations of practice, further improve understanding of a teachers’ underlying effectiveness.
Mihaly et al.| (2013) also show that the different metrics of teacher effectiveness (value-added, class-
room observation video scores and student survey reports) have important commonalities. |Araujo
et al. (2016) and Bacher-Hicks et al.|(2017), in different settings, also illustrate the importance of
teacher observation protocols for measuring teacher effectiveness. In the present study, we shift
the emphasis from identifying effective teachers to analyzing which teachers are most effective for
different kinds of classrooms.

Fourth, our paper also contributes to the literature on peer effects. The literature has consid-
ered fairly extensively how peer effects vary by student background characteristics because of the
important implications of this type of heterogeneity to tracking and desegregation policies (For
instance, see |Burke and Sass|, [2006}; [Fruehwirthl 2013} |Gibbons and Telhajl 2006} [Hanushek et al.l
2009; Hanushek and Rivkinl 2009; Hoxby and Weingarthl, 2005; Lavy et al., 2012, among others).
Zimmer| (2003) and Duflo et al. (2011) consider heterogeneity by student prior achievement and by
whether the school tracks or not, which relates to the present study in interesting ways. Duflo et
al.| (2011) also find that the heterogeneity in peer effects may be driven by what level of students
teachers target in their teaching and by teacher absences, which acknowledges the important role
of teachers in driving the structure of peer effects, though without data on particular aspects of
teaching practice. None of these directly consider heterogeneity in peer effects by teaching practice.
We demonstrate that failure to allow for complementarities with teaching practice may severely

understate the benefits of peers.



The rest of the paper proceeds as follows. We first describe the data in Section 2] including our
measures of teaching practice. Section [3] presents our theoretical framework. Section [] discusses
our empirical strategy. Section [5 presents our main findings, followed by an analysis of the possible

mechanisms behind our main results in Section [6] Finally, Section [7] presents the conclusions.

2 Data

The Measures of Effective Teaching (MET) Longitudinal Database provides detailed information
on teaching practices, student outcomes, and classroom composition from six large urban public
school districts in the United States over two academic years (2009-2010 and 2010-201 1)E| The data
are linked to district administrative records, which include detailed student information, most im-
portantly, current and prior measures of student achievement, but also age, race/ethnicity, gender,
special education status, free lunch eligibility, gifted status, and English language learner status.
The data also include rich measures related to teacher aptitude, such as the Content Knowledge for
Teaching (CKT) assessment, and school principal evaluations)ﬂ Finally, a key aspect of the MET
data is that teachers were randomly assigned within school and grade to classrooms of students
during the second academic year of the study (2010-201 1)@

We analyze students’ math performance because it has traditionally been shown to be more
malleable to school inputs. Moreover, we focus on elementary school students (grades four and five)

given that most of them are taught by general elementary teachers in self-contained classrooms with

8These districts include New York City Department of Education, Charlotte-Mecklenburg Schools, Denver Public
Schools, Memphis City Schools, Dallas Independent School District, and Hillsborough County Public Schools. |[Kane
and Staiger| (2012)) provides a detailed description on how schools were selected to participate in the MET project.
More importantly, Kane and Staiger| (2012)) argues that MET teachers are comparable by most measures to their
non-MET peers in the district, suggesting that they are representative of the districts included.

°The purpose of the CKT math assessment is to measure knowledge tied to the teaching of mathematics, such
as: choosing and using appropriate mathematical representations; choosing examples to illustrate a mathematical
concept; interpreting student work, including use of nonstandard strategies; and evaluating student understanding.

"When schools joined the MET study in 2009-2010, principals were asked to identify groups of teachers that 1)
were teaching the same subject to students in the same grade, 2) were certified to teach common classes and, 3)
were expected to teach the same subject to students in the same grade the following year. These groups of teachers
were called “exchange groups.” The plan was for principals to create class rosters as similar as possible within an
exchange group, and then send these rosters to MET to be randomly assigned to “exchangeable” teachers. One issue
in practice was that, when it came time to perform the randomization, not all teachers within an exchange group
were able to teach during a common period. As a result, randomization was performed within subsets of exchange
groups called “randomization blocks”.



more concentrated exposure to the same peers and teachersH

2.1 Measuring Teaching Practice

We make use of a well-known, research-based classroom observation protocol that measures teach-
ing practices, the Framework for Teaching (FFT). Increasingly school districts have begun to use
these types of protocols for teacher evaluation purposes and FFT is the most popular (AIR} [2013).
According to MET project| (2010b), “FFT has been subjected to several validation studies over the
course of its development and refinement, including an initial validation by Educational Testing
Service (ETS ).”B The protocol divides teaching into four domains and the MET database rates
teachers on two of them: classroom environment and instruction. We observe scores for eight dif-
ferent subdomains of these two domains by a median of seven different highly trained, independent
raters, many of them current or former teachersE These raters had to pass reliability tests in
which their scores were compared with master scores on a number of videos. This provides some
assurance of the quality of these observational data and help us to address measurement error, as
we discuss further in Section [l

Though FFT was designed so that each subdomain represents a separate aspect of teaching
practice, we perform an exploratory factor analysis to determine the number of components that
are actually separable in the data. Appendix Table [§ shows the correlations between the different
subdomains and the loadings on each subdomain after performing an oblique rotation of the fac-
torsE This analysis suggests that FF'T measures can be divided into two separable broad teaching
practices. There are five sub-scales which load heavily on the first factor, including establishing a

culture of learning, communicating with students, engaging students in learning, using assessment

" Appendix A provides a detailed description of the sample selection.

120f the MET observation protocol, two, FFT, and CLASS are generic protocols designed to apply across instruction
in a range of subject-matters. In our view, of these, FF'T has the most comprehensive architecture capturing teaching
practices.

3 The score assigned to each component ranges between 1 and 4, where each each number refers to a level (1:unsatis-
factory, 2:basic, 3:proficient, 4:distinguished). Appendix Tablemprovides a description of each of the sub-components
of the FFT protocol.

The results reported take the average across raters so that there is one observation per component per teacher.
Results are similar if we perform the exploratory factor analysis at the level of the rater or if we use orthogonal
rotations. They are also similar if we extract rater fixed effects and video quality prior to performing the factor
analysis.



i instruction and using questioning and discussion techniques. These all reflect what we will call
challenge/student-centered practices that encourage classroom dialogue and student involvementm
The subdomains that load on the second factor are creating an environment of respect and rapport,
managing student behaviors and managing classroom procedures. We will refer to these as class-
room management practices, as they all relate to teaching practices that lead to a better classroom
environment. Taken together the factors explain 92% of the total variance in the datam

As a final robustness check, we also implemented confirmatory factor analysis with the aim to
establish whether the proposed grouping of the FFT subdomains provides a better fit of the data
than alternative models. First, we compare our model with a competing specification in which
all the FFT subdomains load in only one latent factor. Second, we test our classification with
the grouping that has been predetermined in the FFT protocol (i.e., classroom environment and
instruction domains)m In both cases, the Bayesian information criterion (BIC) indicates that our
proposed classification provides a better fit of the dataE Our empirical strategy will mainly make
use of averages across the sub-scales that according to the exploratory factor analysis correspond
to each broad practice (i.e., classroom management and challenge/student-centered practices), but

. . . o1 . . o)
we also explore other ways of addressing measurement error, as described in detail in Section



Table 1: Summary Statistics: Sample (N=2632)

Mean ]—_S)t;(‘i/ Min Max
Grade Level 4.50 0.50 4.00 5.00
Joint Math and ELA Class 0.87 0.33 0.00 1.00
Age 9.40 0.92 7.52 12.20
Male 0.50 0.50 0.00 1.00
Gifted 0.05 0.21 0.00 1.00
Special Education 0.08 0.27 0.00 1.00
English Language Learner 0.16 0.36 0.00 1.00
White 0.25 0.43 0.00 1.00
Black 0.31 0.46 0.00 1.00
Hispanic 0.29 0.45 0.00 1.00
Asian 0.11 0.31 0.00 1.00
American Indian 0.01 0.08 0.00 1.00
Race Other 0.03 0.17 0.00 1.00
Race Missing 0.00 0.07 0.00 1.00
Math Score (Year 09-10) -0.00 0.90 -2.84 2.73
Math Score (Year 10-11) 0.04 0.90 -3.26 3.01
Unique Districts ) - - -
Unique Classes 147 - - -
Unique Schools 39 - - -

Unique Randomization Blocks 57 - - -
Unique Teachers 147 - - -

Percentage of Class w/ 09-10
Math Scores

Percentage of Class in Ran-
dom Assignment

0.91 0.07 0.67 1.00

0.78 0.14 0.32 1.00
Teachers per Randomization
Block

Randomization Block Compli-
ance Rate

2.86 0.83 2.00 4.00

0.93 0.09 0.50 1.00

Notes: See Appendix A for a description of how this sample was obtained. Joint
Math/ELA Class refers to a self-contained course in which students learn both math
and ela, the remaining courses are either math or ela only. We summarize the percent-
age of each class w/ prior math test scores since students new to the district will not
have prior test scores. We also summarize the percentage of each class in randomiza-
tion because not all students in the classes we observe were on the original randomly
assigned class rosters. 10



2.2 Summary Statistics

Table |1 reports summary statistics for characteristics of the students in our final samplem This is
a racially-diverse sample; 31% of students are black, 25% are white, 29% are Hispanic, and 11% are
Asian, indicating that the school districts included in our data are not necessarily representative
of the whole US population of students. The bottom part of Table [l| further characterizes the data
by displaying the number of districts (5), schools (39), teachers (147), and randomization blocks
(57) in our final sample.

Table [2| displays summary statistics corresponding to the the FFT domains and classroom prior
achievement average and inter-quartile range (IQR) in prior achievement@ The last two columns of
Table 2] show standard deviations within and between randomization blocks. We find considerable

within-randomization block variation in teaching practice and classroom composition.

3 Model

We motivate here how interactions between teaching practice and peer initial achievement arise

through a number of intuitive mechanisms. The simplest model has these interactions arising

5We have chosen the term “challenge/student-centered practices” to try to capture the overall emphasis of the
model items. Many of the FFT domains entail elements of student-centered instruction (e.g., in the engaging students
in learning domain, “students identify or create their own materials for learning”). Yet, it is important to note that
the FFT protocol is well balanced with “challenge” items (e.g. the first indicator of proficiency in the questioning
and discussion techniques sub-domain is “questions of high cognitive challenge” (Danielson) 2011)).)

'S An initial exploratory factor analysis shows that there is only one eigenvalue greater than 1, a possible rough
rule of thumb for determining the number of factors. However, one factor explains 0.79 of the variation and a second
factor explains a substantial additional part, 0.13, which is an additional criteria used to determine the number of
factors.

7 Classroom environment includes: environment of respect and rapport, establishing a culture for learning, man-
aging student behaviors, and managing classroom procedures. While instruction includes: communicating with
students, engaging students in learning, using assessment in instruction, and using questioning and discussion tech-
niques.

'8 This analysis has been performed using the “confa” command in Stata, which deals with problems of identification
in factor models (Kolenikovl, [2009)).

YWe also replicated our empirical strategy using principal component and following the FFT classification as
alternative measures of challenge/student-centered and classroom management practices. Results in all cases are
similar.

20Appendix Table |§| shows summary statistics of the full randomization sample prior to any sample restrictions.

2'We use IQR (i.e. difference in test score performance between the 75th and 25th percentile students in a given
class) to measure classroom heterogeneity rather than standard deviation due to the fact that IQR is less sensitive
to the presence of outliers, which is a particular concern in a context where classrooms could be small in size.
Nevertheless, our main specifications presented in columns (1) and (2) of Table [5| are robust to replacing IQR with
the standard deviation.

11



through the production technology. This makes sense for a number of possible teaching practices.
For instance, encouraging classroom discussion would create more of a team production climate
where peers matter more for each student’s achievement. Alternatively, for some practices, teacher
practice could enter indirectly to the achievement production function through students’ behavioral
responses (e.g., engagement, attentiveness). In this case, complementarities would arise if good
behavior changes whether students benefit from their peers. For instance, classroom management
practices could help ensure the necessary behavior to create a good learning environment. While the
production technology channel is straightforward, it is helpful to illustrate the behavioral channel
with a simple model. The model also informs the empirical specification we take to the datam
Let Y;; denote achievement of a student ¢ at time ¢. Let the index ¢; = c(i,t) denote i’s
classroom in period t and then the vector of classroom peer achievement excluding ¢ is denoted
Y icot = Yit, s Yic1s, Yigat, .o, Yar). A student’s class has a teacher indexed j = j(¢,t) who uses
teaching practice(s) P;. We begin with a value-added model where achievement production is a
function of prior achievement, some moment of the prior achievement distribution of their time ¢
classmates (m(Y_jct—1)). We introduce student behavior, b;;, which we conceptualize broadly as
behaviors conducive to achievement, such as attentiveness, engagement and/or effort. Achievement
production includes direct interactions between teaching practice and classroom composition and
the possibility of an indirect channel by allowing the marginal benefits of behavior to vary by the

classroom composition, i.e.,

Yit = Bo + Bubit + BuybitYie—1 + Bogbiem(Y—ict—1) + ByYit—1 + Bym(Y_ice—1)+

+ BpPj + Bpy PjYit—1 + BpgPim(Y_ic,t—1) + €it, (1)

where ¢;; denotes the residual.
Students choose their behavior to maximize their expected utility from achievement net of the

costs of behavior. To introduce a role for teaching practice in affecting behavior, we also permit

22\We take the teaching practice as given in order to focus on student responses. We can identify most convincingly
the effects of a fixed or persistent aspect of teaching practice and postpone considering the endogenous response of
teachers to the classroom composition in future work.

12



Table 2: Within and Between-Randomization Block Variation in Classroom Measures

Std Dey, St
Mean De ) Min Max Bev. Dev.
v “  Within
tween
Classroom Composition
Avg Peer Math;_; 0 1 -2.31 3 0.84 0.58
IQR Peer Math;_q 0 1 -2.45 2.92 0.78 0.69
Avg Peer Math;_; (random) 0 1 -2.75 3.02 0.84 0.57
IQR Peer Math;_; (random) 0 1 -2.34 4.15 0.78 0.7
Teaching Practices
Challenge/Student-Centered 0 1 -3.06 2.23 0.74 0.69
Classroom Management 0 1 -3.15 2.25 0.74 0.63

FFT Subdomains of Challenge/Student-Centered

Using questioning and discus-

. . 2.21 0.37 1.25 3.25 0.27 0.25
sion techniques

Establishing a culture of learn-

2.62 0.34 1.67 3.5 0.27 0.21
ing
Communicating with students  2.68 0.33 2 3.33 0.24 0.24
Engaging students in learning  2.54 0.34 1.67 3.5 0.23 0.26
Using assessment in instruc- 9 43 0.37 1.33 35 0.97 0.26

tion

FFT Subdomains of Classroom Management

Managing student behaviors 2.81 0.36 1.67 3.5 0.25 0.24
Managing - classtoom  proce- o\ a7 47 3.5 0.27 0.25
dures

Creating an environment or

2.79 0.34 1.67 3.5 0.24 0.23
respect & rapport

Notes: The sample size is 2632 and focuses on 2010-11 school year when students were randomly assigned
within randomization blocks. Teaching practices are measures in ¢t — 1 based on FFT. The last two
columns decompose the standard deviation for each variable into between randomization block and
within randomization block components.

13



that the marginal utility /cost of behavior varies with the practice, i.e.,
Uzt - 'Yy it bzt + rprP{b'it-

Student utility-maximizing behavior b, is then

* Vo
it — *(513 + 5by it—1 + 5bym( —icit— 1)) fy:P,'

Behavior is increasing in initial achievement, peer initial achievement and importantly teaching
practice. Classroom management practices may affect behavior directly through minimizing op-
portunities for disruptive behavior, whereas challenge/student-centered practices might do so by
better engaging students in learning.

We cannot estimate directly because we do not observe behavior. Instead, we assume that
the achievement we observe in the data is coming through student optimizing behavior. To obtain
the achievement production we can take to the data, we plug in for utility-maximizing behavior to

obtain the following reduced form

Y;: = BO + (ﬁb% + ﬁp)Pl (/8 yp)/bp + pr) (Y—iczt—l) (2/8by6b + /By) ( —icit— 1)+
+ 52 ’Yy ( —icit— 1) (/By + Qﬁbyﬁb ) it—1 ,Bbyryy Yt 1 + (ﬁbyﬂybp + 5py)P, it—1T
+ 25by5by Yieo1im(Y_icpt—1) + €it,

=ag + o P} + ang]{m(Y*iCttfl) +agm(Yoi—1) + agem(Yoieu—1)" + ayYi—1 + ay2Yii_y (2)

+ apy PiYit 1 + aygYir am(Yoicyi—1) + €t

Note that even if 8, = B8,;, = Byy = 0, so that teaching practice does not affect achievement
directly and, more importantly, does not have direct complementarities with peer achievement, this
specification illustrates how we would also get complementarities from the indirectly behavioral
channel. This relies on two intuitive conditions. First, student behavior is affected by practice

(Bpp # 0). Second, the achievement spillovers from peers vary with behavior (S5 # 0). In Appendix

14



Bl we discuss some alternative forms of the behavioral model which could also underlie these
complementarities, including popular conformity-style models (Brock and Durlauf, 2001; |Epple
and Romanol| 2010) or the classic treatment of the classroom environment as a congestible public

good (Lazear, 2001)).

4 Estimation

Our empirical strategy focuses on estimation of the reduced form model described in equation ,
which relates most closely to models estimated in the literature. We take as a starting point that

m(Y_jc,t—1) = Y_ic,t—1 and expand to include the IQR of the peer initial achievement distribution

in the application, i.e.,

> > 2 2
Yie = ao + apPjl + apg PilY_ip—1 + agY_je,t—1 + agaY =g + oY1 + Yy

+ apy PitYi—1 + aygYi—1Y—icii—1 + €1, (3)

where we assume that observed achievement is a result of students’ utility-maximizing behaviors.
Our main parameter of interest is oy, which captures how the marginal benefits of teaching prac-
tices vary with the classroom compositionﬁ

As discussed above, a unique aspect of these data is that teachers are randomly assigned to class-
rooms within randomization blocks. However, even with random assignment of teachers to class-
rooms, several important endogeneity concerns remain. First, there is considerable non-compliance
to the random assignment in the data. Largely, this was because assignments are made from pre-
liminary rosters before school administrators had a good sense of who would be attending their
school. Second, classroom composition may be endogenous as principals were not required to ran-
domly assign students to classrooms. Third, teaching practice may still be endogenous even with

random assignment because of measurement error. We discuss each of these issues in turn.

To simplify exposition, we ignore the role of other student and teacher observables though we include these
additional controls in the analysis.
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4.1 Non-compliance

Because the data include an indicator of the teacher that was randomly assigned to the stu-
dent, we can use standard approaches for dealing with non-compliance, focusing on the variation
from the randomly assigned teacher. We focus most of our discussion around the more conserva-
tive “intent-to-treat” estimates, which replace the observed teaching practice with the randomly-
assigned teaching practice. Let P, denote the teaching practice of the randomly-assigned teacher,

indexed r = r(i, t), then

\/ \/ 2 2
Yii =ag+ OépPr/ + angr/Y—ictt—l + O@Y—ictt—l + ag2Y_¢ctt_1 + ayY;t—l + O‘y2}/z‘t_1

+ py PoYit—1 + ayg Y1 Yoip—1 + o + €. (4)

Because teachers are randomly assigned at the randomization block levels, we include randomization
block fixed effects ap, where b = b(i, t) indexes randomization blocks. We show that our results
are very similar when we instrument the observed with the randomly-assigned teacher’s teaching

practice, and so choose to focus on the intent-to-treat estimates for simplicity.

4.2 Endogeneity of classroom composition

Classroom composition could be endogenous for two reasons. First, the principals were not re-
quired to assign classroom composition randomly, though there was incentive to create comparable
classrooms within randomization blocks to make the random assignment of teachers to either class-
room palatable. Second, non-compliance by students could lead the classroom composition to be
endogenous even after addressing non-compliance at the teacher-level.

The question is then whether we can identify «,; even though Y et—1 is potentially endoge-
nous@ To focus on classroom composition, assume that P, is independent of &;, though we explore
violations of this next in Section[4.3] For simplicity, we also ignore for the moment the conditioning

on Y;;_1 and randomization block fixed effects, though all arguments go through with this addi-

*Bun and Harrison| (2014) and [Nizalova and Murtazashvili (2014) provide a detailed discussion of this type of
setting, where an exogenous covariate is interacted with an endogenous variable, which we follow here.
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tional conditioning@ Assume further without loss of generality that E(P,) = E(Y_j¢—1) = 0, so
that teaching practice and classroom composition measures are mean 0. Demeaning these variables
also aids in interpretation of the parameters in equation as discussed further in Section
The correlation between the interaction term and the residual can then be written as Cov(PT}_/_,-ctt_l, €it) =

E(P.E(Y_j,t—1€|Py)). Sufficient assumptions for identification of the interaction include (condi-

tional on Yj;—1 and other controls):

Assumption Al. E(Y_j.i—1€|Pr) = E(Y_ici—1€it), and

Assumption A2. Y_;.;_1 is independent of P,

implies that if there is matching of students to peers which generates a correlation between peer
initial achievement and the residual, it is independent of the randomly assigned teaching practice.
[A2] is standard for a randomized control trial.

It then follows that Cov(P,Y_jet—1, €it) = E(P)E(Y_ie,t—1€i) = 0, given that E(P,) = 0. The
first equality follows from random assignment of teachers to students and the second through a
normalization of the independent variables, without loss of generality. Bun and Harrison (2014)
and Nizalova and Murtazashvili (2014)) show that assumptions and are sufficient to ob-
tain unbiased estimates of ay; even when classroom composition is endogenous. Nizalova and
Murtazashvili| (2014) discuss different studies using randomized control trials that maintain this
assumption when estimating heterogeneity in treatment effects without making it explicit. |Bun
and Harrison (2014) point out that a number of weaker versions of Assumption are sufficient
for identification. In particular, it would be sufficient if E(Y_;o,i—1Pr) = E(Y_ic,t—1)E(P,) and

E(YZy 1 Pr) = B(Y2 1) E(F).

icit—1
The main way assumptions and could be violated is by student non-compliance in
response to their randomly assigned teacher. We do not believe this is a concern for several reasons,

which we discuss and test in Section [4.4]

25We also ignore the higher order peer terms though inclusion of them does not change our results.
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4.3 Measurement error and endogeneity of teaching practice

Recall that we have multiple observations of teaching practice taken from video observations from
multiple raters of the teacher both in the initial observational year and in the random assignment
year to help deal with potential measurment error in teaching practice. As in |Araujo et al.| (2016)),
our preferred approach is to use £ — 1 measures to capture the teaching practice. This address
two related concerns. First, video raters may have difficulty separating the teacher’s practice from
the students they are teaching. Second, if teachers change their practice in response to classroom
composition, then would be violated.

Our main strategy relies on the most straightforward approach to measurement by taking simple

averages of the measures of practice (Py;—1). To clarify the potential effects of measurement error

on our estimates, let the subscript k capture different observations of the teaching practice, i.e.,
Prkt—1 = P + Upgt—1. (5)

Substituting in the the average measured practice for the true measures, we have

5 5 v > 2 2
Yie = ao + apPri—1 + Qpg Pre—1Yicit—1 + Y icp—1 +ageY i +ay Y1 + oYy

+ opy Pri—1Yieo1 + oygYie 1Y ic,t—1 + ap + Vg,

where vy = €4 —apliri—1 —apgﬂrt_ll_/_ictt_l —Qupylirt—1Y5¢—1. Note that as the number of observations
of practice increases, i,s_1 goes toward 0, if u,; is mean independent of w,;; for k # k’. This is
reasonable in our setting given the use of multiple trained raters to rate the same teacher, leading
to arguably independent random draws of rater-related measurement errorﬁ

We show results are robust to using principal component analysis to construct our measures (the
primary approach we have seen applied in this literature) or factor models to extract the underlying
teaching practice from multiple measures as in equation (5)). We are also aware of the concern that

simply including extracted factors in nonlinear models does not completely deal with measurement

26 . . . . . .
In earlier versions, we also tried controlling for rater fixed effects in measures of practice to account for any
systematic rater differences and again results were very similar.
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error. We adapt the method developed in Hausman et al. (1991)) to deal with nonlinear errors in
variables models to our setting where the nonlinearity takes the form of interactions. We describe
this approach in detail in Appendix If anything these results imply that our estimates of the
interactions are biased toward 0, which is typical of these types of models in the literature (Jaccard
and Wanl 1995; Busemeyer and Jones, |[1983).

To the extent that practice is time-varying, the focus on £ — 1 measures may understate the total
effect of teaching practice. For time-varying practice, we can extract instead the common compo-
nent from the correlation between time ¢ — 1 and ¢ practices, which captures a persistent aspect
of teaching practice. We discuss in Section the findings when we instrument contemporaneous
teaching practice with ¢ — 1 practices. These results show that if anything our estimation strategy

provides conservative estimates of the interaction of practice with classroom composition.

4.4 Testing identifying assumptions

We perform a number of tests to ensure that our key identifying assumptions hold. First, we
can test directly by regressing randomly assigned teaching practice (based on ¢ — 1 averages)
on classroom composition after controlling for randomization block fixed effect. Appendix Table
presents these balancing tests which show that teaching practice is not correlated with either
of our measures of classroom composition, whether we use observed peers or initially-assigned
peer. Second, regressions of the randomly-assigned teaching practice on student-level covariates
also suggest that random assignment of teachers held. Third, Appendix Table also presents
balancing tests which regress student characteristics on peer characteristics to see if there is evidence
of matching in the data. Again, the balancing test generally support that there is no matching of
students (either using the observed or initially-assigned peers), suggesting that at least in terms of
observables classroom composition does not appear to be endogenous@ Finally, we can test the
implications for our estimation if there is some matching based on unobservables that we did not
detect with our tests, by replacing the observed peer characteristics with the initially-assigned peer

characteristics in our regressions. We show that results are robust to this setting in Section [5.3

2"We find 3 out of 22 coefficients to be statistically significantly different from 0 at the 0.1 level, which is less than
expected by chance.
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alleviating any remaining concerns about potential violations of [AT]

5 Results

To ground our analysis more closely in the literature, we begin with the typical specifications that
treat teachers and peers as separable inputs. We then add interactions with classroom composition
to show how the significance of measured teaching practices change across these specifications. All
estimates include controls for randomization block fixed effects, student characteristics and teacher
aptitude, the Content Knowledge of Teaching (CKT) assessment, though results are robust to their
exclusionﬁ For the endogeneity concerns described in Section 4} we focus the initial analysis on

lagged measures of teaching practice, and consider contemporaneous measures in Section [5.3

5.1 Do Teaching Practices have a Direct Effect on Test Scores?

Panels A and B of Tabledisplay estimates of the effect of classroom management and challenge/student-
centered practices, respectively on math performance. Even columns allow the effect of teaching
practice to vary by a student’s initial achievement. Results in columns (1) and (2) are naive OLS
specifications, where the lagged teaching practice of the current teacher (Pj—1) is the variable

of interest. Columns (3) and (4) report intent-to-treat (ITT) estimates, replacing Pj—; with the
teaching practice of the randomly-assigned teacher (Py;—1). Columns (5) and (6) present treatment

on the treated (TT) results where Pj;_q is instrumented with Pn;_;.

Given the breadth of the measures, it is perhaps surprising that none of the specifications (in
both panels) show that the level of teaching practices play a statistically significant role in math
performance@ However, these results are consistent with the findings in |Garrett and Steinberg
(2015), where the average of all FF'T measures do not seem to have a direct impact on students’
performance in their ITT and IV specifications. In a similar vein, while interactions of student prior

achievement with classroom management or challenge/student-centered practices are statistically

%3ee MET project| (2010a)) and footnote |§| for a description of this teacher assessment. The controls help with
standard errors but do not matter for consistency because of the random assignment of treatment.

29These results also holds if instead of using averages of the sub-domains, we consider a principal component
approach or the [Hausman et al.| (1991) econometric strategy described in Appendix
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Table 3: Effects of Teaching Practice without Classroom Interactions

Actual Random IV Actual with
Teacher Teacher Rand. Teacher

(1) (2) (3) (4) () (6)

Panel A

Classroom Management 0.005 0.005 0.009 0.009 0.010 0.009
(0.025)  (0.024) (0.022) (0.021) (0.025)  (0.024)

C.M. x Math;_; 0.018 0.022* 0.023*

(0.013) (0.013) (0.013)

Math;_; 0.737#4% 0.737%%* (. 738%4% 0.737*** (.738%%*F 0.738%**
(0.018)  (0.018) (0.018) (0.018) (0.018) (0.018)

Avg Peer Math;_; 0.013 0.014 0.013 0.014 0.014 0.015
(0.026)  (0.026) (0.026) (0.026) (0.025)  (0.025)

P-value (:]omt signif. of teach- 0.380 0.239 0.219

ing practice)

F-Stat. (first stage)T 251.3 167.1

Panel B
Challenge/Student-Centered 0.021 0.019 0.025 0.023 0.029 0.026
(0.022) (0.022) (0.021) (0.021) (0.024) (0.024)

C.S.C. x Mathy_; 0.017 0.025% 0.026*
(0.013) (0.013) (0.014)
Math,_; 0.737%%% ().737FFF (.73700F (737406 (. 738%FF (), 738%**

(0.018)  (0.018) (0.018) (0.018) (0.018)  (0.018)

Avg Peer Math;_ 0.015 0013 0014 0011 0016  0.014
(0.026) (0.026) (0.026) (0.025) (0.026)  (0.025)

P-value (joint signif. of teach-
ing practice)
F-Stat. (first stage)T 279.8  186.6

0.195 0.042 0.029

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are
clustered at the randomization block level. Panel A and B correspond to different regressions with math as
the dependent variable. Lagged teaching practices are used and sample size is 2632. These regressions include
randomization block fixed effects and controls for the level and a squared term of prior math achievement
and average peer prior achievement, as well as CKT and student characteristics listed in Table [}  Reports
the Kleibergen-Paap rk Wald statistic for a weak instrument test.
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significant in I'TT and IV specifications, F-tests (reported at the bottom of each panel) show that
the coefficients associated with these practices are in many specifications not jointly significant.
At first glance, these findings suggest that our constructs of teaching practice may not capture an
aspect of teaching practice that is meaningful for math performance. However, the next section
shows that these conclusions are misleading when we build in complementarities between teaching

practice and peers.

5.2 Teaching Practice and Classroom Composition

We expand the previous analysis by fully estimating equation , including interactions between
classroom composition and teaching practice. Panels A and B of Table [4] present results for class-
room management and challenge/student-centered practices, respectively. Odd columns accommo-
date models where average peer prior achievement is interacted with teaching practice (in addition
to student prior achievement), while even columns additionally control for classroom interquartile
range and its interaction with teaching practicem Columns (1) and (2) report ITT results (i.e.
Pjy_1 is replaced with P as per equation (4))). Columns (3) and (4) report TT estimates where
Pj;_4 is instrumented with FPp;_q.

Panel A shows that classrooms benefit more from higher average peer initial achievement when
the teacher uses good classroom management practices, which is consistent with the mechanisms
discussed in our model. For example, ITT and TT results show that a one standard deviation
increase in classroom management increase test scores around 7.4% to 8.9% of a standard deviation
when peer average prior year performance is one standard deviation above the mean. In contrast,
the even columns show that the effectiveness of classroom management practices does not vary
significantly with the IQR in classroom prior achievement. On the one hand, these results have the
intuitive interpretation that a student cannot benefit from higher-achieving peers if the teacher does
not have good classroom management practices, which would foster positive classroom behaviors.
On the other hand, it could be expected that classroom management practices are more effective

among low-achieving students. Instead, our finding is consistent with the understanding that

30Gee footnote [21] for an explanation of why we include IQR in our specifications rather than standard deviation.
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classroom management is also an important challenge in higher-achieving classrooms, though the
sources of disengagement may be different from in lower-achieving classrooms (Shernoff et al., [2003).

Furthermore, consistent with the results in Table [3| the level effects of classroom manage-
ment practices are still not statistically significantly different from 0 and point estimates are small.
Moreover, the interactions between classroom management and student’s prior achievement become
statistically insignificant in most specifications, suggesting that failure to account for complementar-
ities with classroom composition may lead to stronger conclusions about student-level heterogeneity
in the effects of teaching practice. A further notable change is that classroom management emerges
as a jointly statistically significant predictor of test performance when interacted with average peer
prior achievement at the 99% confidence level in most specifications.

Panel B shows results for challenge/student-centered practices. Generally, we find that classes
with higher average initial achievement also benefit more for challenge/student-centered practices.
However, the benefits of challenge/student-centered practices are smaller in classrooms with higher
IQR in initial achievement. A standard deviation increase in this practice leads to a 5 to 6%
reduction in achievement for classrooms that are a standard deviation above average IQR. Like
in the case of classroom management, the level effect of challenge/student-centered practices are
not statistically significantly different from 0 and neither are the interactions with initial achieve-
ment, after controlling for interactions with classroom composition. Furthermore, joint tests also
confirm that challenge/student-centered practices emerge as statistically significant predictors of
achievement at the 99% confidence level after permitting heterogeneity by classroom composition.

In summary, the findings in Table 4] provide four main messages. First, teaching practices seem
to show significant complementarities with classroom characteristics, ranging in magnitude from
3% to 8.9% of a standard deviation increase in math, for a standard deviation increase in teaching
practice in a class that is one standard deviation above the mean in prior performance. We view
these estimates as sizable given that some of the larger estimates of a standard deviation increase
in teacher value-added on math scores range from 0.11 to 0.16 (Chetty et al.l 2014). A standard
finding in the literature is that the first two years of teacher experience, where experience effects are

largest, increase student performance by only 0.06 of a standard deviation (Ladd and Thompson)
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2008]).

Second, failure to account for complementarities with classroom composition lead us to un-
derstate the importance of these teaching practices. Third, student-level heterogeneity in ef-
fects of teaching practice appear less relevant after accounting for the complementarities with
classroom composition. Finally, the contrasting evidence between classroom management and
challenge/student-centered practices also points to the importance of considering these measures
separately, i.e., a single measure of teaching quality, the focus in the literature, does not fit the
findings when we allow for classroom context to moderate effects. We return to explore this in

more detail in Section [6

5.3 Robustness

Endogeneity of classroom composition Given that teachers are randomly assigned to class-
rooms and that we focus on ¢t — 1 practices, a primary remaining endogeneity concern, as discussed
in Section {4 is potential resorting of students to classrooms based on the teacher who is randomly
assigned. Balancing tests reported in Section already suggest that this is not the case, in that
observable student and peer characteristics are not correlated with the randomly-assigned teacher’s
practice. However, given that we observe the students who were initially randomly assigned to the
teacher, we can also test whether estimates of the interaction are systematically different if we re-
place actual peers with randomly-assigned peers. These estimates are reported in columns (5) and
(6) of Table 4] Interactions between classroom composition and teaching practice are not statisti-
cally significantly different from their comparable estimates in columns (1) and (2), though smaller
in magnitude. This is consistent with a slight downward bias in columns (5) and (6) generated

from random measurement error in peers.

Contemporaneous teaching practice One implication of focusing on lagged measures of teach-
ing practice is that our estimates of the interactions between classroom composition and teaching
practice may understate the true effects. While we prefer focusing on these conservative estimates
because of concerns about the endogeneity of contemporaneous teaching practice, we also explore

how the interactions of teaching practice with classroom composition change when we instrument
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Table 4: Teaching Practice and Classroom Composition

Random IV Actual with Random
Teacher Rand. Teacher Teacher and
Class
Hm_ ® B @ 6 ©
Panel A
Classroom Management 0.005 0.008 0.002 0.006 0.003 0.005
(0.018) (0.019) (0.021) (0.021) (0.019) (0.020)
C.M. x Math;_1 0.011 0.011 0.011 0.011 0.015 0.014
(0.013)  (0.012) (0.013) (0.012) (0.013) (0.012)
C.M. x Avg. Peer Math;_; 0.079%*%* (0.074*%** (0.089*** (.084*** (.056*** (.051**

(0.021)  (0.025) (0.023) (0.030) (0.020) (0.022)
C.M. x IQR Peer Math;_; -0.017 -0.014 0.017
(0.019) (0.023) (0.018)
P-value (joint signif. of teach-—— o5 4500 0000 0.000  0.018  0.007
ing practice)
First Stage F-Stat.' 84.4 42.9
Panel B
Challenge /Student-Centered 0.018 0.018 0.017 0.015 0.017 0.014
(0.022)  (0.020) (0.026) (0.023) (0.023) (0.022)
C.S.C x Math,_ 0.016 0012  0.017 0013  0.022*  0.020
(0.012)  (0.012) (0.013) (0.013) (0.013) (0.012)
C.S.C x Avg Peer Math,_;  0.044%%% 0.031%* 0.050%%* 0.037%* 0.035%* 0.039**
(0.016)  (0.014) (0.019) (0.017) (0.016) (0.015)
C.S.C. x IQR Peer Math;_; —0.053%%x —0.058%%* —0.037%%
(0.014) (0.014) (0.013)
P-value (joint signif. of teach-— o o0 5000 0002 0000  0.005  0.000
ing practice)
First Stage F-Statistic 67.1 53.4

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered
at the randomization block level. Sample size is 2632. Lagged teaching practices are used throughout;
columns (5) and (6) control for characteristics of initially randomly assigned peers. Panel A and B correspond
to different regressions with math as the dependent variable. These regressions include randomization block
fixed effects and controls for the level and a squared term of prior math achievement and average peer prior
achievement, as well as CKT and student characteristics listed in Table Even columns also include the
IQR in peer prior achievement. Whenever peer variables are included we also include their square, and
all pairwise interactions of peer variables and prior achievement. fReports the Kleibergen-Paap rk Wald

statistic for a weak instrument test.
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for contemporaneous teaching practices with lagged teaching practices. These results are presented
in Appendix table[11] and discussed in detail in Appendix We show that interactions between
teaching practice and classroom composition remain robust, but (as expected) are significantly

larger in magnitude.

Measurement error in teaching practice An additional concern with our findings is to what
extent our results (e.g. lack of significance in the level of the teaching practice measures) are affected
by problems of measurement error in our key teaching practice variables. In order to address this
point, we implement a measurement error correction strategy that follows Hausman et al.| (1991)).
This approach is more convenient than the usual IV strategy that accounts for error in variables,
because the variables of interest enter non-linearly into our model and we are over-identified by
having more than 2 measures of each practice. In appendix [C.2], we provide a description of how
we adapt the [Hausman et al.| (1991) method to our context, and describe results obtained after
implementing it. For completeness, we also report results when performing IV corrections (i.e.
instrumenting one of the measures that corresponds to a given teaching practice with the remaining
measures of that teaching practice). Overall, the findings indicate that our current strategy of taking
averages of the teaching practice variables provides similar results to strategies that correct for
measurement error following these alternative approaches. The level effects and interactions with
initial achievement remain close to 0, but the interactions with classroom composition increase

slightly after correcting for measurement error.

6 Mechanisms

6.1 Teaching Practice vs. Teacher “Quality”

While previous specifications provide important insights, it is useful to explore the extent to which
classroom-management and challenge/student-centered practices may proxy for similar aspects of
teacher effectiveness and/or whether more standard, unidimensional measures of teacher quality
are the primary channel through which our teaching practices operate. For instance, teachers who

have better classroom management practices may also engage in more challenge/student-centered
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practices; therefore not including both domains in the same specification may bias our estimates.
This exploration raises a number of interesting questions. To be clear, there is no consensus on
how teaching quality should be measured, and FFT was designed to capture different aspects of
effective teaching. This means that in some ways classroom management and challenge/student-
centered practices are in fact measures of quality. Furthermore, the fact that classroom-management
and challenge/student-centered practices interact differently with classroom composition already
suggests that a single unidimensional quality may not be correct. Yet, we have other relevant
unidimensional scales of quality, such as the Content Knowledge for Teaching assessment, as well
as principal and student surveys, which we consider here.

In order to address these key points, Table |5, Columns (1) and (2) present ITT (i.e. Pj—1
is replaced with P;_1) and IV (i.e. Pj;—; is instrumented with P,;_1) results from a model that
simultaneously controls for classroom management and challenge/student-centered practices and
their interactions with peer composition. These results show that interactions of classroom man-
agement with the average peer initial achievement are robust, but seem to explain the interaction
of challenge/student-centered practices with the average peer initial achievement in the previous
tables because of strong correlations between these two practices. In contrast, interactions of
challenge /student-centered practices with the IQR in peer initial achievement remain robustﬂ Fi-
nally, in comparing the results in Tables 4 and [5] we see that key classroom composition interactions
become stronger when both teaching practices are included in a single specification. This suggests
that if there is a bias in our interactions from omitted teaching practice/quality, it is leading us to
understate the true complementarity with classroom composition.

Columns (3) to (5) of Table[f|report results from ITT specifications similar to column (1) where
we additionally include different proxies for overall teacher “quality” and their interactions with
classroom characteristicsﬂ First, we included teacher performance in the Content Knowledge for
Teaching (CKT) assessment interacted with classroom characteristics. Second, we included the

teacher’s lagged average score on student assessments from the TRIPOD survey. TRIPOD as-

31Appendix tables 13, 14, and 15 report all the parameters of these specifications.

32Notice that in all previous specifications, we were controlling for a measure of teacher aptitude (i.e. CKT), but it
was not interacted with classroom characteristics. We cannot control for the usual measures of teacher value-added
(i.e. adjusted random effects) because these models inherently neglect the presence of classroom-teacher interactions.
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sesses the extent to which students experience the classroom environment as engaging, demanding,
and supportive of their intellectual growthﬁ Finally, we included school principal evaluations on
teachers performance which are reported in the MET database@ These results show that across
all specifications our key interactions between teaching practices and classroom composition re-
main significant, and the size of these coefficients is very similar to our previous specifications.
Furthermore, we see that these alternative measures of “quality” do not interact with peer average
initial achievement and IQR in the same way as our two practices. This is true despite CKT and
principal surveys being statistically significant predictors of math achievement. In contrast to our
practice measures, these show statistically significant heterogeneity in effects by the student’s ini-
tial achievement, suggesting that “quality” as measured through CKT and principal assessments

matters more for better students.

Class size Because IQR is correlated with class size, an interesting question is whether interac-
tions of challenge/student-centered practices are driven by larger class sizes. We test this by adding
interactions of classroom management and challenge/student-centered with class size to column (1)
of Table [5, We do not include these results as we find no evidence that either practices interacts
with class size. Furthermore, positive interactions of classroom management and average peer prior
achievemetn and negative interactions of challenge/student-centered practices with the IQR remain

robust, and if anything increase in magnitude with the additional controls.

6.2 Choosing Practices that Matter

A tension in using our composite measures of teaching practice is that they do not provide as
fine-grained prescriptive evidence as desirable on what practices matter most in different settings,
which arguably is consistent with the formative underpinnings of the FFT with its eight separate
subdomains. With this in mind, we present in Table [f] results at the subdomain level in order to

complement the evidence from the aggregated subdomains, particularly mirroring results in column

33Tripod is a protocol that measures teacher effectiveness based on student surveys. See |[Kane and Staiger (2012)
for a description of this tool and the importance for predicting teacher value-added.

3 The fact that our specifications include randomization blocks (which in this case are school-grade fixed effects)
should account for systematic difference in principals’ reporting.
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Table 5: Teaching Practices and Alternative Teacher “Quality” Controls

Random IV Actual Random Teacher
Teacher with Random Alt. Teacher Control:
Teacher CKT 7C PSVY
(1) (2) (3) (4) (5)
Classroom Management —0.012 —0.016 —-0.014 —-0.016 —0.015
(0.020)  (0.022) (0.020)  (0.020) (0.019)
C.M. x Math;_4 0.004  0.004 0.011 0.004 0.003
(0.020)  (0.021) (0.019)  (0.019)  (0.019)
C.M. x Avg Peer Math;_1 0.076**  0.087** 0.077%%  0.076*%*  0.076***
(0.029)  (0.036) (0.030)  (0.029)  (0.027)
C.M.x IQR Peer Math;_q 0.026 0.035 0.026 0.026 0.026
(0.022)  (0.026) (0.022)  (0.023)  (0.021)
Challenge/Student-Centered 0.026 0.025 0.026 0.026 0.011
(0.023)  (0.025) (0.022)  (0.022)  (0.024)
C.S.C. x Mathy_ 0.010 0.011 0.002 0.016 0.005
(0.020)  (0.021) (0.020)  (0.019)  (0.019)
C.S.C. x Avg Peer Math;_; —0.010 —0.009 —-0.010 —0.010 —0.005
(0.019)  (0.022) (0.019)  (0.019)  (0.019)
C.S.C. x IQR Peer Math; 1 —0.062%** —0.071*+* —0.063*** —0.057** —0.054**
(0.017)  (0.019) (0.017)  (0.021)  (0.021)
Alt. Teacher Control —0.008  —0.006  0.055***
(0.016)  (0.019)  (0.017)
T.C. x Mathy_4 0.044***%  —0.029** 0.032**
(0.014)  (0.013)  (0.013)
T.C. x Avg Peer Math;_1 —-0.019  —0.007 —0.016
(0.018)  (0.020)  (0.016)
T.C. x IQR Peer Math;_ —-0.012  —0.017  —0.003
(0.021)  (0.021)  (0.016)
;;jtli‘z J(%nﬁdsgfrgfs gfmhmg 0.000  0.000 0.000  0.000  0.002
e i e
First Stage F-Statistic’ 27.7

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are
clustered at the randomization block level. Sample size is 2632. Dependent variable is math and teaching
practices are measured at t — 1. Regressions use lagged teaching practice of current teacher and include
randomization block fixed effects and controls for the level and a squared term of prior math achievement
and average and IQR of peer prior achievement, their square and all pairwise interactions of peer variables
and prior achievement, as well as student characteristics listed in Table 1 Reports the Kleibergen-Paap
rk Wald statistic for a weak instrument test. CKT d@btes Content Knowledge for Teaching assessment, 7C
denotes overall student survey teacher ratings based on Tripod and PSVY denotes principal assessments
of teacher quality. TC denotes alternative teacher control (i.e. CKT, 7C, or PSVY). See Appendix Tables

, and for all parameters.



(2) of Table [4] for each subdomain separately. We offer two notes of caution when interpreting these
results. First, a higher degree of measurement error should bias interactions toward zero. Second,
the subdomains are highly correlated as revealed by the exploratory factor model.

A main pattern we see in this table is that there is a positive interaction with average peer
prior achievement with all the subdomains that aggregate to make up classroom management (the
first 3 columns of Table 6, Panel A), i.e., creating an environment of respect and rapport (CERR),
managing classroom procedure (MCP) and managing student behaviors (MSB)@ Each of these
subdomains shows a positive interaction with average peer achievement. Managing student behav-
ior (MSB) is the largest, but not statistically significantly different from the other subdomains.
Teachers with high levels of MSB are characterized by establishing clear expectations for student
conduct and by implementing them efficiently. This suggests that peer effects are amplified by
teachers that can preempt misbehavior in the classroom. The two other subdomains, MCP and
CERR, are linked to teachers’ skills in managing more general aspects of the classroom environ-
ment, including instructional groups, transitions and teacher/student interactions. The significant
positive interactions with average prior achievement suggests that there are a number of interrelated
practices beyond just limiting disruptive behaviors, which create an environment where students
can benefit more from having higher-achieving peers.

Second, across the board the five subdomains which make up challenge/student-centered prac-
tice exhibit negative interactions with class IQR. These include establishing a culture of learning
(ECL), engaging students in learning (ESL), using questioning and discussion techniques (USDT),
using assessment in instruction (UAI) and communicating with students (CS). Among these, com-
municating with students has the largest negative coefficient but also the highest standard error.
The definition of these rubrics are closely related to promoting student active participation in the
class as a key element of the learning process. More detailed consideration of the rubrics also
reveals significant emphasis on challenging students in the different subdomains. Our findings indi-
cate that the benefit of these practices are largely dependent on the heterogeneity in classroom prior

achievement. Basically, promoting discussion among students may not constitute a good learning

35See Table[7]in the appendix for the definition of each subdomain.
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Table 6: Individual FFT Subdomain Regressions

Creating
environ- Managing Managing Establish
Panel A ment of classroom student culture of
respect & procedures behaviors learning
rapport
Practice 0.020 0.004 0.003 0.010
(0.018) (0.019) (0.017) (0.022)
Practice x Math;_ 1 0.011 0.009 0.009 0.006
(0.012) (0.013) (0.013) (0.011)
Practice x Avg Peer Math; 1 0.057*** 0.052%*** 0.072%** 0.049**
(0.020) (0.019) (0.026) (0.019)
Practice x IQR Peer Math;_1 -0.019 —0.035** -0.012 —0.040%**
(0.017) (0.016) (0.019) (0.015)
P-value (joint signif. of teach-—— ) 0.000 0.002 0.000
ing practice)
Engaging ue[sJ:il(I)lfin aSSSSSSlII;gent Communicating
Panel B students in 1 & . with
learning and - students
discussion instruction
Practice 0.028 0.011 0.016 0.014
(0.018) (0.017) (0.021) (0.018)
Practice x Math;_1 0.001 0.011 0.020* 0.015
(0.012) (0.014) (0.011) (0.012)
Practice x Avg Peer Math; 1 0.005 0.020* 0.037** 0.034**
(0.014) (0.012) (0.016) (0.014)
Practice x IQR Peer Math; 1  —0.047*** —0.046*** —0.039*** —0.070%**
(0.015) (0.017) (0.014) (0.026)
P-value (joint signif. of teach- 0.035 0.017 0.000 0.000

ing practice)

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clus-
tered at the randomization block level. Panel A and B correspond to different regressions with math as the
dependent variable. Lagged teaching practices are used and sample size is 2632. These regressions include
randomization block fixed effects and controls for the level and a squared term of prior math achievement,
average peer prior achievement, IQR of peer prior achievement as well as CKT and student characteris-
tics listed in Table The first 3 subdomains correspond to classroom management, the remainder to

challenge/student-centered.

31



tool when all students cannot share a somewhat similar level of understanding on key concepts.
For example, large heterogeneity in classroom achievement is likely to require different levels of
complexity in the discussion, making the learning process more complicated. Likewise, it may be

difficult to challenge all students when there there is a great deal of heterogeneity in background.

7 Conclusion

In this paper, we illustrate that the effects of teaching practice vary significantly with classroom
composition. Our preferred estimates indicate that classroom management practices increase math
achievement by 0.09 of a standard deviation when average classroom initial peer math performance
is 1 standard deviation above average. In contrast, challenge/student-centered practices decrease
math performance by -0.07 of a standard deviation when the classroom IQR in initial achievement is
1 standard deviation above average. We view these estimates as sizable given that some of the larger
estimates of a standard deviation increase in teacher value-added, which is based on unobservable
teacher contributions to math, range from 0.11 to 0.16 (Chetty et al., [2014). We eliminate central
endogeneity concerns of matching of teachers to students and measurement error by exploiting rich
data where teachers are randomly assigned to classrooms and evaluated by multiple highly-trained
raters over a two-year period.

We make three key contributions to the literature on teacher effectiveness. First, we illustrate
that failure to account for moderating effects of classroom composition may lead researchers to
severely misstate the importance of a given measured teaching practice for achievement. This helps
address the common mystery of why teacher effectiveness is so hard to measure and may even
help reconcile mixed findings in different contexts. Second, failure to account for the moderating
effects of classroom composition also leads us to overstate the importance of individual student-
level heterogeneity in the effects of teaching practice. Indeed, in our context, it appears that all
heterogeneity is driven by classroom composition.

Third, focus on a single, unidimensional measure of teacher effectiveness may be misguided.
Our two measures of teaching practice interact with different aspects of classroom composition.

Furthermore, we show that our estimated interactions of teaching practice with classroom com-
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position remain after controlling for additional standard measures of teacher “quality,” such as
Content Knowledge for Teaching Assessment, student evaluations and principal surveys. In con-
trast, while the measures of teacher quality in the MET data show some evidence of heterogeneity
by student initial achievement, they do not interact with classroom composition, and thus provide
less guidance about improvement strategies for a given classroom or about matching teachers with
particular strengths to classrooms.

Our findings also have important implications for the peer effects literature. Because the effects
of peers vary significantly with teaching practice, this suggests that failure to account for these in-
teractions may also severely understate the importance of peers in different contexts. Furthermore,
it suggests the potential for a change in policy emphasis from reallocating students to classrooms
to meet different achievement objectives (which can be costly and involve severe tradeoffs among
different types of students) to determining teaching practices that best fit different classroom con-
texts.

Finally, our results have important implications for policies related to (1) teacher evaluation
and accountability and (2) teacher professional development and training. Classroom observa-
tions of teaching practice—scored using the FFT and other protocols—are now routinely used in
annual teacher evaluation and accountability. Our findings suggest that, depending on teachers’
assignments or the overall school context, specific domains of instructional practice may be more
relevant to teacher effectiveness than others. As such, specific domains of instruction (rather than
an overall observational score) may be emphasized in accountability systems depending on teach-
ing assignments and/or school context. In terms of teacher professional development and training,
our findings reinforce the importance of explicit attention to challenges stemming from classroom-
achievement heterogeneity (Cohen and Lotanl [1997; |Seaton et al., 2010)). In terms of informing
particular teaching practices, we find that scores on protocol subdomains do not appear to be as

orthogonal in practice as they are in principle, or are intended to beﬁ Further research could ben-

36That is, the MET observational protocol seem to have been developed as formative measures of instruction, where
ideally the protocol would be useful in assessing “weak points” to target for instructional improvement. This is our
own interpretation of these protocol. The supporting documentation we examined for the FFT protocol for example,
does not specifically address the extent to which it was designed to measure a formative construct (Danielson, [2011}
2012).
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efit from determining how to more fully differentiate, to the extent it is feasible, different aspects of
teaching practice to make more formative recommendations for teacher training and development.
That said, our research provides compelling evidence that any such recommendations should be

adapted to the challenges faced by different school and classroom contexts.

34



References

AIR, “Center on Great Teachers and Leaders: Databases on state teacher and principal evaluation
policies,” 2013.

Araujo, Maria Caridad, Pedro Carneiro, Yyannu Cruz-Aguayo, and Norbert Schady,
“Teacher Quality and Learning Outcomes in Kindergarten,” Quarterly Journal of Economics,
2016, 131 (3).

Bacher-Hicks, Andrew, Mark J Chin, Thomas J Kane, and Douglas O Staiger, “An
evaluation of bias in three measures of teacher quality: Value-added, classroom observations, and
student surveys,” 2017, (No. NBER 23478).

Brock, William A. and Steven N. Durlauf, “Interactions-Based Models,” in James Heck-
man and Edward Leamer, eds., Handbook of Econometrics, Vol. 5, Amsterdam: Elsevier, 2001,
pp- 3297-3380.

Bun, Maurice J.G. and Teresa D. Harrison, “OLS and IV Estimation of Regression Models
Including Endogenous Interaction Terms,” School of Economics Working Paper Series 2014-3,
LeBow College of Business, Drexel University January 2014.

Burke, Mary A. and Tim R. Sass, “Classroom Peer Effects and Student Achievement,” Work-
ing Papers, Department of Economics, Florida State University February 2006.

Busemeyer, Jerome R. and Lawrence E. Jones, “Analysis of multiplicative combination rules
when the causal variables are measured with error,” Psychological Bulletin, 1983, 93 (3), 549-562.

Cantrell, Steve and Thomas J Kane, “Ensuring fair and reliable measures of effective teaching;:
Culminating findings from the MET project’s three-year study,” Policy and Practice Brief, 2013.

Chetty, Raj, John N Friedman, and Jonah E Rockoff, “Measuring the impacts of teachers
I: Evaluating bias in teacher value-added estimates,” The American Economic Review, 2014, 104
(9), 2593-2632.

Cohen, E. G. and R. A. Lotan, Working for Equity in Heterogeneous Classrooms: Sociological
Theory in Practice, New York: Sociology of Education Series. Teachers College Press, 1234
Amsterdam Avenue, , NY 10027 (paperback: ISBN-0-8077-3643-0; clothbound: ISBN-0-8077-
3644-9, 1997.

Connor, Carol McDonald, Frederick J Morrison, and Leslie E Katch, “Beyond the reading
wars: Exploring the effect of child-instruction interactions on growth in early reading,” Scientific
studies of reading, 2004, 8 (4), 305-336.

Danielson, Charlotte, “The framework for teaching evaluation instrument,” The Danielson
Group Princeton, NJ 2011.

_, “Teacher evaluation: What’s fair? What’s effective?,” FEducational Leadership, 2012, 70 (3),
32-37.

35



Duflo, Esther, Pascaline Dupas, and Michael Kremer, “Peer effects, teacher incentives, and
the impact of tracking: Evidence from a randomized evaluation in Kenya,” American Economic
Review, 2011, 101 (5), 1739-1774.

Epple, Dennis and Richard Romano, “Peer Effects in Education: A Survey of the Theory
and Evidence,” in Jess Benhabib, Alberto Bisin, and Matthew O. Jackson, eds., Handbook of
Social Economics, Vol. 1B, Amsterdam, The Netherlands: North-Holland, 2010, chapter 20,
pp- 1053-1164.

Fox, Lindsay, “Playing to Teachers’ Strengths: Using multiple measures of teacher effectiveness
to improve teacher assignments,” Fducation Finance and Policy, 2016.

Fruehwirth, Jane Cooley, “Identifying peer achievement spillovers: Implications for desegrega-
tion and the achievement gap,” Quantitative Economics, 2013, 4 (1), 85-124.

Gamoran, Adam, Walter G. Secada, and Corab Marrett, “The organizational context of
teaching and learning: Changing theoretical perspectives,” in M. Hallinan, ed., Handbook of the
Sociology of Education, New York: Kluwer Academic/Plenum, 2000.

Garrett, Rachel and Matthew P Steinberg, “Examining teacher effectiveness using class-
room observation scores: Evidence from the randomization of teachers to students,” Educational
Evaluation and Policy Analysis, 2015, 37 (2), 224-242.

Gibbons, Steve and Shqiponja Telhaj, “Peer Effects and Pupil Attainment: Evidence from
Secondary School Transition,” CEE Discussion Papers 0063, Centre for the Economics of Edu-
cation, LSE May 2006.

Hamilton, L. S., “Measuring teaching quality using student achievement tests: Lessons from
educators’ responses to No Child Left Behind,” in Sean Kelly, ed., Assessing teacher quality:
Understanding teacher effects on instruction and achievement, New York: Teachers College Press,
2012.

Hanushek, Eric A. and Steven Rivkin, “Harming the best: How schools affect the black-white
achievement gap,” Journal of Policy Analysis and Management, 2009, 28 (3), 366-393.

_ , John F. Kain, and Steven G. Rivkin, “New Evidence about Brown v. Board of Educa-
tion: The Complex Effects of School Racial Composition on Achievement,” Journal of Labor
Economics, 2009, 27 (3), 349-383.

Hausman, Jerry A., Whitney K. Newey, Hidehiko Ichimura, and James L. Powell,
“Identification and estimation of polynomial errors-in-variables models,” Journal of Economet-
rics, 1991, 50 (3), 273 — 295.

Hoxby, Caroline M. and Gretchen Weingarth, “Taking Race Out of the Equation: School
Reassignment and the Structure of Peer Effects,” 2005. Working Paper.

Jaccard, James and Choi K Wan, “Measurement Error in the Analysis of Interaction Effects
Between Continuous Predictors Using Multiple Regression: Multiple Indicator and Structural
Equation Approaches,” Quantitative Methods in Psychology, 1995, 117 (2), 348-357.

36



Jackson, C. Kirabo, “Match quality, worker productivity and worker mobility: direct evidence
from teachers,” The review of economis and statistics, October 2013, 95 (4), 1096-1116.

Kane, Thomas J and Douglas O Staiger, “Gathering Feedback for Teaching: Combining
High-Quality Observations with Student Surveys and Achievement Gains. Research Paper. MET
Project.,” Bill & Melinda Gates Foundation, 2012.

_ , Daniel F McCaffrey, Trey Miller, and Douglas O Staiger, “Have we identified effective
teachers? Validating measures of effective teaching using random assignment,” in “Research
Paper. MET Project. Bill & Melinda Gates Foundation” Citeseer 2013.

Kane, Thomas J., Eric S. Taylor, John H. Tyler, and Amy L. Wooten, “ldentifying
Effective Classroom Practices Using Student Achievement Data,” Journal of Human Resources,
2011, 46 (3), 587—613.

Kennedy, M. M., “Introduction: The Uncertain Relationship between Teacher Assessment and
Teacher Quality,” in “Teacher Assessment and the Quest for Teacher Quality,” San francisco:
Jossey Bass, 2010.

Kolenikov, Stanislav, “Confirmatory Factor Analysis Using Confa,” The Stata Journal, 2009, 9
(3), 329-373.

Konstantopoulos, Spyros, “Effects of Teachers on Minority and Disadvantaged Students’
Achievement in the Early Grades,” The Elementary School Journal, 2009, 110 (1), 92-113.

Ladd, Helen and Edgar Thompson, “Teacher effects: What do we know,” 01 2008, 21.

Lavy, Victor, “What Makes an Effective Teacher? Quasi-Experimental Evidence,” CESifo Eco-
nomic Studies, 2015.

_ , M. Daniele Paserman, and Analia Schlosser, “Inside the Black Box of Ability Peer Ef-
fects: Evidence from Variation in the Proportion of Low Achievers in the Classroom,” Economic
Journal, 03 2012, 122 (559), 208-237.

Lazear, Edward P., “Educational production,” Quarterly Journal of Economics, 2001, 116 (3),
777-803.

MET project, “Content knowledge for teaching and the MET project,” Bill and Melinda Gates
foundation September 2010.

_, “Danielson’s framework for teaching for classroom observations,” Bill and Melinda Gates foun-
dation October 2010.

Mihaly, Kata, Daniel F. McCaffrey, Douglas Staiger, and J.R. Lockwood, “A composite
estimator of effective teaching,” MET Project Research Paper, Bill & Melinda Gates Foundation,
2013.

Nizalova, Olena Y. and Irina Murtazashvili, “Exogenous Treatment and Endogenous Factors:
Vanishing of Omitted Variable Bias on the Interaction Term,” Journal of Econometric Methods,
2014, 5 (1), 71-77.

37



Rivkin, Steven G., Eric A. Hanushek, and John F. Kain, “Teachers, Schools, and Academic
Achievement,” Econometrica, 03 2005, 73 (2), 417-458.

Rothstein, J., “Teacher Quality in Educational Production: Tracking, Decay, and Student
Achievement,” Quarterly Journal of Economics, February 2010, 125 (1), 175-214.

Sacerdote, Bruce, “Peer Effects in Education: How Might They Work, How Big Are They
and How Much Do We Know Thus Far?,” in Erik Hanushek, Stephen Machin, and Ludger

Woessmann, eds., Handbook of the Economics of Education, Vol. 3, Elsevier, June 2011, chapter 4,
pp. 249-277.

Seaton, Marjorie, Herbert W. Marsh, and Rhonda G. Craven, “Big-Fish-Little-Pond
Effect: Generalizability and Moderation—Two Sides of the Same Coin,” American Educational
Research Journal, 2010, 47 (2), 390-433.

Shernoff, David J., Mihaly Csikszentmihalyi, Barbara Schneider, and Elisa Steele Sh-
ernoff, “Student Engagement in High School Classrooms from the Perspective of Flow Theory,”
School Psychology Quarterly, 2003, 18 (2), 158-176.

Stacy, Brian, Cassandra Guarino, Mark Reckase, and Jeffrey Wooldridge, “Does the
precision and stability of value-added estimates of teacher performance depend on the types of
students they serve?,” Education Policy Center, Michigan State University, Working paper no.
35 2013.

Taylor, Eric S., “Skills, Job Tasks, and Productivity in Teaching: Evidence from a Randomized
Trial of Instruction Practices,” Journal of Labor Economics, 2018, 36 (3).

Zimmer, Ron, “A new twist in the education tracking debate,” Economics of Education Review,
2003, 22 (3), 307-315.

38



A Randomization and Sample Selection

Randomization: When schools joined the MET study in 2009-2010, principals were asked to
identify groups of teachers that 1) were teaching the same subject to students in the same grade
2) were certified to teach common classes and 3) were expected to teach the same subject to
students in the same grade the following year. These groups of teachers were called “exchange
groups” The plan was for principals to create class rosters as similar as possible within an exchange
group, and then send these rosters to MET to be randomly assigned to “exchangeable” teachers.
One issue in practice was that when it came time to perform the randomization, not all teachers
within an exchange group were able to teach during a common period. As a result, randomization
was performed within subsets of exchange groups called “randomization blocks.” In summary,
MET requested scheduling information for 2,462 teachers from 865 exchange groups in 316 schools.
From this, they created 668 randomization blocks from 619 exchange groups in 284 participating
schools. The drop off in teachers can be attributed to either a school refusing to permit randomly
swapping rosters, or all remaining MET project teachers leaving the school or the study prior to
randomization. From these randomization blocks, 1,591 teachers were randomly assigned to class
rosters. Teachers were lost either because they were not scheduled to teach the exchange group
subject and grade level in 2010-2011 or they decided not to participate [Kane et al. (2013) PZI
Since assignments were made based on preliminary rosters at the end of the previous school
year, before school administrators knew who would be attending their school, there was both
attrition from the sample and additional students who moved into the school and needed to be
incorporated in the sample. As a result, our analysis does not rely on the assumption that the
observed classroom composition is random, but rather exploits what we know to be random—the
initial random assignment of teachers to classrooms. We discuss this further in Section[d] We cannot
include students who were not in the randomization sample in our main analysis, which relies on
the randomization, but we do include them as part of the calculation of classroom composition
when prior test scores are available. For the average student in our final sample, 78% of classroom
peers were included in randomization, and we observe prior test scores for 91% of classroom peers.

Sample Selection: Our sample selection is motivated by our estimation strategy. We start with
the entire sample of elementary students observed in the randomization year (2010-11), in either a
math or joint math and ELA classroom, which includes 11,409 student observations. Since we rely
on the random assignment of teachers to classrooms, we restrict the sample to the 5,730 students
who were randomly assigned a teacher (but did not necessarily comply). The characteristics of
these students are summarized in appendix Table @]} Note that while six districts participated,
only five were asked to have elementary schools participate.

Further sample restrictions are necessary for our estimation strategy. We require observed test
scores prior to, and after the randomization year. We also required non-missing teaching practices
from the first year (2009-10) and Content Knowledge for Teaching (CKT) scores in math. We
restrict the sample to students whose actual and randomly assigned teacher has non-missing values
for both, which reduces the sample to 4,201.

Using the remaining students we count the number of students per class, and restrict the sample
to all classes with a minimum of 7 students. From this restriction we are left with 4,124 students.

3"The number of randomized teachers includes 386 high school teachers and 24 teachers from grades 4-8 for whom
rosters were later found to be invalid by MET. We do not include these in our sample.
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While the true class sizes are much larger than this, we do this to avoid the possibility of results
being driven by unusually small classes based on our previous sample restrictions.

Finally, our estimation strategy requires a minimum of two teachers per randomization block,
and we also want to ensure randomization was performed properly. There are 3,618 students in
a randomization block with at least two teachers. Of these remaining students, 2,682 are in a
randomization block with at least a 50% compliance rate.

At this point, we find there are 44 duplicate student observations between classes, which we
drop. We then re-run the class size, teachers per randomization block, and randomization block
compliance rate restrictions.

The final restricted regression sample has 2,632 student observations. These student observa-
tions span 5 districts, 39 schools, 57 randomization blocks, 147 teachers, 147 classrooms, with 87%
of student observations coming from joint math/ela courses. Table presents summary statistics
of our final regression sample.

B Alternative Models

While the behavioral model in Section [3| posits some possible channels of complementarities, alterna-
tive plausible models of student behavior would produce similar complementarities. For instance, it
is straightforward to add to the model that students conform to the average behavior of classmates,
so that utility is

b T
Uit = vyYit — E(bit - ’YBb—z‘t)2 + ’prPj{bz‘t-

This captures the conformity-type peer effects that are the focus of the social interactions literature
(Brock and Durlauf, |2001; Epple and Romanol [2010). In this case, optimal behavior would be a
function of peer behavior and teaching practice and similar results would follow, except here the
benefits of the teaching practice are amplified through the re-enforcing behavior of peers. For
instance, a teacher’s classroom management practice encourages a student and her peers to behave
better, and the better behavior of peers further encourages the student’s own better behavior
and vice-versa. The interaction between teaching practice and peer initial achievement would
follow again in this model because the marginal product of good behavior differs with peer initial
achievement.

Furthermore, we could also motivate the interaction between teachers and peers as arising
through a production function that has complementarities between average peer behavior and own
behavior, i.e.,

Yie = Bo + Bebit + BeybiYir—1 + Begbim (Y icii—1) + Bysbitb—ir + Byb—it
+ ByYit—1 + Bym(Yoicyt—1) + BpPj + Bpy PiYit—1 + Bpg Pim(Y_ic,e—1) + €it,

where there are direct spillovers from peer behavior and the achievement benefits of behavior are
increasing in peer behavior. This channel connects well with |Lazear, (2001)’s classic treatment of
the classroom learning environment as a public good that is disrupted by student behaviors. The
reduced form in this setting would be similar in structure to the above, when m(Y_;.,;—1) = ?_ictt_l,
with the addition of the Pj2 term arising through the interaction of own and peer behavior, both
of which are increasing in P;.
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C Robustness

C.1 Robustness check on contemporaneous teaching practice

Table 11| shows robustness checks where we estimate equation focusing on our key interactions—
challenge /student-centered practices interacted with the IQR in initial peer achievement and class-
room management interacted with average initial peer achievement. A challenge we face is that it
is difficult to instrument for all the entries of teaching practice and its interactions without run-
ning into a weak instrument problem. As a result, we build the argument sequentially to show
that weak instruments are not driving estimates of our key interactions. Panel A shows results
for classroom management and panel B for challenge/student-centered practices. The first column
shows results for the ITT when Py, Pr_1Yit_1, P,nt_li_/_ictt_l, P 1IQR.,+—1 are all included in
the regression. Then, column (2) shows that estimates of key interactions are robust when all other
teaching practice terms are dropped except our main interactions of interest, i.e., Pr_1IQRc+—1
for challenge/student-centered and Prt,lflmt,l for classroom management. Column (3) then
instruments for Prt}_/_ictt_l with ng_ﬂ_/_ictt_l for classroom management and PlQR.+—1 with
Py 1IQR.,;—1 for challenge/student-centered. The F-statistics for weak instrument tests are in
both cases are 28 and 27 respectively, indicating that there is not a weak instrument problem.
And, in both cases the estimated interactions are significantly larger, increasing from 0.08 to 0.22
for the case of classroom management with the average and -0.06 to -0.18 for student-centered
practices with IQR.

Column (4) shows another variation of this when we continue to control for Pr;_1, Pr—1Yit—1,
but only drop from the regression the irrelevant peer interactions, i.e., the interactions with IQR
for classroom management and average initial peer achievement for challenge/student-centered.
Column (5) controls for contemporaneous teaching practice in levels and interacted with prior
achievement (P, Py4Yj;—1) and only instruments for key interactions of contemporaneous teach-
ing practice with peer variables (ng}_/_ictt_l with Prt_ll_/_ictt_l for classroom management and
P IQR.,;—1 with Py 1IQR.,;—1 for challenge/student-centered). Again, F-statistics for the weak
instrument test are in all cases above 20 and the key variables of interest remain very similar to
estimates in column (3) that do not control for level effects or interactions with initial achieve-
ment. Finally, column (6) instruments for all entries of contemporaneous teaching practice (i.e.,
Py, P.Y;;—1 are also instrumented with P, and P,;_1Yj;—1), along with the key classroom com-
position interactions as in column (5). In this case, F-statistics on tests for weak instruments drop
below 10, but we see that the estimated interactions with classroom composition remain remarkably
stable, suggesting that estimates are not driven by weak instruments.

C.2 Nonlinear Measurement Error

To show how |[Hausman et al.| (1991) can be adapted to our setting to deal with measurement error
in teaching practice, we consider a simplified version of our main estimating equation 1D Let Y
denotes Y demeaned at the randomization block level and similarly for other variables, then

Vit = apPy + g PrY i1+ Y —icp—1 + ayYie—1 + apy P Y i1 + Eir. (6)

Recall that P, is the true practice, but it is measured with error. We adapt Hausman et al.| (1991
in two ways. First, we relax the assumptions on the measurement model because we have more than
2 measures for each practice. Second, we adapt their approach which was made for nonlinearities

41



captured by polynomials in the variable of interest to our setting, where nonlinearities arise from
interactions.
The parameters of equation @ are identified from

E(Y;t) = apE(PT) + ang(PTY—iCtt—l) + O@E(?—ictt—l) + ayE(f/it—l) + apyE(PTYit—l)
(7)

E(Y#P,) = apE(PP) + apgE(PY _icyy 1 Pr) + ag E(Y_jeu—1 Pr) + ay E(Yiyy_1 Py)
+ apyE(PAr?it—lpr)
E(f/z’tf/—ictt—l) = O‘pE(Pr}:/—ictt—l) + apQE(Pryficttfl}:/—ictt—l) + O@E(Y/—ictt—l?—ictt—l) + ayE(ﬁt—lff—ictt—l)
+ apy B(BY it 1Y icyi1)

E(YiP,Y _ic-1) = pE(PoPY _iey1) + opg E(PY _icy 1 PY Zicpm1) + 0gE(Y_ieu1 PrY _jey1)
+ayB(Yi 1 PY _ie1) + 0y B(PY 3y PY oy 1)
E(YiYit—1) = apE(PYi-1) + apgE(PY i 1Yi—1) + ayE<{/—ictt—1ffit—l> +ay,E(Yy_1Yi 1)
+ apyE<p—73//it—1?z‘t—1)
E(YyP,Yy ) = apE(PrﬁT‘\}//itfl) + O‘p?]E(PTYficttflf/);}//itfl) + agE(}:/ficttflp:{/itfl) + ayE(i/itflp:}//itfl)
+ apyE(ﬁr\}//itflp:{/itfl)

We need to recover all of the moments containing P,. The issue is that P, is not observed, so
next we discuss how to use our measures of practice to recover these moments.
We assume that we have at least 3 demeaned measures of practice following equation [5], such
that
Pjry = 0. Pj + wjke,
where k = {1,..., K} and K > 3. We focus the measurement equation around the mean reports
for each subdomain, calculated over multiple videos and video raters, though we could apply ad-

justments to the individual level observations as well. Then, applying a normalization, §; = 1, we

have
COU(Pjnt,ijt) . 5n5mV(PJ) o

= = Om,
Cov(Pjnt, Pjit) 6V (Pj)

for n,m # 1 and n # m, thus permitting us to recover the parameters o, ..., ;. Notice further that

E(Pj11Pjnt) = (5nE(Pj2), forn #1
and E (P]Q) is thus identified and similarly,
E(PjPjnt) = 5nE(15j2), for n # 1,

given that measurement error is also uncorrelated across measures after removing randomization
block fixed effects. Note that E(P;) = 0.
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We can use our anchor measure then to recover

—_—

E(PtY _ieyp—1) = E(PY _jcy—1)
E(PrtYu1) = E(PY 1)
E(YPry) = E(Yy P )
E(Y;ta;{/zt ) =E(YyP, Y 1)
BiPritY sen 1) = BV P Y ie 1)

But to recover terms which have higher order products of P, such as E(F,Y;;_1P,) we rely on
the ratio of covariances to first recover d5. We can then use our anchor measure and measurement
two to recover

) = E(ﬁ/itflpr)

(A
02

Specifically, in estimation we pick an anchor measurement, P;, and use it to construct the terms
in equation @ To construct rows two, four and six in the system we multiply equation @ by

Proy ProtY i1 ProtY i 4
and

g ) 09
when multiplying through and then divide by the measurement parameter we’'ve recovered.

Estimation of the parameters from these moments is then straightforward. We recover the
relevant moments from the measurement model and then plug them into the system defined in [7]
and solve this system for the structural parameters. We can bootstrap standard errors, clustering
at the randomization block level. Note that because we are overidentified, we can also test the
robustness to using different measures as our anchor.

Appendix Table shows results when we correct for measurement error by following two
strategies. First, we present findings when we implement the Hausman et al. (1991) method
described above, but we also report (for completeness) specifications when we instrument a given
measure of a teaching practice at t — 1 (e.g. creating an environment of respect and rapport when
considering the broad category classroom management) with the remaining teaching practices at
t — 1 (e.g. managing student behaviors and classroom procedures). Overall, results indicate that
taking averages across measurements that correspond to a specific broad teaching practice (i.e.
classroom management or challenge/student-centered) lead to similar results that when we correct
for measurement error by following other methods.

and then take expectations. Note that we use measurement two
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D Appendix Tables

Table 7: Description of Framework for Teaching (FFT)

Classroom Management Practices

Managing student be-
haviors (MSB)

Managing classroom
procedures (MCP)
Creating an environ-
ment of respect and rap-
port (CERR)

Monitoring of student behavior, response to student misbe-
havior, expectations

Management of instructional groups, transitions, and mate-
rials and supplies

Teacher interactions with students and student interactions
with each other

Challenge/Student-Centered Practices

Establishing a culture of
learning (ECL)

Communicating  with

students (CS)

Engaging students in
learning (ESL)

Using assessment in in-
struction (UAI)

Using questioning and
discussion  techniques

(USDT)

Importance of content and expectations for learning and
achievement

Expectations for learning, directions and procedures, expla-
nations of content, use of oral and written language

Activities and assignments, grouping of students, instruc-
tional materials and resources, structure and pacing

Assessment criteria, monitoring of student learning, feed-
back to students, student self-assessment and monitoring of
progress

Quality of questions, discussion techniques, student partici-
pation
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Table 8: FFT Teaching Practice Correlations and Factor Loadings

CERR
MCP
MSB
USDT
ECL
CS
ESL
UAI
Obs.

CERR

1
0.602***
0.676***
0.476***
0.627***
0.568%***
0.489%***
0.462%**

MCP

1
0.713***
0.413%***
0.497***
0.524%**
0.452%%*
0.468%**

MSB

1
0.395%**
0.496***
0.464***
0.415%**
0.416%**

USDT

1
0.569%***
0.559%**
0.627***
0.644***

ECL CS ESL
1
0.601%*** 1

0.700%** (0.575%** 1
0.597*F% 0.586*** 0.667***
732

Factor 1
Loadings

0.196
0.055
-0.090
0.790
0.699
0.592
0.886
0.826

Factor 2
Loadings

0.680
0.779
0.934
-0.033
0.170
0.219
-0.067
-0.032

Notes: First seven columns show correlations between FFT components. We use the entire sample of fourth and fifth grade
teachers from both years e.g. 732 teacher-year observations. Last two columns present factor loadings from exploratory
factor analysis after performing an oblique rotation of the factors, and keeping the first two factors. The first factor explains
79% of the variance in the data, and the second explains another 13%. CERR (creating an environment of respect and
rapport), USDT (using questioning and discussion techniques), ECL (establishing a culture of learning), MCP (managing
classroom procedures), CS (communicating with students), MSB (managing student behaviors), ESL (engaging students
in learning), UAI (using assessment in instruction). See table @ for a detailed description of each FFT variable.
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Table 9: Summary Statistics: Pre-Restricted Sample

Mean SD Min Max
Grade Level 4.52 0.50 4.00 5.00
Joint Math and ELA Class 0.85 0.36 0.00 1.00
Age 9.46 0.96 7.52 13.20
Male 0.49 0.50 0.00 1.00
Gifted 0.08 0.27 0.00 1.00
Special Education 0.09 0.29 0.00 1.00
English Language Learner 0.15 0.36 0.00 1.00
White 0.28 0.45 0.00 1.00
Black 0.34 0.48 0.00 1.00
Hispanic 0.27 0.45 0.00 1.00
Asian 0.07 0.26 0.00 1.00
American Indian 0.00 0.07 0.00 1.00
Race Other 0.02 0.15 0.00 1.00
Race Missing 0.01 0.11 0.00 1.00
Math Score (Year 09-10) 0.11 0.93 -3.14 2.84
Math Score (Year 10-11) 0.14 0.93 -3.26 3.02
Unique Districts 5.00 - - -
Unique Classes 361.00 - - -
Unique Schools 101.00 - - -
Unique Randomization Blocks  156.00 - - -
Unique Teachers 361.00 - - -
f/fartcﬁnstjffe;f Class w/ 09-100 01 007 063 100
gs;fe/itszg;n;in?ass moRan- - og6 019 003 100
g(fjilers per Randomization 303 1.49 1.00 12.00
aRj;df;?eization Block Compli- 0.66 0.40 0.00 1.00
Observations 5730

Notes: This sample corresponds to all students in the 2010-11 school year in either a
fourth or fifth grade Math or Joint Math/ELA course. Since our estimation strategy
leverages the random assignment of classrooms to teachers, we restrict the sample to
students with a randomly assigned teacher. No further restrictions are made. Not all
cells have the same number of observations.
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Table 10: Balance Tests

Classroom Challenge/ Avg. IQR Avg IQR
Management Student Math of - Math of Math of  Math of
Random Centered Ob- Ob- Assigned  Assigned
Toacher Random served served Poors Poors
Teacher Peers Peers
(1) (2) (3) (4) (5) (6)
Peer Math -0.022 -0.015
(0.079) (0.119)
IQR Math 0.036 0.041
(0.107) (0.103)
Peer Math Rand -0.089 -0.046
(0.103) (0.124)
IQR Math Rand -0.023 0.032
(0.087) (0.084)
Math;_ ¢ -0.021 -0.005 0.050 -0.029 0.053 0.006
(0.020) (0.024) (0.048) (0.036) (0.048) (0.025)
ELL -0.048 -0.015 -0.200 0.025 -0.197 -0.023
(0.059) (0.061) (0.129) (0.124) (0.136) (0.091)
Gifted -0.033 -0.053 0.491** 0.160 0.274 0.230*
(0.075) (0.144) (0.227) (0.107) (0.175) (0.123)
Special Educ. 0.118** 0.089 -0.128* 0.043 -0.055 0.028
(0.059) (0.057) (0.065) (0.084) (0.055) (0.066)
Male 0.008 0.002 -0.023 -0.008 -0.035 -0.025
(0.013) (0.015) (0.019) (0.015) (0.023) (0.018)
White 0.011 -0.044 0.035 0.011 -0.039%* -0.014
(0.029) (0.032) (0.042) (0.036) (0.023) (0.032)
Black 0.005 0.001 0.005 0.041 0.055%** 0.044
(0.028) (0.031) (0.046) (0.048) (0.026) (0.048)
Hispanic -0.059%* -0.046 -0.036 -0.029 -0.022 -0.017
(0.028) (0.034) (0.029) (0.043) (0.028) (0.046)
Asian 0.087 0.142%* 0.070%* -0.037 0.053 0.000
(0.054) (0.055) (0.039) (0.066) (0.044) (0.064)
American Indian 0.062 0.176 -0.339 0.247 -0.215 0.076
(0.145) (0.118) (0.205) (0.174) (0.212) (0.139)
Race Other 0.070 0.063 -0.083 -0.058 -0.074** -0.044
(0.066) (0.088) (0.050) (0.048) (0.037) (0.053)

Notes: We regressed each dependent variable separately on each independent variable with randomization block fixed-
effects and stacked the parameters from these regressions. Columns (1) and (2) refers to a student’s randomly assigned
teacher’s practice measured in ¢t — 1 (i.e., Pr4—1 in the pyesent notation). Columns (3) and (4) use the actual classroom
composition whereas columns (5) and (6) focus on the peers who were initially assigned to be grouped with the student.



Table 11: Contemporaneous Teaching Practice and Classroom Composition

ITT 1\ ITT IV
Time ¢ — 1 Time ¢ tTfnf Time ¢
Practice Practice Practice Practice

(1) (2) (3) (4) () (6)

Panel A

Classroom Management 0.008 0.010 0.049%* 0.040
(0.019) (0.018) (0.026) (0.058)

C.M. x Math;_4 0.011 0.012 0.004 0.026
(0.012) (0.012) (0.018) (0.021)

C.M. x Avg. Peer Math,_;  0.07***  0.085"* 0.218"* 0.082*** 0.213"*  0.209"**
(0.025)  (0.022)  (0.065)  (0.021)  (0.062)  (0.061)

C.M. x IQR Peer Math;_1 -0.017
(0.019)
First Stage F-Stat.' 28.400 31.563 4.191
Panel B
Challenge/Student-Centered ~ 0.018 0.022  0.072***  -0.006
(0.020) (0.019)  (0.026) (0.127)
C.S.C x Math;_1 0.012 0.018 0.008 0.041
(0.012) (0.012)  (0.014)  (0.033)
C.S.C x Avg Peer Math;_1 0.031**
(0.014)

C.S.C. x IQR Peer Math; | —0.053"** —0.063** —0.178"** —0.060** —0.181"** —0.174***
(0.014)  (0.016)  (0.052)  (0.014)  (0.051)  (0.051)

First Stage F-Statistic! 26.896 24.538 2.107

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered
at the randomization block level. Sample size is 2632. Randomly assigned teachers are used throughout. Panel
A and B correspond to different regressions with math as the dependent variable. These regressions include
randomization block fixed effects and controls for the level and a squared term of prior math achievement and
average peer prior achievement, IQR in peer prior achievement, along with the peer variables squared and
interactions with each other and lagged math achievement. Controls for CKT and student characteristics listed
in Table [1] also included. T Reports the Kleibergen-Paap rk Wald statistic for a weak instrument test.
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Table 12: Comparison between the Hausman Estimator and ITT-IV specifications

MCP ITT MCP IV MSB. ESL ITT ESL IV I?SSIgJ'-T
CERR
(1) (2) (3) (4) (5) (6)
Teaching Practice 0.004 0.001 0.011 0.028 0.022 0.021
(0.019) (0.021) (0.027) (0.019) (0.020)  (0.031)
T.P. x Math;_ 0.009 0.014 0.011 0.001 0.014 0.013
(0.014) (0.015) (0.022) (0.012) (0.013)  (0.021)
T.P. x Peer Math 0.052%%* 0.105%%*  0.111*** 0.005 0.043** 0.019
(0.019) (0.033) (0.039) (0.014) (0.017)  (0.044)
T.P. x IQR Math —0.035**  —0.004 —0.008 —0.047*%%* —0.055***~0.063**
(0.016) (0.025) (0.033) (0.016) (0.014)  (0.029)
P-value joint signif. T.P. 0.000 0.000 0.038 0.000
First Stage F-Stat. 21.7 12.5
Hansen J P-value 0.522 0.643
p2 load 1.080 0.804
p3 load 0.859 0.837

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Sample size is 2632.
Managing student behaviors (MSB), Managing classroom procedures (MCP), Creating an environment of re-
spect and rapport (CERR), Engaging students in learning (ESL), Using questioning and discussion techniques
(USDT). The ITT columns uses randomly assigned MCP or ESL scores as “Practice.” The IV columns use
all other practices that load on classroom management to instrument for MCP, and likewise for ESL with
challenge/student-centered practices. Practices are for the randomly assigned teacher measured at ¢t — 1. We
use efficient GMM estimator and FFT MCP-MSB-CERR uses our adapted Hausman estimator to correct
for measurement error, where MCP is the anchor, and MSB is used to construct moment conditions. FFT
ESL-USDT is similar but uses the average of all other challenge/student-centered practices as the third mea-
surement since we are overidentified. The specification is identical to that in Table except here we do
not include controls for student characteristics. T Reports the Kleibergen-Paap rk Wald statistic. {1 Reports
p-value from Hansen’s J statistic test of overidentifying restrictions. “p2 load” and “p3 load” are the recovered
measurement parameters described in Appendix[C.2} Standard errors are clustered at the randomization block
level, and with the adapted Hausman estimator we bootstrap standard errors with 200 repetitions.
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Table 13: Teaching Practices and Alternative Teacher “Quality” Controls Full Results

Random IV Actual Random Teacher
Teacher  with Random Alt. Teacher Control:
Teacher CKT 7C PSVY
(1) (2) (3) (4) (5)
Classroom Management -0.012 -0.016 -0.014 -0.016 -0.015
(0.020) (0.022) (0.020) (0.020) (0.019)
C.M. x Math; 0.004 0.004 0.011 0.004 0.003
(0.020) (0.021) (0.019) (0.019) (0.019)
C.M. x Peer Math 0.076** 0.087** 0.077** 0.076** 0.076%**
(0.029) (0.036) (0.030) (0.029) (0.027)
C.M. x IQR Math 0.026 0.035 0.026 0.026 0.026
(0.022) (0.026) (0.022) (0.023) (0.021)
C.M. 0.026 0.025 0.026 0.026 0.011
(0.023) (0.025) (0.022) (0.022) (0.024)
C.M. x Math;_; 0.010 0.011 0.002 0.016 0.005
(0.020) (0.021) (0.020) (0.019) (0.019)
C.M. x Peer Math -0.010 -0.009 -0.010 -0.010 -0.005
(0.019) (0.022) (0.019) (0.019) (0.019)
C.M. x IQR Math -0.062*%**  _0.071*** -0.063***  -0.057**  -0.054**
(0.017) (0.019) (0.017)  (0.021)  (0.021)
CKT -0.007 -0.011 -0.008 -0.006 -0.013
(0.016) (0.019) (0.016) (0.016) (0.018)
Alt. Teacher Control -0.006 0.055%**
(0.019) (0.017)
T.C. x Mathy_4 0.044***  -0.029*%*  0.032**
(0.014) (0.013) (0.013)
T.C. x Peer Math -0.019 -0.007 -0.016
(0.018) (0.020) (0.016)
T.C. x IQR Math -0.012 -0.017 -0.003
(0.021)  (0.021)  (0.016)
T.C. missing -0.591%**
(0.142)
T.C. missing x Math;_; 0.025
(0.046)
T.C. missing x Peer Math 0.060
(0.045)
T.C. missing x IQR Math 50 0.015
(0.055)

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Due to the length of this
table, we've split it into three parts to show all parameters. See tables , and .



Table 14: Teaching Practices and Alternative Teacher “Quality” Controls Full Results (Continued)

Random IV Actual Random Teacher
Teacher with Random Alt. Teacher Control:
Teacher CKT 7C PSVY
(1) (2) (3) (4) (5)
Math;_1 0.724%F% (), 725%5* 0.723%%%  (.723%k* (), 722%F*
(0.017) (0.017) (0.016) (0.016) (0.018)
Math?_, -0.043%F% - _(.043%** -0.044%HF% _0.042%F%  _0.045%**
(0.012) (0.012) (0.012) (0.012) (0.012)
Peer Math x Math,_; -0.000 -0.001 -0.001 -0.003 0.002
(0.018) (0.018) (0.018) (0.018) (0.018)
IQR Math x Mathy_; 0.034%%  (.035%** 0.040%**%  0.031%*%  (.044%**
(0.013) (0.013) (0.013) (0.013) (0.012)
Peer Math x IQR Math -0.052F%%  _(),053*** S0.057FFF _0.053%F%F  -0.043%*
(0.016) (0.016) (0.017) (0.016) (0.017)
ifghi\fath < TQRMath > 9 -0.021 0019 -0.023  -0.016
(0.014) (0.014) (0.015) (0.014) (0.014)
Peer Math -0.008 -0.008 -0.009 -0.007 -0.012
(0.026) (0.026) (0.025) (0.026) (0.027)
Peer Math? -0.010 -0.013 -0.009 -0.009 -0.014
(0.014) (0.013) (0.014) (0.014) (0.016)
IQR Math -0.015 -0.018 -0.017 -0.019 -0.008
(0.023) (0.024) (0.022) (0.024) (0.026)
IQR Math? -0.008 -0.009 -0.009 -0.010 -0.002
(0.013) (0.014) (0.013) (0.014) (0.014)
ELL 0.008 0.015 0.011 0.007 0.009
(0.038) (0.039) (0.039) (0.038) (0.038)
Gifted 0.195%F* (), 188%** 0.195%**  (0.192%%*  ().198%**
(0.055) (0.054) (0.054) (0.057) (0.056)
Male -0.001 -0.004 -0.002 -0.001 -0.001
(0.021) (0.021) (0.021) (0.021) (0.021)
Special Educ. S0.111%%  0.110%* S0.110%%  -0.112%*  -0.108**
(0.043) (0.043) (0.042) (0.044) (0.043)
Black S0.157HFF (). 159%F* S0.148%HF (. 154%FF  _(.156%F*
(0.033) (0.032) (0.033) (0.033) (0.034)
Hispanic -0.047 -0.051 -0.044 -0.046 -0.049
(0.035) (0.034) (0.035) (0.036) (0.035)

=

- 0701 .
Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Due to the length of this
table, we've split it into three parts to show all parameters. See tables , and .



Table 15: Teaching Practices and Alternative Teacher “Quality” Controls Full Results (Continued)

Random IV Actual Random Teacher
Teacher  with Random Alt. Teacher Control:
Teacher CKT 7C PSVY
(1) (2) (3) (4) (5)

Asian 0.076** 0.069* 0.082** 0.078** 0.070%*

(0.036) (0.036) (0.036) (0.036) (0.036)
American Indian -0.045 -0.050 -0.036 -0.045 -0.048

(0.108) (0.107) (0.107) (0.109) (0.111)
Race Other 0.013 0.013 0.016 0.016 0.013

(0.047) (0.046) (0.047) (0.047) (0.047)
Race Missing -0.040 -0.046 -0.012 -0.041 -0.044

(0.069) (0.066) (0.073) (0.067) (0.061)
R-squared 0.649 0.708 0.651 0.650 0.652
g;aéue joint signif of C.M. & 4 50 0.000 0.000 0.000 0.002
P-value joint signif of T.C. 0.052 0.172 0.013
First Stage F-Statistic! 27.717

Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered at
the randomization block level. Sample size is 2632. Dependent variable is math and teaching practices are measured
at t — 1. Regressions include randomization block fixed effects and controls for the level and a squared term of prior
math achievement and average and IQR of peer prior achievement, their square and all pairwise interactions of peer
variables and prior achievement, as well as student characteristics listed in Table Even columns also include the
IQR in peer prior achievement. T Reports the Kleibergen-Paap rk Wald statistic for a weak instrument test. CKT
denotes Content Knowledge for Teaching assessment, 7C' denotes overall student survey teacher ratings based on
Tripod and PSVY denotes principal assessments of teacher quality.
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