Teacher Effectiveness and Classroom Composition* Esteban M. Aucejo[†] Patrick Coate[‡] Jane Cooley Fruehwirth§ Arizona State University NCCI University of North Carolina Sean Kelly[¶] Zachary Mozenter University of Pittsburgh University of North Carolina June 24, 2018 #### Abstract This paper bridges the gap between the teacher effectiveness and peer effects literatures, by studying how the effectiveness of different teaching practices vary by classroom composition. We combine random assignment of teachers to classrooms with rich measures of teaching practice to overcome key endogeneity concerns related to measurement and matching. We find that good classroom management skills create an environment where students benefit more from peer average initial achievement. We also show that challenge/student-centered practices are most effective when there is less heterogeneity in initial achievement of classmates. Our findings have important implications for guiding teaching practices in different classroom contexts as well as highlighting new challenges for measuring teacher effectiveness and peer effects. Keywords: Teacher, Practices, Peer Effects, Effectiveness JEL Classification Codes: I2, I20, I21 ^{*}This research was supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305A170269 to University of North Carolina, Chapel Hill. The opinions expressed are those of the authors and do not represent views of the Institute or the U.S. Department of Education. Fruehwirth also thanks the British Academy and the Leverhulme Trust's Philip Leverhulme Prize. We also thank Pat Bayer, Ken Bollen, Cassie Guarino, Laura Hamilton, Joe Hotz, Ju Hyun Kim, Spyros Konstantopolous, Lindsay Matsumara, Doug Staiger, Valentin Verdier for helpful comments and conversations. [†]Department of Economics, W.P. Carey School of Business, Arizona State University & CEP. Email: Esteban.Aucejo@asu.edu [‡]National Council on Compensation Insurance. Email: pecoate@gmail.com [§]Department of Economics and Carolina Population Center, University of North Carolina, Chapel Hill. Email: jane_fruehwirth@unc.edu [¶]School of Education, University of Pittsburgh. Email: spkelly@pitt.edu Department of Economics, University of North Carolina, Chapel Hill. Email: zmozent@gmail.com # 1 Introduction The Coleman Report of 1966 highlighted the importance of both teachers and peers in improving academic achievement and spawned a large literature and policy debate regarding teacher and peer influence. The subsequent literature largely confirms the importance of teachers and peers (Gamoran et al., 2000; Rivkin et al., 2005; Sacerdote, 2011; Epple and Romano, 2010), but important puzzles remain about what makes a teacher effective and how peer effects can be exploited to improve achievement. We explore how moving beyond the norm in the literature of treating teachers and peers in isolation can change the nature of the policy debate in important ways that inform teacher effectiveness in different classroom settings. Treating teachers and peers as separable influences on learning has (at least) two important limitations. First, it fails to acknowledge that the effectiveness of different teachers/teaching practices could depend on the characteristics of the classroom.¹ For example, the benefits of challenging, student-centered teaching practices may vary depending on the heterogeneity in initial achievement of a student's classmates. Second, it fails to acknowledge the fundamental role teachers can play in determining the nature of classroom peer interactions. For instance, peer effects could be amplified by teaching practices that create a positive learning environment and promote a learning dialogue among students. We seek to fill this gap in the literature by exploring complementarities between teachers and classroom composition in achievement production and demonstrate the importance for understanding both teacher and peer effects. Two important barriers have hindered a unified analysis of teacher effectiveness and peer effects. First, detailed longitudinal data on teaching practices on a large scale are relatively rare. Second, endogeneity concerns related to nonrandom allocation of teachers to classrooms and endogenous responses of teachers to the classroom have posed significant challenges to identification. We overcome these challenges by exploiting a unique data set—the Measures of Effective Teaching (MET) Longitudinal Database. The key features of the data are rich information on teaching ¹Teaching practices do not only involve the principles and methods used for instruction (e.g. class discussions vs. recitation), but also those actions that affect the social dynamics of a given classroom (e.g. classroom management). Taylor (2018) shows that different type of instructional methods play an important role on student achievement beyond just teaching skills. practices in a context where teachers are randomly assigned to classrooms. Teachers are evaluated by trained raters using a research-based protocol that is increasingly used to measure teaching effectiveness in schools nationwide, the *Framework for Teaching Evaluation Instrument* (Danielson, 2011).² For classroom composition, we focus on classroom peer initial achievement, the most-studied type of peer spillover in the literature (Sacerdote, 2011). The random assignment of teachers eliminates one of the most important confounding factors for measuring teacher effectiveness, the systematic matching of students to classrooms that would lead us to confound teachers or peer effects with unobservable teacher or peer quality. However, even with random assignment, our identification strategy needs to address a number of remaining endogeneity concerns. The first is that there is considerable non-compliance in the data. We address this by relying on the variation generated by the randomly-assigned teacher rather than the actual teacher. Second, the experimental design did not mandate random assignment of students to classrooms. That said, the random assignment of teachers to classrooms is enough to obtain consistent estimates of the complementarities between teaching practice and classroom composition under reasonable conditions which we test.³ Third, if teachers choose practices to maximize student achievement, the observed teaching practice could be endogenous to the classroom composition. We address this primarily by exploiting the availability of prior year teaching practices, thus capturing teachers' proclivity toward certain practices. Fourth, teaching practice is measured with error. We exploit multiple measures of teaching practice and use factor models to identify what aspects are separable in the data. We rely primarily on averages of multiple measures of teaching practices to address measurement error, but show robustness to a number of other approaches. These include instrumenting contemporaneous teaching practices with prior practice and adapting the estimation approach developed by Hausman et al. (1991) for nonlinear error in variables models to apply to our setting, a panel model where the nonlinearity takes the form of complementarities. Finally, even with random assignment of teachers and rich measures of practice, one may still question whether it is our measured teaching practice or something unobservable about the teacher ²Kane et al. (2011) shows the importance of this teacher evaluation protocol in an observational context. ³To show this, we apply results developed in Bun and Harrison (2014) and Nizalova and Murtazashvili (2014). Balancing tests support that classroom composition is indeed random within randomization blocks. That said, to the extent that it is not random, we show that it limits our ability to infer the overall effect of peers. that is correlated with this practice that drives our findings. This is an issue that all the literature that seeks to evaluate characteristics of effective teaching shares.⁴ While our results provide important insight into how teacher effectiveness varies by classroom composition regardless, we try also to unpack whether our findings are driven by our measured practice rather than some other correlated teacher unobservable. First, we show that after including all available teaching practices in a single specification our results become stronger than specifications that include them separately, suggesting that (if any) omitted variable bias is attenuating our main results. Second, we show that our results are robust to controlling for an unusually rich set of teacher quality measures,⁵ including principal and student surveys along with a teaching knowledge assessment.⁶ We ground our empirical strategy in a simple theoretical model of student behavior, which helps inform the structure of the estimating equations and illustrates the potential pervasiveness of the complementarities in teaching practice and classroom composition. We show that even when the learning production function does not directly depend on the interaction between teaching practice and peer initial achievement, a complementarity between teachers and peers could emerge indirectly through students' endogenous responses to teaching practices. One such example is when teachers with better classroom management practices make misbehavior more costly, and students benefit more from their peers if they behave well. Our main findings show that challenge/student-centered practices are more effective when classrooms have less heterogeneity in initial achievement. This result suggests that, for example, promoting discussion among students may not constitute a good learning tool when all students cannot share a somewhat similar level of understanding on key concepts. We also show that classroom management practices are most effective when classrooms have higher average initial achievement. This highlights the intuition that students cannot benefit from
higher-achieving peers if they are not engaged constructively in the classroom learning environment. Notice that this finding is ⁴For instance, see Araujo et al. (2016) and Taylor (2018) for discussions of this challenge. ⁵Although educational researchers make an important distinction between teacher quality and teaching quality (Hamilton, 2012; Kennedy, 2010), we use the term "teacher" here, assuming the teacher knowledge measures reflect relatively stable traits. ⁶Even in the worst case scenario where the reader still believes that the teaching practices used in this paper are in fact proxying some underlying correlated teacher factor, our findings will at the very least make the important point that effective teaching varies by classroom composition, and that different measures of teaching practices complement classroom composition in different ways. consistent with the understanding that classroom management is even an important challenge in higher-achieving classrooms, though the sources of disengagement and poor behavior may be different from in lower-achieving classrooms (Shernoff et al., 2003). In addition, we show robustness of these findings to the variety of concerns discussed above, and that more traditional measures of teacher "quality" neither complement classroom characteristics nor explain the estimated complementarities with teaching practice. We make several important contributions to the literature. First, we demonstrate how failing to capture the heterogeneity in the effectiveness of teaching practice by classroom composition leads us to understate the importance of measured teaching practices and even, in some cases, to infer that the practice does not matter when in fact the effects are sizable in certain classrooms. This provides insight into why observable teacher measures generally do a poor job of capturing teacher quality (e.g. Rivkin et al., 2005). From a policy perspective then, understanding this type of heterogeneity is crucial for identifying what teaching practices matter and in what classroom contexts. Second, our research connects closely to a number of recent studies that consider heterogeneity in teacher effectiveness by student background characteristics (Lavy, 2015; Fox, 2016; Konstantopoulos, 2009).⁷ However, by focusing on heterogeneity by classroom composition, our work is substantively different in focus. Furthermore, we show that heterogeneity by classroom composition seems to be of significantly larger magnitudes than heterogeneity by a student's initial achievement. Third, our study also provides useful complementary evidence to the value-added literature which argues fairly persuasively that teachers matter (Rivkin et al., 2005; Chetty et al., 2014; Rothstein, 2010). Consistent with our central hypothesis that teacher effectiveness varies with who the teacher teaches, interesting recent work by Stacy et al. (2013) shows that value-added estimates are significantly more stable year-to-year for teachers of students with higher-initial achievement. The most closely related work is an innovative paper by Jackson (2013), which demonstrates a significant role for match quality between teachers and schools. A well-known limitation of value- ⁷For instance, Lavy (2015) finds larger effects of challenge/student-centered teaching for girls and low-SES students. Connor et al. (2004) show larger effects of some types of challenge/student-centered practices for children with higher initial achievement. Finally, Konstantopoulos (2009) finds somewhat larger effects of teacher effectiveness for high-SES students. added measures of teacher effectiveness is that they do not identify the teaching characteristics that matter for effectiveness, and it is therefore more difficult to use the findings in prescriptive ways to improve practice. This is the key reason that we choose to focus on measurable aspects of teaching practice from a popular teacher evaluation protocol. A number of other studies have used the MET data to identify effective teachers. Already studies from the MET project have generated important insights (Cantrell and Kane, 2013). For instance, Kane et al. (2013) verify that value-added metrics can be effective ways of evaluating teacher effectiveness in observational data and that multiple metrics of teacher effectiveness, including observations of practice, further improve understanding of a teachers' underlying effectiveness. Mihaly et al. (2013) also show that the different metrics of teacher effectiveness (value-added, class-room observation video scores and student survey reports) have important commonalities. Araujo et al. (2016) and Bacher-Hicks et al. (2017), in different settings, also illustrate the importance of teacher observation protocols for measuring teacher effectiveness. In the present study, we shift the emphasis from identifying effective teachers to analyzing which teachers are most effective for different kinds of classrooms. Fourth, our paper also contributes to the literature on peer effects. The literature has considered fairly extensively how peer effects vary by student background characteristics because of the important implications of this type of heterogeneity to tracking and desegregation policies (For instance, see Burke and Sass, 2006; Fruehwirth, 2013; Gibbons and Telhaj, 2006; Hanushek et al., 2009; Hanushek and Rivkin, 2009; Hoxby and Weingarth, 2005; Lavy et al., 2012, among others). Zimmer (2003) and Duflo et al. (2011) consider heterogeneity by student prior achievement and by whether the school tracks or not, which relates to the present study in interesting ways. Duflo et al. (2011) also find that the heterogeneity in peer effects may be driven by what level of students teachers target in their teaching and by teacher absences, which acknowledges the important role of teachers in driving the structure of peer effects, though without data on particular aspects of teaching practice. None of these directly consider heterogeneity in peer effects by teaching practice. We demonstrate that failure to allow for complementarities with teaching practice may severely understate the benefits of peers. The rest of the paper proceeds as follows. We first describe the data in Section 2, including our measures of teaching practice. Section 3 presents our theoretical framework. Section 4 discusses our empirical strategy. Section 5 presents our main findings, followed by an analysis of the possible mechanisms behind our main results in Section 6. Finally, Section 7 presents the conclusions. # 2 Data The Measures of Effective Teaching (MET) Longitudinal Database provides detailed information on teaching practices, student outcomes, and classroom composition from six large urban public school districts in the United States over two academic years (2009-2010 and 2010-2011). The data are linked to district administrative records, which include detailed student information, most importantly, current and prior measures of student achievement, but also age, race/ethnicity, gender, special education status, free lunch eligibility, gifted status, and English language learner status. The data also include rich measures related to teacher aptitude, such as the Content Knowledge for Teaching (CKT) assessment, and school principal evaluations). Finally, a key aspect of the MET data is that teachers were randomly assigned within school and grade to classrooms of students during the second academic year of the study (2010-2011). We analyze students' math performance because it has traditionally been shown to be more malleable to school inputs. Moreover, we focus on elementary school students (grades four and five) given that most of them are taught by general elementary teachers in self-contained classrooms with ⁸These districts include New York City Department of Education, Charlotte-Mecklenburg Schools, Denver Public Schools, Memphis City Schools, Dallas Independent School District, and Hillsborough County Public Schools. Kane and Staiger (2012) provides a detailed description on how schools were selected to participate in the MET project. More importantly, Kane and Staiger (2012) argues that MET teachers are comparable by most measures to their non-MET peers in the district, suggesting that they are representative of the districts included. ⁹The purpose of the CKT math assessment is to measure knowledge tied to the teaching of mathematics, such as: choosing and using appropriate mathematical representations; choosing examples to illustrate a mathematical concept; interpreting student work, including use of nonstandard strategies; and evaluating student understanding. ¹⁰When schools joined the MET study in 2009-2010, principals were asked to identify groups of teachers that 1) were teaching the same subject to students in the same grade, 2) were certified to teach common classes and, 3) were expected to teach the same subject to students in the same grade the following year. These groups of teachers were called "exchange groups." The plan was for principals to create class rosters as similar as possible within an exchange group, and then send these rosters to MET to be randomly assigned to "exchangeable" teachers. One issue in practice was that, when it came time to perform the randomization, not all teachers within an exchange group were able to teach during a common period. As a result, randomization was performed within subsets of exchange groups called "randomization blocks". # 2.1 Measuring Teaching Practice We make use of a well-known, research-based classroom observation protocol that measures teaching practices, the Framework for Teaching (FFT). Increasingly school districts have begun to use these types of protocols for teacher evaluation purposes and FFT is the most popular (AIR, 2013). According to MET project (2010b), "FFT has been subjected to several validation studies over the course of its development and refinement, including an initial
validation by Educational Testing Service (ETS)." The protocol divides teaching into four domains and the MET database rates teachers on two of them: classroom environment and instruction. We observe scores for eight different subdomains of these two domains by a median of seven different highly trained, independent raters, many of them current or former teachers. These raters had to pass reliability tests in which their scores were compared with master scores on a number of videos. This provides some assurance of the quality of these observational data and help us to address measurement error, as we discuss further in Section 4. Though FFT was designed so that each subdomain represents a separate aspect of teaching practice, we perform an exploratory factor analysis to determine the number of components that are actually separable in the data. Appendix Table 8 shows the correlations between the different subdomains and the loadings on each subdomain after performing an oblique rotation of the factors. This analysis suggests that FFT measures can be divided into two separable broad teaching practices. There are five sub-scales which load heavily on the first factor, including establishing a culture of learning, communicating with students, engaging students in learning, using assessment ¹¹Appendix A provides a detailed description of the sample selection. ¹²Of the MET observation protocol, two, FFT, and CLASS are generic protocols designed to apply across instruction in a range of subject-matters. In our view, of these, FFT has the most comprehensive architecture capturing teaching practices. ¹³The score assigned to each component ranges between 1 and 4, where each each number refers to a level (1:unsatisfactory, 2:basic, 3:proficient, 4:distinguished). Appendix Table 7 provides a description of each of the sub-components of the FFT protocol. ¹⁴The results reported take the average across raters so that there is one observation per component per teacher. Results are similar if we perform the exploratory factor analysis at the level of the rater or if we use orthogonal rotations. They are also similar if we extract rater fixed effects and video quality prior to performing the factor analysis. in instruction and using questioning and discussion techniques. These all reflect what we will call challenge/student-centered practices that encourage classroom dialogue and student involvement.¹⁵ The subdomains that load on the second factor are creating an environment of respect and rapport, managing student behaviors and managing classroom procedures. We will refer to these as classroom management practices, as they all relate to teaching practices that lead to a better classroom environment. Taken together the factors explain 92% of the total variance in the data.¹⁶ As a final robustness check, we also implemented confirmatory factor analysis with the aim to establish whether the proposed grouping of the FFT subdomains provides a better fit of the data than alternative models. First, we compare our model with a competing specification in which all the FFT subdomains load in only one latent factor. Second, we test our classification with the grouping that has been predetermined in the FFT protocol (i.e., classroom environment and instruction domains).¹⁷ In both cases, the Bayesian information criterion (BIC) indicates that our proposed classification provides a better fit of the data.¹⁸ Our empirical strategy will mainly make use of averages across the sub-scales that according to the exploratory factor analysis correspond to each broad practice (i.e., classroom management and challenge/student-centered practices), but we also explore other ways of addressing measurement error, as described in detail in Section 4.¹⁹ Table 1: Summary Statistics: Sample (N=2632) | Table 1: Summary | Dialistics. | Sample (. | 11-2002) | | |---|-------------|--------------|----------|-------| | | Mean | Std.
Dev. | Min | Max | | Grade Level | 4.50 | 0.50 | 4.00 | 5.00 | | Joint Math and ELA Class | 0.87 | 0.33 | 0.00 | 1.00 | | Age | 9.40 | 0.92 | 7.52 | 12.20 | | Male | 0.50 | 0.50 | 0.00 | 1.00 | | Gifted | 0.05 | 0.21 | 0.00 | 1.00 | | Special Education | 0.08 | 0.27 | 0.00 | 1.00 | | English Language Learner | 0.16 | 0.36 | 0.00 | 1.00 | | White | 0.25 | 0.43 | 0.00 | 1.00 | | Black | 0.31 | 0.46 | 0.00 | 1.00 | | Hispanic | 0.29 | 0.45 | 0.00 | 1.00 | | Asian | 0.11 | 0.31 | 0.00 | 1.00 | | American Indian | 0.01 | 0.08 | 0.00 | 1.00 | | Race Other | 0.03 | 0.17 | 0.00 | 1.00 | | Race Missing | 0.00 | 0.07 | 0.00 | 1.00 | | Math Score (Year 09-10) | -0.00 | 0.90 | -2.84 | 2.73 | | Math Score (Year 10-11) | 0.04 | 0.90 | -3.26 | 3.01 | | Unique Districts | 5 | - | - | - | | Unique Classes | 147 | - | - | - | | Unique Schools | 39 | - | - | - | | Unique Randomization Blocks | 57 | - | - | - | | Unique Teachers | 147 | - | - | - | | Percentage of Class w/ 09-10
Math Scores | 0.91 | 0.07 | 0.67 | 1.00 | | Percentage of Class in Random Assignment | 0.78 | 0.14 | 0.32 | 1.00 | | Teachers per Randomization
Block | 2.86 | 0.83 | 2.00 | 4.00 | | Randomization Block Compliance Rate | 0.93 | 0.09 | 0.50 | 1.00 | Notes: See Appendix A for a description of how this sample was obtained. Joint Math/ELA Class refers to a self-contained course in which students learn both math and ela, the remaining courses are either math or ela only. We summarize the percentage of each class w/ prior math test scores since students new to the district will not have prior test scores. We also summarize the percentage of each class in randomization because not all students in the classes we observe were on the original randomly assigned class rosters. 10 ## 2.2 Summary Statistics Table 1 reports summary statistics for characteristics of the students in our final sample.²⁰ This is a racially-diverse sample; 31% of students are black, 25% are white, 29% are Hispanic, and 11% are Asian, indicating that the school districts included in our data are not necessarily representative of the whole US population of students. The bottom part of Table 1 further characterizes the data by displaying the number of districts (5), schools (39), teachers (147), and randomization blocks (57) in our final sample. Table 2 displays summary statistics corresponding to the the FFT domains and classroom prior achievement average and inter-quartile range (IQR) in prior achievement.²¹ The last two columns of Table 2 show standard deviations within and between randomization blocks. We find considerable within-randomization block variation in teaching practice and classroom composition. # 3 Model We motivate here how interactions between teaching practice and peer initial achievement arise through a number of intuitive mechanisms. The simplest model has these interactions arising ¹⁵We have chosen the term "challenge/student-centered practices" to try to capture the overall emphasis of the model items. Many of the FFT domains entail elements of student-centered instruction (e.g., in the engaging students in learning domain, "students identify or create their own materials for learning"). Yet, it is important to note that the FFT protocol is well balanced with "challenge" items (e.g. the first indicator of proficiency in the questioning and discussion techniques sub-domain is "questions of high cognitive challenge" (Danielson, 2011).) ¹⁶An initial exploratory factor analysis shows that there is only one eigenvalue greater than 1, a possible rough rule of thumb for determining the number of factors. However, one factor explains 0.79 of the variation and a second factor explains a substantial additional part, 0.13, which is an additional criteria used to determine the number of factors. ¹⁷ Classroom environment includes: environment of respect and rapport, establishing a culture for learning, managing student behaviors, and managing classroom procedures. While *instruction* includes: communicating with students, engaging students in learning, using assessment in instruction, and using questioning and discussion techniques. ¹⁸This analysis has been performed using the "confa" command in Stata, which deals with problems of identification in factor models (Kolenikov, 2009). ¹⁹We also replicated our empirical strategy using principal component and following the FFT classification as alternative measures of challenge/student-centered and classroom management practices. Results in all cases are similar. ²⁰Appendix Table 9 shows summary statistics of the full randomization sample prior to any sample restrictions. ²¹We use IQR (i.e. difference in test score performance between the 75th and 25th percentile students in a given class) to measure classroom heterogeneity rather than standard deviation due to the fact that IQR is less sensitive to the presence of outliers, which is a particular concern in a context where classrooms could be small in size. Nevertheless, our main specifications presented in columns (1) and (2) of Table 5 are robust to replacing IQR with the standard deviation. through the production technology. This makes sense for a number of possible teaching practices. For instance, encouraging classroom discussion would create more of a team production climate where peers matter more for each student's achievement. Alternatively, for some practices, teacher practice could enter indirectly to the achievement production function through students' behavioral responses (e.g., engagement, attentiveness). In this case, complementarities would arise if good behavior changes whether students benefit from their peers. For instance, classroom management practices could help ensure the necessary behavior to create a good learning environment. While the production technology channel is straightforward, it is helpful to illustrate the behavioral channel with a simple model. The model also informs the empirical specification we take to the data.²² Let
Y_{it} denote achievement of a student i at time t. Let the index $c_t = c(i,t)$ denote i's classroom in period t and then the vector of classroom peer achievement excluding i is denoted $Y_{-ic_tt} = (Y_{1t}, ..., Y_{i-1,t}, Y_{i+1,t}, ..., Y_{Nt})$. A student's class has a teacher indexed j = j(i,t) who uses teaching practice(s) P_j . We begin with a value-added model where achievement production is a function of prior achievement, some moment of the prior achievement distribution of their time t classmates $(m(Y_{-ic_tt-1}))$. We introduce student behavior, b_{it} , which we conceptualize broadly as behaviors conducive to achievement, such as attentiveness, engagement and/or effort. Achievement production includes direct interactions between teaching practice and classroom composition and the possibility of an indirect channel by allowing the marginal benefits of behavior to vary by the classroom composition, i.e., $$Y_{it} = \beta_0 + \beta_b b_{it} + \beta_{by} b_{it} Y_{it-1} + \beta_{b\bar{y}} b_{it} m(Y_{-ic_tt-1}) + \beta_y Y_{it-1} + \beta_{\bar{y}} m(Y_{-ic_tt-1}) + \beta_p P_i' + \beta_{py} P_i' Y_{it-1} + \beta_{p\bar{y}} P_i' m(Y_{-ic_tt-1}) + \epsilon_{it}, \quad (1)$$ where ϵ_{it} denotes the residual. Students choose their behavior to maximize their expected utility from achievement net of the costs of behavior. To introduce a role for teaching practice in affecting behavior, we also permit ²²We take the teaching practice as given in order to focus on student responses. We can identify most convincingly the effects of a fixed or persistent aspect of teaching practice and postpone considering the endogenous response of teachers to the classroom composition in future work. | Table 2: Within and Between-Randomization Block Variation in Classroom Measures | | | | | | | |---|---------|--------------|---------|------|------------------------------|------------------------| | | Mean | Std.
Dev. | Min | Max | Std.
Dev.
Be-
tween | Std.
Dev.
Within | | Classroom Composition | | | | | | | | Avg Peer $Math_{t-1}$ | 0 | 1 | -2.31 | 3 | 0.84 | 0.58 | | IQR Peer $Math_{t-1}$ | 0 | 1 | -2.45 | 2.92 | 0.78 | 0.69 | | Avg Peer $Math_{t-1}$ (random) | 0 | 1 | -2.75 | 3.02 | 0.84 | 0.57 | | IQR Peer $Math_{t-1}$ (random) | 0 | 1 | -2.34 | 4.15 | 0.78 | 0.7 | | Teaching Practices | | | | | | | | Challenge/Student-Centered | 0 | 1 | -3.06 | 2.23 | 0.74 | 0.69 | | Classroom Management | 0 | 1 | -3.15 | 2.25 | 0.74 | 0.63 | | FFT Subdomains of Challe | nge/Stu | ident-C | entered | | | | | Using questioning and discussion techniques | 2.21 | 0.37 | 1.25 | 3.25 | 0.27 | 0.25 | | Establishing a culture of learning | 2.62 | 0.34 | 1.67 | 3.5 | 0.27 | 0.21 | | Communicating with students | 2.68 | 0.33 | 2 | 3.33 | 0.24 | 0.24 | | Engaging students in learning | 2.54 | 0.34 | 1.67 | 3.5 | 0.23 | 0.26 | | Using assessment in instruction | 2.43 | 0.37 | 1.33 | 3.5 | 0.27 | 0.26 | | FFT Subdomains of Classroom Management | | | | | | | | Managing student behaviors | 2.81 | 0.36 | 1.67 | 3.5 | 0.25 | 0.24 | | Managing classroom procedures | 2.74 | 0.37 | 1.67 | 3.5 | 0.27 | 0.25 | | Creating an environment or respect & rapport | 2.79 | 0.34 | 1.67 | 3.5 | 0.24 | 0.23 | Notes: The sample size is 2632 and focuses on 2010-11 school year when students were randomly assigned within randomization blocks. Teaching practices are measures in t-1 based on FFT. The last two columns decompose the standard deviation for each variable into between randomization block and within randomization block components. that the marginal utility/cost of behavior varies with the practice, i.e., $$U_{it} = \gamma_y Y_{it} - \frac{\gamma_b}{2} b_{it}^2 + \gamma_{bp} P_j' b_{it}.$$ Student utility-maximizing behavior b_{it}^* is then $$b_{it}^* = \frac{\gamma_y}{\gamma_b} (\beta_b + \beta_{by} Y_{it-1} + \beta_{b\bar{y}} m(Y_{-ic_t t-1})) + \frac{\gamma_{bp}}{\gamma_b} P_j'.$$ Behavior is increasing in initial achievement, peer initial achievement and importantly teaching practice. Classroom management practices may affect behavior directly through minimizing opportunities for disruptive behavior, whereas challenge/student-centered practices might do so by better engaging students in learning. We cannot estimate (1) directly because we do not observe behavior. Instead, we assume that the achievement we observe in the data is coming through student optimizing behavior. To obtain the achievement production we can take to the data, we plug in for utility-maximizing behavior to obtain the following reduced form $$Y_{it}^{*} = \tilde{\beta}_{0} + (\beta_{b} \frac{\gamma_{bp}}{\gamma_{b}} + \beta_{p}) P_{j}' + (\beta_{b\bar{y}} \frac{\gamma_{bp}}{\gamma_{b}} + \beta_{p\bar{y}}) P_{j}' m(Y_{-ic_{t}t-1}) + (2\beta_{b\bar{y}}\beta_{b} \frac{\gamma_{y}}{\gamma_{b}} + \beta_{\bar{y}}) m(Y_{-ic_{t}t-1}) + (\beta_{b\bar{y}} \frac{\gamma_{b}}{\gamma_{b}} + \beta_{p\bar{y}}) P_{j}' m(Y_{-ic_{t}t-1}) + (\beta_{b\bar{y}} \frac{\gamma_{y}}{\gamma_{b}} + \beta_{p\bar{y}}) P_{j}' Y_{it-1} \beta_{p\bar{y}}$$ Note that even if $\beta_p = \beta_{py} = \beta_{p\bar{y}} = 0$, so that teaching practice does not affect achievement directly and, more importantly, does not have direct complementarities with peer achievement, this specification illustrates how we would also get complementarities from the indirectly behavioral channel. This relies on two intuitive conditions. First, student behavior is affected by practice $(\beta_{bp} \neq 0)$. Second, the achievement spillovers from peers vary with behavior $(\beta_{b\bar{y}} \neq 0)$. In Appendix B, we discuss some alternative forms of the behavioral model which could also underlie these complementarities, including popular conformity-style models (Brock and Durlauf, 2001; Epple and Romano, 2010) or the classic treatment of the classroom environment as a congestible public good (Lazear, 2001). # 4 Estimation Our empirical strategy focuses on estimation of the reduced form model described in equation (2), which relates most closely to models estimated in the literature. We take as a starting point that $m(Y_{-ic_tt-1}) = \bar{Y}_{-ic_tt-1}$ and expand to include the IQR of the peer initial achievement distribution in the application, i.e., $$Y_{it} = \alpha_0 + \alpha_p P_j \prime + \alpha_{p\bar{y}} P_j \prime \bar{Y}_{-it-1} + \alpha_{\bar{y}} \bar{Y}_{-ic_t t-1} + \alpha_{\bar{y}2} \bar{Y}_{-ic_t t-1}^2 + \alpha_y Y_{it-1} + \alpha_{y2} Y_{it-1}^2 + \alpha_{py} P_j \prime Y_{it-1} + \alpha_{y\bar{y}} Y_{it-1} \bar{Y}_{-ic_t t-1} + \epsilon_{it}, \quad (3)$$ where we assume that observed achievement is a result of students' utility-maximizing behaviors. Our main parameter of interest is $\alpha_{p\bar{y}}$, which captures how the marginal benefits of teaching practices vary with the classroom composition.²³ As discussed above, a unique aspect of these data is that teachers are randomly assigned to classrooms within randomization blocks. However, even with random assignment of teachers to classrooms, several important endogeneity concerns remain. First, there is considerable non-compliance to the random assignment in the data. Largely, this was because assignments are made from preliminary rosters before school administrators had a good sense of who would be attending their school. Second, classroom composition may be endogenous as principals were not required to randomly assign students to classrooms. Third, teaching practice may still be endogenous even with random assignment because of measurement error. We discuss each of these issues in turn. ²³To simplify exposition, we ignore the role of other student and teacher observables though we include these additional controls in the analysis. ## 4.1 Non-compliance Because the data include an indicator of the teacher that was randomly assigned to the student, we can use standard approaches for dealing with non-compliance, focusing on the variation from the randomly assigned teacher. We focus most of our discussion around the more conservative "intent-to-treat" estimates, which replace the observed teaching practice with the randomlyassigned teaching practice. Let P_r denote the teaching practice of the randomly-assigned teacher, indexed r = r(i, t), then $$Y_{it} = \alpha_0 + \alpha_p P_{r'} + \alpha_{p\bar{y}} P_{r'} \bar{Y}_{-ic_t t - 1} + \alpha_{\bar{y}} \bar{Y}_{-ic_t t - 1} + \alpha_{\bar{y}} \bar{Y}_{-ic_t t - 1}^2 + \alpha_y Y_{it - 1} + \alpha_y Y_{it - 1} + \alpha_{y\bar{y}} Y_{it - 1} \bar{Y}_{-it - 1} + \alpha_b + \tilde{\epsilon}_{it}.$$ (4) Because teachers are randomly assigned at the randomization block levels, we include randomization block fixed effects α_b , where b = b(i,t) indexes randomization blocks. We show that our results are very similar when we instrument the observed with the randomly-assigned teacher's teaching practice, and so choose to focus on the intent-to-treat estimates for simplicity. # 4.2 Endogeneity of classroom composition Classroom composition could be endogenous for two reasons. First, the principals were not required to assign classroom composition randomly, though there was incentive to create comparable classrooms within randomization blocks to make the random assignment of teachers to either classroom palatable. Second, non-compliance by students could lead the classroom composition to be endogenous even after addressing non-compliance at the teacher-level. The question is then whether we can identify $\alpha_{p\bar{y}}$ even though \bar{Y}_{-ic_tt-1} is potentially endogenous.²⁴ To focus on classroom composition, assume that P_r is independent of $\tilde{\epsilon}_{it}$, though we explore violations of this next in Section 4.3. For simplicity, we also ignore for the moment the conditioning on Y_{it-1} and randomization block fixed effects, though all arguments go through with this addi- ²⁴Bun and
Harrison (2014) and Nizalova and Murtazashvili (2014) provide a detailed discussion of this type of setting, where an exogenous covariate is interacted with an endogenous variable, which we follow here. tional conditioning.²⁵ Assume further without loss of generality that $E(P_r) = E(\bar{Y}_{-ic_tt-1}) = 0$, so that teaching practice and classroom composition measures are mean 0. Demeaning these variables also aids in interpretation of the parameters in equation (4) as discussed further in Section 5. The correlation between the interaction term and the residual can then be written as $Cov(P_r\bar{Y}_{-ic_tt-1}, \tilde{\epsilon}_{it}) = E(P_rE(\bar{Y}_{-ic_tt-1}\epsilon_{it}|P_r))$. Sufficient assumptions for identification of the interaction include (conditional on Y_{it-1} and other controls): Assumption A1. $$E(\bar{Y}_{-ic_tt-1}\epsilon_{it}|P_r) = E(\bar{Y}_{-ic_tt-1}\epsilon_{it})$$, and **Assumption A2.** \bar{Y}_{-ic_tt-1} is independent of P_r A1 implies that if there is matching of students to peers which generates a correlation between peer initial achievement and the residual, it is independent of the randomly assigned teaching practice. A2 is standard for a randomized control trial. It then follows that $Cov(P_r\bar{Y}_{-ic_tt-1},\epsilon_{it})=E(P_r)E(\bar{Y}_{-ic_tt-1}\epsilon_{it})=0$, given that $E(P_r)=0$. The first equality follows from random assignment of teachers to students and the second through a normalization of the independent variables, without loss of generality. Bun and Harrison (2014) and Nizalova and Murtazashvili (2014) show that assumptions A1 and A2 are sufficient to obtain unbiased estimates of $\alpha_{p\bar{y}}$ even when classroom composition is endogenous. Nizalova and Murtazashvili (2014) discuss different studies using randomized control trials that maintain this assumption when estimating heterogeneity in treatment effects without making it explicit. Bun and Harrison (2014) point out that a number of weaker versions of Assumption A2 are sufficient for identification. In particular, it would be sufficient if $E(\bar{Y}_{-ic_tt-1}P_r)=E(\bar{Y}_{-ic_tt-1})E(P_r)$ and $E(\bar{Y}_{-ic_tt-1}^2P_r)=E(\bar{Y}_{-ic_tt-1}^2)E(P_r)$. The main way assumptions A1 and A2 could be violated is by student non-compliance in response to their randomly assigned teacher. We do not believe this is a concern for several reasons, which we discuss and test in Section 4.4. $^{^{25}}$ We also ignore the higher order peer terms though inclusion of them does not change our results. ## 4.3 Measurement error and endogeneity of teaching practice Recall that we have multiple observations of teaching practice taken from video observations from multiple raters of the teacher both in the initial observational year and in the random assignment year to help deal with potential measurment error in teaching practice. As in Araujo et al. (2016), our preferred approach is to use t-1 measures to capture the teaching practice. This address two related concerns. First, video raters may have difficulty separating the teacher's practice from the students they are teaching. Second, if teachers change their practice in response to classroom composition, then A2 would be violated. Our main strategy relies on the most straightforward approach to measurement by taking simple averages of the measures of practice (\bar{P}_{rt-1}). To clarify the potential effects of measurement error on our estimates, let the subscript k capture different observations of the teaching practice, i.e., $$P_{rkt-1} = P_r + u_{rkt-1}. (5)$$ Substituting in the the average measured practice for the true measures, we have $$Y_{it} = \alpha_0 + \alpha_p \bar{P}_{rt-1} + \alpha_{p\bar{y}} \bar{P}_{rt-1} \bar{Y}_{-ic_tt-1} + \alpha_{\bar{y}} \bar{Y}_{-ic_tt-1} + \alpha_{\bar{y}2} \bar{Y}_{-ic_tt-1}^2 + \alpha_y Y_{it-1} + \alpha_{y2} Y_{it-1}^2 + \alpha_{p\bar{y}} \bar{Y}_{-ic_tt-1} + \alpha_b + \nu_{it},$$ where $\nu_{it} = \tilde{\epsilon}_{it} - \alpha_p \bar{u}_{rt-1} - \alpha_{p\bar{y}} \bar{u}_{rt-1} \bar{Y}_{-ic_tt-1} - \alpha_{py} \bar{u}_{rt-1} Y_{it-1}$. Note that as the number of observations of practice increases, \bar{u}_{rt-1} goes toward 0, if u_{rkt} is mean independent of $u_{rk't}$ for $k \neq k'$. This is reasonable in our setting given the use of multiple trained raters to rate the same teacher, leading to arguably independent random draws of rater-related measurement error.²⁶ We show results are robust to using principal component analysis to construct our measures (the primary approach we have seen applied in this literature) or factor models to extract the underlying teaching practice from multiple measures as in equation (5). We are also aware of the concern that simply including extracted factors in nonlinear models does not completely deal with measurement ²⁶In earlier versions, we also tried controlling for rater fixed effects in measures of practice to account for any systematic rater differences and again results were very similar. error. We adapt the method developed in Hausman et al. (1991) to deal with nonlinear errors in variables models to our setting where the nonlinearity takes the form of interactions. We describe this approach in detail in Appendix C.2. If anything these results imply that our estimates of the interactions are biased toward 0, which is typical of these types of models in the literature (Jaccard and Wan, 1995; Busemeyer and Jones, 1983). To the extent that practice is time-varying, the focus on t-1 measures may understate the total effect of teaching practice. For time-varying practice, we can extract instead the common component from the correlation between time t-1 and t practices, which captures a persistent aspect of teaching practice. We discuss in Section 5.3 the findings when we instrument contemporaneous teaching practice with t-1 practices. These results show that if anything our estimation strategy provides conservative estimates of the interaction of practice with classroom composition. # 4.4 Testing identifying assumptions We perform a number of tests to ensure that our key identifying assumptions hold. First, we can test A2 directly by regressing randomly assigned teaching practice (based on t-1 averages) on classroom composition after controlling for randomization block fixed effect. Appendix Table 10 presents these balancing tests which show that teaching practice is not correlated with either of our measures of classroom composition, whether we use observed peers or initially-assigned peer. Second, regressions of the randomly-assigned teaching practice on student-level covariates also suggest that random assignment of teachers held. Third, Appendix Table 10 also presents balancing tests which regress student characteristics on peer characteristics to see if there is evidence of matching in the data. Again, the balancing test generally support that there is no matching of students (either using the observed or initially-assigned peers), suggesting that at least in terms of observables classroom composition does not appear to be endogenous.²⁷ Finally, we can test the implications for our estimation if there is some matching based on unobservables that we did not detect with our tests, by replacing the observed peer characteristics with the initially-assigned peer characteristics in our regressions. We show that results are robust to this setting in Section 5.3, $^{^{27}}$ We find 3 out of 22 coefficients to be statistically significantly different from 0 at the 0.1 level, which is less than expected by chance. alleviating any remaining concerns about potential violations of A1. # 5 Results To ground our analysis more closely in the literature, we begin with the typical specifications that treat teachers and peers as separable inputs. We then add interactions with classroom composition to show how the significance of measured teaching practices change across these specifications. All estimates include controls for randomization block fixed effects, student characteristics and teacher aptitude, the Content Knowledge of Teaching (CKT) assessment, though results are robust to their exclusion.²⁸ For the endogeneity concerns described in Section 4, we focus the initial analysis on lagged measures of teaching practice, and consider contemporaneous measures in Section 5.3. ## 5.1 Do Teaching Practices have a Direct Effect on Test Scores? Panels A and B of Table 3 display estimates of the effect of classroom management and challenge/studentcentered practices, respectively on math performance. Even columns allow the effect of teaching practice to vary by a student's initial achievement. Results in columns (1) and (2) are naive OLS specifications, where the lagged teaching practice of the current teacher (P_{jt-1}) is the variable of interest. Columns (3) and (4) report intent-to-treat (ITT) estimates, replacing P_{jt-1} with the teaching practice of the randomly-assigned teacher (P_{rt-1}) . Columns (5) and (6) present treatment on the treated (TT) results where P_{jt-1} is instrumented with P_{rt-1} . Given the breadth of the measures, it is perhaps surprising that none of the specifications (in both panels) show that the level of teaching practices play a statistically significant role in math performance.²⁹ However, these results are consistent with the findings in Garrett and Steinberg (2015), where the average of all FFT measures do not seem to have a direct impact on students' performance in their ITT and IV specifications. In a similar vein, while interactions of student prior achievement with classroom management or challenge/student-centered practices are statistically ²⁸See MET project (2010a) and footnote 9 for a description of this teacher assessment. The controls help with standard errors but do not matter for consistency because of the random assignment of treatment. ²⁹These results also holds if instead of using averages of the sub-domains,
we consider a principal component approach or the Hausman et al. (1991) econometric strategy described in Appendix C.2. Table 3: Effects of Teaching Practice without Classroom Interactions Actual Random IV Actual with Teacher Teacher Rand. Teacher (1)(2)(3)(4)(5)(6)Panel A Classroom Management 0.0050.005 0.009 0.009 0.010 0.009 (0.025)(0.024)(0.022)(0.021)(0.025)(0.024)0.022*0.023* $C.M. \times Math_{t-1}$ 0.018(0.013)(0.013)(0.013)0.737***0.737***0.738*** 0.737*** 0.738*** 0.738*** $Math_{t-1}$ (0.018)(0.018)(0.018)(0.018)(0.018)(0.018)Avg Peer $Math_{t-1}$ 0.013 0.014 0.0130.014 0.014 0.015(0.026)(0.026)(0.026)(0.026)(0.025)(0.025)P-value (joint signif. of teach-0.3800.2390.219ing practice) F-Stat. (first stage) † 251.3167.1Panel B 0.021 Challenge/Student-Centered 0.019 0.0250.023 0.0290.026(0.022)(0.022)(0.021)(0.021)(0.024)(0.024) $C.S.C. \times Math_{t-1}$ 0.017 0.025*0.026*(0.013)(0.013)(0.014)0.737*** 0.737***0.737*** 0.737*** 0.738***0.738*** $Math_{t-1}$ (0.018)(0.018)(0.018)(0.018)(0.018)(0.018)Avg Peer $Math_{t-1}$ 0.0150.0130.0140.0110.016 0.014 (0.026)(0.026)(0.026)(0.025)(0.026)(0.025)P-value (joint signif. of teach- Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered at the randomization block level. Panel A and B correspond to different regressions with math as the dependent variable. Lagged teaching practices are used and sample size is 2632. These regressions include randomization block fixed effects and controls for the level and a squared term of prior math achievement and average peer prior achievement, as well as CKT and student characteristics listed in Table 1. † Reports the Kleibergen-Paap rk Wald statistic for a weak instrument test. 0.195 ing practice) F-Stat. (first stage)[†] 0.029 186.6 279.8 0.042 significant in ITT and IV specifications, F-tests (reported at the bottom of each panel) show that the coefficients associated with these practices are in many specifications not jointly significant. At first glance, these findings suggest that our constructs of teaching practice may not capture an aspect of teaching practice that is meaningful for math performance. However, the next section shows that these conclusions are misleading when we build in complementarities between teaching practice and peers. # 5.2 Teaching Practice and Classroom Composition We expand the previous analysis by fully estimating equation (3), including interactions between classroom composition and teaching practice. Panels A and B of Table 4 present results for classroom management and challenge/student-centered practices, respectively. Odd columns accommodate models where average peer prior achievement is interacted with teaching practice (in addition to student prior achievement), while even columns additionally control for classroom interquartile range and its interaction with teaching practice.³⁰ Columns (1) and (2) report ITT results (i.e. P_{jt-1} is replaced with P_{rt-1} as per equation (4)). Columns (3) and (4) report TT estimates where P_{jt-1} is instrumented with P_{rt-1} . Panel A shows that classrooms benefit more from higher average peer initial achievement when the teacher uses good classroom management practices, which is consistent with the mechanisms discussed in our model. For example, ITT and TT results show that a one standard deviation increase in classroom management increase test scores around 7.4% to 8.9% of a standard deviation when peer average prior year performance is one standard deviation above the mean. In contrast, the even columns show that the effectiveness of classroom management practices does not vary significantly with the IQR in classroom prior achievement. On the one hand, these results have the intuitive interpretation that a student cannot benefit from higher-achieving peers if the teacher does not have good classroom management practices, which would foster positive classroom behaviors. On the other hand, it could be expected that classroom management practices are more effective among low-achieving students. Instead, our finding is consistent with the understanding that $^{^{30}}$ See footnote 21 for an explanation of why we include IQR in our specifications rather than standard deviation. classroom management is also an important challenge in higher-achieving classrooms, though the sources of disengagement may be different from in lower-achieving classrooms (Shernoff et al., 2003). Furthermore, consistent with the results in Table 3, the level effects of classroom management practices are still not statistically significantly different from 0 and point estimates are small. Moreover, the interactions between classroom management and student's prior achievement become statistically insignificant in most specifications, suggesting that failure to account for complementarities with classroom composition may lead to stronger conclusions about student-level heterogeneity in the effects of teaching practice. A further notable change is that classroom management emerges as a jointly statistically significant predictor of test performance when interacted with average peer prior achievement at the 99% confidence level in most specifications. Panel B shows results for challenge/student-centered practices. Generally, we find that classes with higher average initial achievement also benefit more for challenge/student-centered practices. However, the benefits of challenge/student-centered practices are smaller in classrooms with higher IQR in initial achievement. A standard deviation increase in this practice leads to a 5 to 6% reduction in achievement for classrooms that are a standard deviation above average IQR. Like in the case of classroom management, the level effect of challenge/student-centered practices are not statistically significantly different from 0 and neither are the interactions with initial achievement, after controlling for interactions with classroom composition. Furthermore, joint tests also confirm that challenge/student-centered practices emerge as statistically significant predictors of achievement at the 99% confidence level after permitting heterogeneity by classroom composition. In summary, the findings in Table 4 provide four main messages. First, teaching practices seem to show significant complementarities with classroom characteristics, ranging in magnitude from 3% to 8.9% of a standard deviation increase in math, for a standard deviation increase in teaching practice in a class that is one standard deviation above the mean in prior performance. We view these estimates as sizable given that some of the larger estimates of a standard deviation increase in teacher value-added on math scores range from 0.11 to 0.16 (Chetty et al., 2014). A standard finding in the literature is that the first two years of teacher experience, where experience effects are largest, increase student performance by only 0.06 of a standard deviation (Ladd and Thompson, 2008). Second, failure to account for complementarities with classroom composition lead us to understate the importance of these teaching practices. Third, student-level heterogeneity in effects of teaching practice appear less relevant after accounting for the complementarities with classroom composition. Finally, the contrasting evidence between classroom management and challenge/student-centered practices also points to the importance of considering these measures separately, i.e., a single measure of teaching quality, the focus in the literature, does not fit the findings when we allow for classroom context to moderate effects. We return to explore this in more detail in Section 6. #### 5.3 Robustness Endogeneity of classroom composition Given that teachers are randomly assigned to classrooms and that we focus on t-1 practices, a primary remaining endogeneity concern, as discussed in Section 4, is potential resorting of students to classrooms based on the teacher who is randomly assigned. Balancing tests reported in Section 4.4 already suggest that this is not the case, in that observable student and peer characteristics are not correlated with the randomly-assigned teacher's practice. However, given that we observe the students who were initially randomly assigned to the teacher, we can also test whether estimates of the interaction are systematically different if we replace actual peers with randomly-assigned peers. These estimates are reported in columns (5) and (6) of Table 4. Interactions between classroom composition and teaching practice are not statistically significantly different from their comparable estimates in columns (1) and (2), though smaller in magnitude. This is consistent with a slight downward bias in columns (5) and (6) generated from random measurement error in peers. Contemporaneous teaching practice One implication of focusing on lagged measures of teaching practice is that our estimates of the interactions between classroom composition and teaching practice may understate the true effects. While we prefer focusing on these conservative estimates because of concerns about the endogeneity of contemporaneous teaching practice, we also explore how the interactions of teaching practice with classroom composition change when we instrument Table 4: Teaching Practice and Classroom Composition | Table 4: Teach | | | | | | | |--|----------|----------|----------------|----------|-------------|-----------| | | | | IV Actual with | | Random | | | | | | Rand. Teacher | | Teacher and | | | | | | | | Class | | | | (1) | (2) | (3) | (4) | (5) | (6) | | Panel A | | | | | | | | Classroom Management | 0.005 | 0.008 | 0.002 | 0.006 | 0.003 | 0.005 | | | (0.018) | (0.019) | (0.021) | (0.021) | (0.019) | (0.020) | | $C.M. \times Math_{t-1}$ | 0.011 | 0.011 | 0.011 | 0.011 | 0.015 | 0.014 | | | (0.013) | (0.012) | (0.013) | (0.012) | (0.013) | (0.012) | | C.M. \times Avg. Peer Math _{t-1}
 0.079*** | 0.074*** | 0.089*** | 0.084*** | 0.056*** | 0.051** | | | (0.021) | (0.025) | (0.023) | (0.030) | (0.020) | (0.022) | | C.M. \times IQR Peer Math _{t-1} | | -0.017 | | -0.014 | | -0.017 | | | | (0.019) | | (0.023) | | (0.018) | | P-value (joint signif. of teaching practice) | 0.001 | 0.000 | 0.000 | 0.000 | 0.018 | 0.007 | | First Stage F-Stat. [†] | | | 84.4 | 42.9 | | | | Panel B | | | | | | | | Challenge/Student-Centered | 0.018 | 0.018 | 0.017 | 0.015 | 0.017 | 0.014 | | | (0.022) | (0.020) | (0.026) | (0.023) | (0.023) | (0.022) | | $C.S.C \times Math_{t-1}$ | 0.016 | 0.012 | 0.017 | 0.013 | 0.022* | 0.020 | | | (0.012) | (0.012) | (0.013) | (0.013) | (0.013) | (0.012) | | $C.S.C \times Avg Peer Math_{t-1}$ | 0.044*** | 0.031** | 0.050*** | 0.037** | 0.035** | 0.039** | | | (0.016) | (0.014) | (0.019) | (0.017) | (0.016) | (0.015) | | C.S.C. \times IQR Peer Math _{t-1} | | -0.053** | * | -0.058** | ** | -0.037*** | | | | (0.014) | | (0.014) | | (0.013) | | P-value (joint signif. of teaching practice) | 0.004 | 0.000 | 0.002 | 0.000 | 0.005 | 0.000 | | First Stage F-Statistic [†] | | | 67.1 | 53.4 | | | Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered at the randomization block level. Sample size is 2632. Lagged teaching practices are used throughout; columns (5) and (6) control for characteristics of initially randomly assigned peers. Panel A and B correspond to different regressions with math as the dependent variable. These regressions include randomization block fixed effects and controls for the level and a squared term of prior math achievement and average peer prior achievement, as well as CKT and student characteristics listed in Table 1. Even columns also include the IQR in peer prior achievement. Whenever peer variables are included we also include their square, and all pairwise interactions of peer variables and prior achievement. †Reports the Kleibergen-Paap rk Wald statistic for a weak instrument test. for contemporaneous teaching practices with lagged teaching practices. These results are presented in Appendix table 11 and discussed in detail in Appendix C.1. We show that interactions between teaching practice and classroom composition remain robust, but (as expected) are significantly larger in magnitude. Measurement error in teaching practice An additional concern with our findings is to what extent our results (e.g. lack of significance in the level of the teaching practice measures) are affected by problems of measurement error in our key teaching practice variables. In order to address this point, we implement a measurement error correction strategy that follows Hausman et al. (1991). This approach is more convenient than the usual IV strategy that accounts for error in variables, because the variables of interest enter non-linearly into our model and we are over-identified by having more than 2 measures of each practice. In appendix C.2, we provide a description of how we adapt the Hausman et al. (1991) method to our context, and describe results obtained after implementing it. For completeness, we also report results when performing IV corrections (i.e. instrumenting one of the measures that corresponds to a given teaching practice with the remaining measures of that teaching practice). Overall, the findings indicate that our current strategy of taking averages of the teaching practice variables provides similar results to strategies that correct for measurement error following these alternative approaches. The level effects and interactions with initial achievement remain close to 0, but the interactions with classroom composition increase slightly after correcting for measurement error. # 6 Mechanisms ## 6.1 Teaching Practice vs. Teacher "Quality" While previous specifications provide important insights, it is useful to explore the extent to which classroom-management and challenge/student-centered practices may proxy for similar aspects of teacher effectiveness and/or whether more standard, unidimensional measures of teacher quality are the primary channel through which our teaching practices operate. For instance, teachers who have better classroom management practices may also engage in more challenge/student-centered practices; therefore not including both domains in the same specification may bias our estimates. This exploration raises a number of interesting questions. To be clear, there is no consensus on how teaching quality should be measured, and FFT was designed to capture different aspects of effective teaching. This means that in some ways classroom management and challenge/student-centered practices are in fact measures of quality. Furthermore, the fact that classroom-management and challenge/student-centered practices interact differently with classroom composition already suggests that a single unidimensional quality may not be correct. Yet, we have other relevant unidimensional scales of quality, such as the Content Knowledge for Teaching assessment, as well as principal and student surveys, which we consider here. In order to address these key points, Table 5, Columns (1) and (2) present ITT (i.e. P_{jt-1} is replaced with P_{rt-1}) and IV (i.e. P_{jt-1} is instrumented with P_{rt-1}) results from a model that simultaneously controls for classroom management and challenge/student-centered practices and their interactions with peer composition. These results show that interactions of classroom management with the average peer initial achievement are robust, but seem to explain the interaction of challenge/student-centered practices with the average peer initial achievement in the previous tables because of strong correlations between these two practices. In contrast, interactions of challenge/student-centered practices with the IQR in peer initial achievement remain robust.³¹ Finally, in comparing the results in Tables 4 and 5 we see that key classroom composition interactions become stronger when both teaching practices are included in a single specification. This suggests that if there is a bias in our interactions from omitted teaching practice/quality, it is leading us to understate the true complementarity with classroom composition. Columns (3) to (5) of Table 5 report results from ITT specifications similar to column (1) where we additionally include different proxies for overall teacher "quality" and their interactions with classroom characteristics.³² First, we included teacher performance in the Content Knowledge for Teaching (CKT) assessment interacted with classroom characteristics. Second, we included the teacher's lagged average score on student assessments from the TRIPOD survey. TRIPOD as- ³¹Appendix tables 13, 14, and 15 report all the parameters of these specifications. ³²Notice that in all previous specifications, we were controlling for a measure of teacher aptitude (i.e. CKT), but it was not interacted with classroom characteristics. We cannot control for the usual measures of teacher value-added (i.e. adjusted random effects) because these models inherently neglect the presence of classroom-teacher interactions. sesses the extent to which students experience the classroom environment as engaging, demanding, and supportive of their intellectual growth.³³ Finally, we included school principal evaluations on teachers performance which are reported in the MET database.³⁴ These results show that across all specifications our key interactions between teaching practices and classroom composition remain significant, and the size of these coefficients is very similar to our previous specifications. Furthermore, we see that these alternative measures of "quality" do not interact with peer average initial achievement and IQR in the same way as our two practices. This is true despite CKT and principal surveys being statistically significant predictors of math achievement. In contrast to our practice measures, these show statistically significant heterogeneity in effects by the student's initial achievement, suggesting that "quality" as measured through CKT and principal assessments matters more for better students. Class size Because IQR is correlated with class size, an interesting question is whether interactions of challenge/student-centered practices are driven by larger class sizes. We test this by adding interactions of classroom management and challenge/student-centered with class size to column (1) of Table 5. We do not include these results as we find no evidence that either practices interacts with class size. Furthermore, positive interactions of classroom management and average peer prior achievement and negative interactions of challenge/student-centered practices with the IQR remain robust, and if anything increase in magnitude with the additional controls. #### 6.2 Choosing Practices that Matter A tension in using our composite measures of teaching practice is that they do not provide as fine-grained prescriptive evidence as desirable on what practices matter most in different settings, which arguably is consistent with the formative underpinnings of the FFT with its eight separate subdomains. With this in mind, we present in Table 6 results at the subdomain level in order to complement the evidence from the aggregated subdomains, particularly mirroring results in column ³³Tripod is a protocol that measures teacher effectiveness based on student surveys. See Kane and Staiger (2012) for a description of this tool and the importance for predicting teacher value-added. ³⁴The fact that our specifications include randomization blocks (which in this case are school-grade fixed effects) should account for systematic difference in principals' reporting. Table 5: Teaching Practices and Alternative Teacher "Quality" Controls | <u> </u> | Random | IV Actual | cher "Quality" Controls Random Teacher | | | |--
----------|-------------|---|------------|----------| | | Teacher | with Random | Alt. Teacher Contro | | ntrol: | | | | Teacher | CKT | 7C | PSVY | | | (1) | (2) | (3) | (4) | (5) | | Classroom Management | -0.012 | -0.016 | -0.014 | -0.016 | -0.015 | | | (0.020) | (0.022) | (0.020) | (0.020) | (0.019) | | C.M. \times Math _{t-1} | 0.004 | 0.004 | 0.011 | 0.004 | 0.003 | | | (0.020) | (0.021) | (0.019) | (0.019) | (0.019) | | C.M. \times Avg Peer $Math_{t-1}$ | 0.076** | 0.087** | 0.077** | 0.076** | 0.076*** | | | (0.029) | (0.036) | (0.030) | (0.029) | (0.027) | | C.M.× IQR Peer $Math_{t-1}$ | 0.026 | 0.035 | 0.026 | 0.026 | 0.026 | | | (0.022) | (0.026) | (0.022) | (0.023) | (0.021) | | Challenge/Student-Centered | 0.026 | 0.025 | 0.026 | 0.026 | 0.011 | | | (0.023) | (0.025) | (0.022) | (0.022) | (0.024) | | C.S.C. \times Math _{t-1} | 0.010 | 0.011 | 0.002 | 0.016 | 0.005 | | | (0.020) | (0.021) | (0.020) | (0.019) | (0.019) | | C.S.C. \times Avg Peer $Math_{t-1}$ | -0.010 | -0.009 | -0.010 | -0.010 | -0.005 | | | (0.019) | (0.022) | (0.019) | (0.019) | (0.019) | | C.S.C. \times IQR Peer Math _{t-1} | -0.062** | * -0.071*** | -0.063*** | * -0.057** | -0.054** | | | (0.017) | (0.019) | (0.017) | (0.021) | (0.021) | | Alt. Teacher Control | | | -0.008 | -0.006 | 0.055*** | | | | | (0.016) | (0.019) | (0.017) | | T.C. \times Math _{t-1} | | | 0.044*** | -0.029** | 0.032** | | | | | (0.014) | (0.013) | (0.013) | | T.C. \times Avg Peer $Math_{t-1}$ | | | -0.019 | -0.007 | -0.016 | | | | | (0.018) | (0.020) | (0.016) | | T.C. \times IQR Peer Math _{t-1} | | | -0.012 | -0.017 | -0.003 | | | | | (0.021) | (0.021) | (0.016) | | P-value joint signif. teaching practice (C.M.& C.S.C). | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | | P-value joint signif. alt. teacher control (T.C.) | | | 0.052 | 0.172 | 0.013 | | First Stage F-Statistic [†] | | 27.7 | | | | | | | | | | | Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered at the randomization block level. Sample size is 2632. Dependent variable is math and teaching practices are measured at t-1. Regressions use lagged teaching practice of current teacher and include randomization block fixed effects and controls for the level and a squared term of prior math achievement and average and IQR of peer prior achievement, their square and all pairwise interactions of peer variables and prior achievement, as well as student characteristics listed in Table 1. † Reports the Kleibergen-Paap rk Wald statistic for a weak instrument test. CKT denotes Content Knowledge for Teaching assessment, 7C denotes overall student survey teacher ratings based on Tripod and PSVY denotes principal assessments of teacher quality. TC denotes alternative teacher control (i.e. CKT, 7C, or PSVY). See Appendix Tables (13), (14) and (15) for all parameters. (2) of Table 4 for each subdomain separately. We offer two notes of caution when interpreting these results. First, a higher degree of measurement error should bias interactions toward zero. Second, the subdomains are highly correlated as revealed by the exploratory factor model. A main pattern we see in this table is that there is a positive interaction with average peer prior achievement with all the subdomains that aggregate to make up classroom management (the first 3 columns of Table 6, Panel A), i.e., creating an environment of respect and rapport (CERR), managing classroom procedure (MCP) and managing student behaviors (MSB).³⁵ Each of these subdomains shows a positive interaction with average peer achievement. Managing student behavior (MSB) is the largest, but not statistically significantly different from the other subdomains. Teachers with high levels of MSB are characterized by establishing clear expectations for student conduct and by implementing them efficiently. This suggests that peer effects are amplified by teachers that can preempt misbehavior in the classroom. The two other subdomains, MCP and CERR, are linked to teachers' skills in managing more general aspects of the classroom environment, including instructional groups, transitions and teacher/student interactions. The significant positive interactions with average prior achievement suggests that there are a number of interrelated practices beyond just limiting disruptive behaviors, which create an environment where students can benefit more from having higher-achieving peers. Second, across the board the five subdomains which make up challenge/student-centered practice exhibit negative interactions with class IQR. These include establishing a culture of learning (ECL), engaging students in learning (ESL), using questioning and discussion techniques (USDT), using assessment in instruction (UAI) and communicating with students (CS). Among these, communicating with students has the largest negative coefficient but also the highest standard error. The definition of these rubrics are closely related to promoting student active participation in the class as a key element of the learning process. More detailed consideration of the rubrics also reveals significant emphasis on challenging students in the different subdomains. Our findings indicate that the benefit of these practices are largely dependent on the heterogeneity in classroom prior achievement. Basically, promoting discussion among students may not constitute a good learning $^{^{35}}$ See Table 7 in the appendix for the definition of each subdomain. Table 6: Individual FFT Subdomain Regressions | Panel A | Creating environment of respect & rapport | Managing
classroom
procedures | Managing
student
behaviors | Establish
culture of
learning | |---|---|-------------------------------------|----------------------------------|-------------------------------------| | Practice | 0.020 (0.018) | 0.004 (0.019) | 0.003 (0.017) | 0.010 (0.022) | | Practice \times Math _{t-1} | 0.011 (0.012) | 0.009 (0.013) | 0.009 (0.013) | 0.006
(0.011) | | $\text{Practice} \times \text{Avg Peer Math}_{t-1}$ | 0.057***
(0.020) | 0.052***
(0.019) | 0.072***
(0.026) | 0.049**
(0.019) | | $\text{Practice} \times \text{IQR Peer Math}_{t-1}$ | -0.019
(0.017) | -0.035** (0.016) | -0.012
(0.019) | -0.040*** (0.015) | | P-value (joint signif. of teaching practice) | 0.000 | 0.000 | 0.002 | 0.000 | | Panel B | Engaging
students in
learning | Using questioning and discussion | Using assessment in instruction | Communicating with students | | Practice | 0.028 (0.018) | 0.011 (0.017) | 0.016 (0.021) | 0.014
(0.018) | | Practice \times Math _{t-1} | $0.001 \\ (0.012)$ | 0.011 (0.014) | 0.020*
(0.011) | 0.015 (0.012) | | $\text{Practice} \times \text{Avg Peer Math}_{t-1}$ | $0.005 \\ (0.014)$ | 0.020*
(0.012) | 0.037**
(0.016) | 0.034**
(0.014) | | Practice \times IQR Peer $Math_{t-1}$ | -0.047*** (0.015) | -0.046*** (0.017) | -0.039*** (0.014) | -0.070*** (0.026) | | P-value (joint signif. of teaching practice) | 0.035 | 0.017 | 0.000 | 0.000 | Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered at the randomization block level. Panel A and B correspond to different regressions with math as the dependent variable. Lagged teaching practices are used and sample size is 2632. These regressions include randomization block fixed effects and controls for the level and a squared term of prior math achievement, average peer prior achievement, IQR of peer prior achievement as well as CKT and student characteristics listed in Table 1. The first 3 subdomains correspond to classroom management, the remainder to challenge/student-centered. tool when all students cannot share a somewhat similar level of understanding on key concepts. For example, large heterogeneity in classroom achievement is likely to require different levels of complexity in the discussion, making the learning process more complicated. Likewise, it may be difficult to challenge all students when there there is a great deal of heterogeneity in background. # 7 Conclusion In this paper, we illustrate that the effects of teaching practice vary significantly with classroom composition. Our preferred estimates indicate that classroom management practices increase math achievement by 0.09 of a standard deviation when average classroom initial peer math performance is 1 standard deviation above average. In contrast, challenge/student-centered practices decrease math performance by -0.07 of a standard deviation when the classroom IQR in initial achievement is 1 standard deviation above average. We view these estimates as sizable given that some of the larger estimates of a standard deviation increase in teacher value-added, which is based on unobservable teacher contributions to math, range from 0.11 to 0.16 (Chetty et al., 2014). We eliminate central endogeneity concerns of matching of teachers to students and measurement error by exploiting rich data where teachers are randomly assigned to classrooms and evaluated by multiple highly-trained raters over a two-year period. We make three key contributions to the literature on teacher effectiveness. First, we illustrate that failure to account for moderating effects of classroom composition may lead researchers to severely misstate the importance of a given measured teaching practice for achievement. This helps address the common mystery of why teacher effectiveness is so hard to measure and may even help reconcile mixed findings in different contexts. Second, failure to account for the moderating effects of classroom composition also leads us to overstate the importance of individual student-level heterogeneity in the effects of teaching practice. Indeed, in our context, it appears that all
heterogeneity is driven by classroom composition. Third, focus on a single, unidimensional measure of teacher effectiveness may be misguided. Our two measures of teaching practice interact with different aspects of classroom composition. Furthermore, we show that our estimated interactions of teaching practice with classroom com- position remain after controlling for additional standard measures of teacher "quality," such as Content Knowledge for Teaching Assessment, student evaluations and principal surveys. In contrast, while the measures of teacher quality in the MET data show some evidence of heterogeneity by student initial achievement, they do not interact with classroom composition, and thus provide less guidance about improvement strategies for a given classroom or about matching teachers with particular strengths to classrooms. Our findings also have important implications for the peer effects literature. Because the effects of peers vary significantly with teaching practice, this suggests that failure to account for these interactions may also severely understate the importance of peers in different contexts. Furthermore, it suggests the potential for a change in policy emphasis from reallocating students to classrooms to meet different achievement objectives (which can be costly and involve severe tradeoffs among different types of students) to determining teaching practices that best fit different classroom contexts. Finally, our results have important implications for policies related to (1) teacher evaluation and accountability and (2) teacher professional development and training. Classroom observations of teaching practice—scored using the FFT and other protocols—are now routinely used in annual teacher evaluation and accountability. Our findings suggest that, depending on teachers' assignments or the overall school context, specific domains of instructional practice may be more relevant to teacher effectiveness than others. As such, specific domains of instruction (rather than an overall observational score) may be emphasized in accountability systems depending on teaching assignments and/or school context. In terms of teacher professional development and training, our findings reinforce the importance of explicit attention to challenges stemming from classroom-achievement heterogeneity (Cohen and Lotan, 1997; Seaton et al., 2010). In terms of informing particular teaching practices, we find that scores on protocol subdomains do not appear to be as orthogonal in practice as they are in principle, or are intended to be. ³⁶ Further research could ben- ³⁶That is, the MET observational protocol seem to have been developed as *formative* measures of instruction, where ideally the protocol would be useful in assessing "weak points" to target for instructional improvement. This is our own interpretation of these protocol. The supporting documentation we examined for the FFT protocol for example, does not specifically address the extent to which it was designed to measure a formative construct (Danielson, 2011, 2012). efit from determining how to more fully differentiate, to the extent it is feasible, different aspects of teaching practice to make more formative recommendations for teacher training and development. That said, our research provides compelling evidence that any such recommendations should be adapted to the challenges faced by different school and classroom contexts. # References - **AIR**, "Center on Great Teachers and Leaders: Databases on state teacher and principal evaluation policies," 2013. - Araujo, Maria Caridad, Pedro Carneiro, Yyannu Cruz-Aguayo, and Norbert Schady, "Teacher Quality and Learning Outcomes in Kindergarten," Quarterly Journal of Economics, 2016, 131 (3). - Bacher-Hicks, Andrew, Mark J Chin, Thomas J Kane, and Douglas O Staiger, "An evaluation of bias in three measures of teacher quality: Value-added, classroom observations, and student surveys," 2017, (No. NBER 23478). - Brock, William A. and Steven N. Durlauf, "Interactions-Based Models," in James Heckman and Edward Leamer, eds., *Handbook of Econometrics*, Vol. 5, Amsterdam: Elsevier, 2001, pp. 3297–3380. - Bun, Maurice J.G. and Teresa D. Harrison, "OLS and IV Estimation of Regression Models Including Endogenous Interaction Terms," School of Economics Working Paper Series 2014-3, LeBow College of Business, Drexel University January 2014. - Burke, Mary A. and Tim R. Sass, "Classroom Peer Effects and Student Achievement," Working Papers, Department of Economics, Florida State University February 2006. - Busemeyer, Jerome R. and Lawrence E. Jones, "Analysis of multiplicative combination rules when the causal variables are measured with error," *Psychological Bulletin*, 1983, 93 (3), 549–562. - Cantrell, Steve and Thomas J Kane, "Ensuring fair and reliable measures of effective teaching: Culminating findings from the MET project's three-year study," *Policy and Practice Brief*, 2013. - Chetty, Raj, John N Friedman, and Jonah E Rockoff, "Measuring the impacts of teachers I: Evaluating bias in teacher value-added estimates," *The American Economic Review*, 2014, 104 (9), 2593–2632. - Cohen, E. G. and R. A. Lotan, Working for Equity in Heterogeneous Classrooms: Sociological Theory in Practice, New York: Sociology of Education Series. Teachers College Press, 1234 Amsterdam Avenue, , NY 10027 (paperback: ISBN-0-8077-3643-0; clothbound: ISBN-0-8077-3644-9, 1997. - Connor, Carol McDonald, Frederick J Morrison, and Leslie E Katch, "Beyond the reading wars: Exploring the effect of child-instruction interactions on growth in early reading," *Scientific studies of reading*, 2004, 8 (4), 305–336. - **Danielson, Charlotte**, "The framework for teaching evaluation instrument," The Danielson Group Princeton, NJ 2011. - _ , "Teacher evaluation: What's fair? What's effective?," Educational Leadership, 2012, 70 (3), 32–37. - **Duflo, Esther, Pascaline Dupas, and Michael Kremer**, "Peer effects, teacher incentives, and the impact of tracking: Evidence from a randomized evaluation in Kenya," *American Economic Review*, 2011, 101 (5), 1739–1774. - **Epple, Dennis and Richard Romano**, "Peer Effects in Education: A Survey of the Theory and Evidence," in Jess Benhabib, Alberto Bisin, and Matthew O. Jackson, eds., *Handbook of Social Economics*, Vol. 1B, Amsterdam, The Netherlands: North-Holland, 2010, chapter 20, pp. 1053–1164. - **Fox, Lindsay**, "Playing to Teachers' Strengths: Using multiple measures of teacher effectiveness to improve teacher assignments," *Education Finance and Policy*, 2016. - Fruehwirth, Jane Cooley, "Identifying peer achievement spillovers: Implications for desegregation and the achievement gap," *Quantitative Economics*, 2013, 4 (1), 85–124. - Gamoran, Adam, Walter G. Secada, and Corab Marrett, "The organizational context of teaching and learning: Changing theoretical perspectives," in M. Hallinan, ed., *Handbook of the Sociology of Education*, New York: Kluwer Academic/Plenum, 2000. - Garrett, Rachel and Matthew P Steinberg, "Examining teacher effectiveness using class-room observation scores: Evidence from the randomization of teachers to students," *Educational Evaluation and Policy Analysis*, 2015, 37 (2), 224–242. - Gibbons, Steve and Shqiponja Telhaj, "Peer Effects and Pupil Attainment: Evidence from Secondary School Transition," CEE Discussion Papers 0063, Centre for the Economics of Education, LSE May 2006. - **Hamilton, L. S.**, "Measuring teaching quality using student achievement tests: Lessons from educators' responses to No Child Left Behind," in Sean Kelly, ed., Assessing teacher quality: Understanding teacher effects on instruction and achievement, New York: Teachers College Press, 2012. - Hanushek, Eric A. and Steven Rivkin, "Harming the best: How schools affect the black-white achievement gap," *Journal of Policy Analysis and Management*, 2009, 28 (3), 366–393. - _ , John F. Kain, and Steven G. Rivkin, "New Evidence about Brown v. Board of Education: The Complex Effects of School Racial Composition on Achievement," *Journal of Labor Economics*, 2009, 27 (3), 349–383. - Hausman, Jerry A., Whitney K. Newey, Hidehiko Ichimura, and James L. Powell, "Identification and estimation of polynomial errors-in-variables models," *Journal of Econometrics*, 1991, 50 (3), 273 295. - Hoxby, Caroline M. and Gretchen Weingarth, "Taking Race Out of the Equation: School Reassignment and the Structure of Peer Effects," 2005. Working Paper. - **Jaccard, James and Choi K Wan**, "Measurement Error in the Analysis of Interaction Effects Between Continuous Predictors Using Multiple Regression: Multiple Indicator and Structural Equation Approaches," *Quantitative Methods in Psychology*, 1995, 117 (2), 348–357. - **Jackson, C. Kirabo**, "Match quality, worker productivity and worker mobility: direct evidence from teachers," *The review of economis and statistics*, October 2013, 95 (4), 1096–1116. - Kane, Thomas J and Douglas O Staiger, "Gathering Feedback for Teaching: Combining High-Quality Observations with Student Surveys and Achievement Gains. Research Paper. MET Project.," Bill & Melinda Gates Foundation, 2012. - _ , Daniel F McCaffrey, Trey Miller, and Douglas O Staiger, "Have we identified effective teachers? Validating measures of effective teaching using random assignment," in "Research Paper. MET Project. Bill & Melinda Gates Foundation" Citeseer 2013. - Kane, Thomas J., Eric S. Taylor, John H. Tyler, and Amy L. Wooten, "Identifying Effective Classroom Practices Using Student Achievement Data," *Journal of Human Resources*, 2011, 46 (3), 587–613. - **Kennedy, M. M.**, "Introduction: The Uncertain Relationship between Teacher Assessment and Teacher Quality," in "Teacher Assessment and the Quest for Teacher Quality," San francisco: Jossey Bass, 2010. - Kolenikov, Stanislav, "Confirmatory Factor Analysis Using Confa," The Stata Journal, 2009, 9 (3), 329–373. - Konstantopoulos, Spyros, "Effects of Teachers on
Minority and Disadvantaged Students' Achievement in the Early Grades," *The Elementary School Journal*, 2009, 110 (1), 92–113. - Ladd, Helen and Edgar Thompson, "Teacher effects: What do we know," 01 2008, 21. - Lavy, Victor, "What Makes an Effective Teacher? Quasi-Experimental Evidence," CESifo Economic Studies, 2015. - _ , M. Daniele Paserman, and Analia Schlosser, "Inside the Black Box of Ability Peer Effects: Evidence from Variation in the Proportion of Low Achievers in the Classroom," *Economic Journal*, 03 2012, 122 (559), 208–237. - **Lazear, Edward P.**, "Educational production," Quarterly Journal of Economics, 2001, 116 (3), 777–803. - **MET project**, "Content knowledge for teaching and the MET project," Bill and Melinda Gates foundation September 2010. - _ , "Danielson's framework for teaching for classroom observations," Bill and Melinda Gates foundation October 2010. - Mihaly, Kata, Daniel F. McCaffrey, Douglas Staiger, and J.R. Lockwood, "A composite estimator of effective teaching," MET Project Research Paper, Bill & Melinda Gates Foundation, 2013. - Nizalova, Olena Y. and Irina Murtazashvili, "Exogenous Treatment and Endogenous Factors: Vanishing of Omitted Variable Bias on the Interaction Term," *Journal of Econometric Methods*, 2014, 5 (1), 71–77. - Rivkin, Steven G., Eric A. Hanushek, and John F. Kain, "Teachers, Schools, and Academic Achievement," *Econometrica*, 03 2005, 73 (2), 417–458. - Rothstein, J., "Teacher Quality in Educational Production: Tracking, Decay, and Student Achievement," *Quarterly Journal of Economics*, February 2010, 125 (1), 175–214. - Sacerdote, Bruce, "Peer Effects in Education: How Might They Work, How Big Are They and How Much Do We Know Thus Far?," in Erik Hanushek, Stephen Machin, and Ludger Woessmann, eds., *Handbook of the Economics of Education*, Vol. 3, Elsevier, June 2011, chapter 4, pp. 249–277. - Seaton, Marjorie, Herbert W. Marsh, and Rhonda G. Craven, "Big-Fish-Little-Pond Effect: Generalizability and Moderation—Two Sides of the Same Coin," *American Educational Research Journal*, 2010, 47 (2), 390–433. - Shernoff, David J., Mihaly Csikszentmihalyi, Barbara Schneider, and Elisa Steele Shernoff, "Student Engagement in High School Classrooms from the Perspective of Flow Theory," School Psychology Quarterly, 2003, 18 (2), 158–176. - Stacy, Brian, Cassandra Guarino, Mark Reckase, and Jeffrey Wooldridge, "Does the precision and stability of value-added estimates of teacher performance depend on the types of students they serve?," Education Policy Center, Michigan State University, Working paper no. 35 2013. - **Taylor, Eric S.**, "Skills, Job Tasks, and Productivity in Teaching: Evidence from a Randomized Trial of Instruction Practices," *Journal of Labor Economics*, 2018, 36 (3). - **Zimmer, Ron**, "A new twist in the education tracking debate," *Economics of Education Review*, 2003, 22 (3), 307–315. ## A Randomization and Sample Selection Randomization: When schools joined the MET study in 2009-2010, principals were asked to identify groups of teachers that 1) were teaching the same subject to students in the same grade 2) were certified to teach common classes and 3) were expected to teach the same subject to students in the same grade the following year. These groups of teachers were called "exchange groups" The plan was for principals to create class rosters as similar as possible within an exchange group, and then send these rosters to MET to be randomly assigned to "exchangeable" teachers. One issue in practice was that when it came time to perform the randomization, not all teachers within an exchange group were able to teach during a common period. As a result, randomization was performed within subsets of exchange groups called "randomization blocks." In summary, MET requested scheduling information for 2,462 teachers from 865 exchange groups in 316 schools. From this, they created 668 randomization blocks from 619 exchange groups in 284 participating schools. The drop off in teachers can be attributed to either a school refusing to permit randomly swapping rosters, or all remaining MET project teachers leaving the school or the study prior to randomization. From these randomization blocks, 1,591 teachers were randomly assigned to class rosters. Teachers were lost either because they were not scheduled to teach the exchange group subject and grade level in 2010-2011 or they decided not to participate Kane et al. (2013).³⁷ Since assignments were made based on preliminary rosters at the end of the previous school year, before school administrators knew who would be attending their school, there was both attrition from the sample and additional students who moved into the school and needed to be incorporated in the sample. As a result, our analysis does not rely on the assumption that the observed classroom composition is random, but rather exploits what we know to be random—the initial random assignment of teachers to classrooms. We discuss this further in Section 4. We cannot include students who were not in the randomization sample in our main analysis, which relies on the randomization, but we do include them as part of the calculation of classroom composition when prior test scores are available. For the average student in our final sample, 78% of classroom peers were included in randomization, and we observe prior test scores for 91% of classroom peers. Sample Selection: Our sample selection is motivated by our estimation strategy. We start with the entire sample of elementary students observed in the randomization year (2010-11), in either a math or joint math and ELA classroom, which includes 11,409 student observations. Since we rely on the random assignment of teachers to classrooms, we restrict the sample to the 5,730 students who were randomly assigned a teacher (but did not necessarily comply). The characteristics of these students are summarized in appendix Table (9). Note that while six districts participated, only five were asked to have elementary schools participate. Further sample restrictions are necessary for our estimation strategy. We require observed test scores prior to, and after the randomization year. We also required non-missing teaching practices from the first year (2009-10) and Content Knowledge for Teaching (CKT) scores in math. We restrict the sample to students whose actual and randomly assigned teacher has non-missing values for both, which reduces the sample to 4,201. Using the remaining students we count the number of students per class, and restrict the sample to all classes with a minimum of 7 students. From this restriction we are left with 4,124 students. ³⁷The number of randomized teachers includes 386 high school teachers and 24 teachers from grades 4-8 for whom rosters were later found to be invalid by MET. We do not include these in our sample. While the true class sizes are much larger than this, we do this to avoid the possibility of results being driven by unusually small classes based on our previous sample restrictions. Finally, our estimation strategy requires a minimum of two teachers per randomization block, and we also want to ensure randomization was performed properly. There are 3,618 students in a randomization block with at least two teachers. Of these remaining students, 2,682 are in a randomization block with at least a 50% compliance rate. At this point, we find there are 44 duplicate student observations between classes, which we drop. We then re-run the class size, teachers per randomization block, and randomization block compliance rate restrictions. The final restricted regression sample has 2,632 student observations. These student observations span 5 districts, 39 schools, 57 randomization blocks, 147 teachers, 147 classrooms, with 87% of student observations coming from joint math/ela courses. Table (1) presents summary statistics of our final regression sample. #### B Alternative Models While the behavioral model in Section 3 posits some possible channels of complementarities, alternative plausible models of student behavior would produce similar complementarities. For instance, it is straightforward to add to the model that students conform to the average behavior of classmates, so that utility is $$U_{it} = \gamma_y Y_{it} - \frac{\gamma_b}{2} (b_{it} - \gamma_{\bar{b}} \bar{b}_{-it})^2 + \gamma_{bp} P'_j b_{it}.$$ This captures the conformity-type peer effects that are the focus of the social interactions literature (Brock and Durlauf, 2001; Epple and Romano, 2010). In this case, optimal behavior would be a function of peer behavior and teaching practice and similar results would follow, except here the benefits of the teaching practice are amplified through the re-enforcing behavior of peers. For instance, a teacher's classroom management practice encourages a student and her peers to behave better, and the better behavior of peers further encourages the student's own better behavior and vice-versa. The interaction between teaching practice and peer initial achievement would follow again in this model because the marginal product of good behavior differs with peer initial achievement. Furthermore, we could also motivate the interaction between teachers and peers as arising through a production function that has complementarities between average peer behavior and own behavior, i.e., $$Y_{it} = \beta_0 + \beta_b b_{it} + \beta_{by} b_{it} Y_{it-1} + \beta_{b\bar{y}} b_{it} m(Y_{-ic_tt-1}) + \beta_{b\bar{b}} b_{it} \bar{b}_{-it} + \beta_{\bar{b}} \bar{b}_{-it} + \beta_y Y_{it-1} + \beta_{\bar{v}} m(Y_{-ic_tt-1}) + \beta_p P_i' + \beta_{py} P_i' Y_{it-1} + \beta_{p\bar{y}} P_i' m(Y_{-ic_tt-1}) + \epsilon_{it},$$ where there are direct spillovers from peer behavior and the achievement benefits of behavior are increasing in peer behavior. This channel connects well with Lazear (2001)'s classic treatment of the classroom learning environment as a public good that is disrupted by
student behaviors. The reduced form in this setting would be similar in structure to the above, when $m(Y_{-ic_tt-1}) = \bar{Y}_{-ic_tt-1}$, with the addition of the P_j^2 term arising through the interaction of own and peer behavior, both of which are increasing in P_j . ### C Robustness #### C.1 Robustness check on contemporaneous teaching practice Table 11 shows robustness checks where we estimate equation (4) focusing on our key interactions challenge/student-centered practices interacted with the IQR in initial peer achievement and classroom management interacted with average initial peer achievement. A challenge we face is that it is difficult to instrument for all the entries of teaching practice and its interactions without running into a weak instrument problem. As a result, we build the argument sequentially to show that weak instruments are not driving estimates of our key interactions. Panel A shows results for classroom management and panel B for challenge/student-centered practices. The first column shows results for the ITT when P_{rt-1} , $P_{rt-1}Y_{it-1}$, $P_{rt-1}\bar{Y}_{-ic_tt-1}$, $P_{rt-1}IQR_{c_tt-1}$ are all included in the regression. Then, column (2) shows that estimates of key interactions are robust when all other teaching practice terms are dropped except our main interactions of interest, i.e., $P_{rt-1}IQR_{ct-1}$ for challenge/student-centered and $P_{rt-1}\bar{Y}_{-ic_tt-1}$ for classroom management. Column (3) then instruments for $P_{rt}\bar{Y}_{-ic_tt-1}$ with $P_{rt-1}\bar{Y}_{-ic_tt-1}$ for classroom management and $P_{rt}IQR_{c_tt-1}$ with $P_{rt-1}IQR_{c_rt-1}$ for challenge/student-centered. The F-statistics for weak instrument tests are in both cases are 28 and 27 respectively, indicating that there is not a weak instrument problem. And, in both cases the estimated interactions are significantly larger, increasing from 0.08 to 0.22 for the case of classroom management with the average and -0.06 to -0.18 for student-centered practices with IQR. Column (4) shows another variation of this when we continue to control for P_{rt-1} , $P_{rt-1}Y_{it-1}$, but only drop from the regression the irrelevant peer interactions, i.e., the interactions with IQR for classroom management and average initial peer achievement for challenge/student-centered. Column (5) controls for contemporaneous teaching practice in levels and interacted with prior achievement $(P_{rt}, P_{rt}Y_{it-1})$ and only instruments for key interactions of contemporaneous teaching practice with peer variables $(P_{rt}\bar{Y}_{-ic_tt-1})$ with $P_{rt-1}\bar{Y}_{-ic_tt-1}$ for classroom management and $P_{rt}IQR_{c_tt-1}$ with $P_{rt-1}IQR_{c_tt-1}$ for challenge/student-centered). Again, F-statistics for the weak instrument test are in all cases above 20 and the key variables of interest remain very similar to estimates in column (3) that do not control for level effects or interactions with initial achievement. Finally, column (6) instruments for all entries of contemporaneous teaching practice (i.e., $P_{rt}, P_{rt}Y_{it-1}$ are also instrumented with P_{rt-1} and $P_{rt-1}Y_{it-1}$), along with the key classroom composition interactions as in column (5). In this case, F-statistics on tests for weak instruments drop below 10, but we see that the estimated interactions with classroom composition remain remarkably stable, suggesting that estimates are not driven by weak instruments. #### C.2 Nonlinear Measurement Error To show how Hausman et al. (1991) can be adapted to our setting to deal with measurement error in teaching practice, we consider a simplified version of our main estimating equation (4). Let \tilde{Y} denotes Y demeaned at the randomization block level and similarly for other variables, then $$\widetilde{Y}_{it} = \alpha_p \widetilde{P}_r + \alpha_{p\bar{y}} \widetilde{P}_r \widetilde{Y}_{-ic_t t-1} + \alpha_{\bar{y}} \widetilde{\tilde{Y}}_{-ic_t t-1} + \alpha_y \widetilde{Y}_{it-1} + \alpha_{py} \widetilde{P}_r Y_{it-1} + \widetilde{\epsilon}_{it}.$$ $$(6)$$ Recall that P_r is the true practice, but it is measured with error. We adapt Hausman et al. (1991) in two ways. First, we relax the assumptions on the measurement model because we have more than 2 measures for each practice. Second, we adapt their approach which was made for nonlinearities captured by polynomials in the variable of interest to our setting, where nonlinearities arise from interactions. The parameters of equation (6) are identified from $$E(\tilde{Y}_{it}) = \alpha_p E(\tilde{P}_r) + \alpha_{p\bar{y}} E(\widetilde{P_r} \tilde{Y}_{-ic_t t-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1}) + \alpha_y E(\tilde{Y}_{it-1}) + \alpha_{py} E(\widetilde{P_r} Y_{it-1})$$ $$(7)$$ $$E(\tilde{Y}_{it} \tilde{P}_r) = \alpha_p E(\tilde{P}_r \tilde{P}_r) + \alpha_{p\bar{y}} E(\widetilde{P_r} \tilde{Y}_{-ic_t t-1} \tilde{P}_r) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1} \tilde{P}_r) + \alpha_y E(\tilde{Y}_{it-1} \tilde{P}_r)$$ $$+ \alpha_{py} E(\widetilde{P_r} \tilde{Y}_{it-1} \tilde{P}_r)$$ $$E(\tilde{Y}_{it} \tilde{Y}_{-ic_t t-1}) = \alpha_p E(\tilde{P}_r \tilde{Y}_{-ic_t t-1}) + \alpha_{p\bar{y}} E(\widetilde{P_r} \tilde{Y}_{-ic_t t-1} \tilde{Y}_{-ic_t t-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1})$$ $$+ \alpha_{py} E(\tilde{P}_r \tilde{Y}_{-ic_t t-1}) + \alpha_{p\bar{y}} E(\widetilde{P_r} \tilde{Y}_{-ic_t t-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1})$$ $$+ \alpha_{\bar{y}} E(\tilde{Y}_{it-1} \tilde{P}_r \tilde{Y}_{-ic_t t-1}) + \alpha_{p\bar{y}} E(\widetilde{P_r} \tilde{Y}_{-ic_t t-1})$$ $$+ \alpha_{p\bar{y}} E(\tilde{P}_r \tilde{Y}_{it-1}) + \alpha_{p\bar{y}} E(\widetilde{P_r} \tilde{Y}_{-ic_t t-1} \tilde{Y}_{it-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1} \tilde{Y}_{it-1})$$ $$+ \alpha_{p\bar{y}} E(\tilde{P}_r \tilde{Y}_{it-1}) + \alpha_{p\bar{y}} E(\widetilde{P_r} \tilde{Y}_{-ic_t t-1} \tilde{Y}_{it-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1} \tilde{Y}_{it-1})$$ $$+ \alpha_{p\bar{y}} E(\tilde{P}_r \tilde{Y}_{it-1}) + \alpha_{p\bar{y}} E(\tilde{P}_r \tilde{Y}_{-ic_t t-1} \tilde{P}_r \tilde{Y}_{it-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1} \tilde{P}_r \tilde{Y}_{it-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1} \tilde{P}_r \tilde{Y}_{it-1})$$ $$+ \alpha_{p\bar{y}} E(\tilde{P}_r \tilde{Y}_{it-1}) + \alpha_{p\bar{y}} E(\tilde{P}_r \tilde{Y}_{-ic_t t-1} \tilde{P}_r \tilde{Y}_{it-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t \tilde{Y}_{-ic_t t-1} \tilde{Y}_r \tilde{Y}_{it-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t t-1} \tilde{Y}_r \tilde{Y}_{it-1}) + \alpha_{\bar{y}} E(\tilde{Y}_{-ic_t$$ We need to recover all of the moments containing P_r . The issue is that P_r is not observed, so next we discuss how to use our measures of practice to recover these moments. We assume that we have at least 3 demeaned measures of practice following equation 5, such that $$P_{jkt} = \delta_k P_j + u_{jkt},$$ where $k = \{1, ..., K\}$ and $K \geq 3$. We focus the measurement equation around the mean reports for each subdomain, calculated over multiple videos and video raters, though we could apply adjustments to the individual level observations as well. Then, applying a normalization, $\delta_1 = 1$, we have $$\frac{Cov(P_{jnt}, P_{jmt})}{Cov(P_{jnt}, P_{j1t})} = \frac{\delta_n \delta_m V(P_j)}{\delta_n V(P_j)} = \delta_m,$$ for $n, m \neq 1$ and $n \neq m$, thus permitting us to recover the parameters $\delta_2, ..., \delta_k$. Notice further that $$E(P_{j1t}P_{jnt}) = \delta_n E(P_j^2)$$, for $n \neq 1$ and $E(P_i^2)$ is thus identified and similarly, $$E(\tilde{P}_{i1t}\tilde{P}_{int}) = \delta_n E(\tilde{P}_i^2), \text{ for } n \neq 1,$$ given that measurement error is also uncorrelated across measures after removing randomization block fixed effects. Note that $E(\tilde{P}_i) = 0$. We can use our anchor measure then to recover $$\begin{split} E(\widetilde{P_{r1t}\bar{Y}}_{-ic_{t}t-1}) &= E(\widetilde{P_{r}\bar{Y}}_{-ic_{t}t-1}) \\ E(\widetilde{P_{r1t}Y}_{it-1}) &= E(\widetilde{P_{r}Y}_{it-1}) \\ E(\tilde{Y}_{it}\tilde{P}_{r1t}) &= E(\tilde{Y}_{it}\tilde{P}_{r}) \\ E(\tilde{Y}_{it}\widetilde{P_{r1t}Y}_{it-1}) &= E(\tilde{Y}_{it}\widetilde{P_{r}Y}_{it-1}) \\ E(\tilde{Y}_{it}\widetilde{P_{r1t}\bar{Y}}_{-ic_{t}t-1}) &= E(\tilde{Y}_{it}\widetilde{P_{r}\bar{Y}}_{-ic_{t}t-1}) \end{split}$$ But to recover terms which have higher order products of P_r such as $E(\widetilde{P_rY}_{it-1}\widetilde{P}_r)$ we rely on the ratio of covariances to first recover δ_2 . We can then use our anchor measure and measurement two to recover $$E\left(\frac{\widetilde{P_1Y}_{it-1}\widetilde{P}_2}{\delta_2}\right) = E(\widetilde{P_rY}_{it-1}\widetilde{P}_r)$$ Specifically, in estimation we pick an anchor measurement, P_1 , and use it to construct the terms in equation (6). To construct rows two, four and six in the system (7) we multiply equation (6) by $\frac{\tilde{P}_{r2t}}{\delta_2}$, $\frac{\tilde{P}_{r2t}\tilde{Y}_{-ic_tt-1}}{\delta_2}$ and $\frac{\tilde{P}_{r2t}Y_{it-1}}{\delta_2}$ and then take expectations. Note that we use measurement two when multiplying through and then divide by the measurement parameter we've recovered. Estimation of the parameters from these moments is then straightforward. We recover the relevant moments from the measurement model and then plug them into the system defined in 7 and solve this system for the structural parameters. We can bootstrap standard errors, clustering at the randomization block level. Note that because we are overidentified, we can also test the robustness to using different measures as our anchor. Appendix Table 12 shows results when we correct for measurement error by following two strategies. First, we present findings when we implement the Hausman et al. (1991) method described above, but we also report (for completeness) specifications when we
instrument a given measure of a teaching practice at t-1 (e.g. creating an environment of respect and rapport when considering the broad category classroom management) with the remaining teaching practices at t-1 (e.g. managing student behaviors and classroom procedures). Overall, results indicate that taking averages across measurements that correspond to a specific broad teaching practice (i.e. classroom management or challenge/student-centered) lead to similar results that when we correct for measurement error by following other methods. # D Appendix Tables Table 7: Description of Framework for Teaching (FFT) | Classroom Management | Practices | |---------------------------|---| | | | | Managing student be- | Monitoring of student behavior, response to student misbe- | | haviors (MSB) | havior, expectations | | 3.5 | | | Managing classroom | Management of instructional groups, transitions, and mate- | | procedures (MCP) | rials and supplies | | Creating an environ- | Teacher interactions with students and student interactions | | ment of respect and rap- | with each other | | port (CERR) | with each other | | Challenge/Student-Center | red Practices | | Establishing a culture of | Importance of content and expectations for learning and | | learning (ECL) | achievement | | | | | Communicating with | Expectations for learning, directions and procedures, expla- | | students (CS) | nations of content, use of oral and written language | | | | | Engaging students in | Activities and assignments, grouping of students, instruc- | | learning (ESL) | tional materials and resources, structure and pacing | | | | | Using assessment in in- | Assessment criteria, monitoring of student learning, feed- | | struction (UAI) | back to students, student self-assessment and monitoring of | | | progress | | Using questioning and | Quality of questions, discussion techniques, student partici- | | discussion techniques | pation | | (USDT) | paulon | | | | Table 8: FFT Teaching Practice Correlations and Factor Loadings | | 1401 | 0 0. 111 | 1000111115 1 | . ractice C | OII CIGOTOIL | and race | or Loading | 2 ⁰ | | |------|----------|----------|--------------|-------------|--------------|----------|------------|----------------------|----------------------| | | CERR | MCP | MSB | USDT | ECL | CS | ESL | Factor 1
Loadings | Factor 2
Loadings | | CERR | 1 | | | | | | | 0.196 | 0.680 | | MCP | 0.602*** | 1 | | | | | | 0.055 | 0.779 | | MSB | 0.676*** | 0.713*** | 1 | | | | | -0.090 | 0.934 | | USDT | 0.476*** | 0.413*** | 0.395*** | 1 | | | | 0.790 | -0.033 | | ECL | 0.627*** | 0.497*** | 0.496*** | 0.569*** | 1 | | | 0.699 | 0.170 | | CS | 0.568*** | 0.524*** | 0.464*** | 0.559*** | 0.601*** | 1 | | 0.592 | 0.219 | | ESL | 0.489*** | 0.452*** | 0.415*** | 0.627*** | 0.700*** | 0.575*** | 1 | 0.886 | -0.067 | | UAI | 0.462*** | 0.468*** | 0.416*** | 0.644*** | 0.597*** | 0.586*** | 0.667*** | 0.826 | -0.032 | | Obs. | | | | | 732 | | | | | Notes: First seven columns show correlations between FFT components. We use the entire sample of fourth and fifth grade teachers from both years e.g. 732 teacher-year observations. Last two columns present factor loadings from exploratory factor analysis after performing an oblique rotation of the factors, and keeping the first two factors. The first factor explains 79% of the variance in the data, and the second explains another 13%. CERR (creating an environment of respect and rapport), USDT (using questioning and discussion techniques), ECL (establishing a culture of learning), MCP (managing classroom procedures), CS (communicating with students), MSB (managing student behaviors), ESL (engaging students in learning), UAI (using assessment in instruction). See table (7) for a detailed description of each FFT variable. Table 9: Summary Statistics: Pre-Restricted Sample | Table 9. Summary St | Mean | SD | Min | Max | |---|--------|------|-------|-------| | Grade Level | 4.52 | 0.50 | 4.00 | 5.00 | | Joint Math and ELA Class | 0.85 | 0.36 | 0.00 | 1.00 | | Age | 9.46 | 0.96 | 7.52 | 13.20 | | Male | 0.49 | 0.50 | 0.00 | 1.00 | | Gifted | 0.08 | 0.27 | 0.00 | 1.00 | | Special Education | 0.09 | 0.29 | 0.00 | 1.00 | | English Language Learner | 0.15 | 0.36 | 0.00 | 1.00 | | White | 0.28 | 0.45 | 0.00 | 1.00 | | Black | 0.34 | 0.48 | 0.00 | 1.00 | | Hispanic | 0.27 | 0.45 | 0.00 | 1.00 | | Asian | 0.07 | 0.26 | 0.00 | 1.00 | | American Indian | 0.00 | 0.07 | 0.00 | 1.00 | | Race Other | 0.02 | 0.15 | 0.00 | 1.00 | | Race Missing | 0.01 | 0.11 | 0.00 | 1.00 | | Math Score (Year 09-10) | 0.11 | 0.93 | -3.14 | 2.84 | | Math Score (Year 10-11) | 0.14 | 0.93 | -3.26 | 3.02 | | Unique Districts | 5.00 | - | - | - | | Unique Classes | 361.00 | - | - | - | | Unique Schools | 101.00 | - | - | - | | Unique Randomization Blocks | 156.00 | - | - | - | | Unique Teachers | 361.00 | - | - | - | | Percentage of Class w/ 09-10
Math Scores | 0.91 | 0.07 | 0.63 | 1.00 | | Percentage of Class in Random Assignment | 0.76 | 0.19 | 0.03 | 1.00 | | Teachers per Randomization
Block | 3.03 | 1.49 | 1.00 | 12.00 | | Randomization Block Compliance rate | 0.66 | 0.40 | 0.00 | 1.00 | | Observations | | 5730 | | | Notes: This sample corresponds to all students in the 2010-11 school year in either a fourth or fifth grade Math or Joint Math/ELA course. Since our estimation strategy leverages the random assignment of classrooms to teachers, we restrict the sample to students with a randomly assigned teacher. No further restrictions are made. Not all cells have the same number of observations. | Table 10: Balance Tests | | | | | | | | | |-------------------------|-------------------------------------|--|-----------------------------|------------------------------|-------------------------------------|----------------------------|--|--| | | Classroom Management Random Teacher | Challenge/ Student Centered Random Teacher | Avg. Math of Observed Peers | IQR Math of Ob- served Peers | Avg
Math of
Assigned
Peers | IQR Math of Assigned Peers | | | | | (1) | (2) | (3) | (4) | (5) | (6) | | | | Peer Math | -0.022 | -0.015 | | | | | | | | | (0.079) | (0.119) | | | | | | | | IQR Math | 0.036 | 0.041 | | | | | | | | | (0.107) | (0.103) | | | | | | | | Peer Math Rand | -0.089 | -0.046 | | | | | | | | | (0.103) | (0.124) | | | | | | | | IQR Math Rand | -0.023 | 0.032 | | | | | | | | | (0.087) | (0.084) | | | | | | | | $Math_{t-1}$ | -0.021 | -0.005 | 0.050 | -0.029 | 0.053 | 0.006 | | | | | (0.020) | (0.024) | (0.048) | (0.036) | (0.048) | (0.025) | | | | ELL | -0.048 | -0.015 | -0.200 | 0.025 | -0.197 | -0.023 | | | | | (0.059) | (0.061) | (0.129) | (0.124) | (0.136) | (0.091) | | | | Gifted | -0.033 | -0.053 | 0.491** | 0.160 | 0.274 | 0.230* | | | | | (0.075) | (0.144) | (0.227) | (0.107) | (0.175) | (0.123) | | | | Special Educ. | 0.118** | 0.089 | -0.128* | 0.043 | -0.055 | 0.028 | | | | | (0.059) | (0.057) | (0.065) | (0.084) | (0.055) | (0.066) | | | | Male | 0.008 | 0.002 | -0.023 | -0.008 | -0.035 | -0.025 | | | | | (0.013) | (0.015) | (0.019) | (0.015) | (0.023) | (0.018) | | | | White | 0.011 | -0.044 | 0.035 | 0.011 | -0.039* | -0.014 | | | | | (0.029) | (0.032) | (0.042) | (0.036) | (0.023) | (0.032) | | | | Black | 0.005 | 0.001 | 0.005 | 0.041 | 0.055** | 0.044 | | | | | (0.028) | (0.031) | (0.046) | (0.048) | (0.026) | (0.048) | | | | Hispanic | -0.059** | -0.046 | -0.036 | -0.029 | -0.022 | -0.017 | | | | | (0.028) | (0.034) | (0.029) | (0.043) | (0.028) | (0.046) | | | | Asian | 0.087 | 0.142** | 0.070* | -0.037 | 0.053 | 0.000 | | | | | (0.054) | (0.055) | (0.039) | (0.066) | (0.044) | (0.064) | | | | American Indian | 0.062 | 0.176 | -0.339 | 0.247 | -0.215 | 0.076 | | | | | (0.145) | (0.118) | (0.205) | (0.174) | (0.212) | (0.139) | | | | Race Other | 0.070 | 0.063 | -0.083 | -0.058 | -0.074** | -0.044 | | | | | (0.066) | (0.088) | (0.050) | (0.048) | (0.037) | (0.053) | | | Notes: We regressed each dependent variable separately on each independent variable with randomization block fixed-effects and stacked the parameters from these regressions. Columns (1) and (2) refers to a student's randomly assigned teacher's practice measured in t-1 (i.e., P_{rt-1} in the present notation). Columns (3) and (4) use the actual classroom composition whereas columns (5) and (6) focus on the peers who were initially assigned to be grouped with the student. Table 11: Contemporaneous Teaching Practice and Classroom Composition | | IT | Τ | IV | ITT | Ι | V | |--|----------------|----------------|---------------|---|----------------|---------------| | | Time | t-1 | Time t | $\begin{array}{c} \text{Time} \\ t-1 \end{array}$ | Tir | me t | | | Prac | tice | Practice | Practice | Practice Prac | | | | (1) | (2) | (3) | (4) | (5) | (6) | | Panel A | | | | | | | | Classroom Management | 0.008 | | | 0.010 | 0.049* | 0.040 | | | (0.019) | | | (0.018) | (0.026) | (0.058) | | C.M. \times Math _{t-1} | 0.011 | | | 0.012 | 0.004 | 0.026 | | | (0.012) | | | (0.012) | (0.018) | (0.021) | | C.M. \times Avg. Peer Math _{t-1} | 0.07^{***} | 0.085^{***} | 0.218^{***} | 0.082^{***} | 0.213^{***} | 0.209^{***} | | | (0.025) | (0.022) | (0.065) | (0.021) | (0.062) | (0.061) | | C.M. \times IQR Peer Math _{t-1} | -0.017 | | | | | | | | (0.019) | | | | | | | First Stage F-Stat. [†] | | | 28.400 | | 31.563 | 4.191 | | Panel B | | | | | | | | Challenge/Student-Centered | 0.018 | | | 0.022 | 0.072*** | -0.006 | | | (0.020) | | | (0.019) | (0.026) | (0.127) | | $C.S.C \times Math_{t-1}$ | 0.012 | | | 0.018 | 0.008 | 0.041 | | | (0.012) | | | (0.012) | (0.014) | (0.033) | | $C.S.C \times Avg Peer Math_{t-1}$ | 0.031** | | | | | | | | (0.014) | | | | | | | C.S.C. \times IQR Peer Math _{t-1} |
-0.053^{***} | -0.063^{***} | -0.178*** | -0.060*** | -0.181^{***} | -0.174*** | | | (0.014) | (0.016) | (0.052) | (0.014) | (0.051) | (0.051) | | First Stage F-Statistic [†] | | | 26.896 | | 24.538 | 2.107 | Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered at the randomization block level. Sample size is 2632. Randomly assigned teachers are used throughout. Panel A and B correspond to different regressions with math as the dependent variable. These regressions include randomization block fixed effects and controls for the level and a squared term of prior math achievement and average peer prior achievement, IQR in peer prior achievement, along with the peer variables squared and interactions with each other and lagged math achievement. Controls for CKT and student characteristics listed in Table 1 also included. † Reports the Kleibergen-Paap rk Wald statistic for a weak instrument test. Table 12: Comparison between the Hausman Estimator and ITT-IV specifications | | MCP ITT | MCP IV | FFT
MCP-
MSB-
CERR | ESL ITT | ESL IV | FFT
ESL-
USDT | |-----------------------------------|----------|----------|-----------------------------|-----------|----------|---------------------| | | (1) | (2) | (3) | (4) | (5) | (6) | | Teaching Practice | 0.004 | 0.001 | 0.011 | 0.028 | 0.022 | 0.021 | | | (0.019) | (0.021) | (0.027) | (0.019) | (0.020) | (0.031) | | T.P. \times Math _{t-1} | 0.009 | 0.014 | 0.011 | 0.001 | 0.014 | 0.013 | | | (0.014) | (0.015) | (0.022) | (0.012) | (0.013) | (0.021) | | T.P. \times Peer Math | 0.052*** | 0.105*** | 0.111** | * 0.005 | 0.043** | 0.019 | | | (0.019) | (0.033) | (0.039) | (0.014) | (0.017) | (0.044) | | T.P. \times IQR Math | -0.035** | -0.004 | -0.008 | -0.047*** | -0.055** | **-0.063** | | | (0.016) | (0.025) | (0.033) | (0.016) | (0.014) | (0.029) | | P-value joint signif. T.P. | 0.000 | 0.000 | | 0.038 | 0.000 | | | First Stage F-Stat. [†] | | 21.7 | | | 12.5 | | | Hansen J P-value ^{††} | | 0.522 | | | 0.643 | | | p2 load | | | 1.080 | | | 0.804 | | p3 load | | | 0.859 | | | 0.837 | Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Sample size is 2632. Managing student behaviors (MSB), Managing classroom procedures (MCP), Creating an environment of respect and rapport (CERR), Engaging students in learning (ESL), Using questioning and discussion techniques (USDT). The ITT columns uses randomly assigned MCP or ESL scores as "Practice." The IV columns use all other practices that load on classroom management to instrument for MCP, and likewise for ESL with challenge/student-centered practices. Practices are for the randomly assigned teacher measured at t-1. We use efficient GMM estimator and FFT MCP-MSB-CERR uses our adapted Hausman estimator to correct for measurement error, where MCP is the anchor, and MSB is used to construct moment conditions. FFT ESL-USDT is similar but uses the average of all other challenge/student-centered practices as the third measurement since we are overidentified. The specification is identical to that in Table (4) except here we do not include controls for student characteristics. † Reports the Kleibergen-Paap rk Wald statistic. †† Reports p-value from Hansen's J statistic test of overidentifying restrictions. "p2 load" and "p3 load" are the recovered measurement parameters described in Appendix C.2. Standard errors are clustered at the randomization block level, and with the adapted Hausman estimator we bootstrap standard errors with 200 repetitions. Table 13: Teaching Practices and Alternative Teacher "Quality" Controls Full Results | | Random IV Actual Random Teacher | | | | | | | |---|---------------------------------|-------------|-----------|------------|-----------|--|--| | | Teacher | with Random | Alt. | Teacher Co | ntrol: | | | | | | Teacher | CKT | 7C | PSVY | | | | | (1) | (2) | (3) | (4) | (5) | | | | Classroom Management | -0.012 | -0.016 | -0.014 | -0.016 | -0.015 | | | | | (0.020) | (0.022) | (0.020) | (0.020) | (0.019) | | | | C.M. \times Math _{t-1} | 0.004 | 0.004 | 0.011 | 0.004 | 0.003 | | | | | (0.020) | (0.021) | (0.019) | (0.019) | (0.019) | | | | $C.M. \times Peer Math$ | 0.076** | 0.087** | 0.077** | 0.076** | 0.076*** | | | | | (0.029) | (0.036) | (0.030) | (0.029) | (0.027) | | | | $C.M. \times IQR Math$ | 0.026 | 0.035 | 0.026 | 0.026 | 0.026 | | | | | (0.022) | (0.026) | (0.022) | (0.023) | (0.021) | | | | C.M. | 0.026 | 0.025 | 0.026 | 0.026 | 0.011 | | | | | (0.023) | (0.025) | (0.022) | (0.022) | (0.024) | | | | $C.M. \times Math_{t-1}$ | 0.010 | 0.011 | 0.002 | 0.016 | 0.005 | | | | | (0.020) | (0.021) | (0.020) | (0.019) | (0.019) | | | | $C.M. \times Peer Math$ | -0.010 | -0.009 | -0.010 | -0.010 | -0.005 | | | | | (0.019) | (0.022) | (0.019) | (0.019) | (0.019) | | | | $C.M. \times IQR Math$ | -0.062*** | -0.071*** | -0.063*** | -0.057** | -0.054** | | | | | (0.017) | (0.019) | (0.017) | (0.021) | (0.021) | | | | CKT | -0.007 | -0.011 | -0.008 | -0.006 | -0.013 | | | | | (0.016) | (0.019) | (0.016) | (0.016) | (0.018) | | | | Alt. Teacher Control | | | | -0.006 | 0.055*** | | | | | | | | (0.019) | (0.017) | | | | T.C. \times Math _{t-1} | | | 0.044*** | -0.029** | 0.032** | | | | | | | (0.014) | (0.013) | (0.013) | | | | $T.C. \times Peer Math$ | | | -0.019 | -0.007 | -0.016 | | | | | | | (0.018) | (0.020) | (0.016) | | | | $T.C. \times IQR Math$ | | | -0.012 | -0.017 | -0.003 | | | | • | | | (0.021) | (0.021) | (0.016) | | | | T.C. missing | | | , | , , | -0.591*** | | | | g | | | | | (0.142) | | | | T.C. missing \times Math _{t-1} | | | | | 0.025 | | | | 0 1 | | | | | (0.046) | | | | T.C. missing \times Peer Math | | | | | 0.060 | | | | <u> </u> | | | | | (0.045) | | | | T.C. missing \times IQR Math | | ~ ^ | | | 0.015 | | | | . | | 50 | | | (0.055) | | | Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Due to the length of this table, we've split it into three parts to show all parameters. See tables (13), (14) and (15). Table 14: Teaching Practices and Alternative Teacher "Quality" Controls Full Results (Continued) | Table 14: Teaching Practices and A | Random | IV Actual | | andom Teacl | | |--|-----------|-------------|-----------|-------------|-----------| | | Teacher | with Random | Alt. | Teacher Con | ntrol: | | | | Teacher | CKT | 7C | PSVY | | | (1) | (2) | (3) | (4) | (5) | | Math_{t-1} | 0.724*** | 0.725*** | 0.723*** | 0.723*** | 0.722*** | | | (0.017) | (0.017) | (0.016) | (0.016) | (0.018) | | $\operatorname{Math}_{t-1}^2$ | -0.043*** | -0.043*** | -0.044*** | -0.042*** | -0.045*** | | | (0.012) | (0.012) | (0.012) | (0.012) | (0.012) | | Peer Math \times Math _{t-1} | -0.000 | -0.001 | -0.001 | -0.003 | 0.002 | | | (0.018) | (0.018) | (0.018) | (0.018) | (0.018) | | IQR Math \times Math _{t-1} | 0.034** | 0.035*** | 0.040*** | 0.031** | 0.044*** | | | (0.013) | (0.013) | (0.013) | (0.013) | (0.012) | | Peer Math \times IQR Math | -0.052*** | -0.053*** | -0.057*** | -0.053*** | -0.043** | | | (0.016) | (0.016) | (0.017) | (0.016) | (0.017) | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | -0.021 | -0.021 | -0.019 | -0.023 | -0.016 | | | (0.014) | (0.014) | (0.015) | (0.014) | (0.014) | | Peer Math | -0.008 | -0.008 | -0.009 | -0.007 | -0.012 | | | (0.026) | (0.026) | (0.025) | (0.026) | (0.027) | | Peer Math ² | -0.010 | -0.013 | -0.009 | -0.009 | -0.014 | | | (0.014) | (0.013) | (0.014) | (0.014) | (0.016) | | IQR Math | -0.015 | -0.018 | -0.017 | -0.019 | -0.008 | | | (0.023) | (0.024) | (0.022) | (0.024) | (0.026) | | $IQR Math^2$ | -0.008 | -0.009 | -0.009 | -0.010 | -0.002 | | | (0.013) | (0.014) | (0.013) | (0.014) | (0.014) | | ELL | 0.008 | 0.015 | 0.011 | 0.007 | 0.009 | | | (0.038) | (0.039) | (0.039) | (0.038) | (0.038) | | Gifted | 0.195*** | 0.188*** | 0.195*** | 0.192*** | 0.198*** | | | (0.055) | (0.054) | (0.054) | (0.057) | (0.056) | | Male | -0.001 | -0.004 | -0.002 | -0.001 | -0.001 | | | (0.021) | (0.021) | (0.021) | (0.021) | (0.021) | | Special Educ. | -0.111** | -0.110** | -0.110** | -0.112** | -0.108** | | | (0.043) | (0.043) | (0.042) | (0.044) | (0.043) | | Black | -0.157*** | -0.159*** | -0.148*** | -0.154*** | -0.156*** | | | (0.033) | (0.032) | (0.033) | (0.033) | (0.034) | | Hispanic | -0.047 | -0.051 | -0.044 | -0.046 | -0.049 | | | (0.035) | (0.034) | (0.035) | (0.036) | (0.035) | Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Due to the length of this table, we've split it into three parts to show all parameters. See tables (13), (14) and (15). Table 15: Teaching Practices and Alternative Teacher "Quality" Controls Full Results (Continued) | Table 19. Teaching I factices and II | able 15. Teaching I factices and Afternative Teacher Quanty | | | | | | |---------------------------------------|---|-----------|-----------------------|------------|---------|--| | | Random | IV Actual | R | Random Tea | cher | | | | Teacher with Random | | Alt. Teacher Control: | | | | | | | Teacher | CKT | 7C | PSVY | | | | (1) | (2) | (3) | (4) | (5) | | | Asian | 0.076** | 0.069* | 0.082** | 0.078** | 0.070* | | | | (0.036) | (0.036) | (0.036) | (0.036) | (0.036) | | | American Indian | -0.045 | -0.050 | -0.036 | -0.045 | -0.048 | | | | (0.108) | (0.107) | (0.107) | (0.109) | (0.111) | | | Race Other | 0.013 | 0.013 | 0.016 | 0.016 | 0.013 | | | | (0.047) | (0.046) | (0.047) | (0.047) | (0.047) | | | Race Missing | -0.040 | -0.046 | -0.012 | -0.041 | -0.044 | | | | (0.069) | (0.066) | (0.073) | (0.067) | (0.061) | | | R-squared | 0.649 | 0.708 | 0.651 | 0.650 | 0.652 | | | P-value joint signif of C.M. & C.S.C. | 0.000 | 0.000 | 0.000 | 0.000 | 0.002 | | | P-value joint signif of T.C. | | |
0.052 | 0.172 | 0.013 | | | First Stage F-Statistic † | | 27.717 | | | | | Notes: *** denotes significance at the 1%, ** at the 5% and * at the 10% levels. Standard errors are clustered at the randomization block level. Sample size is 2632. Dependent variable is math and teaching practices are measured at t-1. Regressions include randomization block fixed effects and controls for the level and a squared term of prior math achievement and average and IQR of peer prior achievement, their square and all pairwise interactions of peer variables and prior achievement, as well as student characteristics listed in Table 1. Even columns also include the IQR in peer prior achievement. † Reports the Kleibergen-Paap rk Wald statistic for a weak instrument test. CKT denotes Content Knowledge for Teaching assessment, 7C denotes overall student survey teacher ratings based on Tripod and PSVY denotes principal assessments of teacher quality.