The Return to Big City Experience: Evidence from Danish Refugees

Fabian Eckert, Mads Hejlesen, Conor Walsh

July 26, 2018

Yale University, Aarhus University

Introduction

The Danish Refugee Program of 1986-1998 and Data

Documenting The Treatment Effect

Mechanisms

Sorting in a Spatial Model of Earnings Dynamics

- Urban wage premium: Workers earn higher wages in cities even after controlling for observables
 - Is the urban wage premium only due to selection across areas?
 - If not, which mechanisms explain the urban wage premium?
- **Problem**: Hard to pin down premium and mechanisms due to endogeneity of location choice
- *This Paper*: Combine Danish administrative data & natural experiment to study the anatomy of the urban wage premium for a particular population

- 1. Document the causal effect on wage growth of assignment to a big city using a natural experiment from 1986-1998
 - 20,000 refugees quasi-randomly assigned to Danish municipalities
 - Assignment to a big city led to a causal difference of **0.8%** per year of experience in hourly wages, **2.1%** for earnings

- 1. Document the causal effect on wage growth of assignment to a big city using a natural experiment from 1986-1998
 - 20,000 refugees quasi-randomly assigned to Danish municipalities
 - Assignment to a big city led to a causal difference of **0.8%** per year of experience in hourly wages, **2.1%** for earnings
- 2. Use rich administrative data to provide evidence on mechanisms driving the premium
 - Establishment and occupation sorting explains **60%** of the difference

- 1. Document the causal effect on wage growth of assignment to a big city using a natural experiment from 1986-1998
 - 20,000 refugees quasi-randomly assigned to Danish municipalities
 - Assignment to a big city led to a causal difference of **0.8%** per year of experience in hourly wages, **2.1%** for earnings
- 2. Use rich administrative data to provide evidence on mechanisms driving the premium
 - Establishment and occupation sorting explains 60% of the difference
- 3. Quantify contribution of sorting on unobserved ability
 - Natural experiment identifies key model parameter
 - Sorting within cities important in explaining observed patterns

Introduction

The Danish Refugee Program of 1986-1998 and Data

Documenting The Treatment Effect

Mechanisms

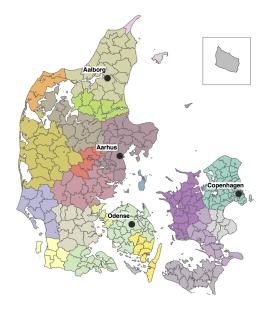
Sorting in a Spatial Model of Earnings Dynamics

• Goal: Assign refugees to municipalities proportionally to local population size

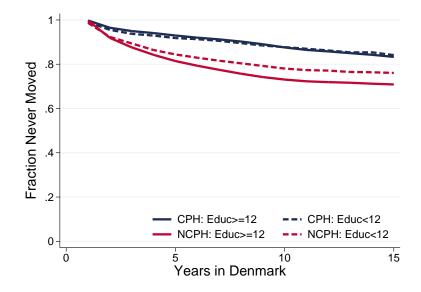
- Goal: Assign refugees to municipalities proportionally to local population size
- Quasi-random assignment conditioning on information available to the council officer through a questionnaire:
 - Age, number of children, marital status, nationality

- Goal: Assign refugees to municipalities proportionally to local population size
- Quasi-random assignment conditioning on information available to the council officer through a questionnaire:
 - Age, number of children, marital status, nationality
- Eligible for Danish social security and specialized programs
 - Assisted in finding permanent housing
 - Danish classes
 - · Eligible to work immediately upon assignment

- Goal: Assign refugees to municipalities proportionally to local population size
- Quasi-random assignment conditioning on information available to the council officer through a questionnaire:
 - Age, number of children, marital status, nationality
- Eligible for Danish social security and specialized programs
 - Assisted in finding permanent housing
 - Danish classes
 - Eligible to work immediately upon assignment
- Used before Damm & Dustmann (2014), Damm (2009)


Comparison by:	Group		Assignmen	t (Refugees only)
	Natives	Refugees	Copenhagen	Non-Copenhagen
Age	36.72	28.24	28.67	28.08
Married	0.47	0.28	0.28	0.28
No. of children	0.68	0.54	0.47	0.57
Age of youngest child	7.43	3.46	3.63	3.40
Age of oldest child	10.01	7.27	7.20	7.30
Missing education	0.00	0.19	0.19	0.19
\leq 10 years of education	0.31	0.27	0.23	0.28
12 years of education	0.50	0.34	0.34	0.34
> 12 years of education	0.17	0.20	0.23	0.19
Observations	1,335,545	20,493	5,530	14,963

Comparison by:	Group		Assignment (Refugees only)	
	Natives	Refugees	Copenhagen	Non-Copenhagen
Age	36.72	28.24	28.67	28.08
Married	0.47	0.28	0.28	0.28
No. of children	0.68	0.54	0.47	0.57
Age of youngest child	7.43	3.46	3.63	3.40
Age of oldest child	10.01	7.27	7.20	7.30
Missing education	0.00	0.19	0.19	0.19
\leq 10 years of education	0.31	0.27	0.23	0.28
12 years of education	0.50	0.34	0.34	0.34
> 12 years of education	0.17	0.20	0.23	0.19
Observations	1,335,545	20,493	5,530	14,963


Comparison by:	Group		Assignment (Refugees only	
	Natives	Refugees	Copenhagen	Non-Copenhagen
Age	36.72	28.24	28.67	28.08
Married	0.47	0.28	0.28	0.28
No. of children	0.68	0.54	0.47	0.57
Age of youngest child	7.43	3.46	3.63	3.40
Age of oldest child	10.01	7.27	7.20	7.30
Missing education	0.00	0.19	0.19	0.19
\leq 10 years of education	0.31	0.27	0.23	0.28
12 years of education	0.50	0.34	0.34	0.34
> 12 years of education	0.17	0.20	0.23	0.19
Observations	1,335,545	20,493	5,530	14,963

Comparison by:	Group		Assignme	nt (Refugees only)
	Natives	Refugees	Copenhagen Non-Copenha	
Age	36.72	28.24	28.67	28.08
Married	0.47	0.28	0.28	0.28
No. of children	0.68	0.54	0.47	0.57
Age of youngest child	7.43	3.46	3.63	3.40
Age of oldest child	10.01	7.27	7.20	7.30
Missing education	0.00	0.19	0.19	0.19
\leq 10 years of education	0.31	0.27	0.23	0.28
12 years of education	0.50	0.34	0.34	0.34
> 12 years of education	0.17	0.20	0.23	0.19
Observations	1,335,545	20,493	5,530	14,963

Commuting Zones of Denmark 1986

Persistence of Initial Assignment by Education Groups

Introduction

The Danish Refugee Program of 1986-1998 and Data

Documenting The Treatment Effect

Mechanisms

Sorting in a Spatial Model of Earnings Dynamics

- We stratify the sample by location of initial assignment, and follow refugees over time
- Document: The causal effect of initial assignment to a big city on
 - 1. Wage- and earnings-experience profiles
 - 2. Extensive margin of labour supply
- **Interpretation**: The causal effect of initial assignment to a big city on population-level labor market outcomes

• We estimate a simple linear model by initial assignment

 $y_{it} = \mu_t + \beta_1 Exp_{it} + \beta_2 InitCop_i + \beta_3 (InitCop_i \times Exp_{it}) + \mathbf{X}'_{it}\theta + \epsilon_{it}$

where

- *y*_{*it*} is log hourly wages or earnings
- μ_t is time fixed effects
- *Exp_{it}* is the number of years of experience
- InitCop_i is a dummy for initially allocated to Copenhagen
- X_{it} is a vector of individual assignment variables: nationality, married at assignment, age at assignment, children at assignment

• We estimate a simple linear model by initial assignment

 $y_{it} = \mu_t + \beta_1 Exp_{it} + \frac{\beta_2}{\ln it} Cop_i + \frac{\beta_3}{\ln it} (InitCop_i \times Exp_{it}) + \mathbf{X}'_{it}\theta + \epsilon_{it}$

where

- *y*_{*it*} is log hourly wages or earnings
- μ_t is time fixed effects
- *Exp_{it}* is the number of years of experience
- *InitCop_i* is a dummy for initially allocated to Copenhagen
- X_{it} is a vector of individual assignment variables: nationality, married at assignment, age at assignment, children at assignment
- Map to static (β_2) and dynamic premia (β_3) in this linear setting

• We estimate a simple linear model by initial assignment

 $y_{it} = \mu_t + \beta_1 Exp_{it} + \frac{\beta_2}{\ln it} Cop_i + \frac{\beta_3}{\ln it} (InitCop_i \times Exp_{it}) + \mathbf{X}'_{it}\theta + \epsilon_{it}$

where

- *y*_{*it*} is log hourly wages or earnings
- μ_t is time fixed effects
- *Exp_{it}* is the number of years of experience
- *InitCop_i* is a dummy for initially allocated to Copenhagen
- X_{it} is a vector of individual assignment variables: nationality, married at assignment, age at assignment, children at assignment
- Map to static (β_2) and dynamic premia (β_3) in this linear setting
- Non-parametric results very similar
 Non-parametric results

	(1)	(2)	(3)	(4)	(5)	(6)
	logwage _{it}	logwage _{it}	logwage _{it}	logearnings _{it}	logearnings _{it}	logearnings _{it}
Expit	0.0228***	0.0250***	0.0211***	0.0759***	0.0784***	0.0750***
	(0.00142)	(0.00159)	(0.00126)	(0.00322)	(0.00370)	(0.00341)
InitCph _i	0.000477	0.00858	-0.00892	-0.0725***	-0.0543**	-0.104***
	(0.0101)	(0.00883)	(0.0136)	(0.0184)	(0.0190)	(0.0237)
$InitCph_i \times Exp_{it}$	0.00810***	0.00736***	0.00813***	0.0214***	0.0186***	0.0261***
	(0.00148)	(0.00163)	(0.00134)	(0.00303)	(0.00330)	(0.00312)
Observations	97,402	57.994	39,408	107,297	63,870	43,427
R ²	0.056	0.062	0.055	0.155	0.158	0.156
Sample	All	Educ≥12	Educ<12	All	Educ≥12	Educ<12
Nationality FE	Yes	Yes	Yes	Yes	Yes	Yes
Cohort FE	Yes	Yes	Yes	Yes	Yes	Yes
Assignment Controls	Yes	Yes	Yes	Yes	Yes	Yes

	(1) logwage _{it}	(2) logwage _{it}	(3) logwage _{it}	(4) logearnings _{it}	(5) logearnings _{it}	(6) logearnings _{it}
	88-11		88-11			
Expit	0.0228***	0.0250***	0.0211***	0.0759***	0.0784***	0.0750***
	(0.00142)	(0.00159)	(0.00126)	(0.00322)	(0.00370)	(0.00341)
InitCph;	0.000477	0.00858	-0.00892	-0.0725***	-0.0543**	-0.104***
	(0.0101)	(0.00883)	(0.0136)	(0.0184)	(0.0190)	(0.0237)
$InitCph_i \times Exp_{it}$	0.00810***	0.00736***	0.00813***	0.0214***	0.0186***	0.0261***
	(0.00148)	(0.00163)	(0.00134)	(0.00303)	(0.00330)	(0.00312)
Observations	97,402	57,994	39,408	107,297	63,870	43,427
R^2	0.056	0.062	0.055	0.155	0.158	0.156
Sample	All	Educ≥12	Educ<12	All	Educ≥12	Educ<12
Nationality FE	Yes	Yes	Yes	Yes	Yes	Yes
Cohort FE	Yes	Yes	Yes	Yes	Yes	Yes
Assignment Controls	Yes	Yes	Yes	Yes	Yes	Yes

	(1)	(2)	(3)	(4)	(5)	(6)
	logwage _{it}	logwage _{it}	logwage _{it}	logearnings _{it}	logearnings _{it}	logearnings _{it}
Expit	0.0228***	0.0250***	0.0211***	0.0759***	0.0784^{***}	0.0750***
	(0.00142)	(0.00159)	(0.00126)	(0.00322)	(0.00370)	(0.00341)
InitCph _i	0.000477	0.00858	-0.00892	-0.0725***	-0.0543**	-0.104***
	(0.0101)	(0.00883)	(0.0136)	(0.0184)	(0.0190)	(0.0237)
$InitCph_i \times Exp_{it}$	0.00810***	0.00736***	0.00813***	0.0214***	0.0186***	0.0261***
	(0.00148)	(0.00163)	(0.00134)	(0.00303)	(0.00330)	(0.00312)
01	07 400		20, 100	105.005	(2.050	10.107
Observations	97,402	57,994	39,408	107,297	63,870	43,427
R^2	0.056	0.062	0.055	0.155	0.158	0.156
Sample	All	Educ≥12	Educ<12	All	Educ≥12	Educ<12
Nationality FE	Yes	Yes	Yes	Yes	Yes	Yes
Cohort FE	Yes	Yes	Yes	Yes	Yes	Yes
Assignment Controls	Yes	Yes	Yes	Yes	Yes	Yes

	(1) logwage _{it}	(2) logwage _{it}	(3) logwage _{it}	(4) logearnings _{it}	(5) logearnings _{it}	(6) logearnings _{it}
	logwage _{it}	iog wage _{it}	iog wage _{it}		logcannings _{it}	logeannigs _{it}
Exp _{it}	0.0228***	0.0250***	0.0211***	0.0759***	0.0784***	0.0750***
	(0.00142)	(0.00159)	(0.00126)	(0.00322)	(0.00370)	(0.00341)
InitCph _i	0.000477	0.00858	-0.00892	-0.0725***	-0.0543**	-0.104***
	(0.0101)	(0.00883)	(0.0136)	(0.0184)	(0.0190)	(0.0237)
$\textit{InitCph}_i \times \textit{Exp}_{it}$	0.00810***	0.00736***	0.00813***	0.0214***	0.0186***	0.0261***
	(0.00148)	(0.00163)	(0.00134)	(0.00303)	(0.00330)	(0.00312)
Observations	97,402	57,994	39,408	107,297	63,870	43,427
R^2	0.056	0.062	0.055	0.155	0.158	0.156
Sample	All	Educ≥12	Educ<12	All	Educ≥12	Educ<12
Nationality FE	Yes	Yes	Yes	Yes	Yes	Yes
Cohort FE	Yes	Yes	Yes	Yes	Yes	Yes
Assignment Controls	Yes	Yes	Yes	Yes	Yes	Yes

Extensive Margin of Labour Supply

	(1)	(2)
	(1)	(2)
	neveremployed;	neveremployed;
InitCph _i	0.00259	0.0371***
	(0.00882)	(0.0111)
Age at Arr.	0.0188***	0.0196***
č	(0.000602)	(0.000539)
No. Kids at Arr.	0.0347**	-0.0285**
	(0.0126)	(0.0111)
Married at Arr.	-0.0691***	-0.0295*
	(0.0113)	(0.0140)
Observations	11,138	9,434
R^2	0.141	0.175
Sample	Educ≥12	Educ<12
Nationality FE	Yes	Yes
Cohort FE	Yes	Yes

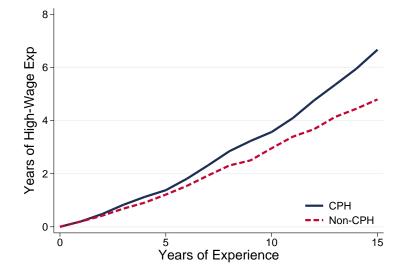
Introduction

The Danish Refugee Program of 1986-1998 and Data

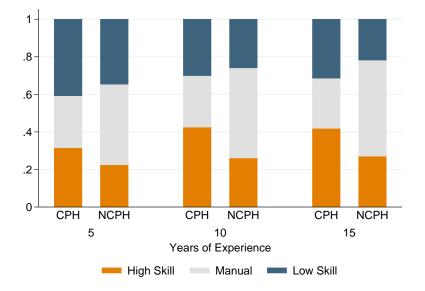
Documenting The Treatment Effect

Mechanisms

Sorting in a Spatial Model of Earnings Dynamics


We consider the following channels to explain the dynamic urban wage premium:

- 1. More experience at high-wage establishments
- 2. Differential sorting into occupations
- 3. Differential take-up of education
- 4. Differential aggregate wage trends
- 5. Effects of ethnic enclaves
- 6. Selection into labour force


We consider the following channels to explain the dynamic urban wage premium:

- 1. More experience at high-wage establishments \checkmark
- 2. Differential sorting into occupations \checkmark
- 3. Differential take-up of education X
- 4. Differential aggregate wage trends X
- 5. Effects of ethnic enclaves X
- 6. Selection into labour force X

Accumulation of Experience at High-Wage Establishments

Differential Sorting into Occupations by Initial Allocation

High-Wage Establishment Experience & Occupational Ladder

	(1)	(2)	(3)	(4)
	logwage _{it}	logwage _{it}	logwage _{it}	logwage _{it}
Exp _{it}	0.0250***			
	(0.00159)			
HighExp _{it}		0.0259***	0.0217***	0.0225***
		(0.00121)	(0.00124)	(0.00138)
OtherExp _{it}		0.0206***	0.0186***	0.0157***
		(0.00203)	(0.00140)	(0.00126)
InitCphi	0.00858	-0.00241	0.00597	0.00580
	(0.00883)	(0.00676)	(0.00538)	(0.00533)
$InitCph_i \times Exp_{it}$	0.00736***	0.00566***	0.00354**	0.00278*
	(0.00163)	(0.00148)	(0.00115)	(0.00101)
Observations	57,994	57,994	48,183	44,135
R^2	0.062	0.137	0.188	0.224
Sample	Educ≥12	Educ≥12	Educ≥12	Educ≥12
High-Wage Firm FE	No	Yes	Yes	Yes
Occupation FE	No	No	Yes	Yes
Industry FE	No	No	No	Yes
Assignment Controls	Yes	Yes	Yes	Yes

High-Wage Establishment Experience & Occupational Ladder

	(1)	(2)	(3)	(4)
	logwage _{it}	logwage _{it}	logwage _{it}	logwage _{it}
Exp _{it}	0.0250*** (0.00159)			
HighExp _{it}		0.0259***	0.0217***	0.0225***
		(0.00121)	(0.00124)	(0.00138)
OtherExp _{it}		0.0206*** (0.00203)	0.0186*** (0.00140)	0.0157*** (0.00126)
InitCph _i	0.00858	-0.00241 (0.00676)	0.00597 (0.00538)	0.00580
$InitCph_i imes Exp_{it}$	0.00736*** (0.00163)	0.00566*** (0.00148)	0.00354** (0.00115)	0.00278* (0.00101)
Observations	57,994	57,994	48,183	44,135
R ²	0.062	0.137	0.188	0.224
Sample	Educ≥12	Educ≥12	Educ≥12	Educ≥12
High-Wage Firm FE	No	Yes	Yes	Yes
Occupation FE	No	No	Yes	Yes
Industry FE	No	No	No	Yes
Assignment Controls	Yes	Yes	Yes	Yes

Robust standard errors clustered at the level of initial commuting zone. Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001.

Introduction

The Danish Refugee Program of 1986-1998 and Data

Documenting The Treatment Effect

Mechanisms

Sorting in a Spatial Model of Earnings Dynamics

Motivation for Spatial Model to Understand Sorting Within

- Want to understand contribution of sorting *within* cities on unobserved ability in driving these patterns
- At least three reasons why such sorting could matter:
 - 1. Who gets experience *at all* may differ fundamentally within a city and without, even with identical populations in both locations
 - 2. Correlation between type and working at certain establishments/occupations
 - 3. Complementarities between worker type and establishment type
- Estimate a spatial model with unobserved heterogeneity to quantify role of sorting following Baum-Snow & Pavan (2012)

- Agents:
 - Two types of refugees, ability $h = \{H, L\}$
 - Either work or receive unemployment benefit
 - Receive random job offers at the beginning of each period

- Agents:
 - Two types of refugees, ability $h = \{H, L\}$
 - Either work or receive unemployment benefit
 - Receive random job offers at the beginning of each period
- Locations:
 - Copenhagen and remainder, *j* = {*CPH*, *NCPH*}
 - Agents dropped in a random location at year 0
 - Agents can change locations each period subject to frictions

- Agents:
 - Two types of refugees, ability $h = \{H, L\}$
 - Either work or receive unemployment benefit
 - Receive random job offers at the beginning of each period
- Locations:
 - Copenhagen and remainder, *j* = {*CPH*, *NCPH*}
 - Agents dropped in a random location at year 0
 - Agents can change locations each period subject to frictions
- Earnings driven by:
 - Establishment productivity
 - Experience
 - Individual ability (unobserved to econometrician)

• The wage earned by a type *h* worker, conditional on having a job at a establishment of type *f* is given by:

$$\ln w_j(h, \mathbf{x}, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h, f} + \sum_f \beta_1^{h, f} x_f + \beta_2 \left(\sum_f x_f\right)^2 + u$$

where *u* is a match specific structural error, $\stackrel{iid}{\sim}$ *Gumbel*(0, σ)

• The wage earned by a type *h* worker, conditional on having a job at a establishment of type *f* is given by:

$$\ln w_j(h, \mathbf{x}, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h, f} + \sum_f \beta_1^{h, f} x_f + \beta_2 \left(\sum_f x_f\right)^2 + u$$

where *u* is a match specific structural error, $\stackrel{iid}{\sim}$ *Gumbel*(0, σ)

• Value of starting in a location with a job given by:
$$\begin{split} \bar{U}_t^E(j,h,\mathbf{x},f) &= \delta_j^h \bar{V}_t^{UE}(j,h,\mathbf{x}) \\ &+ (1-\delta_j^h) \left[(1-\lambda_j^{h,f'}) \mathbb{E}_u \max\{\bar{V}_t^E(j,h,\mathbf{x},f \mid u), \bar{V}_t^{UE}(j,h,\mathbf{x})\} \\ &+ \lambda_j^{h,f'} \mathbb{E}_{u,u'} \max\{\bar{V}_t^E(j,h,\mathbf{x},f \mid u), \bar{V}_t^{UE}(j,h,\mathbf{x}), \bar{V}_t^E(j,h,\mathbf{x},f' \mid u')\} \right] \end{split}$$

• The wage earned by a type *h* worker, conditional on having a job at a establishment of type *f* is given by:

$$\ln w_j(h, \mathbf{x}, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h, f} + \sum_f \beta_1^{h, f} x_f + \beta_2 \left(\sum_f x_f\right)^2 + u$$

where *u* is a match specific structural error, $\stackrel{iid}{\sim}$ *Gumbel*(0, σ)

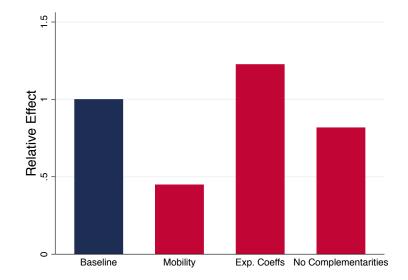
• Value of starting in a location with a job given by:
$$\begin{split} \bar{U}_t^E(j,h,\mathbf{x},f) &= \delta_j^h \bar{V}_t^{UE}(j,h,\mathbf{x}) \\ &+ (1-\delta_j^h) \left[(1-\lambda_j^{h,f'}) \mathbb{E}_u \max\{\bar{V}_t^E(j,h,\mathbf{x},f \mid u), \bar{V}_t^{UE}(j,h,\mathbf{x})\} \\ &+ \lambda_j^{h,f'} \mathbb{E}_{u,u'} \max\{\bar{V}_t^E(j,h,\mathbf{x},f \mid u), \bar{V}_t^{UE}(j,h,\mathbf{x}), \bar{V}_t^E(j,h,\mathbf{x},f' \mid u')\} \right] \end{split}$$

• The wage earned by a type *h* worker, conditional on having a job at a establishment of type *f* is given by:

$$\ln w_j(h, \mathbf{x}, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h, f} + \sum_f \beta_1^{h, f} x_f + \beta_2 \left(\sum_f x_f\right)^2 + u$$

where *u* is a match specific structural error, $\stackrel{iid}{\sim}$ *Gumbel*(0, σ)

• Value of starting in a location with a job given by:
$$\begin{split} \bar{U}_t^E(j,h,\mathbf{x},f) &= \delta_j^h \bar{V}_t^{UE}(j,h,\mathbf{x}) \\ &+ (1-\delta_j^h) \left[(1-\lambda_j^{h,f'}) \mathbb{E}_u \max\{\bar{V}_t^E(j,h,\mathbf{x},f \mid u), \bar{V}_t^{UE}(j,h,\mathbf{x})\} \\ &+ \lambda_j^{h,f'} \mathbb{E}_{u,u'} \max\{\bar{V}_t^E(j,h,\mathbf{x},f \mid u), \bar{V}_t^{UE}(j,h,\mathbf{x}), \bar{V}_t^E(j,h,\mathbf{x},f' \mid u')\} \right] \end{split}$$


• The wage earned by a type *h* worker, conditional on having a job at a establishment of type *f* is given by:

$$\ln w_j(h, \mathbf{x}, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h, f} + \sum_f \beta_1^{h, f} x_f + \beta_2 \left(\sum_f x_f\right)^2 + u$$

where *u* is a match specific structural error, $\stackrel{iid}{\sim}$ *Gumbel*(0, σ)

• Value of starting in a location with a job given by:
$$\begin{split} \bar{U}_t^E(j,h,\mathbf{x},f) &= \delta_j^h \bar{V}_t^{UE}(j,h,\mathbf{x}) \\ &+ (1-\delta_j^h) \left[(1-\lambda_j^{h,f'}) \mathbb{E}_u \max\{\bar{V}_t^E(j,h,\mathbf{x},f \mid u), \bar{V}_t^{UE}(j,h,\mathbf{x})\} \\ &+ \lambda_j^{h,f'} \mathbb{E}_{u,u'} \max\{\bar{V}_t^E(j,h,\mathbf{x},f \mid u), \bar{V}_t^{UE}(j,h,\mathbf{x}), \bar{V}_t^E(j,h,\mathbf{x},f' \mid u')\} \right] \end{split}$$

Treatment Decomposition

• **Contribution:** First paper to use a natural experiment to study the anatomy of the urban wage premium

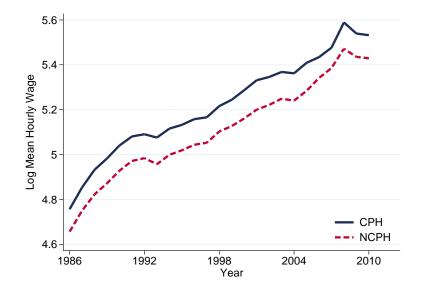
Summary of the Paper

- **Contribution:** First paper to use a natural experiment to study the anatomy of the urban wage premium
- Setting: Danish refugee dispersal policy from 1986-1998

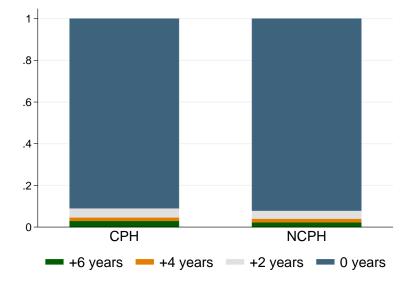
Summary of the Paper

- **Contribution:** First paper to use a natural experiment to study the anatomy of the urban wage premium
- Setting: Danish refugee dispersal policy from 1986-1998
- Key results:
 - Causal big city experience premium of 0.8% in hourly wage and 2.1% in earnings
 - 2. **60%** of dynamic premium can be explained by experience at high-wage establishments and high-skill occupations
 - 3. Structural decomposition suggests effect of assignment to cities depends crucially on unobserved types

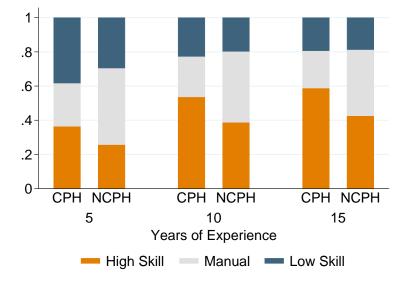
Outline

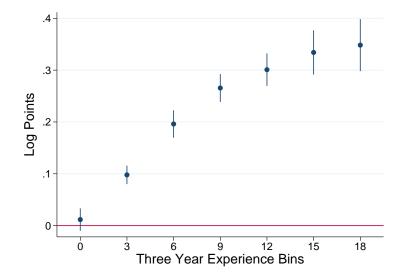

Appendix

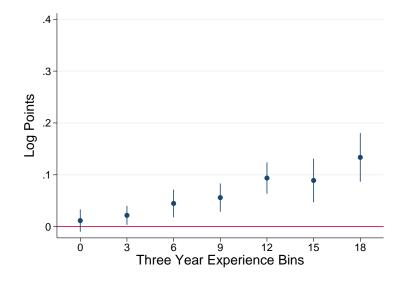
Initial Years of Education - Balancing Tests

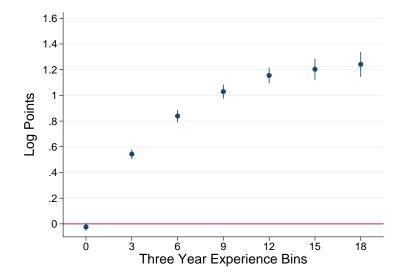

	yearseduc _i	yearseduc _i
CPH	0.164***	0.0980
	(0.0491)	(0.0571)
Married	0.213***	0.145*
	(0.0617)	(0.0691)
No. of children	-0.121***	-0.0549*
	(0.0218)	(0.0247)
Age	0.431***	0.233***
0	(0.0191)	(0.0243)
Constant	5.046***	9.434***
	(0.369)	(0.482)
Observations	11,812	7,386
Sample	All	$Educ \ge 12$

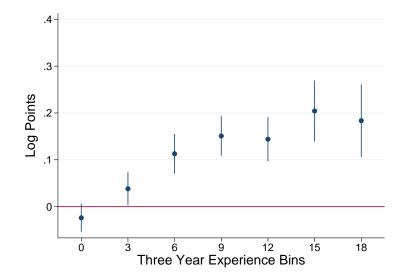
Individuals with missing education information are dropped from the regression. Robust standard errors clustered at the level of initial commuting zone. Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001.


Aggregate Hourly Wage Trends - CPH and NCPH


Differential Take-up of Education


Occupation Distribution of Natives


Non-Parametric Average Return to Experience - Wages


Non-Parametric Differential Return to Experience - Wages

Non-Parametric Average Return to Experience - Earnings

Non-Parametric Differential Return to Experience - Earnings

• The wage earned by a type *h* worker, conditional on having a job at a establishment of type *f* is given by

$$\ln w_{j}(h, \mathbf{x}, f) = \bar{w} + \theta^{h} + \psi^{f} + \Phi^{h, f} + \sum_{f} \beta_{1}^{h, f} x_{f} + \beta_{2} \left(\sum_{f} x_{f}\right)^{2} + u$$

where *u* is a match specific structural error, $\stackrel{iid}{\sim}$ *Gumbel*(0, σ)

• The wage earned by a type *h* worker, conditional on having a job at a establishment of type *f* is given by

$$\ln w_{j}(h, \mathbf{x}, f) = \bar{w} + \theta^{h} + \psi^{f} + \Phi^{h, f} + \sum_{f} \beta_{1}^{h, f} x_{f} + \beta_{2} \left(\sum_{f} x_{f}\right)^{2} + u$$

where *u* is a match specific structural error, $\stackrel{iid}{\sim}$ *Gumbel*(0, σ)

• Each period workers receive random location preference shocks $\eta \stackrel{iid}{\sim} Gumbel(0, \kappa)$: induces desire to move at a utility cost τ

• The wage earned by a type *h* worker, conditional on having a job at a establishment of type *f* is given by

$$\ln w_{j}(h, \mathbf{x}, f) = \bar{w} + \theta^{h} + \psi^{f} + \Phi^{h, f} + \sum_{f} \beta_{1}^{h, f} x_{f} + \beta_{2} \left(\sum_{f} x_{f}\right)^{2} + u$$

~

where *u* is a match specific structural error, $\stackrel{iid}{\sim}$ *Gumbel*(0, σ)

- Each period workers receive random location preference shocks $\eta \stackrel{iid}{\sim} Gumbel(0, \kappa)$: induces desire to move at a utility cost τ
- Value for working given by

$$\begin{split} V_{j}^{E}(h,\mathbf{x},f,t\mid u,\eta_{j},\eta_{j'}) &= a_{j} + \ln w(\cdot) \\ +\rho \max_{j,j'} \{ \bar{U}_{j}^{E}(h,\mathbf{x}+1,f,t+1) + \eta_{j}, \bar{U}_{j'}^{UE}(h,\mathbf{x},t+1) - \tau + \eta_{j'} \} \end{split}$$

here $\bar{U}_{j}^{E}(\cdot)$ is the value function for *E* prior to labor market shocks realizing, likewise for *UE*

Value Function Prior to Labor Market Shocks Realizing

Value Function Prior to Labor Market Shocks Realizing

- In a location, worker receives random job offers from different establishment types
 - The probability of receiving an offer from type *f* is given by $\lambda_i^{h,f}$
 - The probability of exogenous job destruction is denoted by δ_i^h

- In a location, worker receives random job offers from different establishment types
 - The probability of receiving an offer from type *f* is given by $\lambda_i^{h,f}$
 - The probability of exogenous job destruction is denoted by δ_i^h
- Value of starting in a location with a job given by:

$$\begin{split} \bar{U}_{t}^{E}(j,h,\mathbf{x},f) &= \delta_{j}^{h} \bar{V}_{t}^{UE}(j,h,\mathbf{x}) \\ &+ (1-\delta_{j}^{h}) \left[(1-\lambda_{j}^{h,f'}) \mathbb{E}_{u} \max\{\bar{V}_{t}^{E}(j,h,\mathbf{x},f \mid u), \bar{V}_{t}^{UE}(j,h,\mathbf{x})\} \\ &+ \lambda_{j}^{h,f'} \mathbb{E}_{u,u'} \max\{\bar{V}_{t}^{E}(j,h,\mathbf{x},f \mid u), \bar{V}_{t}^{UE}(j,h,\mathbf{x}), \bar{V}_{t}^{E}(j,h,\mathbf{x},f' \mid u')\} \right] \end{split}$$

- In a location, worker receives random job offers from different establishment types
 - The probability of receiving an offer from type *f* is given by $\lambda_i^{h,f}$
 - The probability of exogenous job destruction is denoted by δ_i^h
- Value of starting in a location with a job given by:

$$\begin{split} \bar{U}_{t}^{E}(j,h,\mathbf{x},f) &= \delta_{j}^{h} \bar{V}_{t}^{UE}(j,h,\mathbf{x}) \\ &+ (1-\delta_{j}^{h}) \left[(1-\lambda_{j}^{h,f'}) \mathbb{E}_{u} \max\{\bar{V}_{t}^{E}(j,h,\mathbf{x},f \mid u), \bar{V}_{t}^{UE}(j,h,\mathbf{x})\} \right. \\ &+ \lambda_{j}^{h,f'} \mathbb{E}_{u,u'} \max\{\bar{V}_{t}^{E}(j,h,\mathbf{x},f \mid u), \bar{V}_{t}^{UE}(j,h,\mathbf{x}), \bar{V}_{t}^{E}(j,h,\mathbf{x},f' \mid u')\} \end{split}$$

• Gumbel assumption on *u* allows use to solve for these in closed form

Maximum Likelihood Estimation

 Likelihood of observing a sequence of wages and transitions, given unobserved type *h* and parameter vector θ by

$$P(Y^{i}|h;\theta) = P(Y_{1}^{i}|h;\theta) \prod_{t=w}^{T} P(Y_{t}^{i}|Y_{t-1}^{i},h;\theta)$$

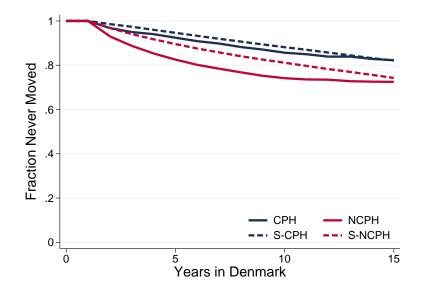
Maximum Likelihood Estimation

• Likelihood of observing a sequence of wages and transitions, given unobserved type *h* and parameter vector *θ* by

$$P(Y^{i}|h;\theta) = P(Y_{1}^{i}|h;\theta) \prod_{t=w}^{T} P(Y_{t}^{i}|Y_{t-1}^{i},h;\theta)$$

• Solve the model backwards and derive closed form joint location and labor market transition probabilities

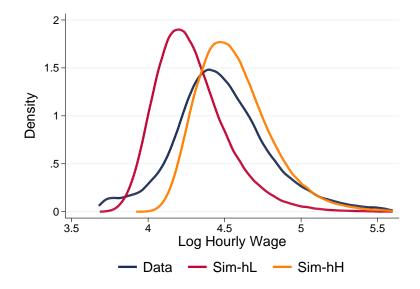
Maximum Likelihood Estimation

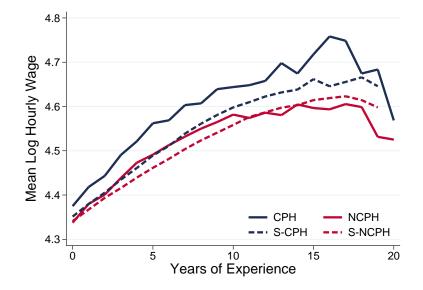

 Likelihood of observing a sequence of wages and transitions, given unobserved type *h* and parameter vector θ by

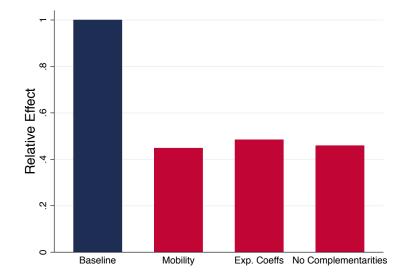
$$P(Y^{i}|h;\theta) = P(Y_{1}^{i}|h;\theta) \prod_{t=w}^{T} P(Y_{t}^{i}|Y_{t-1}^{i},h;\theta)$$

- Solve the model backwards and derive closed form joint location and labor market transition probabilities
- An individual's contribution to the overall likelihood function is given by weighted average across unobserved types

$$L(\theta) = \chi_L P(Y^i | L, \theta) + (1 - \chi_L) P(Y^i | H, \theta)$$


Model Fit - Actual and Simulated Moving Profiles


Model Fit - Actual and Simulated Experience Accumulation


Model Fit - Actual and Simulated Wage Densities

Model Fit - Wage-Experience Profiles

Treatment Decomposition - Sequential

