The Return to Big City Experience: Evidence from Danish Refugees

Fabian Eckert, Mads Hejlesen, Conor Walsh

July 26, 2018

Yale University, Aarhus University
Outline

Introduction

The Danish Refugee Program of 1986-1998 and Data

Documenting The Treatment Effect

Mechanisms

Sorting in a Spatial Model of Earnings Dynamics
• **Urban wage premium**: Workers earn higher wages in cities even after controlling for observables
 - Is the urban wage premium only due to selection across areas?
 - If not, which mechanisms explain the urban wage premium?

• **Problem**: Hard to pin down premium and mechanisms due to endogeneity of location choice

• **This Paper**: Combine Danish administrative data & natural experiment to study the anatomy of the urban wage premium for a particular population
Outline of the Paper

1. Document the causal effect on wage growth of assignment to a big city using a natural experiment from 1986-1998
 • 20,000 refugees quasi-randomly assigned to Danish municipalities
 • Assignment to a big city led to a causal difference of 0.8% per year of experience in hourly wages, 2.1% for earnings

2. Use rich administrative data to provide evidence on mechanisms driving the premium
 • Establishment and occupation sorting explains 60% of the difference

3. Quantify contribution of sorting on unobserved ability
 • Natural experiment identifies key model parameter
 • Sorting within cities important in explaining observed patterns
Outline of the Paper

1. Document the causal effect on wage growth of assignment to a big city using a natural experiment from 1986-1998
 - 20,000 refugees quasi-randomly assigned to Danish municipalities
 - Assignment to a big city led to a causal difference of 0.8% per year of experience in hourly wages, 2.1% for earnings

2. Use rich administrative data to provide evidence on mechanisms driving the premium
 - Establishment and occupation sorting explains 60% of the difference

3. Quantify contribution of sorting on unobserved ability
 - Natural experiment identifies key model parameter
 - Sorting within cities important in explaining observed patterns
Outline of the Paper

1. Document the causal effect on wage growth of assignment to a big city using a natural experiment from 1986-1998
 - 20,000 refugees quasi-randomly assigned to Danish municipalities
 - Assignment to a big city led to a causal difference of 0.8% per year of experience in hourly wages, 2.1% for earnings

2. Use rich administrative data to provide evidence on mechanisms driving the premium
 - Establishment and occupation sorting explains 60% of the difference
Outline of the Paper

1. Document the causal effect on wage growth of assignment to a big city using a natural experiment from 1986-1998
 - 20,000 refugees quasi-randomly assigned to Danish municipalities
 - Assignment to a big city led to a causal difference of 0.8% per year of experience in hourly wages, 2.1% for earnings

2. Use rich administrative data to provide evidence on mechanisms driving the premium
 - Establishment and occupation sorting explains 60% of the difference

3. Quantify contribution of sorting on unobserved ability
 - Natural experiment identifies key model parameter
 - Sorting within cities important in explaining observed patterns
Outline

Introduction

The Danish Refugee Program of 1986-1998 and Data

Documenting The Treatment Effect

Mechanisms

Sorting in a Spatial Model of Earnings Dynamics
The Danish Refugee Program of 1986-1998

• Goal: Assign refugees to municipalities proportionally to local population size
• Quasi-random assignment conditioning on information available to the council officer through a questionnaire:
 • Age, number of children, marital status, nationality
• Eligible for Danish social security and specialized programs
• Assisted in finding permanent housing
• Danish classes
• Eligible to work immediately upon assignment

Used before Damm & Dustmann (2014), Damm (2009)
The Danish Refugee Program of 1986-1998

- Goal: Assign refugees to municipalities proportionally to local population size
The Danish Refugee Program of 1986-1998

- Goal: Assign refugees to municipalities proportionally to local population size

- Quasi-random assignment conditioning on information available to the council officer through a questionnaire:
 - Age, number of children, marital status, nationality
The Danish Refugee Program of 1986-1998

- Goal: Assign refugees to municipalities proportionally to local population size

- Quasi-random assignment conditioning on information available to the council officer through a questionnaire:
 - Age, number of children, marital status, nationality

- Eligible for Danish social security and specialized programs
 - Assisted in finding permanent housing
 - Danish classes
 - Eligible to work immediately upon assignment

Used before Damm & Dustmann (2014), Damm (2009)
The Danish Refugee Program of 1986-1998

- Goal: Assign refugees to municipalities proportionally to local population size

- Quasi-random assignment conditioning on information available to the council officer through a questionnaire:
 - Age, number of children, marital status, nationality

- Eligible for Danish social security and specialized programs
 - Assisted in finding permanent housing
 - Danish classes
 - Eligible to work immediately upon assignment

- Used before Damm & Dustmann (2014), Damm (2009)
Group Averages - Natives and Refugees

<table>
<thead>
<tr>
<th>Comparison by:</th>
<th>Group</th>
<th>Assignment (Refugees only)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natives</td>
<td>Refugees</td>
<td>Copenhagen</td>
<td>Non-Copenhagen</td>
</tr>
<tr>
<td>Age</td>
<td>36.72</td>
<td>28.24</td>
<td>28.67</td>
<td>28.08</td>
</tr>
<tr>
<td>Married</td>
<td>0.47</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>No. of children</td>
<td>0.68</td>
<td>0.54</td>
<td>0.47</td>
<td>0.57</td>
</tr>
<tr>
<td>Age of youngest child</td>
<td>7.43</td>
<td>3.46</td>
<td>3.63</td>
<td>3.40</td>
</tr>
<tr>
<td>Age of oldest child</td>
<td>10.01</td>
<td>7.27</td>
<td>7.20</td>
<td>7.30</td>
</tr>
<tr>
<td>Missing education</td>
<td>0.00</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>≤ 10 years of education</td>
<td>0.31</td>
<td>0.27</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>12 years of education</td>
<td>0.50</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>> 12 years of education</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>Observations</td>
<td>1,335,545</td>
<td>20,493</td>
<td>5,530</td>
<td>14,963</td>
</tr>
</tbody>
</table>

Note: Statistics are males only. Married is an indicator taking value 1 if the individual is married. Missing education, 10 years of education, 12 years of education, and ≥ 12 years of education are all indicator variables.
Group Averages - Natives and Refugees

<table>
<thead>
<tr>
<th>Comparison by:</th>
<th>Group</th>
<th>Assignment (Refugees only)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natives</td>
<td>Refugees</td>
<td>Copenhagen</td>
<td>Non-Copenhagen</td>
</tr>
<tr>
<td>Age</td>
<td>36.72</td>
<td>28.24</td>
<td>28.67</td>
<td>28.08</td>
</tr>
<tr>
<td>Married</td>
<td>0.47</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>No. of children</td>
<td>0.68</td>
<td>0.54</td>
<td>0.47</td>
<td>0.57</td>
</tr>
<tr>
<td>Age of youngest child</td>
<td>7.43</td>
<td>3.46</td>
<td>3.63</td>
<td>3.40</td>
</tr>
<tr>
<td>Age of oldest child</td>
<td>10.01</td>
<td>7.27</td>
<td>7.20</td>
<td>7.30</td>
</tr>
<tr>
<td>Missing education</td>
<td>0.00</td>
<td>0.19</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>≤ 10 years of education</td>
<td>0.31</td>
<td>0.27</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>12 years of education</td>
<td>0.50</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>> 12 years of education</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
<td>0.19</td>
</tr>
<tr>
<td>Observations</td>
<td>1,335,545</td>
<td>20,493</td>
<td>5,530</td>
<td>14,963</td>
</tr>
</tbody>
</table>

Note: Statistics are males only. Married is an indicator taking value 1 if the individual is married. Missing education, 10 years of education, 12 years of education, and ≥ 12 years of education are all indicator variables.
Group Averages - Natives and Refugees

<table>
<thead>
<tr>
<th>Comparison by:</th>
<th>Group</th>
<th>Assignment (Refugees only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natives</td>
<td>Refugees</td>
</tr>
<tr>
<td>Age</td>
<td>36.72</td>
<td>28.24</td>
</tr>
<tr>
<td>Married</td>
<td>0.47</td>
<td>0.28</td>
</tr>
<tr>
<td>No. of children</td>
<td>0.68</td>
<td>0.54</td>
</tr>
<tr>
<td>Age of youngest child</td>
<td>7.43</td>
<td>3.46</td>
</tr>
<tr>
<td>Age of oldest child</td>
<td>10.01</td>
<td>7.27</td>
</tr>
<tr>
<td>Missing education</td>
<td>0.00</td>
<td>0.19</td>
</tr>
<tr>
<td>≤ 10 years of education</td>
<td>0.31</td>
<td>0.27</td>
</tr>
<tr>
<td>12 years of education</td>
<td>0.50</td>
<td>0.34</td>
</tr>
<tr>
<td>> 12 years of education</td>
<td>0.17</td>
<td>0.20</td>
</tr>
<tr>
<td>Observations</td>
<td>1,335,545</td>
<td>20,493</td>
</tr>
</tbody>
</table>

Note: Statistics are males only. Married is an indicator taking value 1 if the individual is married. Missing education, 10 years of education, 12 years of education, and ≥ 12 years of education are all indicator variables.
Note: Statistics are males only. Married is an indicator taking value 1 if the individual is married. Missing education, 10 years of education, 12 years of education, and ≥ 12 years of education are all indicator variables.
Commuting Zones of Denmark 1986
Persistence of Initial Assignment by Education Groups

![Graph showing persistence of initial assignment by education groups over years in Denmark.](image-url)
Outline

Introduction

The Danish Refugee Program of 1986-1998 and Data

Documenting The Treatment Effect

Mechanisms

Sorting in a Spatial Model of Earnings Dynamics
The Treatment Effect of Initial Assignment

• We stratify the sample by location of initial assignment, and follow refugees over time

• **Document:** The causal effect of initial assignment to a big city on
 1. Wage- and earnings-experience profiles
 2. Extensive margin of labour supply

• **Interpretation:** The causal effect of initial assignment to a big city on population-level labor market outcomes
We estimate a simple linear model by initial assignment where:

- y_{it} is log hourly wages or earnings
- μ_t is time fixed effects
- Exp_{it} is the number of years of experience
- InitCop_i is a dummy for initially allocated to Copenhagen
- X_{it} is a vector of individual assignment variables: nationality, married at assignment, age at assignment, children at assignment

Map to static (β_2) and dynamic premia (β_3) in this linear setting.

Non-parametric results very similar.
• We estimate a simple linear model by initial assignment

\[y_{it} = \mu_t + \beta_1 \text{Exp}_{it} + \beta_2 \text{InitCop}_i + \beta_3 (\text{InitCop}_i \times \text{Exp}_{it}) + \mathbf{X}_{it}'\mathbf{\theta} + \epsilon_{it} \]

where

• \(y_{it} \) is log hourly wages or earnings
• \(\mu_t \) is time fixed effects
• \(\text{Exp}_{it} \) is the number of years of experience
• \(\text{InitCop}_i \) is a dummy for initially allocated to Copenhagen
• \(\mathbf{X}_{it} \) is a vector of individual assignment variables: nationality, married at assignment, age at assignment, children at assignment
Wage- & Earnings-Experience Profiles by Initial Assignment

- We estimate a simple linear model by initial assignment

\[y_{it} = \mu_t + \beta_1 \text{Exp}_{it} + \beta_2 \text{InitCop}_i + \beta_3 (\text{InitCop}_i \times \text{Exp}_{it}) + \mathbf{X}_{it}' \mathbf{\theta} + \epsilon_{it} \]

where
- \(y_{it} \) is log hourly wages or earnings
- \(\mu_t \) is time fixed effects
- \(\text{Exp}_{it} \) is the number of years of experience
- \(\text{InitCop}_i \) is a dummy for initially allocated to Copenhagen
- \(\mathbf{X}_{it} \) is a vector of individual assignment variables: nationality, married at assignment, age at assignment, children at assignment

- Map to static (\(\beta_2 \)) and dynamic premia (\(\beta_3 \)) in this linear setting
• We estimate a simple linear model by initial assignment

\[y_{it} = \mu_t + \beta_1 \text{Exp}_{it} + \beta_2 \text{InitCop}_i + \beta_3 (\text{InitCop}_i \times \text{Exp}_{it}) + \mathbf{X}_{it}'\theta + \epsilon_{it} \]

where

• \(y_{it} \) is log hourly wages or earnings
• \(\mu_t \) is time fixed effects
• \(\text{Exp}_{it} \) is the number of years of experience
• \(\text{InitCop}_i \) is a dummy for initially allocated to Copenhagen
• \(\mathbf{X}_{it} \) is a vector of individual assignment variables: nationality, married at assignment, age at assignment, children at assignment

• Map to static (\(\beta_2 \)) and dynamic premia (\(\beta_3 \)) in this linear setting

• Non-parametric results very similar
Wage- & Earnings-Experience Profiles by Initial Assignment

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\log w_{it}$</td>
<td>$\log w_{it}$</td>
<td>$\log w_{it}$</td>
<td>$\log e_{it}$</td>
<td>$\log e_{it}$</td>
<td>$\log e_{it}$</td>
</tr>
<tr>
<td>Exp_{it}</td>
<td>0.0228***</td>
<td>0.0250***</td>
<td>0.0211***</td>
<td>0.0759***</td>
<td>0.0784***</td>
<td>0.0750***</td>
</tr>
<tr>
<td></td>
<td>(0.00142)</td>
<td>(0.00159)</td>
<td>(0.00126)</td>
<td>(0.00322)</td>
<td>(0.00370)</td>
<td>(0.00341)</td>
</tr>
<tr>
<td>InitCph_{i}</td>
<td>0.000477</td>
<td>0.00858</td>
<td>-0.00892</td>
<td>-0.0725***</td>
<td>-0.0543**</td>
<td>-0.104***</td>
</tr>
<tr>
<td></td>
<td>(0.0101)</td>
<td>(0.00883)</td>
<td>(0.0136)</td>
<td>(0.0184)</td>
<td>(0.0190)</td>
<td>(0.0237)</td>
</tr>
<tr>
<td>$\text{InitCph}{i} \times \text{Exp}{it}$</td>
<td>0.00810***</td>
<td>0.00736***</td>
<td>0.00813***</td>
<td>0.0214***</td>
<td>0.0186***</td>
<td>0.0261***</td>
</tr>
<tr>
<td></td>
<td>(0.00148)</td>
<td>(0.00163)</td>
<td>(0.00134)</td>
<td>(0.00303)</td>
<td>(0.00330)</td>
<td>(0.00312)</td>
</tr>
<tr>
<td>Observations</td>
<td>97,402</td>
<td>57,994</td>
<td>39,408</td>
<td>107,297</td>
<td>63,870</td>
<td>43,427</td>
</tr>
<tr>
<td>R^2</td>
<td>0.056</td>
<td>0.062</td>
<td>0.055</td>
<td>0.155</td>
<td>0.158</td>
<td>0.156</td>
</tr>
<tr>
<td>Sample</td>
<td>All</td>
<td>Educ\geq12</td>
<td>Educ$<$12</td>
<td>All</td>
<td>Educ\geq12</td>
<td>Educ$<$12</td>
</tr>
<tr>
<td>Nationality FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cohort FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Assignment Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the level of initial commuting zone. Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001.
Wage- & Earnings-Experience Profiles by Initial Assignment

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>logwage<sub>it</sub></td>
<td>logwage<sub>it</sub></td>
<td>logwage<sub>it</sub></td>
<td>logearnings<sub>it</sub></td>
<td>logearnings<sub>it</sub></td>
<td>logearnings<sub>it</sub></td>
</tr>
<tr>
<td>Exp<sub>it</sub></td>
<td>0.0228***</td>
<td>0.0250***</td>
<td>0.0211***</td>
<td>0.0759***</td>
<td>0.0784***</td>
<td>0.0750***</td>
</tr>
<tr>
<td></td>
<td>(0.00142)</td>
<td>(0.00159)</td>
<td>(0.00126)</td>
<td>(0.00322)</td>
<td>(0.00370)</td>
<td>(0.00341)</td>
</tr>
<tr>
<td>InitCph<sub>i</sub></td>
<td>0.000477</td>
<td>0.00858</td>
<td>-0.00892</td>
<td>-0.0725***</td>
<td>-0.0543**</td>
<td>-0.104***</td>
</tr>
<tr>
<td></td>
<td>(0.0101)</td>
<td>(0.00883)</td>
<td>(0.0136)</td>
<td>(0.0184)</td>
<td>(0.0190)</td>
<td>(0.0237)</td>
</tr>
<tr>
<td>InitCph<sub>i</sub> × Exp<sub>it</sub></td>
<td>0.00810***</td>
<td>0.00736***</td>
<td>0.00813***</td>
<td>0.0214***</td>
<td>0.0186***</td>
<td>0.0261***</td>
</tr>
<tr>
<td></td>
<td>(0.00148)</td>
<td>(0.00163)</td>
<td>(0.00134)</td>
<td>(0.00303)</td>
<td>(0.00330)</td>
<td>(0.00312)</td>
</tr>
<tr>
<td>Observations</td>
<td>97,402</td>
<td>57,994</td>
<td>39,408</td>
<td>107,297</td>
<td>63,870</td>
<td>43,427</td>
</tr>
<tr>
<td>R<sup>2</sup></td>
<td>0.056</td>
<td>0.062</td>
<td>0.055</td>
<td>0.155</td>
<td>0.158</td>
<td>0.156</td>
</tr>
<tr>
<td>Sample</td>
<td>All</td>
<td>Educ≥12</td>
<td>Educ<12</td>
<td>All</td>
<td>Educ≥12</td>
<td>Educ<12</td>
</tr>
<tr>
<td>Nationality FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cohort FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Assignment Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the level of initial commuting zone. Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001.
Wage- & Earnings-Experience Profiles by Initial Assignment

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>logwage<sub>it</sub></td>
<td>logwage<sub>it</sub></td>
<td>logwage<sub>it</sub></td>
<td>logearnings<sub>it</sub></td>
<td>logearnings<sub>it</sub></td>
<td>logearnings<sub>it</sub></td>
</tr>
<tr>
<td>Exp<sub>it</sub></td>
<td>0.0228***</td>
<td>0.0250***</td>
<td>0.0211***</td>
<td>0.0759***</td>
<td>0.0784***</td>
<td>0.0750***</td>
</tr>
<tr>
<td></td>
<td>(0.00142)</td>
<td>(0.00159)</td>
<td>(0.00126)</td>
<td>(0.00322)</td>
<td>(0.00370)</td>
<td>(0.00341)</td>
</tr>
<tr>
<td>InitCph<sub>i</sub></td>
<td>0.000477</td>
<td>0.00858</td>
<td>-0.00892</td>
<td>-0.0725***</td>
<td>-0.0543**</td>
<td>-0.104***</td>
</tr>
<tr>
<td></td>
<td>(0.0101)</td>
<td>(0.00883)</td>
<td>(0.0136)</td>
<td>(0.0184)</td>
<td>(0.0190)</td>
<td>(0.0237)</td>
</tr>
<tr>
<td>InitCph<sub>i</sub> x Exp<sub>it</sub></td>
<td>0.00810***</td>
<td>0.00736***</td>
<td>0.00813***</td>
<td>0.0214***</td>
<td>0.0186***</td>
<td>0.0261***</td>
</tr>
<tr>
<td></td>
<td>(0.00148)</td>
<td>(0.00163)</td>
<td>(0.00134)</td>
<td>(0.00303)</td>
<td>(0.00330)</td>
<td>(0.00312)</td>
</tr>
<tr>
<td>Observations</td>
<td>97,402</td>
<td>57,994</td>
<td>39,408</td>
<td>107,297</td>
<td>63,870</td>
<td>43,427</td>
</tr>
<tr>
<td>R<sup>2</sup></td>
<td>0.056</td>
<td>0.062</td>
<td>0.055</td>
<td>0.155</td>
<td>0.158</td>
<td>0.156</td>
</tr>
<tr>
<td>Sample</td>
<td>All</td>
<td>Educ≥12</td>
<td>Educ<12</td>
<td>All</td>
<td>Educ≥12</td>
<td>Educ<12</td>
</tr>
<tr>
<td>Nationality FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cohort FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Assignment Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the level of initial commuting zone. Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001.
Wage- & Earnings-Experience Profiles by Initial Assignment

<table>
<thead>
<tr>
<th></th>
<th>(1) (\logwage_{it})</th>
<th>(2) (\logwage_{it})</th>
<th>(3) (\logwage_{it})</th>
<th>(4) (\logearnings_{it})</th>
<th>(5) (\logearnings_{it})</th>
<th>(6) (\logearnings_{it})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Exp_{it})</td>
<td>0.0228*** (0.00142)</td>
<td>0.0250*** (0.00159)</td>
<td>0.0211*** (0.00126)</td>
<td>0.0759*** (0.00322)</td>
<td>0.0784*** (0.00370)</td>
<td>0.0750*** (0.00341)</td>
</tr>
<tr>
<td>(InitCph_i)</td>
<td>0.000477 (0.0101)</td>
<td>0.00858 (0.00883)</td>
<td>-0.00892 (0.0136)</td>
<td>-0.0725*** (0.0184)</td>
<td>-0.0543** (0.0190)</td>
<td>-0.104*** (0.0237)</td>
</tr>
<tr>
<td>(InitCph_i \times) (Exp_{it})</td>
<td>0.00810*** (0.00148)</td>
<td>0.00736*** (0.00163)</td>
<td>0.00813*** (0.00134)</td>
<td>0.0214*** (0.00303)</td>
<td>0.0186*** (0.00330)</td>
<td>0.0261*** (0.00312)</td>
</tr>
<tr>
<td>Observations</td>
<td>97,402</td>
<td>57,994</td>
<td>39,408</td>
<td>107,297</td>
<td>63,870</td>
<td>43,427</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.056</td>
<td>0.062</td>
<td>0.055</td>
<td>0.155</td>
<td>0.158</td>
<td>0.156</td>
</tr>
<tr>
<td>Sample</td>
<td>All</td>
<td>Educ(\geq 12)</td>
<td>Educ(< 12)</td>
<td>All</td>
<td>Educ(\geq 12)</td>
<td>Educ(< 12)</td>
</tr>
<tr>
<td>Nationality FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cohort FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Assignment Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the level of initial commuting zone. Standard errors in parentheses. * \(p<0.05 \), ** \(p<0.01 \), *** \(p<0.001 \).
Extensive Margin of Labour Supply

<table>
<thead>
<tr>
<th></th>
<th>(1) $neveremployed_i$</th>
<th>(2) $neveremployed_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$InitCph_i$</td>
<td>0.00259</td>
<td>0.0371***</td>
</tr>
<tr>
<td></td>
<td>(0.00882)</td>
<td>(0.0111)</td>
</tr>
<tr>
<td>Age at Arr.</td>
<td>0.0188***</td>
<td>0.0196***</td>
</tr>
<tr>
<td></td>
<td>(0.000602)</td>
<td>(0.000539)</td>
</tr>
<tr>
<td>No. Kids at Arr.</td>
<td>0.0347**</td>
<td>-0.0285**</td>
</tr>
<tr>
<td></td>
<td>(0.0126)</td>
<td>(0.0111)</td>
</tr>
<tr>
<td>Married at Arr.</td>
<td>-0.0691***</td>
<td>-0.0295*</td>
</tr>
<tr>
<td></td>
<td>(0.0113)</td>
<td>(0.0140)</td>
</tr>
<tr>
<td>Observations</td>
<td>11,138</td>
<td>9,434</td>
</tr>
<tr>
<td>R^2</td>
<td>0.141</td>
<td>0.175</td>
</tr>
<tr>
<td>Sample</td>
<td>Educ \geq12</td>
<td>Educ $<$12</td>
</tr>
<tr>
<td>Nationality FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Cohort FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the level of initial commuting zone. Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001.
Introduction

The Danish Refugee Program of 1986-1998 and Data

Documenting The Treatment Effect

Mechanisms

Sorting in a Spatial Model of Earnings Dynamics
What is Driving the Dynamic Urban Wage Premium?

We consider the following channels to explain the dynamic urban wage premium:

1. More experience at high-wage establishments
2. Differential sorting into occupations
3. Differential take-up of education
4. Differential aggregate wage trends
5. Effects of ethnic enclaves
6. Selection into labour force
What is Driving the Dynamic Urban Wage Premium?

We consider the following channels to explain the dynamic urban wage premium:

1. More experience at high-wage establishments ✓
2. Differential sorting into occupations ✓
3. Differential take-up of education X
4. Differential aggregate wage trends X
5. Effects of ethnic enclaves X
6. Selection into labour force X
Accumulation of Experience at High-Wage Establishments

![Graph showing accumulation of experience at high-wage establishments. The graph compares Years of High-Wage Experience with Years of Experience, distinguishing between CPH and Non-CPH categories. The graph indicates a trend where CPH experiences a higher increase in Years of High-Wage Experience compared to Non-CPH.](image-url)
Differential Sorting into Occupations by Initial Allocation

Years of Experience

- CPH
- NCPH

CPH: High Skill, Manual, Low Skill
NCPH: High Skill, Manual, Low Skill

Years of Experience:
- 5
- 10
- 15
High-Wage Establishment Experience & Occupational Ladder

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\log wage_{it}$</td>
<td>$\log wage_{it}$</td>
<td>$\log wage_{it}$</td>
<td>$\log wage_{it}$</td>
</tr>
<tr>
<td>Exp_{it}</td>
<td>0.0250***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00159)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$HighExp_{it}$</td>
<td></td>
<td>0.0259***</td>
<td>0.0217***</td>
<td>0.0225***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00121)</td>
<td>(0.00124)</td>
<td>(0.00138)</td>
</tr>
<tr>
<td>$OtherExp_{it}$</td>
<td></td>
<td>0.0206***</td>
<td>0.0186***</td>
<td>0.0157***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.00203)</td>
<td>(0.00140)</td>
<td>(0.00126)</td>
</tr>
<tr>
<td>$InitCph_i$</td>
<td>0.00858</td>
<td>-0.00241</td>
<td>0.00597</td>
<td>0.00580</td>
</tr>
<tr>
<td></td>
<td>(0.00883)</td>
<td>(0.00676)</td>
<td>(0.00538)</td>
<td>(0.00533)</td>
</tr>
<tr>
<td>$InitCph_i \times Exp_{it}$</td>
<td>0.00736***</td>
<td>0.00566***</td>
<td>0.00354**</td>
<td>0.00278*</td>
</tr>
<tr>
<td></td>
<td>(0.00163)</td>
<td>(0.00148)</td>
<td>(0.00115)</td>
<td>(0.00101)</td>
</tr>
<tr>
<td>Observations</td>
<td>57,994</td>
<td>57,994</td>
<td>48,183</td>
<td>44,135</td>
</tr>
<tr>
<td>R^2</td>
<td>0.062</td>
<td>0.137</td>
<td>0.188</td>
<td>0.224</td>
</tr>
<tr>
<td>Sample</td>
<td>Educ≥12</td>
<td>Educ≥12</td>
<td>Educ≥12</td>
<td>Educ≥12</td>
</tr>
<tr>
<td>High-Wage Firm FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Occupation FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Industry FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Assignment Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the level of initial commuting zone. Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001.
High-Wage Establishment Experience & Occupational Ladder

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\log wage_{it}$</td>
<td>$\log wage_{it}$</td>
<td>$\log wage_{it}$</td>
<td>$\log wage_{it}$</td>
</tr>
<tr>
<td>Exp_{it}</td>
<td>0.0250***</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.00159)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$HighExp_{it}$</td>
<td>0.0259***</td>
<td>0.0217***</td>
<td>0.0225***</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.00121)</td>
<td>(0.00124)</td>
<td>(0.00138)</td>
<td></td>
</tr>
<tr>
<td>$OtherExp_{it}$</td>
<td>0.0206***</td>
<td>0.0186***</td>
<td>0.0157***</td>
<td>0.0157***</td>
</tr>
<tr>
<td></td>
<td>(0.00203)</td>
<td>(0.00140)</td>
<td>(0.00126)</td>
<td>(0.00126)</td>
</tr>
<tr>
<td>$InitCph_{i}$</td>
<td>0.00858</td>
<td>-0.00241</td>
<td>0.00597</td>
<td>0.00580</td>
</tr>
<tr>
<td></td>
<td>(0.00883)</td>
<td>(0.00676)</td>
<td>(0.00538)</td>
<td>(0.00533)</td>
</tr>
<tr>
<td>$InitCph_{i} \times Exp_{it}$</td>
<td>0.00736***</td>
<td>0.00566***</td>
<td>0.00354**</td>
<td>0.00278*</td>
</tr>
<tr>
<td></td>
<td>(0.00163)</td>
<td>(0.00148)</td>
<td>(0.00115)</td>
<td>(0.00101)</td>
</tr>
<tr>
<td>Observations</td>
<td>57,994</td>
<td>57,994</td>
<td>48,183</td>
<td>44,135</td>
</tr>
<tr>
<td>R^2</td>
<td>0.062</td>
<td>0.137</td>
<td>0.188</td>
<td>0.224</td>
</tr>
<tr>
<td>Sample</td>
<td>Educ\geq12</td>
<td>Educ\geq12</td>
<td>Educ\geq12</td>
<td>Educ\geq12</td>
</tr>
<tr>
<td>High-Wage Firm FE</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Occupation FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Industry FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Assignment Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Robust standard errors clustered at the level of initial commuting zone. Standard errors in parentheses. * $p<0.05$, ** $p<0.01$, *** $p<0.001$.
Outline

Introduction

The Danish Refugee Program of 1986-1998 and Data

Documenting The Treatment Effect

Mechanisms

Sorting in a Spatial Model of Earnings Dynamics
Motivation for Spatial Model to Understand Sorting Within Cities

- Want to understand contribution of sorting *within* cities on unobserved ability in driving these patterns.

- At least three reasons why such sorting could matter:
 1. Who gets experience *at all* may differ fundamentally within a city and without, even with identical populations in both locations.
 2. Correlation between type and working at certain establishments/occupations.
 3. Complementarities between worker type and establishment type.

- Estimate a spatial model with unobserved heterogeneity to quantify role of sorting following Baum-Snow & Pavan (2012).
Ingredients of Model

• **Agents**:
 - Two types of refugees, ability $h = \{H, L\}$
 - Either work or receive unemployment benefit
 - Receive random job offers at the beginning of each period

• **Locations**:
 - Copenhagen and remainder, $j = \{CPH, NCPH\}$
 - Agents dropped in a random location at year 0
 - Agents can change locations each period subject to frictions

• **Earnings** driven by:
 - Establishment productivity
 - Experience
 - Individual ability (unobserved to econometrician)
Ingredients of Model

- **Agents:**
 - Two types of refugees, ability $h = \{H, L\}$
 - Either work or receive unemployment benefit
 - Receive random job offers at the beginning of each period
Agents:
- Two types of refugees, ability $h = \{H, L\}$
- Either work or receive unemployment benefit
- Receive random job offers at the beginning of each period

Locations:
- Copenhagen and remainder, $j = \{CPH, NCPH\}$
- Agents dropped in a random location at year 0
- Agents can change locations each period subject to frictions
Ingredients of Model

- **Agents:**
 - Two types of refugees, ability $h = \{H, L\}$
 - Either work or receive unemployment benefit
 - Receive random job offers at the beginning of each period

- **Locations:**
 - Copenhagen and remainder, $j = \{CPH, NCPH\}$
 - Agents dropped in a random location at year 0
 - Agents can change locations each period subject to frictions

- **Earnings** driven by:
 - Establishment productivity
 - Experience
 - Individual ability (unobserved to econometrician)
Earnings and Value Functions

- The wage earned by a type h worker, conditional on having a job at a establishment of type f is given by:

$$w_h \sim Gumbel(0, \sigma)$$

- Value of starting in a location with a job given by:

$$\bar{U}_{Et}(j, h, x, f) = \delta_{hj} \bar{V}_{UE}(j, h, x, f) + (1 - \delta_{hj}) \left[(1 - \lambda_{hj}) E_u \max \left\{ \bar{V}_{E}(j, h, x, f|u), \bar{V}_{UE}(j, h, x, f) \right\} + \lambda_{hj} E_u, u \max \left\{ \bar{V}_{E}(j, h, x, f|u'), \bar{V}_{UE}(j, h, x, f), \bar{V}_{E}(j, h, x, f'|u') \right\} \right]$$

where λ_{hj} is the probability of receiving an offer from type f and δ_{hj} denotes the job destruction probability.
Earnings and Value Functions

- The wage earned by a type h worker, conditional on having a job at a establishment of type f is given by:

$$\ln w_j(h, x, f) = \bar{w} + \theta^h + \psi_f + \Phi^{h,f} + \sum_f \beta^{h,f}_1 x_f + \beta_2 \left(\sum_f x_f \right)^2 + u$$

where u is a match specific structural error, $\sim \text{Gumbel}(0, \sigma)$
Earnings and Value Functions

- The wage earned by a type h worker, conditional on having a job at an establishment of type f is given by:

 $$\ln w_j(h, x, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h,f} + \sum_f \beta^{h,f}_1 x_f + \beta_2 \left(\sum_f x_f \right)^2 + u$$

 where u is a match specific structural error, $iid \sim Gumbel(0, \sigma)$

- Value of starting in a location with a job given by:

 $$\bar{U}^E_t(j, h, x, f) = \delta^h_j \bar{V}^{UE}_t(j, h, x)$$

 $$+ (1 - \delta^h_j) \left[(1 - \lambda^{h,f'}) \mathbb{E}_{u} \max \{ \bar{V}^E_t(j, h, x, f | u), \bar{V}^{UE}_t(j, h, x) \}

 + \lambda^{h,f'} \mathbb{E}_{u,u'} \max \{ \bar{V}^E_t(j, h, x, f | u), \bar{V}^{UE}_t(j, h, x), \bar{V}^E_t(j, h, x, f' | u') \} \right]$$

 where $\lambda^{h,f}$ is the probability of receiving an offer from type f and δ^h_j denotes the job destruction probability
Earnings and Value Functions

- The wage earned by a type h worker, conditional on having a job at a establishment of type f is given by:

$$\ln w_j(h, x, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h,f} + \sum_f \beta^{h,f}_1 x_f + \beta_2 \left(\sum_f x_f \right)^2 + u$$

where u is a match specific structural error, $\sim \text{Gumbel}(0, \sigma)$

- Value of starting in a location with a job given by:

$$\bar{U}^E_t(j, h, x, f) = \delta^h_j \bar{V}^{UE}_t(j, h, x)$$

$$+ (1 - \delta^h_j) \left[(1 - \lambda^{h,f'}_j) \mathbb{E}_{u} \max\{ \bar{V}^E_t(j, h, x, f | u), \bar{V}^{UE}_t(j, h, x) \} \right.$$

$$+ \lambda^{h,f'}_j \mathbb{E}_{u, u'} \max\{ \bar{V}^E_t(j, h, x, f | u), \bar{V}^{UE}_t(j, h, x), \bar{V}^E_t(j, h, x, f' | u') \} \left. \right]$$

where $\lambda^{h,f}_j$ is the probability of receiving an offer from type f and δ^h_j denotes the job destruction probability
Earnings and Value Functions

- The wage earned by a type h worker, conditional on having a job at a establishment of type f is given by:

$$\ln w_j(h, x, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h,f} + \sum_f \beta_1^{h,f} x_f + \beta_2 \left(\sum_f x_f \right)^2 + u$$

where u is a match specific structural error, $\sim Gumbel(0, \sigma)$

- Value of starting in a location with a job given by:

$$\bar{U}_t^E(j, h, x, f) = \delta^h_j \bar{V}_{t,UE}(j, h, x)$$

$$+ (1 - \delta^h_j) \left[(1 - \lambda_j^{h,f'}) \mathbb{E}_u \max \{ \bar{V}_t^E(j, h, x, f | u), \bar{V}_{t,UE}^E(j, h, x) \} \right.$$

$$+ \lambda_j^{h,f'} \mathbb{E}_{u,u'} \max \{ \bar{V}_t^E(j, h, x, f | u), \bar{V}_{t,UE}^E(j, h, x), \bar{V}_t^E(j, h, x, f' | u') \} \right]$$

where $\lambda_j^{h,f}$ is the probability of receiving an offer from type f and δ^h_j denotes the job destruction probability
Earnings and Value Functions

- The wage earned by a type h worker, conditional on having a job at a establishment of type f is given by:

$$\ln w_j(h, x, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h,f} + \sum_f \beta_1^{h,f} x_f + \beta_2 \left(\sum_f x_f \right)^2 + u$$

where u is a match specific structural error, $\sim \text{Gumbel}(0, \sigma)$

- Value of starting in a location with a job given by:

$$\bar{U}_t^E(j, h, x, f) = \delta_j^h \bar{V}_t^{UE}(j, h, x) + (1 - \delta_j^h) \left[(1 - \lambda_j^{h,f'}) \mathbb{E}_u \max\{ \bar{V}_t^{E}(j, h, x, f \mid u), \bar{V}_t^{UE}(j, h, x) \} + \lambda_j^{h,f'} \mathbb{E}_{u,u'} \max\{ \bar{V}_t^{E}(j, h, x, f \mid u), \bar{V}_t^{UE}(j, h, x), \bar{V}_t^{E}(j, h, x, f' \mid u') \} \right]$$

where $\lambda_j^{h,f}$ is the probability of receiving an offer from type f and δ_j^h denotes the job destruction probability
Treatment Decomposition

![Bar chart showing relative effects of different components: Baseline, Mobility, Exp. Coeffs, No Complementarities. Baseline has the highest effect, followed by Exp. Coeffs, and then Mobility. No Complementarities has the lowest effect.]
Summary of the Paper

- **Contribution:** First paper to use a natural experiment to study the anatomy of the urban wage premium
Summary of the Paper

- **Contribution:** First paper to use a natural experiment to study the anatomy of the urban wage premium

- **Setting:** Danish refugee dispersal policy from 1986-1998
Summary of the Paper

- **Contribution:** First paper to use a natural experiment to study the anatomy of the urban wage premium

- **Setting:** Danish refugee dispersal policy from 1986-1998

- **Key results:**
 1. Causal big city experience premium of 0.8% in hourly wage and 2.1% in earnings
 2. 60% of dynamic premium can be explained by experience at high-wage establishments and high-skill occupations
 3. Structural decomposition suggests effect of assignment to cities depends crucially on unobserved types
Appendix
Initial Years of Education - Balancing Tests

<table>
<thead>
<tr>
<th></th>
<th>(yearseduc_i)</th>
<th>(yearseduc_{i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPH</td>
<td>0.164***</td>
<td>0.0980</td>
</tr>
<tr>
<td></td>
<td>(0.0491)</td>
<td>(0.0571)</td>
</tr>
<tr>
<td>Married</td>
<td>0.213***</td>
<td>0.145*</td>
</tr>
<tr>
<td></td>
<td>(0.0617)</td>
<td>(0.0691)</td>
</tr>
<tr>
<td>No. of children</td>
<td>-0.121***</td>
<td>-0.0549*</td>
</tr>
<tr>
<td></td>
<td>(0.0218)</td>
<td>(0.0247)</td>
</tr>
<tr>
<td>Age</td>
<td>0.431***</td>
<td>0.233***</td>
</tr>
<tr>
<td></td>
<td>(0.0191)</td>
<td>(0.0243)</td>
</tr>
<tr>
<td>Constant</td>
<td>5.046***</td>
<td>9.434***</td>
</tr>
<tr>
<td></td>
<td>(0.369)</td>
<td>(0.482)</td>
</tr>
</tbody>
</table>

| Observations | 11,812 | 7,386 |
| Sample | All | Educ≥12 |

Individuals with missing education information are dropped from the regression. Robust standard errors clustered at the level of initial commuting zone. Standard errors in parentheses. * p<0.05, ** p<0.01, *** p<0.001.
Aggregate Hourly Wage Trends - CPH and NCPH

<table>
<thead>
<tr>
<th>Year</th>
<th>CPH</th>
<th>NCPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>4.6</td>
<td>4.8</td>
</tr>
<tr>
<td>1992</td>
<td>5</td>
<td>5.2</td>
</tr>
<tr>
<td>1998</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Differential Take-up of Education

- CPH
- NCPH

Categories:
- +6 years
- +4 years
- +2 years
- 0 years
Occupation Distribution of Natives

![Occupation Distribution of Natives](image)

Years of Experience:
- 5
- 10
- 15

Occupations:
- High Skill
- Manual
- Low Skill

Legend:
- Orange: High Skill
- Light Gray: Manual
- Blue: Low Skill
Non-Parametric Differential Return to Experience - Wages

Log Points

Three Year Experience Bins
Earnings and Value Functions

- The wage earned by a type h worker, conditional on having a job at an establishment of type f, is given by:

$$\ln w_j(h, x, f) = \bar{w} + \theta h + \psi f + \Phi h f + \sum_f \beta h f x f + \beta_2 (\sum_f x f)^2 + u$$

where u is a match-specific structural error, iid \sim Gumbel $(0, \sigma)$.

- Each period workers receive random location preference shocks η, iid \sim Gumbel $(0, \kappa)$, which induce a desire to move at a utility cost τ.

- Value for working given by:

$$V_{E_j}(h, x, f, t|u, \eta_j, \eta_j') = a_j + \ln w(\cdot) + \rho \max_j, j' \{\bar{U}_{E_j}(h, x + 1, f, t + 1) + \eta_j, \bar{U}_{E_j'}(h, x, t + 1) - \tau + \eta_j'\}$$

where $\bar{U}_{E_j}(\cdot)$ is the value function for E prior to labor market shocks realizing, likewise for UE.
The wage earned by a type h worker, conditional on having a job at a establishment of type f is given by

$$\ln w_j(h, x, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h,f} + \sum_f \beta_1^{h,f} x_f + \beta_2 \left(\sum_f x_f \right)^2 + u$$

where u is a match specific structural error, $\sim Gumbel(0, \sigma)$
Earnings and Value Functions

- The wage earned by a type h worker, conditional on having a job at a establishment of type f is given by

$$\ln w_j(h, x, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h,f} + \sum_f \beta_1^{h,f} x_f + \beta_2 \left(\sum_f x_f \right)^2 + u$$

where u is a match specific structural error, $\sim \text{Gumbel}(0, \sigma)$

- Each period workers receive random location preference shocks $\eta \sim \text{Gumbel}(0, \kappa)$: induces desire to move at a utility cost τ
• The wage earned by a type h worker, conditional on having a job at a establishment of type f is given by

$$\ln w_j(h, x, f) = \bar{w} + \theta^h + \psi^f + \Phi^{h,f} + \sum_f \beta^{h,f} x_f + \beta_2 \left(\sum_f x_f \right)^2 + u$$

where u is a match specific structural error, $\sim Gumbel(0, \sigma)$

• Each period workers receive random location preference shocks $\eta \sim Gumbel(0, \kappa)$: induces desire to move at a utility cost τ

• Value for working given by

$$V_j^E(h, x, f, t | u, \eta_j, \eta_{j'}) = a_j + \ln w(\cdot) + \rho \max_{j, j'} \{ \bar{U}_j^E(h, x + 1, f, t + 1) + \eta_j, \bar{U}_{j'}^{UE}(h, x, t + 1) - \tau + \eta_{j'} \}$$

here $\bar{U}_j^E(\cdot)$ is the value function for E prior to labor market shocks realizing, likewise for UE
In a location, worker receives random job offers from different establishment types. The probability of receiving an offer from type f is given by $\lambda_{h,j}$. The probability of exogenous job destruction is denoted by $\delta_{h,j}$. Value of starting in a location with a job given by:

$$\bar{U}_E(t)(j,h,x,f) = \delta_{h,j}\bar{V}_U(t)(j,h,x) + (1 - \delta_{h,j})\left[(1 - \lambda_{h,f})\mathbb{E}_{u_{max}}\{\bar{V}_U(t)(j,h,x,f)|u\}, \bar{V}_U(t)(j,h,x) \} + \lambda_{h,f}\mathbb{E}_{u_{max}}\{\bar{V}_U(t)(j,h,x,f)|u'\} \right]$$

Gumbel assumption on u allows use to solve for these in closed form.
• In a location, worker receives random job offers from different establishment types
 - The probability of receiving an offer from type \(f \) is given by \(\lambda_{h,f} \)
 - The probability of exogenous job destruction is denoted by \(\delta_{h,j} \)
• In a location, worker receives random job offers from different establishment types
 • The probability of receiving an offer from type f is given by $\lambda^h\,_{f\,j}$
 • The probability of exogenous job destruction is denoted by $\delta^h\,_{j}$

• Value of starting in a location with a job given by:

$$\bar{U}^E_t (j, h, x, f) = \delta^h\,_{j} \bar{V}^E_t (j, h, x)$$

$$+ (1 - \delta^h\,_{j}) \left[(1 - \lambda^h\,_{f\,j}^\prime) E_u \max \{ \bar{V}^E_t (j, h, x, f | u), \bar{V}^E_t (j, h, x) \} \right]$$

$$+ \lambda^h\,_{f\,j}^\prime E_{u,u'} \max \{ \bar{V}^E_t (j, h, x, f | u), \bar{V}^E_t (j, h, x), \bar{V}^E_t (j, h, x, f' | u') \}$$
• In a location, worker receives random job offers from different establishment types
 • The probability of receiving an offer from type f is given by $\lambda_{j}^{h,f}$
 • The probability of exogenous job destruction is denoted by δ_{j}^{h}

• Value of starting in a location with a job given by:
 $$\bar{U}_{t}^{E}(j, h, x, f) = \delta_{j}^{h} \bar{V}_{t}^{UE}(j, h, x)$$
 $$+ (1 - \delta_{j}^{h}) \left[(1 - \lambda_{j}^{h,f'}) \mathbb{E}_u \max\{ \bar{V}_{t}^{E}(j, h, x, f | u), \bar{V}_{t}^{UE}(j, h, x) \}
ight.$$
 $$+ \lambda_{j}^{h,f'} \mathbb{E}_{u,u'} \max\{ \bar{V}_{t}^{E}(j, h, x, f | u), \bar{V}_{t}^{UE}(j, h, x), \bar{V}_{t}^{E}(j, h, x, f' | u') \} \right]$$

• Gumbel assumption on u allows use to solve for these in closed form
Maximum Likelihood Estimation

- Likelihood of observing a sequence of wages and transitions, given unobserved type \(h \) and parameter vector \(\theta \) by

\[
P(Y^i| h; \theta) = P(Y_1^i | h; \theta) \prod_{t=w}^{T} P(Y_t^i | Y_{t-1}^i, h; \theta)
\]
Maximum Likelihood Estimation

- Likelihood of observing a sequence of wages and transitions, given unobserved type h and parameter vector θ by

$$P(Y^i|h; \theta) = P(Y_1^i|h; \theta) \prod_{t=w}^{T} P(Y_t^i|Y_{t-1}^i, h; \theta)$$

- Solve the model backwards and derive closed form joint location and labor market transition probabilities
Maximum Likelihood Estimation

• Likelihood of observing a sequence of wages and transitions, given unobserved type \(h \) and parameter vector \(\theta \) by

\[
P(Y^i| h; \theta) = P(Y^i_1| h; \theta) \prod_{t=w}^{T} P(Y^i_t| Y^i_{t-1}, h; \theta)
\]

• Solve the model backwards and derive closed form joint location and labor market transition probabilities

• An individual’s contribution to the overall likelihood function is given by weighted average across unobserved types

\[
L(\theta) = \chi_L P(Y^i|L, \theta) + (1 - \chi_L) P(Y^i|H, \theta)
\]
Model Fit - Actual and Simulated Moving Profiles

Fraction Never Moved vs. Years in Denmark

- CPH
- S-CPH
- NCPH
- S-NCPH
Model Fit - Actual and Simulated Wage Densities

[Graph showing wage densities for Data, Sim-hL, and Sim-hH across different log hourly wages.]
Model Fit - Wage-Experience Profiles

![Graph showing mean log hourly wage against years of experience for different categories: CPH, NCPH, S-CPH, S-NCPH. The graph indicates trends in wage growth and plateaus for each category.](image-url)
Treatment Decomposition - Sequential

Relative Effect

Baseline Mobility Exp. Coeffs No Complementarities