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Timing of GDP Estimates
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Objectives: ML for National Economic Accounts  
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 Identify which modeling considerations (e.g. algorithm, data, 
feature selection) are associated with accuracy gains for PCE 
services component of GDP.

M1 vs. M2
 Develop a framework to determine where 

predictions can be reliably applied to reduce 
revisions given sample size constraints.

Motivation
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There’s more variables than records.
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Traditional statistical methods have trouble 
with  k > n
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Which variables to choose?!

Issue Solution
Many ML methods can efficiently sift through 

inputs that maximize predictive accuracy.
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Predictions must beat current methods.
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A Prediction Horse Race
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Prediction Horse Race Evaluate Absolute 
Performance

Identify Best Relative 
Reductions

1 2 3

௜௧ݕ ൌ ௠݂ሾ݃௞ ܺ௧, ௜ܻ,௧ି௣, ൧

Predict the Quarterly 
Services Survey (QSS). 
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Step 1: A Prediction Horse Race

“Predict quarterly industry growth ࢚࢏ using a 

large number of combinations of algorithms, 

data, and variable selection methods”

Horse Race



Step 1: Data in Horse Race

3/14/2019
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Credit Card Transactions 
First Data – Palantir/ Fed Board 
Revised Series
192 industries

Consumer Price Index
BLS

600+ indexes

Current Employment Survey
BLS
140 industries

Search Queries 
Google Trends
230 associated searches

Lagged QSS
U.S. Census Bureau

188 industry codes lagged for 
t-4 to t-1

Quarterly 
Services 
Survey 
U.S. Census Bureau

188 industry series
n = 31 quarters

Source data for significant 
proportion of PCE Services

Draw on a broad range of potential source data to compare traditional 
sources and alternative sources.



Step 1: Algorithms in Horse Race

3/14/2019

11

Ridge Regression

Random Forest

CART

4Q Moving Average

LASSO Regression

Stepwise Regression

Extreme Gradient 
Boosting

Support Vector 
Machines

Multi-Adaptive 
Regression Splines

Horse Race



Step 1: Algorithms in Horse Race

3/14/2019
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Type of Method
Univariate
Multivariate Regression
Non-Linear or Non-Parametric

Ridge Regression

Random Forest
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Boosting
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Machines

Multi-Adaptive 
Regression Splines
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Step 1: Algorithms in Horse Race

3/14/2019
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Ridge Regression

Random Forest

CART

4Q Moving Average

LASSO Regression

Stepwise Regression

Extreme Gradient 
Boosting

Support Vector 
Machines

Multi-Adaptive 
Regression Splines

Single or Ensemble (many in one)
Single
Ensemble

Horse Race



Step 1: Variable Selection Procedures in Horse Race

3/14/2019
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Cherry Picking Kitchen Sink

Include only conceptually 
similar variables.

All-in.

25 data set 
combinations

Horse Race



Methods: One-Step Ahead
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Methods: A Prediction Horse Race
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For this study 886,608 models were trained, 
based on the combinations of

industry   
x

data sets
x 

algorithm 
x 

variable selection 
x 

time period
Horse Race



Prediction tracks show agreement and 
[disagreement] in growth patterns.

3/14/2019
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Approach (Part 2): Evaluating Absolute Performance
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Prediction Horse Race Evaluate Absolute 
Performance

Identify Best 
Relative Reductions

1 2 3

௜௧ݕ ൌ ௠݂ሾݏ௞ ܺ௧, ௜ܻ,௧ି௣, ൧

Measure what generally leads 
to an accuracy increase in the 
QSS

Absolute Performance



Average Absolute Accuracy
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= 

Estimate a fixed-effects regression to parse out the 

average accuracy gain associated with each 

algorithm, data set, etc.

Absolute Performance



3/14/2019
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Results: Average RMSE Improvement (Relative to Stepwise) 

0.56 0.43
0.16

0.00

-0.04
-0.25

-0.68

-1.48

-2.15

Random
Forest

XGBoost LASSO Stepwise
Regression

Ridge SVM Decision
Trees

MARS Moving
Average

Takeaway: On average, ensemble methods improve accuracy the most.

Absolute Performance



3/14/2019
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Average RMSE Improvement (Relative to Google Trends) 

0.97
0.87 0.81

0.39

0.00

BLS CES Dependent Lags First Data BLS CPI Google Trends

Takeaway: Measures of consumption and employment help the most. 
Also, the processes are strongly seasonal.

Absolute Performance



3/14/2019
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More data might not better, and cherry picking does not help.

Cherry Picking adds error to predictions.

Absolute Performance

-0.28

Two data sets add some additional error, but can be 
offset depending on the datasets that are combined.-0.31
Three data sets add a disproportionate amount of error, 
but no three data set combination is better than a two 
data set combination.

-0.8

Cherry Picking vs. Kitchen Sink

Number of Data Sets (Need to be considered in conjunction with dataset parameter 
estimates)



Revision Impacts
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Prediction Horse Race Evaluate Absolute 
Performance

Identify Best 
Relative Reductions

1 2 3

௜௧ݕ ൌ ௠݂ሾ݃௞ ܺ௧, ௜ܻ,௧ି௣, ൧

Convert QSS into PCE and 
find sure-fire improvements 
compared with current



Calculate Sustainable Improvements
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Convert QSS into PCE 
services components

1

Calculate Percent 
Improved Periods (PIP)

2
Calculate Mean Revision 
Reduction Probability 

(MRRP)

3

Revision Impacts

௠ ௖ ௜௧



Mean Revision Reduction Probability
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Calculate the Root Mean Squared Revision for each model m and current BEA methods.

Calculate revision reduction for 
model m

1

2

Estimate probability that any 
model will result in revision 
reduction for component C

3

Revision Impacts



Percent Improved Periods (PIP)

26Revision Impacts

How often do models offer an improvement?

Calculate the Root Mean Squared Revision for each model m and current BEA methods.

Calculate average revision reduction using model m

1

2



Identifying predictable series comparing MRRP and PIP

3/14/2019

27Revision Impacts



Given the methods 
and data, some 
algorithms are far 
less predictable 
than others.

3/14/2019

28Revision Impacts



Mean Revision Impacts for Random Forest models

3/14/2019

29Revision Impacts



Next Steps
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Conduct testing and operationalize a productionable prediction system.
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