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Abstract

This paper characterizes the stationary equilibrium of a continuous-time neoclassi-

cal production economy with capital accumulation in which households seek to insure

against idiosyncratic income risk through long-term insurance contracts. Insurance

companies operating in perfectly competitive markets can commit to future contrac-

tual obligations, whereas households cannot. For the case in which household income

takes two values, one of which is zero, and where households have CRRA preferences

we provide a complete analytical characterization of the optimal consumption insur-

ance contract as well as the stationary consumption distribution. Under parameter re-

strictions, we show that there is a unique stationary equilibrium with partial consump-

tion insurance if households have log-preferences, and that there are two equilibria

with non-log CRRA preferences. We also demonstrate analytically that the stationary

consumption distribution has a Pareto form, truncated by a lower and an upper mass

point. For the logarithmic case the unique equilibrium interest rate (capital stock) is

strictly decreasing (increasing) in income risk. Thus the paper provides an analytically

tractable alternative to the standard incomplete markets general equilibrium model de-

veloped in Aiyagari (1994) by retaining its physical structure, but substituting the

∗We thank Leo Kaas and Matt Rognlie, as well as seminar participants at Minnesota, Princeton, UCL and
the Wharton Macro lunch for useful comments and suggestions, and the National Science Foundation as well
as the the MFM group of the Becker-Friedman Institute for generous financial support.
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assumed incomplete asset markets structure with one in which limits to consumption

insurance emerge endogenously, as in Krueger and Uhlig (2006). Thus our model pro-

vides an alternative, analytically tractable stationary general equilibrium model with

idiosyncratic income income risk

1 Introduction

This paper develops a new, analytically tractable general equilibrium macroeconomic model
with idiosyncratic income risk and endogenous financial contracts, and therefore, inequal-
ity in household incomes, consumption and wealth. To do so, long-term contractual ar-
rangements between risk-averse households and risk-neutral competitive financial interme-
diaries are embedded into a stationary version of the neoclassical growth model. We seek
to integrate two foundational strands of the literature on macroeconomics with household
heterogeneity. The first strand has developed and applied the standard incomplete mar-
kets model with uninsurable idiosyncratic income shocks and neoclassical production, as
Bewley (1986), Imrohoroglu (1989), Huggett (1993) and Aiyagari (1994). In that model,
households can trade assets to self-insure against income fluctuations, but these assets are
not permitted to pay out contingent on a household’s individual income realization, thereby
ruling out explicit insurance against income risk.

The second branch is the broad literature on recursive contracts and endogenously in-
complete markets which permits explicit insurance, but whose scope is limited by infor-
mational or contract enforcement frictions. More specifically, we incorporate dynamic
insurance contracts offered by competitive financial intermediaries (as analyzed previously
in Krueger and Uhlig, 2006) into a neoclassical production economy. Financial intermedi-
aries can commit to long term financial contracts, whereas households can not. The project
thereby seeks to provide the macroeconomics profession with a novel, fully micro founded,
analytically tractable model of neoclassical investment, production and the cross-sectional
consumption and wealth distribution, where the limits to cross-insurance are explicitly de-
rived from first principles of contractual frictions.

We aim to make two contributions, one substantive and one methodological in nature.
On the substantive side, we provide a model that links the accumulation of the aggregate
capital stock in the economy to the extent to which financial intermediaries can provide
insurance to households against their idiosyncratic income risk, and their resulting demand
for assets fund their contractual obligations. On the methodological side we construct and
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analytically (as well as numerically) characterize a dynamic optimal insurance model with
one-sided limited commitment and production as well as capital accumulation.

In a seminal paper, Aiyagari (1994) analyzed an economy in which households self-
insure against idiosyncratic income fluctuations by purchasing shares of the aggregate cap-
ital stock. His model has become the canonical macro model with household heterogeneity.
Variants of the model differ in the precise set of assets that households can trade, but the
common assumption is that agents do not have access to financial instruments that provide
direct insurance against the idiosyncratic income risk, despite the fact that such insurance
would be mutually beneficial, given the underlying physical environment. There is now a
large literature building on that model to link microeconomic inequality to macroeconomic
performance, including applied policy (reform) analysis.1 Any analysis of welfare in such
models then necessarily comes with the caveat, that households may already be able to
do better for themselves, if only the model builder allowed them to do so. As parameters
or policies change, one may be concerned that these missing gains from trade shift too.
Alternative general equilibrium workhorse models are therefore needed, in which house-
holds are allowed to pursue all contractual possibilities, limited only by informational or
commitment constraints. The purpose of this paper to provide such an alternative model.

The contractual friction in our model arises from the inability of households to commit
to future obligations implied by full insurance, risk sharing contracts. More precisely,
we postulate financial markets in which perfectly intermediaries offer long-term insurance
contracts to households. These financial intermediaries receive all incomes from a customer
that has signed a contract, and can commit perfectly to future state-contingent consumption
payments. Competition among intermediaries implies that the present discounted value of
profits from these contracts is zero at the time of contract signing. The crucial friction that
prevents perfect consumption insurance in the model is that households, at any moment,
can costlessly switch to another intermediary, signing a new contract there. That is, we
model relationships between financial intermediaries and private households as long-term
contracts with one-sided limited commitment (the intermediary is fully committed, the
household is not). This structure of financial markets is identical to the one assumed in the
discrete-time, partial equilibrium model of Krueger and Uhlig (2006), which in turn builds
on the seminal work of Harris and Holmstrom (1986), Thomas and Worrall (1989), Kehoe
and Levine (1993) and Kocherlakota (1996).

In that paper, we showed that the one-sided limited commitment induces contracts with

1See recent surveys by Heathcote, Storesletten and Violante (2011) and Krueger, Mitman and Perri (2016).
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payments from the household to the intermediary that are front-loaded: when income is
high, the household effectively builds up a stock of savings with the intermediary, which
then finances the insurance offered by the intermediary against low income realizations
down the road. In this paper we embed these contracts into a dynamic production economy,
as in Aiyagari (1994). Now these contractual savings implied by back-loaded insurance
contracts finance the aggregate capital stock of the economy. Effectively, financial inter-
mediaries buy shares of the capital stock to fund their future liabilities from the insurance
contracts they have signed with households. As in a standard neoclassical growth model,
aggregate capital itself is accumulated linearly and used together with inelastically supplied
in an aggregate Cobb-Douglas production function by a competitive sector of production
firms.

Households supply their labor inelastically to these firms, but as in Bewley (1986), Im-
rohoroglu (1989), Huggett (1993) and Aiyagari (1994) their labor productivity and thus
earnings are subject to idiosyncratic risk. This risk induces household insurance needs
and thus generates a savings motive, which in turn finances the capital stock. Our model
therefore provides a third (and intermediate) alternative neoclassical production economy
with capital, relative to the self-insurance framework of Aiyagari (1994) and the full insur-
ance framework (a.k.a. the standard neoclassical growth model with complete markets and
implied full consumption insurance).

As a methodological innovation to the limited commitment general equilibrium litera-
ture we describe our model in continuous time. This is useful since, as we demonstrate,
the optimal insurance contract is akin to an optimal stopping problem, and the use of con-
tinuous time avoids integer problems (the optimal stopping time falling in between two
period) that arise in a discrete time setting. Households are potentially infinitely lived, but
face a positive and constant probability of dying in every period. To keep the population
constant, at every instant a new mass of households without assets is born.2 Households
are assumed to have CRRA utility, and, in order to obtain a sharp analytical characteriza-
tion of the equilibrium we focus on the case where household income takes two values,
one of which is zero. For this case, we provide a complete analytical characterization of
the optimal consumption insurance contract as well as the stationary consumption distribu-
tion. Under mild restrictions on the parameters, we show that there is a unique equilibrium

2This model element is not needed for the production economy, but allows us to study the endowment
economy version of the model as a limiting case, and to potentially obtain non-trivial equilibria even in this
case. In Krueger and Uhlig (2006) we showed that absent this model feature the only stationary equilibrium
is autarkic.
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if households have log-preferences, and that there are two equilibria with non-log CRRA
preferences. We provide explicit formulas for the calculation of these equilibria, including
the steady state level and return on the capital stock. We can also analytically calculate the
stationary consumption distribution, and show that this distribution has a Pareto in shape,
truncated by a lower and an upper mass point. Comparative statics with respect to the deep
parameters of the model (and specifically, the parameters determining income risk, prefer-
ences and production technologies) deliver unambiguous results for the unique equilibrium
in the log-utility case. We submit that this full analytical characterization of a stationary
equilibrium is an additional, attractive benefit of our model, and a welcome methodologi-
cal advance, noting that Aiyagari-type models (as standard limited commitment economies
with a continuum of households, as in Krueger and Perri, 2006) typically require numer-
ical solutions. We therefore hope that our model structure can serve as an analytically
tractable framework for applied work in macroeconomics that connects idiosyncratic risk
to aggregate phenomena such as consumption distributions and the size of the economy.

1.1 Relation to the Literature

As discussed above, our broad aim in this paper is to connect the dynamic contracting lit-
erature with income risk and limited commitment to the quantitative, general equilibrium
literature in macroeconomics with household heterogeneity discussed above. Our dynamic
limited commitment risk sharing contract model builds on the theoretical work charac-
terizing optimal contracts in such environments. Especially relevant is the subset of the
literature that has done so in continuous time.

Specifically, Zhang (2013) studies a consumption insurance model with limited com-
mitment similar to that in Krueger and Uhlig (2006), but permits the income process to
be serially correlated finite state Markov chain, rather than a sequence of iid random vari-
ables. He also allows the outside option of the household to be a general function of the
current income state, rather than simply autarky. The author derives the optimal consump-
tion insurance contract. Grochulski and Zhang (2012) characterize the optimal contract in
continuous time, under the assumption that the market return equals the discount rate, the
outside option is autarky, and the income process follows a general geometric Brownian
motion. The work by Miao and Zhang (2013) contains related results. Turning to gen-
eral equilibrium treatments, Hellwig and Lorenzoni consider an endowment economy, in
which two agents optimally share their risky income stream over time, subject to contrac-
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tual constraints. The market return in their economy is shown to be zero under appropriate
assumptions.

Returning to the substantive contribution of the paper, one interpretation of the contrac-
tual arrangements is that of firms who provide workers with long-term employment-wage
contracts. A recent literature, building on the early work of Harris and Holmstrom (1986),
emphasizes that firms provide insurance to its workers and their productivity fluctuations.
Lamadon (2016) has calculated the optimal within-firm insurance mechanism, in the pres-
ence of a variety of sources of risk, including firm-specific risk, worker productivity risk
and unobservable effort. Guiso, Pistaferri and Schivardi (2005) also argue, empirically,
that the insurance of worker productivity by firms is an important mechanism to insulate
workers from idiosyncratic shocks. Finally, Saporta-Eksten (2014) has shown that wages
are lower after a spell of unemployment, which he interprets as a loss in productivity. In
the context of our model this observation can alternatively be rationalized as part of the op-
timal consumption insurance contract, in the event productivity of the worker has dropped
temporarily.

2 The Model

2.1 Preferences and Endowments

Time is continuous. There is a population of a continuum of agents of mass 1, who die at
rate γ > 0, replaced by a generation of newborns of equal size. Thus at any point in time a
unit mass of households are alive in this economy. Agents have the period utility function

u(c) =
c1−σ − 1

1− σ

and discount the future at rate ρ > 0, so that the expected utility, including the probability
of death, of a household born in period t is given by

E

[∫ ∞
t

e−(ρ+γ)(τ−t) c(τ)1−σ

1− σ
dτ

]
.

Labor productivity yit of an individual agent i at time t is assumed to follow two-state
Markov process that is independent across agents. More precisely, it can either be high,
yit = yh or low, yit = yl, with yh > yl = 0. Let Y = {yl, yh}. The transition from

6



high to low productivity occurs at rate π > 0, whereas the transition from low to high
productivity occurs at rate ν > 0. Households with low labor productivity yl = 0 also
have some nontradable endowment χ > 0 that they can consume if they do not sign up for
a consumption risk sharing contract.3 Denote the utility from consuming the nontradable
endowment by u = u(χ) > −∞.

Given the stochastic structure of the endowment process the share of households with
low and high income is equal to

(ψl, ψh) =

(
π

π + ν
,

ν

π + ν

)
We assume that newborn households draw their productivity from the stationary income
distribution and that the average labor productivity in the economy is equal to 1. Thus we
assume that

ν

π + ν
yh = 1.

For future reference we note that this assumption implies

ν(yh − 1) = π (1)

2.2 Technology

There is a competitive sector of production firms which uses labor and potentially capital
to produce the final output good according to the production function

F (K,L) = AKθL1−θ.

where θ ∈ (0, 1) denotes the capital share. The capital depreciates at a constant rate δ ≥ 0.

In our companion paper, Krueger and Uhlig (2017), we also consider the case A = 1 and
θ = 0 and δ = 0, in which case our economy boils down to an endowment economy.
Production firms seek to maximize profits, taking as given the market spot wage w per
efficiency unit of labor and the market rental rate per unit of capital. Capital accumulation
is linear and depreciates at rate δ. There is a resulting equilibrium rate of return or interest
rate r for investing in capital. We dropped the subscript t to economize on notation, since

3This assumption avoids the complication that individuals that have not yet received the high income
realization at least once and thus won’t be provided with consumption insurance (as we will so) are forced to
consume 0. For σ < 1, this assumption would be unnecessary since u(0) <∞, but it is required for σ ≥ 1.
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we shall concern ourselves only with stationary equilibria and aggregate variables will be
constant.

There is a competitive sector of intermediaries, who seek to maximize profits. Agents
attempt to insure themselves against these income fluctuations with financial intermedi-
aries. However, the commitment is one-sided only: while the intermediary can commit to
the contract for all future, agents can leave the contract at any time they please and sign up
with the next intermediary. Intermediaries compete for agents, and do not have resources
on their own. Similar to Krueger-Uhlig (2006), newborn agents wait until their first time
that they receive the high income. They then provide their chosen intermediary with a
stream of “insurance premium payments”, while in the high income state, to finance sub-
sequent payments for a potential “dry spell” of low productivity, until they transit to high
income again. We assume that the law of large numbers applies at each individual inter-
mediary or, alternatively, that there is full mutual insurance among intermediaries, so that
intermediaries are only exposed to aggregate risk. We only examine stationary equilibria
in this paper, thus rendering these intermediaries risk neutral. The intermediaries invest
the premium payments in capital and therefore discount future streams of payments and
incomes at the rate of return r on capital.

2.3 Timing of Events

In each instant of time, birth and death occur first. A newborn household draws labor pro-
ductivity y from the stationary income distribution and then signs a long-term consumption
insurance contract with one of the many competing financial intermediaries, delivering life-
time utility U out(y). For surviving households, the current labor productivity y is realized
from the household-level Markov process. The household has the option of sticking with
the previous intermediary or signing up with another intermediary, in the latter case re-
ceiving a contract delivering lifetime utility U out(y). Consumption is then allocated to the
household according to the consumption insurance contract this household has signed in
the past.

2.4 Equilibrium

Intermediary contracts promise some lifetime utility U for the household per delivering a
stochastic stream of future consumption. Given U and given the current labor productivity
y of the household, the profit maximization objective of intermediaries is equivalent to
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minimizing the net present value V (y, U) of the contract costs, i.e. to minimize the net
present value of the difference between the the stream of consumption of the household and
its income. The income is given by the labor productivity y (τ) at future dates τ multiplied
with the wage w. It will likewise be convenient to scale consumption by the wage level. In
slight abuse of notation, let c (τ)w denote the consumption of the household at date τ . In
designing the contract, the intermediary needs to take into account that the household will
depart, should the residual lifetime utility drop below promises the outside option U out(y)

of promises, available when signing a new contract with some other intermediary.

Definition 1 For fixed outside options U out(y), with y ∈ Y, and a fixed wage w and rate of

return on capital or interest rate r, an optimal consumption insurance contract c(τ ; y, U),

V (y, U) solves

V (y, U) = min
〈c(τ)〉≥0

E

[∫ ∞
t

e−(r+γ)(τ−t) [wc(τ)− wy(τ)] dτ

∣∣∣∣ y(t) = y

]
subject to

E

[∫ ∞
t

e−(ρ+γ)(τ−t)u(c(τ))dτ

∣∣∣∣ y(t) = y

]
≥ U

E

[∫ ∞
s

e−(ρ+γ)(τ−s)u(c(τ))dτ

∣∣∣∣ y(s)

]
≥ U out(y(s)) for all s > t

for all t ≥ 0, for all y ∈ Y and all U ∈
[
U out(y), ū

ρ+γ

)
.

Note that the stationary structure of the model insures that the optimal consumption
insurance contract does not depend on calendar time, but rather only on the income y the
household is born with.

Definition 2 A Stationary Equilibrium consists of outside options {U out(y)}y∈Y , consump-

tion insurance contracts c(τ, y, U) : R+ × Y ×
[
U out(y), ū

ρ+γ

)
→ R+ and V : Y ×[

U out(y), ū
ρ+γ

)
→ R, an equilibrium wage w and interest rate r and a stationary con-

sumption probability density function φ(c) such that

1. Given {U out(y)}y∈Y and r, the consumption insurance contract c(τ, y, U), V (y, U)

is optimal in the sense of definition (1).
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2. The outside options lead to zero profits of the financial intermediaries: for all y ∈ Y

V (y, U out(y)) = 0.

3. The interest rate and wage (r, w) satisfy

r = AFK(K, 1)− δ (2)

w = AFL(K, 1) (3)

4. The goods market clears ∫
wcφ(c)dc+ δK = AF (K, 1). (4)

5. The capital market clears

w
[∫
cφ(c)dc− 1

]
r

= K (5)

6. The stationary consumption probability density function is consistent with the dy-

namics of the optimal consumption contract as well as the stochastic structure of

birth and death in the model.

2.4.1 Discussion of Equilibrium Definition4

Several elements of this definition are noteworthy. The first two items are identical to
Krueger and Uhlig (2006), accounting for the fact that the current model is cast in continu-
ous time. Whereas item 3 contains the standard optimality conditions of the representative
production firm, the statement of the capital market clearing condition in 5, as well as
the inclusion of both the goods market clearing and the capital market clearing condition
require further discussion.

In item 5, the right hand side K = Kd is the demand for capital by the representa-
tive firm. The numerator on the left hand side is the excess consumption, relative to labor

4We thank Matt Rognlie for very helpful discussions leading to this section. Auclert and Rognlie (2016)
argue that the same argument applies to the standard incomplete markets model (as originally described in
Aiyagari, 1994). Our discussion here is simply an adaptation of their argument to our environment.
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income, of all households, that is, the capital income required to finance the consump-
tion that exceeds labor income. Dividing by the return to capital r gives the capital stock
households, or financial intermediaries on behalf of households, need to own to deliver the
required capital income. Thus we can think of

Ks =
w
[∫
cφ(c)dc− 1

]
r

(6)

as the supply of capital by the household sector, intermediated by the financial intermedi-
aries. By restating the capital market clearing condition as

Ks(r) = Kd(r)

where Ks(r) is defined in (6) and Kd(r) is defined through (2) we will be able to pro-
vide a graphical analysis of existence and uniqueness of stationary equilibrium in (K, r)

space, analogously to the well-known figure contained in Aiyagari (1994) for the standard
incomplete markets model.

Finally, we note that as long as r 6= 0, the usual logic of Walras law applies and one of
the two market clearing conditions is redundant. To see this, note that the right hand side
of equation (4) can be written as

AF (K, 1) = AFL(K, 1) + AFK(K, 1)K

and from equations (2) and (3) it follows that

AF (K, 1) = w + (r + δ)K.

Using this in equation (4) and rearranging implies, for r 6= 0, the capital market clearing
condition (5). Thus for all r 6= 0 we can use either of the market clearing conditions
in our analysis. The case r = 0, however, will require special attention, and we will
argue in section 5 that even though the goods market clears for r = 0 under fairly general
conditions, the capital market generically does not, indicating that a) r = 0 is generically
not a stationary equilibrium interest rate and b) at r = 0 we need to study both the goods
and the capital market clearing condition when analyzing a stationary equilibrium.

In order to do so, in the next sections we now aim to characterize the entire steady
state equilibrium, including the stationary consumption distribution whose cumulative dis-
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tribution function we denote by Φ (with associated probability density function φ). First
we characterize the optimal consumption contract under various assumptions on the re-
lationship between the constant interest rate r and the constant time discount rate ρ of
the household. Then we discuss aggregation and the equilibrium determination of interest
rates.

3 The Optimal Risk-Sharing Contract

The nature of the optimal consumption insurance contract depends crucially on the rela-
tionship between the subjective time discount factor ρ and the endogenous stationary equi-
librium interest rate r.We discuss the relevant cases in turn. First we discuss the case r = ρ

which will deliver a sharp and very simple characterization of the optimal consumption
contract that features full consumption insurance of the household after the first instance of
having received high income. We then analyze the case r < ρ which will result in a par-
tial consumption insurance, the relevant case for the general equilibrium in a wide range
of model parameterizations. We conclude with a discussion why, in continuous time, the
autarkic allocation can never be an equilibrium, in contrast to the situation in discrete time.

3.1 Full Insurance in the Long Run: ρ = r

We first characterize the optimal consumption insurance contract for (yl, U
out(y)) and then

discuss how it looks for other promised lifetime U > U out(y)). We conjecture that the
consumption contract has constant consumption cl = 0 as long as y(t) = yl = 0, and
then consumption jumps up to ch the instant income rises to yh and remains there forever.
Households born with income yh instead consume ch forever. As shorthand, denote as

Vl = V (yl, U
out(yl))

Vh = V (yh, U
out(yh))

and let Vhl denote the cost of a contract for the financial intermediary in which the house-
hold had high income in some previous periods (and thus currently consumes ch) but now
has low income yl. In what follows we characterize the net cost of this contract deflated by
the wage level, and the let the wage-deflated cost be denoted by v = V/w.

These cost levels of the financial intermediary satisfy the Hamilton-Jacoby-Bellman
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equations

rvl = cl − yl + γ(0− vl) + ν(vh − vl)

rvh = ch − yh + γ(0− vh) + π(vhl − vh)

rvhl = ch − yl + γ(0− vhl) + ν(vh − vhl)

Due to perfect competition of financial intermediaries we have that vh = vl = 0. Using
this in these equations yields

cl = yl = 0 (7)

πvhl = yh − ch
(r + γ + ν)vhl = ch

and, solving the last two equations explicitly, and evaluating at r = ρ, delivers

ch =
ρ+ γ + ν

ρ+ γ + ν + π
yh = ch(ρ) (8)

vhl =
ch

r + γ + ν
> 0

Thus the optimal risk sharing contract collects a net insurance premium

yh − ch =
πyh

ρ+ γ + ν + π

from households with high income realizations and uses it to pay consumption insurance

ch =
(ρ+ γ + ν) yh
ρ+ γ + ν + π

to those households that have obtained insurance (those with previously high income real-
izations) and have currently low income.

3.2 Partial Insurance: ρ > r

We denote the expected discounted net cost to the financial intermediary from a consump-
tion contract by v. With two income levels yl and yh and Poisson arrival probabilities of
switching down (π) and up (ν) as well as constant death probability γ we can write the
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consumption dynamics and profit value functions as follows. The consumption dynamics
is such that whenever a household has the high income, she consumes ch, and when income
switches to yl consumption drifts down according to the full insurance Euler equation

ċ(t)

c(t)
= −ρ− r

σ
= −g < 0

where we have defined the growth rate of consumption as

g =
ρ− r
σ

> 0.

This consumption dynamics implies that

c(t) = che
−gt (9)

Furthermore, by perfect competition expected profits when entering the consumption con-
tract with high income, vh = 0, and similarly for entering the consumption contract with
low income, vl = 0.

Denote by t the time elapsed since having had the high income. Asymptotically, as
t → ∞, consumption converges to cl = 0. The Hamilton-Jacobi-Bellman equations read
as

rvh = ch − yh + γ(0− vh) + π(v(0)− vh) (10)

rvl = cl + γ(0− vl) + ν(vh − vl) (11)

rv(t) = c(t)− yl + γ(0− v(t)) + ν(vh − v(t)) + v̇(t) (12)

with terminal condition
v(∞) = vl = 0.

Here v(t) is the cost of the consumption contract of an agent that had high income last t
periods ago, and had low income for time interval t since.

Simplifying equations (10) to (12) delivers
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πv(0) = yh − ch (13)

cl = yl = 0 (14)

(r + γ + ν)v(t) = c(t)− yl + v̇(t) (15)

The first equation states that in the case of high income the household pays an insurance
premium yh − ch which has to compensate the financial intermediary for the cost incurred
during the low spell in which the losses for the intermediary amount to v(0). This equation
relates the two endogenous variables ch and v(0) to each other.

The second equation directly yields

cl = yl = 0

and as before, individuals with initially low income do not obtain any consumption insur-
ance in the risk sharing contract. Insurance would require prepayment by the insurance
company, and perfect competition plus limited commitment on the household side imply
that this prepayment cannot be recouped later.

Equation (15) can be integrated (for details see appendix A.1), using the fact that c(t) =

che
−gt to obtain

v(t) =

∫ ∞
t

e−(r+γ+ν)(τ−t)che
−gτdτ

= che
−gt
∫ ∞
t

e−(r+γ+ν+g)(τ−t)dτ

=
che
−gt

r + γ + ν + g
(16)

We can evaluate (16) at t = 0 to obtain:

v(0) =
ch

r + γ + ν + g
(17)

The optimal consumption contract has consumption driving down at rate −g = r−ρ
σ

from
ch towards cl = yl, and asymptotically it reaches yl = cl = 0. Thus the consumption level
ch fully characterizes the consumption contract
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Using equation (13) to substitute out v(0) in equation (17) yields

ch
r + γ + ν + g

=
yh − ch
π

or
ch(r) =

r + γ + ν + g

r + γ + ν + g + π
yh =

1

1 + π

r(1− 1
σ )+γ+ν+ ρ

σ

yh (18)

We summarize the optimal consumption contract in the following

Proposition 1 As long as ρ > r, there exists a unique consumption level ch(r), defined in

(18), characterizing the optimal consumption risk sharing contract

c(t) = che
−gt

where g = ρ−r
σ
. Households that never have had high income would consume

cl = yl = 0

until the first time they receive high income if they were to sign a consumption risk sharing

contract. The upper bound is strictly increasing in yh.

Corollary 1 The upper support of the consumption distribution ch increases in the interest

rate for σ > 1, decreases in the interest rate if σ < 1 and is independent of the interest rate

if σ = 1.

It is noteworthy that the effect of an increase of the interest rate on the initial level of
consumption in the contract depends on the IES = 1

σ
.

Corollary 2
lim
r↗ρ

ch(r) =
ρ+ γ + ν

ρ+ γ + ν + π
yh = ch(ρ)

where ch(ρ) is the full insurance consumption level.

3.3 Super-Insurance: ρ < r

In our model stationary equilibria with an interest rate exceeding the time preference rate
are a possibility, in contrast to the standard incomplete markets model with infinitely lived
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households.5 Therefore we now characterize the optimal consumption insurance contract
under the assumption that the interest rate exceeds the time discount factor.

Off constraints, as in the partial insurance case consumption grows at a constant rate,

ch(t) = ch(0)e−gt

but now g = 1
σ
(ρ−r) < 0, that is, consumption grows at the positive rate 1

σ
(r−ρ) > 0. As

in the full and partial insurance case, households born with the low income cannot obtain
insurance until their income switches to yh, at which it jumps to ch(0), as in the partial and
full insurance case. From that point on the household obtains income insurance (as in the
full insurance case), but now consumption grows at rate −g (rather than remains constant),
until the household dies. The level ch(0) is determined by the zero profit condition of the
intermediary, equating the expected revenue from the household’s income stream with the
expected cost of the consumption contract. In Appendix A.4 we exploit the zero profit
condition to determine the entry level of consumption ch(0) as

ch(0) =
(r + γ + g)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)
yh (19)

As in the full insurance case, upon income increasing, so does consumption, but not
as strongly as income. The household pays an insurance premium yh − ch(0) in exchange
for future consumption insurance and consumption growth. Note that since g < 0, the
insurance premium is larger than in the full insurance case to finance future consumption
growth, and as the interest rate r converges to the time discount rate ρ from above, the
entry consumption level as well as the insurance premium converge to the full insurance
consumption level from below.

4 The Invariant Consumption Distribution

In the previous section we have shown that the optimal consumption insurance contract
depends on the relationship between the endogenous market interest rate r and the subjec-
tive discount factor ρ, which determines whether the contract is characterized by full or
partial consumption insurance. The risk sharing contract in turn determines the stationary
consumption distribution, which we now derive.

5Even with mortality risk, as long as there are perfect annuity markets, the stationary equilibrium interest
rate has to be below the time discount rate.
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4.1 Full Insurance in the Long Run: ρ = r

In this case the stationary consumption distribution places mass only on two points, {cl, ch}.
We denote the probability masses as (φl, φh).We now derive the mass of households φl that
have not received high income yet, and thus would consume cl = yl = 0. In a short time
interval ∆ a total mass ∆γ of households leave φl due to death. In addition, a flow ∆v

of households in φl transit to φh. Finally a flow ∆γ of new households is born, a share
ψl = π

π+ν
of which is born with low income and thus low consumption. Thus the stationary

mass φl satisfies, for small ∆,

φl = (1−∆γ −∆ν)φl + ∆γψl

and thus
(γ + ν)φl = γψl

and therefore the stationary consumption distribution is given by

φh =
γν + ν(π + ν)

(γ + ν)(π + ν)
∈ (0, 1)

φl =
γπ

(γ + ν)(π + ν)
∈ (0, 1) (20)

4.2 Partial Insurance: ρ > r

In section 3.2 we characterized the optimal consumption contract under the parametric
restriction that r < ρ. We showed that all households with high income consume ch(r),
which is a function of the real interest rate, to be determined in equilibrium. Thus the
stationary consumption distribution has a mass point at ch with mass φ(ch) = ν

ν+π
.

Households with currently low income have a consumption process that satisfies

ċ(t) = −gc(t)

with
g =

ρ− r
σ

> 0

Finally, newborn households that have not yet received high income consume cl = yl, and
the invariant consumption distribution has a second mass point at cl equal to φ(cl) whose
size yet needs to be determined.
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In c ∈ (yl, ch) the consumption process follows a diffusion process with drift −g (and
no variance) and thus on (0, ch) the stationary consumption distribution satisfies the Kol-
mogorov forward equation (for the case of Poisson jump processes):

0 = −d [−gcφ(c)]

dc
− (γ + ν)φ(c)

where the second term comes from the fact that with Poisson intensities γ and ν the house-
hold dies and has a switch to high income, respectively. Since

−d [−gcφ(c)]

dc
= − [−gφ(c)− gcφ′(c)] = g [φ(c) + cφ′(c)]

we find that on c ∈ (yl, ch) the stationary distribution satisfies

g [φ(c) + cφ′(c)] = (γ + ν)φ(c)

and thus
cφ′(c)

φ(c)
=
γ + ν

g
− 1

and thus on this interval the stationary consumption distribution is Pareto with tail param-
eter γ+ν

g
− 1, that is

φ(c) = φ1c
( γ+νg −1)

where φ1 is a constant that needs to be determined. We immediately have the following

Proposition 2 On the interval (0, ch) the consumption density has the form of a (truncated)

Pareto distribution

φ(c) = φ1 (c)κ (21)

where the scale parameter φ1 > 0 has yet to be determined, and the Pareto parameter

κ = γ+ν
g
− 1 = σ(γ+ν)−(ρ−r)

ρ−r .

Remark 1 Note that the sign of κ is indeterminate at this point, but since the support of

the distribution is (0, ch) there is no issue that this distribution is not integrable.

Now we need to determine the constant φ1. Because of the mass point at ch is is easier
to think of the cdf for consumption on (yl, ch) given by Φ(c) = φ1(c)κ+1

κ+1
. The inflow mass

into this range is given by the mass of individuals at ch given by φ(ch) = ν
ν+π

times the
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probability π of switching to the low income state, whereas the outflow is due to death and
due to receiving the high income shock, and thus the stationary cdf has to satisfy

(ν + γ)Φ(ch) =
πν

ν + π

and therefore

(ν + γ)
φ1 (ch)

κ+1

κ+ 1
=

πν

ν + π

Exploiting the fact that κ+ 1 = γ+ν
g

we find

φ1g (ch)
γ+ν
g =

πν

ν + π

and thus

φ1 =
πν (ch)

− γ+ν
g

g(ν + π)

and therefore the density on (yl, ch) is given by

φ(c) =
πν (ch)

− γ+ν
g

g(ν + π)
c
γ+ν
g
−1.

Finally we can determine the mass point φl at yl from the requirement that the consumption
distribution needs to integrate to 1. Thus we have

φl + φh +

∫ ch

yl

φ(c)dc = 1

which determines the Dirac mass of people at yl. Solving the integral yields

∫ ch

0

φ(c)dc =
1
γ+ν
g

πν (ch)
− γ+ν

g

g(ν + π)
c
γ+ν
g

∣∣∣∣∣
ch

0

=
πν

(γ + ν)(ν + π)

(
1−

(
0

ch

) γ+ν
g

)
=

πν

(γ + ν)(ν + π)

and thus
φl =

γπ

(γ + ν)(π + ν)

Thus we have a complete analytical characterization of the stationary consumption distri-
bution, summarized in the following
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Proposition 3 For any given r ∈ (−(γ+ ν), ρ), the stationary consumption distribution is

given by two mass points at yl = 0 and ch(r) and a Pareto density in between:

φr(c) =


γπ

(γ+ν)(π+ν)
if c = 0

πν(ch(r))
− γ+ν

g

g(ν+π)
c
γ+ν
g
−1 if c ∈ (0, ch)

ν
(ν+π)

if c = ch

Thus, for a given interest rate r the invariant consumption distribution is completely
characterized by the upper bound ch(r) = r+γ+ν+g

r+γ+ν+g+π
yh. We also note that

φr→ρ(c) =


γπ

(γ+ν)(π+ν)
if c = yl

limg→0

(
πν

cg(ν+π)
(ch/c)

− γ+ν
g

)
= 0 if c ∈ (yl, ch)

γν+ν(π+ν)
(γ+ν)(π+ν)

if c = ch

and thus the invariant consumption distribution converges to full insurance distribution as
r converges to ρ from below. Note that the shape of the consumption probability function
in between the two mass points depends on the relative size of (γ + ν), which governs the
hazard rate of moving out of this part of the distribution (either through death or a positive
income shock), and g, the speed at which consumption drifts down. The growth rate of the
pdf is given by

d log φr(c)

d log c
=
γ + ν

g
− 1 =

σ(γ + ν)

ρ− r
− 1

We therefore have the following

Corollary 3 If γ + ν < g, then the pdf is strictly decreasing in c. If γ + ν > g then the

pdf is strictly increasing in c. If γ + ν ∈ (g, g + 1), then the pdf is strictly increasing and

strictly concave in c. Finally, if γ+ ν > g+ 1 then the pdf is strictly increasing and strictly

convex in c.

Figure 4 below shows consumption distributions for different interest rates r and thus
different growth rates g. As expected, with a lower interest rate (a higher drift downwards
in consumption), probability mass shifts towards lower consumption levels in the stationary
distribution.
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4.3 Superinsurance: ρ < r

The argument for deriving the invariant consumption distribution is conceptually very sim-
ilar to the previous case, with mass points at cl = 0 and ch(0) and a Pareto distribution
driven by a diffusion process with drift −g = above ch(0). In Appendix A.4 we show that
for any r > ρ and associated g = 1

σ
(ρ− r) < 0, the stationary distribution is given as

φr(c) =


γπ

(π+ν)(γ+ν)
if c = 0

ν
(ν+π)

γ(π+γ+ν)
(γ+ν)

if c = ch(0)

γν(1−γ)(γ+ν+π)
−g(π+ν)(γ+ν)c

(
ch(0)
c

) γ
−g

if c ∈ (ch(0),∞)

5 General Equilibrium: The Market Clearing Interest Rate

In the previous sections we derived, as a function of the interest rate r, the optimal con-
sumption risk sharing contract as well as the associated invariant consumption distribution.
Denote by

C(r) =

∫
cφr(c)dc

aggregate consumption (scaled down by the aggregate wage) implied by these two entities.
Recall that the goods market clearing condition (4) reads as

w(r)C(r) + δK = AF (K, 1)

or
C(r) =

AF (K, 1)− δK
w(r)

:= G(r) (22)

and the capital market clearing condition (5) can be written as

Ks(r)

w(r)
:=

C(r)− 1

r
=
Kd(r)

w(r)
(23)

5.1 Supply of Consumption Goods and Demand for Capital

From (2) and (3), as in Aiyagari (1994) we can express the aggregate capital stock and
wage as a function of the interest rate: K = K(r), w = w(r). Thus the aggregate net
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supply of goods is given by

G(r) =
AF (K(r), 1)− δK(r)

AFL(K(r), 1)
= 1 +

[AFK(K(r), 1)− δ]K(r)

AFL(K(r), 1)

and the aggregate demand for capital Kd(r) is implicitly defined by the marginal product
of capital equation (2). If we assume a Cobb-Douglas production function, we can show

Proposition 4 Let the production function be of the form

Y = AKθL1−θ.

Then

G(r) = 1 +
θr

(1− θ) (r + δ)
(24)

κd(r) :=
Kd(r)

w(r)
=

θ

(1− θ)(r + δ)
(25)

Corollary 4 G(r), κd(r) are continuously differentiable on r ∈ (−δ,∞), and G(r) is

strictly increasing, with

lim
r↘−δ

G(r) = −∞

G(r = 0) = 1

lim
r↗∞

G(r) = 1 +
θ

1− θ
> 1

and κd(r) is strictly decreasing, with

lim
r↘−δ

κd(r) = ∞

κd(r = 0) =
θ

(1− θ)δ
lim
r↗∞

κd(r) = 0

Having very sharply characterized the goods supply side and capital demand side, the
question of existence, uniqueness and characterization of a stationary equilibrium thus rests
with the analysis of how aggregate consumption demand C(r) and thus (normalized) ag-
gregate capital supply Ks(r)

w(r)
depends upon the interest rate r.
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5.2 Demand of Consumption Goods and Supply of Capital

In order to characterize stationary equilibria we now have to characterize the demand for
consumption good in a stationary equilibrium, as given by the demand function C(r)

C(r) =

∫
cφr(c)dc

and the associated supply of capital, which is, for r 6= 0,

κs :=
Ks(r)

w(r)
=

∫
cφr(c)dc− 1

r
(26)

For r = 0, we need to determine κs(r = 0) through an application of L’Hopital’s rule as
we will show below that

lim
r→0

∫
cφr(c)dc− 1 = 0.

Depending on the relationship between the interest rate and the discount rate, the allo-
cation and corresponding invariant consumption distribution φr(c) features full (r = ρ) or
partial (r < ρ) insurance. Given that the consumption allocation and invariant distribution
differs qualitatively in both cases, it is in general hard to establish general properties of
C(r) independent of the case being considered. Therefore we will directly move to the
characterization of stationary equilibria, subsuming the discussion of consumption demand
in the derivation of the determination of the equilibrium interest rate.

5.3 Equilibria with Full Insurance and r = ρ

In this section we will provide conditions under which a stationary general equilibrium
with an interest rate r = ρ > 0. exists, and thus provides full insurance. The invariant
consumption distribution is given by (20) and the consumption levels by (7) and (8), so
that, conditional on r = ρ aggregate consumption demand is given by:

C(r = ρ) = φlyl + φhch(r = ρ)

=

(
(γ + ν) (ρ+ γ + ν + π)− νρ

(γ + ν) (ρ+ γ + ν + π)

)
πyl

(π + ν)
+

(
γ + π + ν

γ + ν

)(
ρ+ γ + ν

ρ+ γ + ν + π

)
νyh

(π + ν)

= 1 +
ρπ

(γ + ν)(ρ+ γ + ν + π)
(27)
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(see appendix A.5.2 for the detailed calculations showing the second equality). Thus con-
ditional on full insurance and ρ = r, the demand and supply of goods read as

C(ρ) = 1 +
ρπ

(γ + ν)(ρ+ γ + ν + π)
(28)

κs(ρ) =
π

(γ + ν)(ρ+ γ + ν + π)
(29)

Recall that from equation (25)

κd(ρ) =
θ

(1− θ)(ρ+ δ)
(30)

Thus there is a unique knife-edge time discount factor ρ̄ such that C(ρ̄) = G(ρ̄) and
κs(ρ̄) = κd(ρ̄), and it satisfies6

ρ̄ = −π(1− θ)δ − θ(γ + ν)(γ + ν + π)

π(1− θ)− θ(γ + ν)
(31)

In order to insure that full insurance (or superinsurance with r > ρ) is not a stationary
equilibrium, Assumption 2 below will insure that full insurance results in too high a de-
mand for consumption goods (equivalently, too high a supply of capital) to be a stationary
equilibrium. Section A.3 in the Appendix shows that if δ < γ+ν+π (Assumption 4), then
for all ρ > ρ̄, Assumption 2 below is also satisfied and thus every stationary equilibrium
has to satisfy r < ρ, the case discussed in the next subsection.

5.4 Equilibria with Partial Insurance and r < ρ

Now consider an arbitrary ρ > 0. From the previous subsection we know that under as-
sumption 4 any stationary equilibrium has to be a partial insurance equilibrium. We will
first argue that if σ = 1 (log-utility) there exists a unique stationary equilibrium with partial
insurance and ρ > r > 0. We then explore the question whether there are multiple station-
ary equilibria with partial insurance in case σ > 1. To do so we now derive aggregate
consumption demand for the partial insurance case. Recall that

ch(r) =
r + γ + ν + g(r)

π + r + γ + ν + g(r)
yh

6For θ = 0 we have κd(ρ) = 0 and thus ρ̄ =∞.
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and thus aggregate consumption demand is given by

C(r) =
ν

ν + π
ch(r) +

∫ ch(r)

0

c
πν (ch(r))

− γ+ν
g

g(ν + π)
c
γ+ν
g
−1dc

=
ν

ν + π

π + γ + ν + g(r)

γ + ν + g(r)
ch(r)

=
π + γ + ν + g(r)

γ + ν + g(r)

r + γ + ν + g(r)

π + r + γ + ν + g(r)

=

(
1 +

π

γ + ν + g(r)

)(
1− π

π + γ + ν + g(r) + r

)
= 1 +

π

γ + ν + g(r)
− π

π + γ + ν + g(r) + r
− π2

(π + γ + ν + g(r) + r)(γ + ν + g(r))

= 1 +
rπ

(π + γ + ν + g(r) + r)(γ + ν + g(r))

κs(r) =
π

(π + γ + ν + g(r) + r)(γ + ν + g(r))

where g(r) = ρ−r
σ
> 0.

From the previous section recall that consumption demand and capital supply for the
r = ρ full insurance case were given by

C(r = ρ) = 1 +
ρπ

(γ + ν)(ρ+ γ + ν + π)
(32)

κs(r = ρ) =
π

(π + γ + ν + ρ)(γ + ν)
(33)

and it follows that aggregate consumption demand and capital supply are continuous in
the interest rate at r = ρ since

lim
r↗ρ

C(r) = 1 +
ρπ

(γ + ν)(ρ+ γ + ν + π)
= C(r = ρ) (34)

lim
r↗ρ

κs(r) =
π

(π + γ + ν + ρ)(γ + ν)
= κs(r = ρ) (35)

We now want to study the existence and uniqueness (or multiplicity) of a stationary
equilibrium with partial consumption insurance. An interest rate r < ρ is a stationary
equilibrium interest rate with partial insurance if and only if equation (23) is satisfied, that
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is, if and only if, exploiting equations (25) and (32)):

θ

(1− θ)(r + δ)
=

π

(π + γ + ν + ρ−r
σ

+ r)(γ + ν + ρ−r
σ

)

This is a quadratic equation in the interest rate r which might have zero, one or two real
roots r? ∈ (−min{δ, (γ + ν + π)}, ρ).

5.4.1 Logarithmic Utility: Unique Stationary Equilibrium

In the case of logarithmic utility, σ = 1, we can demonstrate that there exists a unique
stationary equilibrium with positive interest rate and partial insurance, under appropriate
restrictions on parameters. We therefore make the following assumption for the rest of this
section:

Assumption 1 The utility function is logarithmic: σ = 1

Under this assumption g(r) = ρ− r and thus g(r) + r = ρ and therefore

ch(r) =
ρ+ γ + ν

π + ρ+ γ + ν
yh = ch

C(r) = 1 +
rπ

(π + γ + ν + ρ)(γ + ν + ρ− r)
κs(r) =

π

(π + γ + ν + ρ)(γ + ν + ρ− r)

Thus the equilibrium interest rate satisfies the linear equation

κs(r) =
π

(π + γ + ν + ρ)(γ + ν + ρ− r)
=

θ

(1− θ)(r + δ)
= κd(r) (36)

and since the supply of capital was derived under the assumption of partial insurance, it also
has to satisfy r ∈ (−min{δ, (γ + ν + π)}, ρ). We note that κs(r) is continuous and strictly
increasing on r ∈ [−δ, ρ) and κd(r) is continuous and strictly decreasing on r ∈ (−δ, ρ],

with
∞ = limr↘−δκ

d(r) > κs(−δ)

Thus by the intermediate value theorem we obtain a unique equilibrium interest rate r? ∈
(−δ, ρ) if

κs(ρ) =
π

(π + γ + ν + ρ)(γ + ν)
>

θ

(1− θ)(ρ+ δ)
= κd(ρ)
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The following assumption insures that this is indeed the case.

Assumption 2 Let the parameters be such that

π

(π + γ + ν + ρ)(γ + ν)
>

θ

(1− θ)(ρ+ δ)
(37)

We then have the following

Theorem 1 Let assumptions 1 and 2 be satisfied. Then there exists a unique stationary

equilibrium with partial consumption insurance, and with interest rate

r∗ =
θ(π + γ + ν + ρ)(γ + ν + ρ)− πδ(1− θ)

π + θ(γ + ν + ρ)
(38)

The equilibrium interest rate r∗ is a strictly increasing function of ρ + γ + ν, θ and a

strictly decreasing function of π, δ. The equilibrium capital stockK∗ is a strictly increasing

function of π, θ and a strictly decreasing function of ρ+ γ + ν, δ.

Thus far nothing guarantees that the unique partial insurance equilibrium interest rate
r∗ is positive. The following assumption guarantees that this is the case.

Assumption 3 Let the parameters be such that

π

(π + γ + ν + ρ)(γ + ν + ρ)
<

θ

(1− θ)δ
(39)

Corollary 5 Let assumptions 1, 2 and 3 be satisfied. Then the unique stationary equilib-

rium interest rate satisfies r∗ ∈ (0, ρ) and induces a partial insurance risk consumption

contract and associated distribution.

Note that we can consolidate assumptions 2 and 3 into a single assumption on parame-
ters only. We have

Corollary 6 Assumptions 2 and 3 are jointly satisfied if and only if

δ

γ + ν + ρ
<
θ(π + γ + ν + ρ)

(1− θ)π
<
δ + ρ

γ + ν
=

δ

γ + ν + ρ
×
(

1 +
ρ

δ

)
×
(

1 +
ρ

γ + ν

)
(40)

which requires θ and ρ to be sufficiently large (relative to the other model parameters).
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It should be noted that this last set of inequalities is stated purely in terms of parameters
of the model, and it is straightforward to verify that the set of parameters satisfying these
inequalities is not empty.

5.5 Superinsurance Equilibria

Similarly to the previous subsection, we can use the optimal consumption contract and
the invariant consumption distribution to determine aggregate consumption demand C(r)

and capital supply κs(r) = C(r)−1
r

. Aggregate consumption demand is given as (see again
Appendix A.4) by

C(r) =
γ(π + γ + ν)

(γ + ν)

(r + γ + g(r))

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)

[
1 +

(1− γ)

g(r) + γ

]
(41)

with g = 1
σ
(ρ− r), as long as

r < ρ+ γ ∗ σ. (42)

In the appendix we also demonstrate that C(r) is continuous from above at r = ρ.

Characterizing superinsurance equilibria is in general hard, but under Assumption 1 (log-
utility) we note that

C(r) =
γ(π + γ + ν)

(γ + ν)

(ρ+ γ)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)

[
1 +

(1− γ)

ρ− r + γ

]
(43)

and we have the following

Conjecture 1 Let Assumption 1 be satisfied and Assumption 2 be strictly violated. There

there exists a stationary equilibrium with r > ρ > 0 and superinsurance consumption

contract, and associated invariant distribution.

Conjecture 2 Under the assumptions of the previous conjecture, the superinsurance equi-

librium is unique.

5.6 Why no Equilibrium with r = 0?

We should again emphasize that as long as r 6= 0, we can be sure that whenever the goods
market clears, the capital market also clears. However, for r = 0, this is not necessarily the
case. In this section we discuss why r = 0 is not a stationary equilibrium despite the fact
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that
C(r = 0) = 1 = G(r = 0)

The problem is that at r = 0 goods market clearing does not necessarily implies that the
capital market clears. To see this, consider the capital market clearing condition (23)

Ks(r) :=
w(r) [C(r)− 1]

r
= Kd(r)

Note that
w(r)

r
=

(1− θ)AK(r)θ

r
=

(1− θ)A
r

(
θA

r + δ

) θ
1−θ

and thus we can state the capital market clearing condition (23) as

Ks(r) := (1− θ)A
1

1−θ

(
θ

r + δ

) θ
1−θ [C(r)− 1]

r
=

(
θA

r + δ

) 1
1−θ

:= Kd(r) (44)

Using L’Hopital’s rule, that

Ks(r = 0) = lim
r→0

w(r) [C(r)− 1]

r
= lim

r→0

[C(r)− 1]

r/w(r)
=

[C ′(r = 0)]

limr→0
dr/w(r)
dr

∣∣∣
r=0

=
(1− θ)A

1
1−θ θ

θ
1−θ

(δ)
θ

1−θ
C ′(r = 0) =

(1− θ)A
1

1−θ (θ/δ)
θ

1−θ π

(π + γ + ν + ρ)(γ + ν + ρ)

since

lim
r→0

dr/w(r)

dr
= [(r + δ)

θ
1−θ + r

θ

1− θ
(r + δ)

θ
1−θ−1] ∗ 1

(1− θ)A(θA)
θ

1−θ

lim
r→0

dr/w(r)

dr

∣∣∣∣
r=0

=
(δ)

θ
1−θ

(1− θ)A(θA)
θ

1−θ

Thus

Ks(r = 0) =
(1− θ)A

1
1−θ θ

θ
1−θ

(δ)
θ

1−θ
C ′(r = 0)
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and capital market clearing at r = 0 then requires

C ′(r = 0)

(δ)
θ

1−θ

(1−θ)A(θA)
θ

1−θ

=

(
θA

δ

) 1
1−θ

and thus
C ′(r = 0) =

θ

(1− θ)δ
= G′(r = 0),

in addition to
C(r = 0) = G(r = 0)

For C ′(r = 0) = G′(r = 0) the following knife edge condition needs to be satisfied (which
is explicitly ruled out by assumption 3):

π

(π + γ + ν + ρ)(γ + ν + ρ)
=

θ

(1− θ)δ

Furthermore, under the assumptions made we have

Ks(r = 0) < Kd(r = 0)

and thus at r = 0 the goods market clears, but there is insufficient capital demand. One
way to implement r = 0 as an equilibrium is to have the government own just the right
amount of capital Kg > 0 such that

Ks(r = 0) +Kg = Kd(r = 0)

Since r = 0, the government does not collect any revenue from this ownership that would
need to be distributed, and thus a simple adjustment of the equilibrium definition that has
the government own just the right amount of the capital stock would implement r = 0 as a
second equilibrium, with associated partial insurance consumption allocation.

5.7 Graphical Depiction of Unique Stationary Equilibrium

For this case we can also easily generate the standard Aiyagari (1994) plot in (K, r) space.
It is depicted in Figure 1 for the parameterization chosen in the welfare analysis conducted
in the next section. As shown above, there is a unique equilibrium with a positive interest
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rate that clears the capital market. Also note that, even though at r = 0 the goods market
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Figure 1: Capital Demand and Supply as a Function of the Interest Rate r
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Figure 2: Goods Demand and Supply

clears (see Figure 2 which plots consumption demand and production net of depreciation),
capital demand by firms exceeds capital supplied by households through the financial in-
termediaries, and thus r = 0 can only be implemented as a stationary equilibrium if the
government (or some other outside entity) owns capital Kd(r = 0)−Ks(r = 0) > 0.
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5.8 Multiple Equilibria

The previous subsections argued that with log-utility th stationary equilibrium is unique,
but might feature partial insurance, full insurance or superinsurance, depending on param-
eters. In this subsection we assess the possibility of multiple equilibria, which requires
σ 6= 1. At this point we do not have a general result, but Figure 3 displays an example with
two stationary equilibria, one with partial insurance and an interest rate r < ρ, and one
with superinsurance and an interest rate ρ < r < ρ + γ ∗ σ. The parameterization for this
example is given in Table 1 below. The time discount rate for this example is 5%.

There is a nonempty region of the parameter space for which these two equilibria ex-
ist, but the region is not overly large, and requires risk aversion σ > 2 and thus a low
intertemporal elasticity of substiution, so that the capital supply is a decreasing function of
the interest rate.

Parameter σ θ δ A γ ν π
Value 10 0.272 20% 1 2% 5% 1.37%

Table 1: Parameter Values for Example
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Figure 3: Capital Demand and Supply as a Function of the Interest Rate r
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6 Welfare Properties of Stationary Equilibrium in the Log-
Case

Suppose there is a government that owns part of the capital stock, and thus implements the
stationary allocation associated with r = 0 as a stationary equilibrium. Can we rank the
welfare properties of stationary allocations emerging under r = 0 and under r = r∗ > 0.

To do so, define social welfare as

Uσ=1(r) =
π

ν + π
Ul +

ν

ν + π
Uh

where Ul := U out(yl) and Uh := U out(yh) are the expected lifetimes under the equilibrium
risk sharing contracts of individuals born into a steady state characterized by an equilibrium
interest rate of r. We first note that for any household born with yl = 0, the risk sharing
contract would stipulate cl = 0 and thus it is preferable to consume the nontradable endow-
ment and obtain flow utility u = u(χ) until income turns to y = yh at which an optimal
consumption risk sharing contract is signed.

In the appendix we show that the difference in social welfare between any two station-
ary allocations associated with interest rates r0 and r∗ is given by

Uσ=1(r0)−Uσ=1(r∗) =
ν(π + ρ+ γ + ν)

(ν + π)(ρ+ γ + ν)

(
log(w(r0)/w(r∗))

ρ+ γ
+

π(r0−r∗)
(ρ+γ+ν)

(ρ+ γ + π)(ρ+ γ + ν)− νπ

)

with the sign determined by the sign of

∆ =
log(w(r0)/w(r∗))

ρ+ γ
+

π(r0 − r∗)
(ρ+ γ + π)(ρ+ γ + ν)2 − (ρ+ γ + ν)νπ

.

The first term gives the effect of larger aggregate wages and thus larger aggregate consump-
tion, whereas the second term gives the benefit of better consumption insurance. Now we
note that

w(r) = (1− θ)AK(r)θ = (1− θ)A
(

θA

r + δ

) θ
1−θ

and thus
log(w(r0)/w(r∗))

ρ+ γ
=

θ

(1− θ)(ρ+ γ)
log

(
r∗ + δ

r0 + δ

)
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Parameter σ θ δ A γ ν π
Value 1 0.3 10% 1 2% 5% 4%

Table 2: Parameter Values for Example

and therefore

∆ =
θ

(1− θ)(ρ+ γ)
log

(
r∗ + δ

r0 + δ

)
+

π(r0 − r∗)
(ρ+ γ + π)(ρ+ γ + ν)2 − (ρ+ γ + ν)νπ

= ∆1 + ∆2

Finally we need to find conditions under which one term dominates the other. We
are especially interested in conditions under which ∆ < 0. Consider the parameterization
summarized in table 2 and consider two different time discount factors ρ = 3% and ρ =

5%. In table 3 we collect the basic statistics for both configurations.
Thus for both time discount factors there exist exactly one stationary equilibrium with

r∗ ∈ (0, ρ), and an allocation associated with r0 = 0 that can be implemented as equilib-
rium with the government owning just the right amount of capital. Both allocations feature
partial consumption insurance. The low interest rate r0 = 0 is associated with higher
wages (in fact at r0 = 0 aggregate consumption is maximized). But the high interest rate
allocation has better consumption insurance. As ρ increases, the high interest rate r∗ also
increases.

The aggregate welfare term ∆1 depends on the distance between r∗ and r0 and thus is
a bit larger under the high ρ. The insurance term ∆2 depends on the difference between ρ
and r and thus is roughly invariant to ρ. As a consequence as ρ gets larger the aggregate
term dominates and welfare is higher under the low equilibrium interest rates. As ρ gets
smaller, the aggregate welfare loss becomes smaller and is dominated by the risk sharing
term. Crucially, table 2 demonstrates that depending on parameter either one of the effects
can dominate, and thus it is possible that steady state welfare is higher in the low inter-
est scenario or in the stationary equilibrium with r∗ > 0. Figure 4 shows the resulting
consumption distributions.
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Variable ρ = 3% ρ = 5%
r0 0% 0%
r∗ 2.0% 3.9%

∆1 0.65 1.17
∆2 −1.14 −1.15
∆ −0.49 0.02

Table 3: Welfare under two Interest Rates
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Figure 4: Consumption Distribution for Two Interest Rates
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7 Conclusion

In this paper we have analytically characterized stationary equilibria in a neoclassical pro-
duction economy with idiosyncratic income shocks and long-term one-sided limited com-
mitment contracts. For an important special case (log-utility, two income state, zero income
in the lower state) the equilibrium is unique and can be given in closed form, with complete
comparative statics results. Given these findings, we would identify three immediately rel-
evant next questions. First, on account of our use of continuous time, the endogenous
optimal contract length is analytically tractable even outside the special case we have fo-
cused on thus far, and it will be important to generalize our findings about the stationary
equilibria to the more general case.

Second, thus far we have focused on stationary equilibria, thereby sidestepping the
question whether this stationary equilibrium is reached from a given initial aggregate stock,
and what are the qualitative properties of the associated transition path. This also raises the
conceptual question what is the appropriate initial condition for the distribution of out-
standing insurance contracts.

Finally, thus far we have focused on an environment that has idiosyncratic, but no ag-
gregate shocks, rendering the macro economy deterministic. Given our sharp analytical
characterization of the equilibrium in the absence of aggregate shocks, we conjecture that
the economy with aggregate shocks might be at least partially analytically tractable as well.
We view these questions as important topics for future research.
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A Details of the Derivations

In this section we provide further details of the mathematical derivations in the paper. These
are straightforward but tedious manipulations which were therefore excluded from the main
text

A.1 Value Function for r < ρ in Closed Form

The differential equation determining the cost function is given by

(r + γ + ν)v(t) = c(t)− yl + v̇(t)

v̇(t) = c(t)− yl − (r + γ + ν)v(t)

Then, integrating the differential equation, we have

v(t) =

∫ ∞
t

e−(r+γ+ν)(τ−t) (c(t)− yl) dτ

=

∫ ∞
t

e−(r+γ+ν)(τ−t) (che−gτ − yl) dτ
One can of course check this by differentiating the solution to obtain back the differential
equation. Solving the integral yields

v(t) = che
−gt
∫ ∞
t

e−(r+γ+ν+g)(τ−t)dτ =
che
−gt

r + γ + ν + g

which is the equation in the main text. Evaluating at t = 0 yields

v(0) =
ch

r + γ + ν + g

which is equation (17) in the main text.

A.2 Invariant Consumption Distribution for ρ = r

The invariant consumption distribution satisfies

φh = (1−∆γ)φh + ∆ν(1−∆γ)(1− φh) + ∆γ
ν

π + ν

40



Thus
φh = φh −∆γφh + ∆ν(1−∆γ)−∆ν(1−∆γ)φh + ∆γ

ν

π + ν

Simplifying and suppressing ∆2 terms yields

∆γφh = ∆ν −∆νφh + ∆γ
ν

π + ν

Dividing by ∆ yields
γφh = ν − νφh +

γν

π + ν

and solving for φh delivers

(γ + ν)φh =
ν(π + ν) + γν

π + ν

φh =
γν + ν(π + ν)

(γ + ν)(π + ν)
∈ (0, 1)

A.3 Existence of Full Insurance Equilibria

At this point it is not clear whether the threshold time discount factor ρ̄ at which full insur-
ance is exactly an equilibrium

ρ̄ = −π(1− θ)δ − θ(γ + ν)(γ + ν + π)

π(1− θ)− θ(γ + ν)

has ρ̄ > 0 or ρ̄ < 0, but note that for θ = 0, we have ρ̄ = −δ < 0. We now would
like to establish conditions such that for all discount factors ρ < ρ̄ and thus households
are more patient than ρ < ρ̄ we also have a full insurance, or superinsurance equilibrium,
and if ρ > ρ̄ (and thus households are relatively impatient) full insurance is too expensive a
stationary equilibrium must feature partial insurance. These results would coincide with the
general intuition from the limited commitment literature that if households are sufficiently
patient, there is a full-insurance equilibrium.
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To establish these results we first note that

(κs)′(ρ) = − π

γ + ν
[ρ+ γ + ν + π]−2 = − κs(ρ)

ρ+ γ + ν + π
< 0

(κs)′′(ρ) =
2π

γ + ν
[ρ+ γ + ν + π]−3 > 0

(κd)′(ρ) = − θ

1− θ
[(ρ+ δ)]−2 = −κ

d(ρ)

ρ+ δ
< 0

(κd)′′(ρ) =
2θ

1− θ
[(ρ+ δ)]−3 > 0

and thus both functions are strictly decreasing and strictly convex, with exactly one inter-
section at ρ = ρ̄. To establish that κs(ρ) > κd(ρ) for all ρ > ρ̄ it therefore suffices to show
that

0 > (κs)′(ρ̄) > (κd)′(ρ̄) (45)

that is, we need to show that κs is flatter than κd at ρ = ρ̄. But equation (45) holds if and
only if

− κs(ρ̄)

ρ̄+ γ + ν + π
> −κ

d(ρ̄)

ρ̄+ δ

κs(ρ̄)

κd(ρ̄)
<

ρ̄+ γ + ν + π

ρ̄+ δ

δ < γ + ν + π

We state this as

Assumption 4 Assume parameters are such that

δ < γ + ν + π (46)

We now can state

Proposition 5 Let assumption 4 be satisfied. Then κs(ρ) > κd(ρ) for all ρ > ρ̄ and

κs(ρ) < κd(ρ) for all ρ < ρ̄

This proposition also implies that under assumption 4, assumption 2 is satisfied for all
ρ > ρ̄, and thus for large enough time discount rates there cannot be a full insurance sta-
tionary equilibrium. We also conjecture that in that case there cannot be a super insurance
stationary equilibrium either:
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Corollary 7 Let assumption 4 be satisfied. Then for all ρ > ρ̄, full insurance cannot be a

stationary equilibrium.

Conjecture 3 Let assumption 4 be satisfied. Then for all ρ > ρ̄, super insurance cannot be

a stationary equilibrium. Thus any stationary equilibrium has to feature partial insurance.

A.4 Details of Superinsurance

First, characterize the cost for a household that starts with high income and consumes a
profile

ch(t) = ch(0)e−gt

where g = 1
σ
(ρ − r) < 0. For transparency, split the net cost into the gross cost κ(t) and

the revenue a(t) from the contract. The gross cost satisfies

rκ(t) = ch(t) + γ(0− κ(t)) + κ̇(t)

or
κ(t) =

∫ ∞
t

e−(r+γ)(τ−t)ch(τ)dτ

Note that Leibniz rule implies that

κ̇(t) = −ch(t) + (r + γ)

∫ ∞
t

e−(r+γ)(τ−t)ch(τ)dτ

= −ch(t) + (r + γ)κ(t)

Solving the integral yields

κ(t) = ch(0)e−gt
∫ ∞
t

e−(r+γ−g)(τ−t)dτ

= ch(0)e−gt
∫ ∞

0

e−(r+γ−g)τdτ

=
ch(0)e−gt

r + γ − g

The revenue satisfies

rah(t) = yh + γ(0− ah(t)) + π(al(t)− ah(t)) + ȧh(t)

ral(t) = γ(0− al(t)) + ν(ah(t)− al(t)) + ȧl(t)
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Evidently these two functions do not depend on time and solve

rah = yh + γ(0− ah) + π(al − ah)

ral = γ(0− al) + ν(ah − al)

or

(r + γ)ah = yh + π(al − ah)

(r + γ)al = yl + ν(ah − al)

and subtracting one from the other

(r + γ + ν + π)(ah − al) = yh

al = ah −
yh

(r + γ + ν + π)

and therefore

ah =
r + γ + ν

(r + γ)(r + γ + ν + π)
yh

al =
ν

(r + γ)(r + γ + ν + π)
yh

Therefore the net cost function satisfies

vh(t) = κ(t)− ah

vh(0) = κ(0)− ah =
ch(0)

r + γ + g
− (r + γ + ν)yh

(r + γ + ν + π)(r + γ)
= 0

which determines the entry level of consumption as

ch(0) =
(r + γ + g)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)
yh < yh

=
(r + γ + g)

(r + γ)
· (r + γ + ν)(π + ν)

(r + γ + ν + π)ν

since g < 0. Also note that since κ(t) is strictly increasing in t, so is v(t). Therefore the
household eventually becomes a liability; initially the intermediary collects (in expecta-
tion) positive contributions from the household, and these pay for insurance and a rising
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consumption profile later on. Finally, for r ↘ ρ we obtain

lim
r↘ρ

ch(0) =
(ρ+ γ + ν)

(ρ+ γ + ν + π)
yh

which is identical to ch from the full insurance case (r = ρ).
It remains to characterize the consumption dynamics and cost of the consumption con-

tract for a household starting with income yl = 0. Since consumption cannot fall below
zero, prepayment for a rising consumption profile conditional on continuing with yl cannot
happen, and thus, as in the full insurance and partial insurance case households receive
cl = 0 until they switch to high income.

The invariant distribution thus has two mass points, one at cl = 0 and one at ch(0), and
a continuous distribution above ch(0). The lower mass point satisfies

φl = (1−∆γ −∆ν)φl + ∆γ
π

π + ν

and thus
φl =

γπ

(π + ν)(γ + ν)

as in the full insurance case. We need to determine the mass point φh on ch(0) as well as the
scale and power parameter for the pdf above ch(0), in the same way we did for the r < ρ

case.
In c ∈ (ch(0),∞) the consumption process follows a diffusion process with drift −g =

r−ρ
σ
> 0 (and no variance) and thus on this interval the stationary consumption distribution

satisfies the Kolmogorov forward equation (for the case of Poisson jump processes):

0 = −d [−gcφ(c)]

dc
− γφ(c)

where the second term comes from the fact that with Poisson intensity ν the household
dies.

−d [−gcφ(c)]

dc
= − [−gφ(c)− gcφ′(c)] = g [φ(c) + cφ′(c)]

we find that on c ∈ (ch(0),∞) the stationary distribution satisfies

0 = g [φ(c) + cφ′(c)]− γφ(c)
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and thus the tail parameter of the truncated Pareto distribution is given by:

κ :=
cφ′(c)

φ(c)
=
γ

g
− 1

Recall that g = ρ−r
σ
< 0 and thus on c ∈ (ch(0),∞) the stationary consumption distribution

is Pareto with a tail parameter κ < −1, that is

φ(c) = φ1c
κ

where φ1 is a constant that needs to be determined. The fact that κ < −1 will insure that
expected and aggregate consumption are finite despite the fact that the consumption distri-
bution has unbounded support. The two remaining unknown parameters characterizing the
invariant consumption distribution are the scale parameter φ1 and the mass at ch(0) denoted
by φh.

In the case of superinsurance it is easier to determine φh first. The flow into ch(0) for
a small time interval ∆ is given by those individuals that experience an increase in their
incomes, ∆νφl, plus the mass of newborns with high income, ∆γ ν

ν+π
. On the other hand,

all individuals at ch(0) flow out, and thus the total outflow is ∆φh. Equating both flow gives

φh = νφl + γ
ν

ν + π

and thus
φh =

νγ(π + γ + ν)

(π + ν)(γ + ν)

The residual probability mass above ch(0) thus satisfies

φ1

∫ ∞
ch(0)

cκ = 1− φl − φh

φ1

1 + κ

(
(c =∞)1+κ − ch(0)1+κ

)
=

ν(1− γ)(γ + ν + π)

(π + ν)(γ + ν)

−φ1g

γ
ch(0)

γ
g =

ν

(ν + π)
· (1− γ)(γ + ν + π)

(γ + ν)

φ1 =
γν(1− γ)(γ + ν + π)

−g(π + ν)(γ + ν)
ch(0)−

γ
g
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and thus

φ(c) =
γν(1− γ)(γ + ν + π)

−g(π + ν)(γ + ν)c

(
c

ch(0)

) γ
g

Therefore for any given r > ρ, the stationary consumption distribution is given by two
mass points at yl = 0 and ch(0) and a Pareto density above ch(0):

φr(c) =


γπ

(π+ν)(γ+ν)
if c = 0

ν
(ν+π)

γ(π+γ+ν)
(γ+ν)

if c = ch(0)

γν(1−γ)(γ+ν+π)
−g(π+ν)(γ+ν)c

(
ch(0)
c

) γ
−g

if c ∈ (ch(0),∞)

Now we determine aggregate consumption demand,

C(r) = φhch(0) +

∫ ∞
ch(0)

cφr(c)dc

=
νyh

(ν + π)

γ(π + γ + ν)

(γ + ν)

(r + γ + g)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)

−γν(1− γ)(γ + ν + π)

g(π + ν)(γ + ν)

∫ ∞
ch(0)

(
ch(0)

c

) γ
−g

dc

=
γ(π + γ + ν)

(γ + ν)

(r + γ + g)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)
− γν(1− γ)(γ + ν + π)

g(π + ν)(γ + ν)
(ch(0))

γ
−g

∫ ∞
ch(0)

c
γ
g dc

=
γ(π + γ + ν)

(γ + ν)

(r + γ + g)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)
− γν(1− γ)(γ + ν + π)

g(π + ν)(γ + ν)
(ch(0))

γ
−g

[
(c)1+ γ

g

1 + γ
g

]∞
ch(0)

=
γ(π + γ + ν)

(γ + ν)

(r + γ + g)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)
+
γν(1− γ)(γ + ν + π)

(π + ν)(γ + ν)

1

(g + γ)

(r + γ + g)

(r + γ)
· (r + γ + ν)(π + ν)

(r + γ + ν + π)ν

=
γ(π + γ + ν)

(γ + ν)

(r + γ + g)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)
+
γ(1− γ)(γ + ν + π)

(γ + ν)

1

(g + γ)

(r + γ + g)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)

=
γ(π + γ + ν)

(γ + ν)

(r + γ + g)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)

[
1 +

(1− γ)

g + γ

]

=
γ(π + γ + ν)

(γ + ν)

(r + γ + g)

(r + γ)
· (r + γ + ν)

(r + γ + ν + π)

1 +
(1− γ)

g
(

1 + γ
g

)


C(r ↘ ρ) =
(π + γ + ν)

(γ + ν)
· (ρ+ γ + ν)

(ρ+ γ + ν + π)
= 1 +

ρπ

(γ + ν)(ρ+ γ + ν + π)
= C(r = ρ)
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where we require that

1 +
γ

g
< 0

r − ρ < γσ

That is, for aggregate consumption demand to be finite r cannot be too large and/or the
probability of death and risk aversion have to be sufficiently large. Effectively, dying has
to be more rapid than consumption growth. Check the algebra again, seems a bit messy.

A.5 Market Clearing Interest Rate

A.5.1 Supply of Consumption

The (normalized by wages) supply of consumption goods in the stationary equilibrium is
given by

G(r) =
[AFK(K(r), 1)− δ]K(r)

AFL(K(r), 1)

Calculating the capital stock for Cobb-Douglas production yields

K(r) =

(
θA

r + δ

) 1
1−θ

and thus

[AFK(K(r), 1)− δ]K(r)

AFL(K(r), 1)
=

r

(1− θ)AK(r)θ−1
=

rθ

(1− θ) (r + δ)
=

θ

(1− θ) (1 + δ/r)
.

A.5.2 Consumption Demand for ρ = r

Here we expand on the algebra in the main text for the calculation of aggregate consumption
demand in the case of arbitrary ρ = r. The only requirement is that ρ = r > −(γ+ ν + π).
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C(r) = φlyl + φhch(r)

=

(
1− νr

(γ + ν) (r + γ + ν + π)

)(
1− νyh

π + ν

)
+

(
γ + π + ν

γ + ν

)(
r + γ + ν

r + γ + ν + π

)
νyh

(π + ν)

= 1− νr

(γ + ν) (r + γ + ν + π)
+

(
(γ + ν + π)(r + γ + ν) + νr − (γ + ν) (r + γ + ν + π)

(γ + ν) (r + γ + ν + π)

)
νyh

(π + ν)

= 1− νr

(γ + ν) (r + γ + ν + π)
+

rνyh
(γ + ν) (r + γ + ν + π)

= 1 +
rν(yh − 1)

(γ + ν)(r + γ + ν + π)

and using equation (1) we have

C(r = ρ) = 1 +
ρπ

(γ + ν)(ρ+ γ + ν + π)

B Welfare

B.1 Full Insurance

In this case, in parallel to the cost calculation for the optimal contract the HJB equation for
lifetime utility deflated by wages reads as

ρuh = log(ch) + γ(0− uh) + π(uhl − uh)

ρuhl = log(ch) + γ(0− uhl) + ν(uh − uhl)

Simplifying this set of equations we obtain

(ρ+ γ + π)uh = log(ch) + πuhl

(ρ+ γ + ν)uhl = log(ch) + νuh

and thus uh = uhl and

uh = uhl =
log(ch)

ρ+ γ

where
ch =

ρ+ γ + ν

ρ+ γ + ν + π
yh
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Thus
Uh =

w(r)

ρ+ γ
+

log(ch)

ρ+ γ

For lifetime utility conditional on being born with low income Ul we have

ρUl = u+ γ(0− Ul) + ν(Uh − Ul)

and thus
Ul =

u+ νUh
ρ+ γ + ν

Therefore lifetime utility is determined by

Uσ=1(r) =
π

ν + π
Ul +

ν

ν + π
Uh

=
πu

(ν + π)(ρ+ γ + ν)
+

(
ν(ρ+ γ + ν + π)

(ν + π)(ρ+ γ + ν)(ρ+ γ)

)
(logw(r) + log(ch))

B.2 Partial Insurance

First we note that the calculation of Ul is exactly the same as before, and thus it remains to
be true that

Ul =
u+ νUh
ρ+ γ + ν

Now of course the calculation for lifetime utility from the contract is more involved. As
before we have

Uh =
w(r)

ρ+ γ
+ uh

where uh is lifetime utility from the deflated consumption contract.
Again in parallel to the cost calculation for the optimal contract we find as lifetime

utility from the deflated consumption contract

ρuh = log(ch) + γ(0− uh) + π(u(0)− uh)

ρu(t) = log(c(t)) + γ(0− u(t)) + ν(uh − u(t)) + u̇(t)

and thus

(ρ+ γ + π)uh = log(ch) + πu(0)

(ρ+ γ + ν)u(t) = log(c(t)) + νuh + u̇(t)
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where c(t) = che
−(ρ−r)t and thus

log(c(t)) = log(ch)− (ρ− r)t

and
(ρ+ γ + ν)u(t) = log(ch)− (ρ− r)t+ νuh + u̇(t)

Solving this ODE yields

u(t) =

∫ ∞
t

e−(ρ+γ+ν)(s−t) (−(ρ− r)s+ log(ch) + νuh) ds

and thus

u(0) =

∫ ∞
0

e−(ρ+γ+ν)(s−t) (−(ρ− r)s+ log(ch) + νuh) ds

= −
∫ ∞

0

e−(ρ+γ+ν)(s−t)(ρ− r)sds+ (log(ch) + νuh)

∫ ∞
0

e−(ρ+γ+ν)(s−t)ds

=
r − ρ

(ρ+ γ + ν)2
+

log(ch) + νuh
ρ+ γ + ν

where the last step uses integration by part (need to check algebra again!). Thus we have

(ρ+ γ + ν)u(0) = log(ch) + νuh +
r − ρ

(ρ+ γ + ν)

(ρ+ γ + π)uh = log(ch) + πu(0)

Solving these two equations in two unknowns yields

[(ρ+ γ + π)]uh = log(ch) +
π(r − ρ)

(ρ+ γ + ν)2
+
π log(ch) + νπuh

ρ+ γ + ν

and thus[
(ρ+ γ + π)(ρ+ γ + ν)− νπ

ρ+ γ + ν

]
uh =

(
ρ+ γ + ν + π

ρ+ γ + ν

)
log(ch) +

π(r − ρ)

(ρ+ γ + ν)2

uh =
(ρ+ γ + ν + π) log(ch) + π(r−ρ)

(ρ+γ+ν)

(ρ+ γ + π)(ρ+ γ + ν)− νπ
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Therefore social welfare is determined as

Uσ=1(r) =
π

ν + π
Ul +

ν

ν + π
Uh

=
π

ν + π

u+ νUh
ρ+ γ + ν

+
ν

ν + π
Uh

=
πu

(ν + π)(ρ+ γ + ν)
+

ν(π + ρ+ γ + ν)

(ν + π)(ρ+ γ + ν)
Uh

=
πu

(ν + π)(ρ+ γ + ν)
+

ν(π + ρ+ γ + ν)

(ν + π)(ρ+ γ + ν)

(
log(w(r)

ρ+ γ
+ uh

)
=

πu

(ν + π)(ρ+ γ + ν)
+

ν(π + ρ+ γ + ν)

(ν + π)(ρ+ γ + ν)

(
log(w(r)

ρ+ γ
+

(ρ+ γ + ν + π) log(ch) + π(r−ρ)
(ρ+γ+ν)

(ρ+ γ + π)(ρ+ γ + ν)− νπ

)

The difference in welfare between two stationary equilibria is thus given by (noting that ch
is independent of r)

Uσ=1(r0)−Uσ=1(r∗) =
ν(π + ρ+ γ + ν)

(ν + π)(ρ+ γ + ν)

(
log(w(r0)/w(r∗))

ρ+ γ
+

π(r0−r∗)
(ρ+γ+ν)

(ρ+ γ + π)(ρ+ γ + ν)− νπ

)

with the sign determined by the sign of

∆ =
log(w(r0)/w(r∗))

ρ+ γ
+

π(r0 − r∗)
(ρ+ γ + π)(ρ+ γ + ν)2 − (ρ+ γ + ν)νπ
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